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ABSTRACT

Despite the great advances in video understanding with deep neural networks, cur-
rent solutions still struggle with input videos that last for minutes, if not hours. To
mitigate this issue, existing approaches typically build a memory cache with dense
visual embedding on video transformers to model the long-range spatiotemporal
dependencies. However, even with hundreds of extended memory tokens, their
results remain unsatisfactory. In this paper, we argue that more compact yet infor-
mative memory embeddings can effectively improve performance. To this end, we
introduce TinyMem, a model built upon tiny multimodal memory for long-form
video action detection. In particular, we condense redundant video content into
succinct descriptions to derive abstract text semantics. Subsequently, we integrate
visual embedding condensed by regions with text embedding. TinyMem beats a
range of state-of-the-art models on AVA v2.2, Epic-Kitchens-100 and Breakfast
with highly condensed memory, e.g., 37.4 mAP with TinyMem-24-12 on AVA
v2.2 while using 5 times fewer memory tokens than the baseline with dense visual
memory embedding.

1 INTRODUCTION

While analyzing contents in short-term videos with a duration of a few seconds has seen rapid
progress in recent years Bertasius et al. (2021); Fan et al. (2021); Feichtenhofer et al. (2022); Tong
et al. (2022), techniques still fall short of meeting the demands of real-world settings. For instance,
in streaming services, a plethora of media files would last for minutes and even hours. It is chal-
lenging yet crucial to explore extending current techniques for short-term videos to ones with much
longer duration Grauman et al. (2022); Wu & Krahenbuhl (2021); Yang et al. (2023). As a result,
researchers introduce approaches in a similar spirit to the human visual system, where long-range
visual information is not processed all at once but received and parsed sequentially in short seg-
ments over time. This motivates the task of online action detection Damen et al. (2022); Wang et al.
(2021); Xu et al. (2021), which entails segmenting long videos into multiple short-term clips and
then predicting corresponding labels within each segment arranged in temporal order.

As activities in long videos are strongly correlated yet located in different space-time locations,
modeling each clip independently leaves enriched relationships over time unexploited. To address
this issue, incorporating a memory cache into networks becomes a mainstream strategy for online
action detection. In particular, our design is encouraged by approaches Ryoo et al. (2023); Song
et al. (2023); Wu et al. (2022) that augment representations of video transformers with historical
spatial-temporal clues from cached visual tokens. However, prior studies simply leverage the dense
output video tokens of certain transformer layers as memory (i.e., vanilla visual memory) . For long-
form videos, however, we argue that this design inherently incorporates redundant and inefficient
visual signals. In particular, when memory length scales up, vanilla visual memory results in a rapid
growth of the number of tokens involved in attention computation and hence poses great challenges
for video transformers in identifying the most helpful clue from historical information.

To address these issues, we draw inspiration from the human memory system, where visual stim-
uli would be converted into a compressed and low-resolution format in working memory Kwak &
Curtis (2022). To explore the best practice of compact and informative memory embedding, innova-
tively, we employ textual descriptions to interpret the abstract semantics emerging from videos and
project captions into tiny text token as semantic memory. Imitating the human memory system, we
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Figure 1: The trade-off between the average
number of memory tokens used and mAP on
AVA v2.2 when scaling up the memory length.

Figure 2: The comparison between the text
memory cache of TinyMem and the vanilla vi-
sual memory cache of MeMViT.

supplement highly-abstracted text memory with imagery-connected memory Tulving et al. (1972).
We hypothesize that employing tokens summarizing important object regions is sufficient to repre-
sent historical visual content as opposed to using all visual tokens in prior works. By incorporating
the condensed multimodal memory, we introduce the Tiny-Memory Multiscale Vision Transformer
(TinyMem) for online action detection on long videos.

Specifically, we build our framework upon the short-term video transformer, MViTv2 Li et al.
(2022). We exploit the powerful vision-language model (VLM), BLIP-2 Li et al. (2023) to gen-
erate framewise captions for the input clip. Subsequently, we project each obtained caption into
one tiny token and write the resulting text token1 of the entire clip into the memory cache, as il-
lustarted in Fig. 2. Impressively, the single text memory token can effectively summarize the visual
input and significantly reduce its dimensionality. In addition, we propose a captioner-free dynamic
strategy to encourage the best efficiency during inference. As for region embedding, given off-the-
shelf bounding boxes, we leverage ROI features as memory. Otherwise, we employ an extended
set of global tokens as region tokens, and push the output region tokens into the memory cache. In
implementation, we maintain a tiny number of memory tokens (i.e., 16 tokens) to represent each
video clip for each case. Therefore, with collaboration of these tow memory modalities, we manage
to read out long duration of clip history from memory cahces effectively and efficiently. In conse-
quence, TinyMem efficiently condenses video signals into a compact embedding space and achieves
significantly improved performance thanks to streamlined memory tokens.

More importantly, we demonstrate the effectiveness of the proposed framework with extensive ex-
periments. In particular, TinyMem-16-12 achieves 33.4 in mAP on AVA v2.2 Gu et al. (2018),
which fuels MViTv2-16 by 6.4 and surpasses a range of prior methods with much larger vision
backbones. As shown in Fig. 1, TinyMem-16-12 outweighs MeMViT-16 using vanilla visual em-
bedding by 4.1 in mAP while using 2.5 times fewer memory tokens. Besides, TinyMem-24-12 hits
37.4 in mAP, which outweighs MeMViT-24 by 5.1 and employs 5 times fewer memory tokens. By
using the captioner-free strategy in inference, TinyMem-24-12 generalizes well by achieving 34.8
without further fine-tuning, still striking advantage of 2.5 in mAP over MeMViT-24. We further
validate the capacity of our method with additional action classification benchmarks, e.g., Epic-
Kitchens-100 Damen et al. (2022) and Breakfast Kuehne et al. (2014). Generally, we observe a
consistent and promising growth in performance compared with the baselines, sufficiently proving
the advantage of the proposed tiny memory design.

