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Abstract

Machine learning models are often misspecified in the likelihood, which leads to a lack of
robustness in the predictions. In this paper, we introduce a framework for correcting likeli-
hood misspecifications in several paradigm agnostic noisy prior models and test the model’s
ability to remove the misspecification. The ”ABC-GAN” framework introduced is a novel
generative modeling paradigm, which combines Generative Adversarial Networks (GANs)
and Approximate Bayesian Computation (ABC). This new paradigm assists the existing
GANs by incorporating any subjective knowledge available about the modeling process via
ABC, as a regularizer, resulting in a partially interpretable model that operates well under
low data regimes. At the same time, unlike any Bayesian analysis, the explicit knowledge
need not be perfect, since the generator in the GAN can be made arbitrarily complex. ABC-
GAN eliminates the need for summary statistics and distance metrics as the discriminator
implicitly learns them, and enables simultaneous specification of multiple generative models.
The model misspecification is simulated in our experiments by introducing noise of various
biases and variances. The correction term is learnt via the ABC-GAN, with skip connec-
tions, referred to as skipGAN. The strength of the skip connection indicates the amount of
correction needed or how misspecified the prior model is. Based on a simple experimental
setup, we show that the ABC-GAN models not only correct the misspecification of the prior,
but also perform as well as or better than the respective priors under noisier conditions. In
this proposal, we show that ABC-GANs get the best of both worlds.

Keywords: Likelihood-free inference, Deep Neural Regression, Approximate Bayesian Computation, GAN

1 Introduction

A model is a probing device used to explain a phenomenon through data. In most cases, a true model
for this phenomenon exists but cannot be specified at all [Le & Clarke (2017)]. This setting indicates that
all plausible models, though useful, can be deemed as misspecified [Box (1976)]. Can we use a plausible
explainable model, while correcting for its misspecification implicitly? Unlike the prescriptive generative
modeling dogma, predominant in the statistical community, the implicit generative modeling view taken by
the machine learning community lays emphasis on predictive ability rather than on explainability [Brieman
(2001)]. Implicit Deep Generative Models have witnessed tremendous success in domains such as Computer
Vision. However, their opaqueness and lack of explainability has made the injection of subjective knowledge
into them a highly specialized and experimental task. In this work, our proposal is to reconcile implicit and
explicit generative models into a single framework in the misspecified setting. We do that by taking GANs
and ABC as representative of the two fields respectively.

The introduction of GANs in 2014 by Goodfellow et al. [Goodfellow et al. (2014)] marked a very decisive
point in the field of generative deep learning. Since then, deep learning based generative models like GANs
and Variational Autoencoders have been extensively worked on, with the main intention of addressing issues
with likelihood estimation based methods and related strategies. The crux of these issues lies in complex
or intractable computations that arise during maximum likelihood estimation or evaluation of the likelihood
function. A GAN uses two adversarial modules - the Generator and the Discriminator, essentially playing
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a zero sum min-max game with each other, with the competition between them driving both modules to
improve and reach a stage where the Generator is able to produce counterfeit data which is indistinguishable
from the real data. Although GANs have been shown to address the issues mentioned above well by leveraging
the benefits of using piece-wise linear units, there are some inherent issues with the GAN paradigm. These
include the inherent difficulty in achieving convergence, stability issues during training and the necessity of
large amounts of data. An active area of research in this direction is to apply GANs in different settings
[Karras et al. (2018); Radford et al. (2016)] and also to improve stability [Gulrajani et al. (2017)].

Another older, but equally interesting generative paradigm is Approximate Bayesian Computation (ABC)
[Beaumont et al. (2002)] [Beaumont (2010)] [Grelaud et al. (2009)] [Csilléry et al. (2010)] [Marin et al. (2012)].
ABC finds its roots in Bayesian inference, and aims to bypass likelihood evaluation by approximating the
posterior distribution of model parameters. This method is extremely useful in cases when the likelihood
estimation is computationally intensive, or even intractable. The likelihood-free aspect of this paradigm
allows the data generative model to be as complex as it can get. However, there are some drawbacks, such as
low acceptance rates at higher dimensions, the difference between the prior distribution from the posterior
distribution, identification of lower dimensional statistics to summarize and compare the datasets and the
model selection problem.