2 RELATED WORKS

Online action detection processes input videos as multiple streaming short clips arranged in tem-
poral order An et al. (2023); Cao et al. (2023); De Geest et al. (2016); Wang et al. (2021; 2023a); Xu
et al. (2021). The online framework especially benefits long-term video benchmarks De Geest et al.
(2016); Idrees et al. (2017), e.g., AVA Li et al. (2020), a dataset for spatial-temporal localization
of atomic action, consisting of 15-minute-length videos. For instance, Zhao et al. replace vanilla
attention with temporal smoothing kernels in Transformer Zhao & Krähenbühl (2022) to support

1Note that we use embedding, token, and memory interchangeably.
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the arbitrary length of inputs. In this paper, we build our framework upon the online setting and aim
to augment short-term video transformers with multimodal memory caches.

Memory-augmented video models cache motion information of historical video clips and are
hence capable of modeling long-range spatial-temporal clues. Generally, prior strategies can be
divided into two categories. The first vein of solutions builds memory networks upon a task-specific
action decoder Chen et al. (2022); Huang et al. (2020); Tang et al. (2020); Wang et al. (2023a) that
aggregates pre-extracted video features. LSTR Xu et al. (2021) compresses long-term video fea-
tures and then cooperates the encoded memory with short-term video information. On the other
hand, encouraged by memory techniques in NLP domain Dai et al. (2019); Rae et al. (2019); Wang
et al. (2023c), researchers have been exploring strategies for plugging memory caches into video
backbones Ryoo et al. (2023); Wu et al. (2022), especially on Transformers Vaswani et al. (2017).
MeMViT Wu et al. (2022) caches the key and value tokens within attention layers of MViTv2 Li
et al. (2022) and efficiently compresses memory tokens in a pipelined form. Nevertheless, distinct
from previous methods, we introduce a novel modality, language, as the memory embedding, suc-
cessfully incorporating highly-compact semantics with visual clues.

Long-term video understanding focuses on videos lasting for minutes and even hours Bahrami
et al. (2023); Damen et al. (2018); Yeung et al. (2018); Tan et al. (2023); Yang et al. (2023). Recently,
versatile explorations have been made to design specialized architectures Afham et al. (2023); Straf-
forello et al. (2023); Yu et al. (2020); Zhou et al. (2021; 2023) for processing long video sequences,
e.g., ViS4mer Islam & Bertasius (2022) takes advantage of a structured state-space sequence (S4) Gu
et al. (2021) to efficiently aggregate long-range features of movie segments. Selective-S4 Wang et al.
(2023b) further reduces the computational costs via adopting a selection network to drop tokens with
less information before feeding into S4.

Additionally, researchers have been making attempts to leverage multimodal models for improved
performance on long-form videos Argaw et al. (2023); Chen et al. (2023); Zhang et al. (2023b);
Zhu et al. (2023b); Papalampidi et al. (2023). LF-VILA Sun et al. (2022) proposes to align video
clips and text descriptions both temporally and globally via contrastive learning. While studies Yuan
et al. (2023) have shown that advanced Vision-Language models (VLMs) Radford et al. (2021); Yu
et al. (2022) lag behind state-of-the-art in action detection, our method manages to boost the perfor-
mance by leveraging enriched language representation without extra video-language pre-training.
TinyMem is also distinct from works Kim et al. (2023); Ren et al. (2024); Zhang et al. (2023a)
exploiting the capacity of large language models for long-sequence understanding, as we focus on
learning better visual representation of long-video and harness text embedding as the escalator.

3 METHOD

Our goal is to leverage multimodal memory to support online video action detection for long-form
videos. To this end, we build our method, TinyMem, upon a short-term video model MViTv2 Li
et al. (2022). Following the classical setting of online video processing, Given a streaming long
video V , we process it in a clip-by-clip manner. Specifically, at time step t, we could only get access
to the current and past clips, i.e., {C0, · · · ,Ct} that are arranged in a temporal sequence, and aim to
predict the actions in Ct. In the following, we begin with a brief review of the MViTv2 in Sec. 3.1,
and then introduce the design of multimodal memory embedding in Sec. 3.2. Finally, we discuss
memory reading and update strategy in Sec. 3.3 and introduce the captioner-free inference strategy
in Sec. 3.4. The overall framework of our method is illustrated in Fig. 3.

3.1 A BRIEF REVIEW OF MVITV2

MViT Fan et al. (2021) brings the hierarchical design of convolution neural networks He et al.
(2016) to vision transformers, via gradually downsampling the spatial resolution of visual features
in stacked transformer blocks. On top of that, MViTv2 Li et al. (2022) further incorporates several
advanced modules for better performance on a wide spectrum of visual tasks. Specifically, taking a
video clip as input, MViTv2 first projects the 3D patches into a sequence of visual tokens X via a
patch embedding layer. After that, several transformer blocks are adopted to model the spatiotem-
poral relations between different tokens. Within each transformer block, X are converted into query,
key, and value through a linear projection Wq , Wk and Wv , and then input to 3D pooling operations

3
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Figure 3: The overview of the TinyMem framework. Left: the training pipeline with BLIP-2 as the
frame captioenr. Right: the captioner-free dynamic inference pipeline with region memory omitted
for simplicity.

Opq , Opk and Opv . The pooled query, key, and value tokens Q, K and V then undergo multi-head
self-attention computation.

Note that the pooling operation could effectively reduce the input sequence length and save the com-
putation overhead in self-attention. Despite the impressive performance on clip-based video tasks,
e.g., video action recognition, MViTv2 cannot handle long videos with the absence of long-range
context modeling. By cacheing the information of historical video clips in external multimodal
memory modules, we effectively support long-from video modeling. In implementation, we fol-
low Wu et al. (2022) to switch the sequence between pooling and linear projection.

3.2 MULTIMODAL MEMORY EMBEDDING

Existing memory-based video models, typically store dense visual features of past clips into mem-
ory, which contains remarkable redundant information and hence inevitably introduces distractors
during memory reading. In this paper, we seek to comprise memory caches with abstract semantics
by utilizing two modalities of memory embedding in TinyMem, i.e., text and region memory.