ABC and GAN complementarity: Looking at these two paradigms, it becomes clear that both ABC and
GANs try to solve the same problem - learning the data generation mechanism by capturing the distribution
of the data, but they approach the problem in different ways. By studying these two paradigms, their
similarities and differences become apparent. With respect to the data generation model, ABC uses a user-
specified model, whereas the Generator in a GAN is non-parametric. Looking at the discriminative model
for both, ABC uses an explicit, user-specified discriminator which often uses Euclidean distance or some
other distance measure on a set of summary statistics to measure the difference between real and simulated
datasets. For GANs, the discriminative model is specified through a function like KL divergence or JS
divergence as the Discriminator’s objective function. Another key difference here is that the feedback from
the Discriminator in a GAN flows back to the Generator, thereby making them connected, while in ABC,
these two modules are disconnected. Further, in ABC, model selection is followed by model inference, but
in GANs, since the Generator and Discriminator are connected, this occurs implicitly during the learning
process. We now see that ABC and GAN appear to be at two ends of the data generation spectrum, with
each having its own advantages and disadvantages.

2 Motivation and Contributions

As it is clear from the previous discussion, both GANs and ABCs are likelihood-free methods. But there
are certain limitations to both of them. ABC is a Bayesian paradigm. Like in any Bayesian modeling
approach, subjective knowledge about the data generating model is expressed both in terms of the likelihood
(explicit or implicit) and the prior. One would want to exercise more freedom in the choice of priors,
however. Majority of the model selection criteria focus on the priors, keeping the likelihood fixed. However,
misspecification in the likehood can lead to spurious errors and make the inference invalid. Some model
selection criteria like Deviance Criteria (DIC) won’t work well in such cases. It is generally a hard problem
to tackle computationally, if one were to obtain marginal evidences. So how we do address this problem?
In the context of ABC, the choice of summary statistic and the distance metric to compare the simulated
datasets with the real data set determine the efficiency of the approximation. While it seems advantageous
to rely on sampling, it leaves many issues suggested above to experimentation and to the modeler. Model
selection and sensitivity analysis have to be performed, regardless. Can we get rid of making choices about
the summary statistics, distance metrics, model selection in the context of ABC? Further, can we deal with
model misapplication either in likelihood or prior or both in the Bayesian context? GANs, in particular, the
adversarial mini-max formulation can address these questions.

However, GANs require relatively large amounts of data, owing to their non-parametric nature, to train the
Generator and Discriminator networks. It is also known that training GANs can be unstable [Kodali et al.
(2017)]. A consequence of deep networks, of which GANs are a special case, is that, they are opaque from the
standpoint of interpret ability [Li et al. (2022)]. Further, incorporation of any available prior knowledge into
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GANs is limited to modifying the architectures or loss functions or a combination of them. In part, it may
be due to the long held misconception that deep learning eliminates the need for good feature engineering.
However, good feature engineering gives a way to architecture design. Can we incorporate prior knowledge
into GANS? Can the GANs work on low-data regimes, where prior knowledge could be both available and
valuable? We argue that, ABC can augment the Generator network of a GAN. The amount of correction
needed can be learnt via the data itself, without making hard choices a priori.

We show the effectiveness of our work through several ABC-GAN models. We consider cGAN [Mirza &
Osindero (2014a)] and TabNet [Arik & Pfister (2019)] as baseline GANs with some architectural modifica-
tions.

1. mGAN: GAN Generator takes as inputs the features, and the simulated data from ABC.

2. skipGAN: GAN Generator takes as inputs the features, and the simulated data from ABC, and the
Discriminator, also takes a weighed combination of ABC Generator and GAN Generator.

3. Tab-mGAN: mGAN with TabNet as the Generator of the GAN.

4. Tab-skipGAN: skipGAN with TabNet as the Generator of the GAN.

They are described in detail later. We consider several standard, interpretable models such as Linear Models,
Gradient Boosted Trees (GBT) and a combination of Deep Learning and Gradient boosted trees (TabNet)
as ABC models under various misspecification settings. Extensive experimentation (check sections (4), (5)
helps us answer and tackle the questions posted above, and shows the novelty of our work.

3 Our Approach

Some notations and settings are introduced to make the exposition clear. Let Dτ = {yτ
i , xτ

i }n
i=1, be the

observed dataset, a set of n i.i.d tuples (yτ
i , xτ

i ), where xτ
i ∈ ℜp is a p-dimensional column feature vector,

and yτ
i ∈ ℜ is the response variable. Assume that, Gτ is the true generative model, typically unknown,

that produces yτ
i ∼ Gτ (xτ

i ). Define the datasets Dπ ≡ {yπ
i , xπ

i }n
i=1 and Dγ ≡ {yγ

i , xγ
i }n

i=1, that can be
sampled by ABC and GAN, respectively. Here, by convention, yπ

i ∼ Gπ(xτ
i ), xπ

i = xτ
i for ABC and similarly

yγ
i ∼ Gγ(xγ

i ). Further, assume that d(., .) is some distance or loss such as Mean Absolute Error (MAE) that
measures discrepancy between two datasets. Note that Gπ is typically a sampler and Gγ is a deterministic
transformation.