Text memory stores the core concepts, e.g., objects and their activities, in narrative captions. Specif-
ically, given the current clip Ct, we obtain its description as a composition of captions from T
frames with BLIP-2 Li et al. (2023). Though BLIP-2 undergoes image-text pre-training only, ow-
ing to its outstanding zero-shot performance, it has been widely used to generate captions in recent
works Bhattacharya et al. (2023); Chen et al. (2024); Yu et al. (2024) to assist video tasks. Sub-
sequently, we embed generated captions into textual embedding using the text encoder of CLIP-
B Radford et al. (2021). Next, we aggressively select a single [EOT] token to represent the full text
semantics, and feed it into the projection head of vision-language joint feature space to obtain one
memory tokens for each frame of Ct. The extracted T text tokens condense video content into a
highly compact space yet effectively model the context of past video segments.

Region memory caches the historical visual clues of informative regions. Compared with previous
methods of storing pixel features of the complete clip, our region memory is more informative
and efficient. Specifically, given bounding boxes predicted by an off-the-shelf object detector, RoI
features are extracted by applying 3D RoI Align He et al. (2017) on the output visual tokens. We
employ RoI features as compact region representation and feed them into the classification head to
gain the final prediction. In consequence, we obtain resulting Nregion region memory tokens.

We argue that region memory can also be represented with an extended set of learnable tokens.
Specifically, we prepend Nregion global tokens with input video tokens before the first transformer
block and obtain the output global tokens on the corresponding layer as region embedding. We
comprise region memory embedding with RoI features in default for spatiotemporal action detection
benchmark and leverage global region tokens for temporal action detection benchmark.

Multimodal memory refers to the collaboration of text embedding and region embedding. Con-
cretely, We select a subset of transformer layers and augment each layer with either of the above two
types of memory embedding. Thereby, we inject the context information into the visual features of
the current clip. Next, we will explain how to perform memory readout and update.
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3.3 READ OUT & WRITE IN

In this section, we discuss the write-in and readout strategy of multimodal memory tokens. The
proposed memory caches are inserted into a subset of transformer layers. Without loss of generality,
we introduce the configuration for L-th layer and drop the layer index L for simplicity, and visualize
how text memory tokens interact with video tokens of the current time step in Fig. 4.

Memory readout supplements the visual features of the current clip with the information from
previous clips. Specifically, we first sample l memory tokens with a temporal stride of s from the
memory. To convert memory into “keys” and “values”, we apply two lightweight projection layers
Pk and Pv to align the feature dimension with the key and value tokens of the current clip, i.e.,
Kt and Vt. After that, we concat the obtained tokens of different timestamps along the sequence
dimension and obtain Mk, Mv respectively.

We implement Pk and Pv with a bias-free 1D group-convolutional layer followed by a shared
normalization layer. It is worth noting that projection layers also compress the output length of
our text (region) key and value tokens using a moderate stride size. More importantly, TinyMem
obtains memory tokens much fewer than the visual memory ones in previous methods Wu et al.
(2022). Next, we concatenate memory keys Mk and values Mv with Kt and Vt to get the memory-
augmented key K ′ and value V ′ for self-attention computation.

Memory write-in is performed once the text embedding or region embedding is obtained by simply
pushing them into the corresponding memory cache. We maintain both memory caches as First-In-
First-Out (FIFO) queues with the maximal length equal to Lc. In other words, once the memory
length exceeds Lc, the earliest cached memory tokens will be discarded.

3.4 CAPTIONER-FREE DYNAMIC INFERENCE

While we can access informative and high-quality captions with a wide range of powerful multi-
modal foundation models now Bai et al. (2023); Liu et al. (2024); Zhu et al. (2023a), their model
scale, e.g., 7.96B parameters for BLIP-2 with OPT-6.7b Zhang et al. (2022), may introduce con-
cerns for training and inference efficiency in resource-limit scenarios. To this end, we pre-extract
frame captions for training videos and design a captioner-free strategy for inference. Specifically,
we dynamically generate simplified captions according to the output predictions.

For video clip Ct, TinyMem outputs Nbox action predictions. We compute the product of the pre-
diction confidence of each bounding box from the detector with the corresponding action prediction
score. Next, we average the obtained product for each action and obtain Top-K action categories
{act0, · · · , actK}. Afterward, we select the curated short description corresponding to each cate-
gory in the format of “a person {performing some actions}”. Later, we construct the
text input for memory caches by randomly drawing from the K obtained description. We claim
that the simplified captions fall short of captions generated by BLIP-2 due to the absence of de-
tails. While we observe that TinyMem-24 still exhibits strong superiority and generalizes well on
the captioner-free strategy.
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Figure 5: Comparison between scaling up different embedding. We present the influence of scaling
up memory length over training GLOPs in Fig. 5a, the averaged number of memory tokens on
average after the projection layer in Fig. 5b and mAP in Fig. 5c. Fig. 5d displays the impact of the
depth of the selected layer when TinyMem-16-6 is augmented with only a single memory cache.

Table 1: Comparison between different memory
embedding on TinyMem-16-6.

Embedding Nmem mAP

vison NT ·NH ·NW 30.0
region (RoI) Nregion 31.0
region (token) Nregion 31.7
text (CLIP) T 32.9
vision (CLIP) T 31.6

Table 2: Comparison between TinyMem and
MeMViT on AVA v2.2.

Model mAP N̄mem

MeMViT-16-2 29.3 257
TinyMem-16-2 32.8 (↑3.5) 18

MeMViT-24-2 32.3 992
TinyMem-24-6 35.9 (↑3.6) 96

4 EXPERIMENTS

Model setup. Notably, we explore two scales of architecture, denoted as TinyMem-X-l-M , with
the suffix X identifying the depth of the model, l defining the memory length and M ∈ {V,R,T}
indicating the modality of memory embedding. In default, we omit “-M” and use the combina-
tion of text memory and region memory for TinyMem and adopt visual memory embedding for
MeMViT. Besides, following MeMViT, we adopt the relative positional embedding and employ an
attention-based head on MViTv2. Generally, when no memory is cached, TinyMem-X are isotropic
to MeMViT-X in architecture.

For region memory embedding, we set Nregion to 16 and hence write in 16 text memory tokens
for each clip. We adopt the ground-truth bounding boxes for training and detected person boxes
from AIA Tang et al. (2020) for inference. To obtain clip descriptions, we adopt BLIP-2 models
based on OPT-6.7b Zhang et al. (2022) and fine-tuned on COCO Lin et al. (2014). We apply the
default prompt of “a photo of” to generate captions for each of T frames. We observe that applying
memory to deeper layers notably brings benefits, especially for region tokens (as shown in Fig. 5d).
Therefore, we augment 50% of MHSA layers by employing region memory on the last sampled one
and use text memory caches for all the rest.

Implementation details. We follow prior studies Wu et al. (2022); Xu et al. (2021) to process long
videos by taking in a short clip containing one annotated keyframe each time step on AVA v2.2 .
We fine-tune models2 pre-trained on Kinetics Carreira et al. (2018); Kay et al. (2017) for 30 epochs
by using an AdamW optimizer with a batch size of 128, a base learning rate of 5e−4 and a weight
decay of 0.05. We resize the short size of frames to 256 and randomly crop a region of 2242 during
training and apply random horizontal flipping and color jittering.

4.1 MAIN RESULTS

Scaling up memory length of TinyMem leads to performance gains effectively while maintaining
a small number of memory tokens. Specifically, we compute the increase in GLOPs within the
attention layers with memory length increased. Fig. 5a displays that the visual memory embedding
consistently leads to more FLOPs while multimodal memory embedding maintains a growth of
less than 5%. Similarly, we plot the growth of averaged memory token numbers in Fig. 5b and

2We adopt pre-trained checkpoints provided by MeMViT Wu et al. (2022).
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Table 3: Comparison with SOTA methods on AVA v2.2.

Model Pretrain Trainable mAP
Dataset Param

MViTv2-16, 16× 4 Li et al. (2022) K400 35M 27.0
MeMViT-16, 16× 4 Wu et al. (2022) K400 35M 29.3
AIA-R50, 4× 16 Tang et al. (2020) K700 - 29.8
TinyMem-16-12, 16× 4 K400 42M 33.4

AIA-R101, 8× 8 Tang et al. (2020) K700 - 32.3
STMixer-CSN152, 32× 3 Wu et al. (2023) K600 - 32.8
MViTv2-24, 32× 3 Li et al. (2022) K600 51M 30.1
MeMViT-24, 32× 3 Wu et al. (2022) K600 53M 32.3
TubeR-CSN152, 32× 3 Zhao et al. (2022) K400† - 33.4
STAR-ViT-B, 32× 3 Gritsenko et al. (2023) K700 - 33.9
TinyMem-24-12, 32× 3 K600 58M 37.4

Table 4: Ablation study of
memory length and sampling
stride in TinyMem-16.

Memory Sample mAP
Length (l) Stride (s)

×2 ×2 32.7
×4 ×2 33.0
×6 ×2 33.1
×12 ×2 33.4

×12 ×1 33.0
×12 ×2 33.4
×12 ×3 33.5
×12 ×4 33.4

Table 5: Comparison with SOTA methods with comparable performance yet different model scales
on AVA v2.2. † indicates using dynamic inference strategy without BLIP-2 generated caption.

Model Pretrain Train Test Trainable Full mAP Vid/s
Dataset Res. Res. Params Params

TinyMem-24-12, 32× 3 K600 224 256 58M 122M + 7.96B 37.4 1.0
TinyMem-24-12†, 32× 3 K600 224 256 58M 122M 34.8 5.9
MeMViT-24, 32× 3 K600 224 256 53M 53M 32.3 5.5
MViTv2-L, 40× 3 K700 312 312 213M 213M 34.4 4.9

the changes in mAP with memory length extended in Fig. 5c. The results showcase that multimodal
memory tokens boil down informative clues within clips into a more compact feature space. Besides,
extending text memory tokens effectively facilitates growth in performance, e.g., mAP increases by
1.0 with l increasing from 2 to 12. Similarly, Tab. 4 displays the scaling ability of TinyMem with
mutimodal memory tokens.

Text embedding overwhelms other formats of embedding on AVA by a large margin, as indicated
by Tab. 1. In specific, we compare the performance of different memory embedding with a uniform
memory length of 6 and sampling stride of 1. Nmem denotes the number of memory tokens read
out before compression in each time step, with the layer index omitted. Among reported results, we
encompass a special form of visual embedding that leverages the visual encoder of CLIP to generate
compact visual embedding for each input frame. We project output visual tokens of ViT into visual-
language joint space with the pre-trained head of the visual encoder in CLIP. Consequently, we
obtain T × 1 visual memory tokens for each input video clip.

Notably, RoI-based region embedding and CLIP visual embedding outperform the vanilla one by
1.0 and 1.6 in mAP, respectively, verifying that redundant information in plain visual memory can
be substantially compressed. We also prove that wielding a set of global tokens as region embedding
can be sufficiently effective, denoted as “region (token) ” in Tab. 1. By default, we implement region
embedding with extracted RoI features to avoid additional costs on AVA v2.2. More interestingly,
text embedding achieves far superior performance, surpassing visual embedding by 2.9 in mAP
and also exceeding CLIP visual embedding drawn from the aligned encoding space by 1.2. The
absolute advantage demonstrates that the text modality can effectively represent the semantics of
spatiotemporal signals and has a remarkable capacity for compression.

Furthermore, applying region memory on the deep layer of MViT achieves sufficiently good results,
e.g., TinyMem-16-6 achieves 31.1 mAP by augmenting the 13th layer with region memory, as dis-
played in Fig. 5d. This is similar to the result when augmenting 50% of the ViT layers in Tab. 1.
Therefore, we combine text embedding with region embedding by plugging region memory into the
late block of MViTv2. We observe that adding region embedding to pure text memory provides
additional gains, as indicated by the steady growth of mAP in Fig. 5c. Specifically, compared with
using text embedding alone, for each memory length, the combination of region embedding and
memory embedding induces a growth of around 0.3 in mAP.
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Table 6: Ablation study of text encoder and the
text embedding design on TinyMem-16-6-T.