3.1 ABC-GAN Framework

Suppose that we know the generative model Gπ, but it is misspecified. In order to rectify this misspecification,
we append it to a standard GAN generator Gγ network, i.e., xγ

i = [yπ
i , xτ

i ]. Gγ now transforms Gπ samples
so as to make resulting dataset look more realistic. Now, by design, Gγ can be quite shallow. The hope,
rather, intent is that, the "sampler" is already pretty good, and lot of domain knowledge is encoded in it.
Therefore, not much needs to be done by the Gγ , except doing a few corrections. The exact corrections
that are to be done are taught by the Discriminator of the GAN Dγ . Under ideal conditions, when perfect
knowledge about the Sampler Gπ (the pre-generator, or the generative model in the context of ABC) is
known, Gγ does an identity transformation. Under these conditions, the GAN learning should not be a
concern (stability-wise), as the problem is already regularized. From an architecture perspective, Gγ can
have large capacity but is regularized to produce an identity transformation. Hence, the primary objectives
are to investigate two key hypotheses

1. when Gπ is perfect, i.e, Gπ = Gτ , we expect Gγ = I(.), an identity map and d(Dτ , Dπ) = 0.

2. when Gπ is imperfect, Gγ ̸= I(.) and d(Dτ , Dπ) > 0. More than that, we expect d(Dτ , Dπ) >
d(Dτ , Dγ).
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We consider two broad families of architectures to test the hypothesis.

mGAN : We depict the functional architecture of baseline overall model mGAN, shown in Fig. 1. The
GAN is a vanilla cGAN except that one of the inputs is the ABC Generator’s output, i.e., xγ

i = [yπ
i , xτ

i ] and
Dγ ≡ {yγ

i , xγ
i }n

i=1 will be passed to the Discriminator Dγ .

Figure 1: A baseline mGAN model
.

skipGAN : Another variant that we experimented with is the skipGAN. We conjecture that vanilla mGAN
might have information bottleneck. When the prior model is very good, both Gγ and Dγ can be very
shallow. If not explicitly regularized, training mGAN could be hard. We can mitigate this problem by
supplying both yπ

i and yγ
i to Dγ . Specifically, we choose weighed average so that the weights can be seen as

model averaging, and can also be interpreted as amount of expressiveness borrowed by mGAN. That is, Dγ

gets wyπ
i + (1 − w)yγ

i . The idea of using skip connection is to try to achieve performance improvement over
mGAN. At the least, it should be able to ensure that the mGAN does at least as well as the baseline Gπ.

Figure 2: Proposed skipGAN model

3.2 Objective Function

Consider the following hybrid generative model:

pi = Dγ(Gγ([yπ
i , xτ

i ]), with yπ
i ∼ Gπ(xτ

i )

Then the likelihood can be written as: L(y) =
∏n

i=1 pi. In fact, it is striking to see the likelihood as empirical
likelihood [Owen (2001)] without the normalization constraint Σpi = 1. But it is not obvious how to estimate
Dγ and Gγ , if not for the adversarial min-max optimization used in GANs. In that sense, we see that our
contribution is more in using the adversarial optimization to maximize the empirical likelihood, that has
absorbed a non-parametric correction term by Deep Neural Networks and some prior models.

4 Experimental Setup

Several experiments were conducted to test the impact of the ABC-GAN models in correcting mis-
specified prior models Gπ. The purpose of these experiments is two-folds: 1) to assess the benefits of
including a prior for a GAN and 2) to verify that ABC-GAN models successfully correct misspecified models.
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We consider three datasets (one simulated and two real), three prior generative models, two basic ABC-GAN
architectures, and two GAN Generator architctures - leading to a total 36 experiments. The misspecification
at the prior generative model has bias and variance terms with three levels each. Each of the 36 experi-
ment has 9 runs each simulating different amounts of model misspecification, taking the total number of
experiments to 324. The details are provided below.