Text Nmem Proj. mAP
Encoder ×Dtext Head

CLIP-B

T × 76× 512 31.7
T × 32× 512 31.6
T × 1× 512 32.7
T × 1× 512 ✓ 32.9

CLIP-L T × 1× 768 ✓ 32.2

T5-Base
T × 1× 768 31.9
T × 1× 768 ✓ 31.9

Table 7: Ablation study of memory com-
pression factor and compression kernel on
TinyMem-16-12.

Embeding Compress Compress mAP
Factor Kernel

×1 ×1 32.7
text ×2 ×3 33.0

×4 ×7 32.6

×1 ×1 31.0
region ×2 ×3 31.3

×4 ×7 31.3

State-of-the-art performance. We compare our models with MeMViT, a top-performing model
based on vanilla visual memory, as shown in Tab. 2, and report the average number of memory tokens
involved in each self-attention layer, denoted as N̄mem. With the same memory length, TinyMem-
16-2 outperforms its counterpart by 3.5 in mAP and consumes 14 times fewer extended tokens. On
the other hand, TinyMem-24-6 adopts 3 times longer memory, yet maintains 10 times fewer memory
tokens than MeMViT-24-2 and surpasses the latter by 3.6 in mAP.

Additionally, we display results of TinyMem and prior SOTA models on AVA v2.2 in Tab. 3. No-
tably, TinyMem-16 delivers the mAP of 33.4, beating a range of models with much fewer trainable
parameters, and a much smaller scale of pre-training datasets. Similarly, TinyMem-24 hits the mAP
of 37.4, ranking first in the table. Moreover, as shown in Tab. 5, while TinyMem-24 surpasses
MViTv2-L with a significantly larger scale of trainable parameters. We attribute the leap in perfor-
mance to the powerful multimodal memory tokens, especially the abstract text embedding.

Captioner-free inference strategy, as introduced in Sec. 3.4, helps model to remove the computa-
tional costs of BLIP-2 and effectively enhance the inference speed. While TinyMem-24 experiences
a performance drop due to the distribution shift between generated captions dependent on action
predictions and captions generated by BLIP-2 during training, the strategy still helps TinyMem-24
to beat MeMViT-24 by a large margin, i.e., 2.5 in mAP and achieves higher throughput. We claim
that the captioner-free inference strategy is highly correlated to the generalization capability of the
model and discuss further details about the strategy in the Appendix.

4.2 ABLATION STUDIES

In this section, we investigate the influence of different designs in TinyMem. Hereby, we present
ablation experiments behind the core design and highlight the default setting with gray in the table.

Text encoder. Tab. 6 displays the results of adopting different text encoders for TinyMem-16. For
all experiments, we employ text embedding as memory only. We pad or truncate input captions to
the length of N in tokenization when N > 1. For CLIP, the projection head refers to the pre-trained
linear projection that maps text features into the vision-language joint space. For T5, we initiate an
additional learnable linear layer as the projection head for training.

We observe that equipping text embedding encoded by CLIP-B surpasses the feature of T5-Base by
0.9 in mAP. Generally, we contribute the edge of CLIP over T5 to its vision-language pre-training
strategy. Besides, keeping only one text token output of CLIP-B yields the best results with reduced
computational costs. We believe that text embedding possesses a promising compression capacity,
therefore it effectively supports an aggressive reduction of tokens. Tab. 6 also demonstrates that
leveraging CLIP-L as the text encoder underperforms the CLIP-B-based counterpart by 0.6 in mAP.
TinyMem yields the best performance when accessing the text encoder with a similar scale and
performs worse with a text encoder scaling up.

Region embedding. Tab. 9 displays the result of adopting a different number of region tokens.
Generally, the number of ground-truth bounding boxes for each keyframe is less than 16 in AVA
v2.2. Extending the number of region tokens to above 16 leads to a performance drop of 0.3 and an
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Table 8: Comparison between TinyMem, MViTv2 Li et al.
(2022) and MeMViT Wu et al. (2022) on action recognition
benchmark of Breakfast.

Model mAP Model mAP

MViTv2-16 29.5 MViTv2-24 34.1

MeMViT-16-4 47.8 (↑18.3) MeMViT-24-4 48.8 (↑14.7)

TinyMem-16-4 48.7 (↑19.2) TinyMem-24-4 52.4 (↑18.3)

Table 9: Ablation study of the
number of region memory to-
kens on TinyMem-16-12-R.

Nregion mAP

8 31.1
16 31.3
32 31.0

Table 10: Comparison between TinyMem, MViTv2 Li et al. (2022) and MeMViT Wu et al. (2022)
on action classification benchmark of Epic-Kitchens-100 .

Model Verb Noun Action Model Verb Noun Action

MViTv2-16 70.0 56.0 45.1 MViTv2-24 72.6 59.6 48.6
MeMViT-16-4 70.7 (↑0.7) 56.7 (↑0.7) 45.7 (↑0.6) MeMViT-24-4 72.8 (↑0.2) 61.8 (↑2.2) 50.5 (↑1.9)

TinyMem-16-4 71.3 (↑1.3) 58.5 (↑2.5) 47.5 (↑2.4) TinyMem-24-4 73.3 (↑0.7) 62.4 (↑2.8) 51.2 (↑2.6)

increase in computational costs. Nevertheless, decreasing the number to 8 also leads to a decrease
in mAP. In default, we set Nregion to 16 for TinyMem.

Projection module. Tab. 7 presents the influence of different convolution designs for the memory
projection module. We investigate text and region memory independently by adopting one format
of embedding for all involved layers. The compression factor corresponds to the stride size of
convolution and the compression kernel refers to the kernel size of convolution. By default, we
choose the compression convolution with a kernel size of 3 and a stride size of 2.

4.3 GENERALIZATION ANALYSIS

Results on Breakfast. We further examine the proposed framework on action recognition bench-
mark of Breakfast Kuehne et al. (2014) dataset, where video samples of preparing breakfast last for
2.3 minutes on average and are annotated with 48 sub-action classes and non-overlapping times-
tamps for the start and the end of each action. We follow the setting of online action detection and
predict the action label assigned for each annotated clip segment within long videos. Generally, we
keep using the rolling attention mask strategy and employ 8 global tokens for region memory.

As shown in Tab. 8, multimodal memory embedding significantly improves the results of clip-wise
action classification. Meanwhile, TinyMem-16-4 outperforms MeMViT-16-4 by 0.9 in mAP, indi-
cating the advantage of multimodal memory. Notably, TinyMem-24-4 surpasses its counterpart by
3.6 in mAP, leading to a growth of 18.3 over the MViTv2-24 baseline.

We claim that our method can also be easily adapted for long-term activity detection, where models
output all action categories within the complete video. We extract 256 frames for each video sam-
ple and divide it into clips containing 16 frames in the temporal order and input them sequentially
into the model. For baseline without memory, we average the prediction of each clip and report the
prediction result of the last clip for memory-augmented models. As Tab. 12 shows, both TinyMem
and MeMViT surpass the MViTv2 baseline, while the proposed multimodal memory outperforms
the vanilla visual embedding by 2.0 in mAP. Moreover, TinyMem-16 with compact region embed-
ding surpasses the one using joint multimodal memory embedding. We contribute the results to that
frozen CLIP embedding may results in overfitting on small-scale dataset.

Results on Epic-Kitchens-100. We explore the efficacy of multimodal memory embedding on Epic-
Kitchens-100 Damen et al. (2018) action classification benchmarks. Instead of extracting additional
bounding boxes and RoI features, we prepend 8 learnable global tokens as region embedding. Videos
in Epic-Kitchens-100 vary in length and hence cause unaligned memory caches for video clips
within the same mini-batch. To avoid involving inconsistent historical information by mistake, we
apply a rolling attention mask for training, which masks out memory tokens from different videos
and updates via sliding when memory tokens in caches reach the maximum length.

9
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Table 11: Comparison between TinyMem-ViT and
VideoMAE Tong et al. (2022)with different mem-
ory embedding on AVA v2.2.

Model Mem mAP

VideoMAE-S - 28.4

TinyMem-ViT-S-12

V 28.9 (↑0.5)

R 29.8 (↑1.4)

T 31.7 (↑3.3)

T + R 32.2 (↑3.8)

VideoMAE-B - 31.8
TinyMem-ViT-B-12 T + R 33.7 (↑1.9)

Table 12: Comparison with SOTA methods
on the long-term activity detection bench-
mark of Breakfast.

Model mAP

Timeception-RN50 Hussein et al. (2019a) 59.6
VideoGraph-I3D Hussein et al. (2019b) 63.1
GHRM-I3D Zhou et al. (2021) 65.9
MViTv2-16 Li et al. (2022) 62.6
MeMViT-16-4 Wu et al. (2022) 63.8
TinyMem-16-4 65.8
TinyMem-16-4-R 66.6

To ensure a fair comparison, we follow the implementation of MeMViT to perform training and
report reproduced results of MeMViT as the baseline with vanilla visual memory. As demonstrated
in Tab. 10, TinyMem-16-4 outperforms MeMViT-16-4 on Top-1 accuracy by 0.6%, 1.6% and 1.6%
on verb, noun and action class respectively. Likewise, TinyMem-24-4 improves MeMViT-24-4 by
0.5%, 0.6% and 0.7% in accuracy.

Multimodal memory on ViT. We believe that our framework can be easily adapted for other ViT
variants. Typically, we explore TinyMem-ViT upon VideoMAE Tong et al. (2022). We follow the
fine-tuning setting of VideoMAE on AVA by assuming sinusoidal positional embedding on video
tokens while keeping relative positional embedding between query tokens and memory tokens.

We train TinyMem-ViT in an identical training setting with TinyMem, and set memory length l to
12 and memory step to 1 for reported results of small and base models. Besides, we keep to the
policy of combining text embedding and region embedding by employing region memory on the
last selected layer and augmenting the remaining 50% layers with text memory caches. Note that in
contrast to TinyMem-24, TinyMem-ViT-24 tasks in 16 video frames with a sampling stride of 4.

Furthermore, we propose that our framework can be generalized for more transformer-based archi-
tecture. Hereby, we explore the condensed multimodal memory embedding on VideoMAE Tong
et al. (2022) pre-trained models. As displayed in Tab. 11, applying vanilla visual embedding on ViT
brings about marginal growth in mAP while using region embedding or text embedding leads to
more solid gains. Additionally, employing the proposed multimodal memory receives an increase
of 3.7 over the VideoMAE-S baseline. Similarly, TinyMem-ViT-B gives rise to an increase of 2.1
compared with VideoMAE-B. Besides, We fine-tune the visual encoder of CLIP-B/16 Radford et al.
(2021) with the same training setting and achieved 12.5 in mAP. We observe that the direct adapta-
tion fails to achieve a competitive result.

5 CONCLUSION

Supporting top-performing video models on long video becomes an essential research topic con-
cerning the practical demands of long-form video understanding. While explorations have been
made to augment short-term models with different memory designs, prior methods cache redundant
visual information only. In this paper, we innovatively included text, i.e., brief descriptions of video
contents, as the memory modality for spatiotemporal signals. Surprisingly, the abstract format of
embedding demonstrated strong representation capabilities with highly compact dimensions. On top
of that, we proposed TinyMem, which jointly employed compact text embedding and largely con-
centrated visual embedding as memory, and achieved promising performance on long-term action
detection benchmarks including AVA v2.2, Epic-Kitchens-100 and Breakfast.