4.1 Gπ: Prior Generative Models

In particular, we consider, Linear Models, Gradient Boosting Trees, and Transformers for Gπ and Feedfor-
ward Networks and Transformers for Gγ . We also consider different Ground Truth generative models (Gτ ).
Under perfect information Gπ = Gτ . For simulated datasets, Gτ is known. Imperfect information can creep
from mis-specified sampling distribution or prior or both. We simulate misspecifcation by adding Gaussian
noise to an assumed Gτ . To keep the design space smaller and simpler, we consider mis-specified priors,
keeping the likelihood of the prior generative model fixed. We consider three families of models - Linear
Models, Gradient Boosted Trees (GBTs), and Transformers - as explicit generative models.

1. Linear Models: Standard Linear Regression models are implemented in statsmodel [Seabold & Perktold
(2010)], a Python module that provides classes and functions for the estimation of many different statistical
models, as well as for conducting statistical tests, and statistical data exploration. We use the linear ordinary
least squares model as our baseline.

2. GBTs: CatBoost [Dorogush et al. (2018)] is an algorithm for gradient boosting on decision trees. It is
developed by Yandex researchers and engineers, and is used for search, recommendation systems, personal
assistant, self-driving cars, weather prediction and many other tasks. It is an industry standard and an
ambitious benchmark to beat. We use catboost implementation.

3. Transformers: TabNet, a Transformers-based models for Tabular data, was introduced in [Arik & Pfister
(2019)]. This model inputs raw tabular data without any preprocessing and is trained using gradient descent-
based optimisation. TabNet uses sequential attention to choose which features to reason from at each decision
step, enabling interpretability. Feature selection is instance-wise, e.g. it can be different for each row of the
training dataset. TabNet employs a single deep learning architecture for feature selection and reasoning,
this is known as soft feature selection. These make the model enable two kinds of interpretability: local
interpretability that visualizes the importance of features and how they are combined for a single row, and
global interpretability which quantifies the contribution of each feature to the trained model across the
dataset. We use TabNet as baseline by calling the TabNetRegressor class under pytorch-tabnet module.

Henceforth, all references to Stats Models, CatBoost, and TabNet, correspond to Linear Models, GBTs and
Transformers, respectively, where applicable.

In this other extreme case, we pass covariates (xτ
i ) plus random noise (ei) to GAN, i.e., xγ

i = [xτ
i , ei] in which

case, the ABC-GAN acts more like a conditional-GAN [Mirza & Osindero (2014b)].

4.2 Gγ : GAN Generators

We consider two architectures:

1. Feed Forward Networks (FFN): The FFN Generator consists of 5 hidden layers of 50 nodes each and
ReLU activation. The Discriminator consists of 2 hidden layers of 25 and 50 nodes respectively followed by
ReLU activation after every layer.

2. Transformers: We consider the same TabNet Regressor used in Gπ discussed earlier- the Transformer-
based Generator.
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4.3 Model Misspecification

The following noise model is considered for real datasets:

yπ
i ∼ N(yτ

i + µ, σ2)

For the Linear Model, we consider a full Bayesian model, of the following specification:

yπ
i ∼ N(< xτ

i , β >, 1)

where β ∼ N(βτ + µ, σ2) with µ ∈ {0, 0.01, 0.1}, σ2 ∈ {0.01, 0.1, 1} and βτ is a true, pre-specified part of
the generative model, yτ

i is the output of the prior model Gπ and <, > is the standard dot product.

4.4 Datasets

We evaluate our models on the following Synthetic and real datasets:

1. Friedman3 [Friedman (1991)] consists of 4 independent features z = [z1, z2, z3, z4] as input, uniformly
distributed on the intervals: 0 ≤ z1 ≤ 100, 40π ≤ z2 ≤ 560π, 0 ≤ z3 ≤ 1, 1 ≤ z4 ≤ 11. The generative model
for y is is nonlinear model y = arctan((z1z2 − 1/(z1z3))/z1). A standard normal noise is added for every
sample. The dataset has 100 samples.

2. Boston: The Boston Housing Dataset [Harrison & Rubinfeld (1978)] is derived from information collected
by the U.S. Census Service concerning housing in the area of Boston MA. The dataset has 503 samples and
13 columns/features.

3. Energy efficiency [Tsanas & Xifara (2012)] contains eight attributes and two responses (or outcomes. The
dataset has 768 samples. The aim is to use the eight features to predict each of the two responses. For our
experiments, we have restricted only to the first response with all 8 features.