Due to constraints of resources, we didn’t explore more long-form video tasks (e.g., temporal action
localization, long video question answering and etc) and models with larger scales. We believe
that our work can inspire more explorations in vision-language model, especially multimodal large
language models, e.g., combining frame description or compact region embedding with videos as
input or memory to enhance performance of models. Nevertheless, we believe that TinyMem opens
up new possibilities by leveraging multimodal embedding for more long-term video tasks.
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A IMPLEMENTATION DETAILS

In the following, we discuss the relative position embedding strategy and training configurations on
Epic-Kitchens-100 Damen et al. (2018) and Breakfast Kuehne et al. (2014) benchmarks.

Implementation details. By default, we report the performance of TinyMem-16 taking in clips with
16 frames sampled at a temporal stride of 4 and TinyMem-24 with 32 frames sampled at a temporal
stride of 3 as input. During inference, we set the batch size to 1 to feed all test samples in the online
mode and resize the short size of frames to 256. For scaling experiments, we compute FLOPs using
fvcore on frames sized of 2242 on the same NVIDIA 80-GB A100 GPU.

Relative position embedding. We leverage relative position embedding on the attention map be-
tween current video tokens and extended memory keys. Following Wu et al. Wu et al. (2022),
we employ relative positional embedding on current video tokens and memory tokens separately.
Specifically, we operate the overall position embedding as R = concat(R′, R), with R standing
for embedding between video visual tokens and R′ denoting the one between video tokens and
memory tokens. The implementation can be formulated as

Attn = Softmax(QK ′T +R/
√
D)V ′,

Rij = Qi · (Rt
tqi ,t

k
j
+Rh

hq
i ,h

k
j
+Rw

wq
i ,w

k
j
),

R′
ij = Qi ·Rtqi ,t

mk
j

,

where tqi , tki and tmk
j represent the temporal positions of token i in current query tokens, token j

in current key tokens and token j in memory “key” tokens. Besides, h and w denote the relative
positions along the height and width of video tokens.

Table 13: Comparison with SOTA methods on EK-100.

Model Pretrain Verb Noun Action

Omnivore Girdhar et al. (2022) IN+K400+SUN 69.5 61.7 49.9
MTV Yan et al. (2022) WTS-60M 69.9 63.9 50.5
MeMViT-24* Wu et al. (2022) K600 72.8 61.8 50.5
LaviLa-L Zhao et al. (2023) WIT+Ego4D 72.0 62.9 51.0
TinyMem-24-4 K600 73.3 62.4 51.2

Epic-Kitchens-100. We follow MeMViT Wu et al. (2022) to train our models on Epic-Kitchens-100
for 30 epochs with an AdamW Loshchilov & Hutter (2018) optimizer and adopt a weight decay of
0.05, a batch size of 128 while finding that the base learning rate of 5e−4 yields better results. Note
that we initialize our models with weights of MViTv2 pre-trained on Kinetics-400 Kay et al. (2017)
and Kinetics-600 Carreira et al. (2018).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 14: Ablation study of different multimodal em-
bedding designs on TinyMem-16-12.

Augmented Layer Layerwise Embedding mAP

[0, 2, 4, 6, 8, 10, 12, 14] [R, T,R, T,R, T,R, T ] 32.8
[0, 1, 2, 4, 8, 13, 14, 15] [T,R, T,R, T, T, T, T ] 33.2

[0, 2, 8, 10, 12, 13, 14, 15] [T, T, T, T, T, T, T,R] 33.4
[0, 2, 8, 10, 12, 13, 14, 15] [T, T, T, T, T, T,R,R] 33.4
[0, 2, 8, 10, 12, 13, 14, 15] [T, T, T, T, T,R,R,R] 32.5

Table 15: Ablation study of frame cap-
tioner on TinyMem-16-12-T.

Frame Captioner mAP

Tag2Text Huang et al. (2023) 31.4
BLIP2-opt6.7B-coco Li et al. (2023) 33.0
BLIP2-flant5-xl-coco Li et al. (2023) 33.0
w/o. 30.0

We apply Rand Augment Cubuk et al. (2020) with a probability of 0.5 for 4 layers of maximum
magnitude 7, label smoothing Szegedy et al. (2016) with a magnitude of 0.01 and random eras-
ing Zhong et al. (2020) with a probability of 0.25. Similarly, we adopt two classification heads to
generate predictions for verb and noun respectively. We also find that applying augmentation for
text inputs benefits the performance. Specifically, we delete or swap 1-2 words in 30% randomly
drawn captions with the implementation of nlpaug Ma (2019).

In experiments, we observe that the model trained with captions generated by BLIP-2 surpasses
the performance of one trained with LaViLa captioner. Moreover, the results also demonstrate that
compact region memory brings more benefits than text memory. We speculate that text seman-
tics might be less accurate and discriminative for fine-grained actions on a narrow domain, i.e.
activities in kitchens. In default, we infuse 75% of the selected layer with the condensed region
embedding and inject text embedding into the other 25% of the selected layers. As displayed in
Tab. 13, TinyMem-24 surpasses state-of-the-art methods on action category on the action classifica-
tion benchmark without large-scale pre-training.

Breakfast. We train our models on Breakfast Kuehne et al. (2014) for 20 epochs with an
AdamW Loshchilov & Hutter (2018) optimizer and adopt a weight decay of 0.05, a batch size of 64,
and a learning rate of 2.5e−4. Generally, we adopt an identical configuration of augmentations with
one of Epic-Kicthens-100 training. For training samples, we resize the short size of frames to 256
and randomly crop a region of 2242. During inference, we resize the short side size of test video
clips to 256, and center crop each video frame to the resolution of 2242. Similarily, in default, we
infuse 75% of the selected layer with the condensed region embedding and inject text embedding
into the other 25% of the selected layers.

B MORE ABLATIONS

Frame captioner. Tab. 15 presents the influence of different frame captioning model. Specifically,
we leverage two powerful vision-language models, tag2text Huang et al. (2023) and BLIP-2 Li
et al. (2023) to generate framewise captions in a zero-shot setting. We cap the maximum length
of output tokens for the text decoders in BLIP-2 to 48 and one for the text decoder in tag2text to
50. Nevertheless, the average output sentences for these two models vary in length, with length
hereby referring to the number of characters in each description. While BLIP-2 generally generates
shorter and coarser captions, it achieves better outcomes. We posit that shorter captions obtain more
condensed semantics in encoding and preserve more informative tokens in compression.