4.5 Training

The cGAN, mGAN, skipGAN and their TabNet versions are trained for 1000 epochs with BCE loss function
and a batch size of 32. The dataset is split into training and validation sets (80-20) and the same validation
set is used to validate the performance of all models. The learning rate used for Friedman 3 dataset is 0.001,
and is 0.01 for all other datasets. All datasets are run using 1.6 GHz Dual-Core Intel Core i5 CPUs.

4.6 Metrics

We use MAE to evaluate the performance of the models. The experiments were run 10 times and the average
of the MAE over the 10 runs is presented.

5 Results

In order to test the hypothesis that, ABC-GAN models perform no worse than the prior models, we take
Boston dataset, and synthetically inject model misspecification, as described earlier, and report MAE of Gπ

(sampler) and Gγ (a deterministic transformation). In Fig. 3, we show the boxplots of the MAE for each of
the models, for each of the prior models. As can be seen, the proposed ABC-GAN models outperform the
prior models in almost all cases - different priors, different ABC-GAN models, and different levels of model
misspectications. Even a simpler mGAN successfully corrects the misspecified baselines (Linear Models,
Boosted trees and TabNet) and results in lower MAEs than the prior model. Next, we investigate, how these
models perform at specific levels of model misspecification by prior, model architecture, and dataset.

In Tables 1-9, each row corresponds to a level of model mispecification as indicated by (Variance, Bias)
columns, and rows corresponding to columns - Prior Model, mGAN, Tab-mGAN, skipGAN, Tab-skipGAN
- indicate the MAE of the models indicated by the column header. In the case of skip variants, the skip
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Variance Bias Prior model mGAN Tab-mGAN skipGAN Weights skipGAN Tab-skipGAN Weights
Tab-skipGAN

1 1 1.3310 0.4918 0.3310 0.4594 0.9932 0.3005 1.0000
1 0.1 1.0820 0.5060 0.6127 0.4245 0.6657 0.4582 0.9911
1 0.01 1.0167 0.5120 0.5296 0.4670 0.3434 0.3546 0.9943
1 0 1.0697 0.4583 0.5269 0.37041 0.9976 0.4241 0.9877

0.1 1 0.9984 0.4546 0.4630 0.4382 0.9985 0.4801 0.6293
0.1 0.1 0.6707 0.5593 0.4868 0.4948 0.4887 0.5106 0.6486
0.1 0.01 0.5000 0.4893 0.4987 0.4520 0.2123 0.4445 0.7546
0.1 0 0.6251 0.5839 0.3859 0.57406 0.3009 0.4343 0.6805
0.01 1 1.3170 0.5309 0.5845 0.5454 0.9975 0.4127 0.4304
0.01 0.1 1.0503 0.5076 0.4541 0.4493 0.2746 0.4703 0.3426
0.01 0.01 0.6370 0.4638 0.4794 0.4858 0.1871 0.5633 0.2787
0.01 0 0.5665 0.5247 0.4977 0.4882 0.1947 0.4566 0.2326

Table 1: Results for Friedman3 dataset with linear model prior. The MAEs of cGAN, cGAN with TabNet
generator and baseline linear model (Stats model) are 0.4477, 0.49724 and 0.5529 respectively.

weights are also reported. Tables 1, 4, 7 correspond to Friedman3 dataset, 2, 5, 8 to Boston dataset and 3,
6, 8 to Energy dataset. For tables 1, 2, 3, we use Linear Models as the prior, GBT in Tables 4, 5, 6 and
TabNet in Tables 7, 8, 9. By looking at all the Tables I-IX collectively, it is clear that ABC-GAN models
are able to detect the extent of misspecification, as the reduction in the MAE, relative to the prior model, is
more pronounced for larger misspecifications. Hence we see that as the misspecification of the pre-generator
increases, the model relies more and more on the GAN generator to do the correction. Overall, we notice
that our model majorly outperforms SOTA models such as C-GAN, C-GAN with TabNet generator, TabNet
regressor and CatBoost.