Combination of compact embedding. Tab. 14 shows TinyMem-16-12 with different configuration
of text embedding and region embedding. “T” denotes for text embedding and “R” stands for using
region embedding on the corresponding layer. As shown in the experimental results, alternatively
applying two forms of embedding performs worse than applying the region embedding in last layers.
Nevertheless, applying region memory at the beginning stage hardly produces benefits. On the other
hand, plugging in region embedding on the last ViT blocks effectively improves the performance.

Captioner-free inference. We convert action classes in AVA v2.2 to simple descriptions, as dis-
played in Tab. 16. As the strategy employs frame captions which miss out on detailed information
and are shorter in length compared to BLIP-2-generated captions as shown in Fig. 8, the perfor-
mance of the model is highly related to the generalization capability. Therefore, we observe that
TinyMem-24 model experiences less performance drop (as displayed in Tab. 4) while TinyMem-16
decreases by 3.0 in mAP, as listed in the last row of Tab. 15.
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Table 16: The action description of AVA v2.2 for captioner-free inference.

ID Description ID Description

0 ’a person bend or bow at the waist’ 1 ’a person crawl’
2 ’a person crouch or kneel’ 3 ’a person dance’
4 ’a person fall down’ 5 ’a person get up’
6 ’a person jump or leap’ 7 ’a person lie or sleep’
8 ’a person martial art’ 9 ’a person run or jog’
10 ’a person sit’ 11 ’a person stand’
12 ’a person swim’ 13 ’a person walk’
14 ’a person answer phone’ 15 ’a person brush teeth’
16 ’a person carry or hold an object’ 17 ’a person catch an object’
18 ’a person chop’ 19 ’a person climb a mountain’
20 ’a person clink glass’ 21 ’a person close a door, a box’
22 ’a person cook’ 23 ’a person cut’
24 ’a person dig’ 25 ’a person dress or put on clothing’
26 ’a person drink’ 27 ’a person drive a car, a truck’
28 ’a person eat’ 29 ’a person enter’
30 ’a person exit’ 31 ’a person extract’
32 ’a person fishing’ 33 ’a person hit an object’
34 ’a person kick an object’ 35 ’a person lift or pick up’
36 ’a person listen to music’ 37 ’a person open a window, a car door’
38 ’a person paint’ 39 ’a person play board game’
40 ’a person play musical instrument’ 41 ’a person play with pets’
42 ’a person point to an object’ 43 ’a person press’
44 ’a person pull an object’ 45 ’a person push an object’
46 ’a person put down’ 47 ’a person read’
48 ’a person ride a bike, a car, a horse’ 49 ’a person row boat’
50 ’a person sail boat’ 51 ’a person shoot’
52 ’a person shovel’ 53 ’a person smoke’
54 ’a person stir’ 55 ’a person take a photo’
56 ’a person text on or look at a cellphone’ 57 ’a person throw’
58 ’a person touch an object’ 59 ’a person turn a screwdriver’
60 ’a person watch TV’ 61 ’a person work on a computer’
62 ’a person write’ 63 ’a person fight or hit a person’
64 ’a person give or serve an object to a person’ 65 ’a person grab a person’
66 ’a person hand clap’ 67 ’a person hand shake’
68 ’a person hand wave’ 69 ’a person hug a person’
70 ’a person kick a person’ 71 ’a person kiss a person’
72 ’a person lift a person’ 73 ’a person listen to a person’
74 ’a person play with kids’ 75 ’a person push another person’
76 ’a person sing to self, a person, a group’ 77 ’a person take an object from a person’
78 ’a person talk to self, a person, a group’ 79 ’a person watch a person’

C MORE ANALYSIS

Visualizations. In Fig. 8, we display captions generated by BLIP-2 for AVA v2.2 in the zero-shot
setting. Though the quality of generated captions is generally coarse, noisy descriptions still serve
as an effective memory agent. Additionally, as indicated by Fig. 8, the generated captions are coarse
in quality since the generation is performed in the zero-shot setting. Still, the noisy descriptions
serve as an effective memory agent. As displayed in Fig. 6, in the current clip, a pastor is giving a
speech with a hand holding a cross. While generated captions mistake the cross as “a cigarette”, “a
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Figure 6: Visualization of attention map between the CLS token and text memory keys.
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Figure 7: Comparison between different memory embedding on specific action class.
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three men standing in a field 
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three men standing in a field 
with their bags

a man and woman are 
talking to a man in a 

living room

a man and woman are 
talking to a man in a 

living room

a man and woman talking to 
a man and woman in a 

living room

a man and woman are sitting 
on a couch (a man …)

a man and woman sitting on 
couches in a living room 

(a man …)

a person riding a pink 
bike down a street

a person riding a purple 
bike down a street

a person riding a pink 
bicycle down a street

a man riding a bike down a 
street with a girl on the sidewalk

a person riding a bike 
down a city street (hit…)

Figure 8: Visualization of description examples for AVA and their corresponding video frames. Gen-
erally, BLIP-2 generates short captions that describe major activities in each frame and contain noise
and mistakes, as red color indicates incorrect words and blue color represents missing information.

microphone” or “a toothbrush.” The caption with the highest attention score corresponds to “a man
in a white robe holding a stick”, conveying the closest semantics.

We compare the impacts of different memory embedding on each action category on AVA and plot
the ones dropping and growing most in Fig. 7. Generally, multimodal embedding surpasses vanilla
visual embedding in almost all categories except for “hit (an object) ”, “push (another person)”,
“pull (an object)” and “watch (e.g., TV).” We posit that frame-based description cannot distinguish
between ambiguous actions, e.g., push and pull, and may fail to capture big spatiotemporal move-
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ments, e.g., hit. We hypothesize that clip-based captions generated by video-language models would
bring about greater improvements.
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