A skip connection has been added in some models, as explained earlier, to take a weighted average of the
prior model and the GAN model. The weight given to the GAN in the skip connection tends to increase
with increase in variance and bias, and is ideally supposed to be close to 1 for the highest variance and
bias values and close to 0 for lowest variance and bias values. In most cases variance seems to be playing a
greater role in the skip connection weight than the bias. This indicates that as the model misspecification
increases, more weightage is given to the GAN skip node to help cofrrect this misspecification. Hence, as
the complexity of the prior increases (such as when we use Transformers as priors), mGAN is sufficient
to correct the misspecification of the models. However, for models with lower complexity (such as linear
models), skipGAN performs better in correcting the model misspecification. From tables 4 and 6, it is
evident that as the misspecification reduces, the skipGAN weight reduces and drops to almost 0 (it becomes
0 for Tab-skipGAN for variance 0.001 and bias 0). This effectively proves our original claim that when Gπ

is almost perfect, Gγ is almost an identity transformation and d(Dτ , Dπ) ≈ 0. As the noise increases, the
dependence on the GAN generator increases, resulting in higher weights in the skipGAN.

Using TabNet network for the generator of the GAN helps in stabilising the model. mGAN, Tab-mGAN and
Tab-skipGAN perform consistently well with no high MAE outlier. While Tab-mGAN and Tab-skipGAN
may not consistently outperform their vanilla counterparts (mGAN and skipGAN), adding the TabNet
Network ensures consistent results across multiple iterations.

We also wanted to explore the effect of different sizes. We consider the Boston dataset again, and took a
subset of the data to see if, as the dataset size increases, ABC-GANs continue to do well. As expected, the
performance of the all the models improves with increase in sample size (as visible from Fig. 4 to Fig. 8).
However skipGAN destabilizes for larger datasets (see tables 5, 6 and 8), thus resulting in large MAE values
for a few experimental set-ups.

6 Discussion and Conclusion

Out of the numerous types of GANs available, how is ABC-GAN different? No other GAN works on the idea
of correcting model misspecification. In this proposal, we specify that our emphasis was not on obtaining
better performance, but it is to show that the model is capable of doing a likelihood-free inference, and
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Variance Bias Prior model mGAN Tab-mGAN skipGAN Weights skipGAN Tab-skipGAN Weights
Tab-skipGAN

1 1 1.2763 0.3017 0.3050 0.2876 0.9904 0.2818 0.9935
1 0.1 0.8442 0.2653 0.2876 0.2355 0.9934 0.2632 1.0000
1 0.01 0.9313 0.2975 0.2880 0.2684 0.9876 0.2978 0.9855
1 0 0.9459 0.2717 0.2831 0.2570 0.9963 0.2844 0.9930

0.1 1 1.0254 0.2991 0.3114 0.2986 0.7022 0.3188 0.8000
0.1 0.1 0.4154 0.3076 0.2587 0.2508 0.6869 0.3011 0.7775
0.1 0.01 0.3820 0.2968 0.2820 0.2790 0.7133 0.3057 0.7673
0.1 0 0.3779 0.2796 0.2761 0.2738 0.6000 0.2767 0.7441
0.01 1 1.0492 0.2559 0.2700 0.2530 0.3580 0.2568 0.3814
0.01 0.1 0.4038 0.2627 0.2573 0.2488 0.1698 0.2552 0.3393
0.01 0.01 0.3733 0.2847 0.2684 0.2785 0.1631 0.2888 0.4281
0.01 0 0.3712 0.3073 0.2899 0.3450 0.1592 0.2625 0.2849

Table 2: Results for Boston dataset with linear model prior. The MAEs of cGAN, cGAN with TabNet
generator and baseline linear Model are 0.2838, 0.2729 and 0.3508 respectively.

Variance Bias Prior model mGAN Tab-mGAN skipGAN Weights skipGAN Tab-skipGAN Weights
Tab-skipGAN

1 1 1.0849 0.1090 0.1098 0.1014 0.9973 0.1486 0.9991
1 0.1 0.8286 0.0752 0.1221 0.1058 0.9958 0.2130 0.9932
1 0.01 0.8344 0.1462 0.1557 0.1391 1.0000 0.0654 1.0000
1 0 0.8764 0.1461 0.1347 0.0943 0.9833 0.1209 0.9936

0.1 1 1.0036 0.1544 0.1089 0.0977 0.5256 0.1076 0.9568
0.1 0.1 0.2493 0.0955 0.0946 0.0916 0.3530 0.0630 0.9523
0.1 0.01 0.2184 0.1608 0.0538 0.0566 0.3431 0.0945 0.9520
0.1 0 0.2239 0.1352 0.0930 0.1315 0.3745 0.1455 0.9794
0.01 1 0.9740 0.0859 0.0794 0.1076 0.3152 0.0829 0.2947
0.01 0.1 0.2302 0.1677 0.0812 0.0762 0.2097 0.1354 0.2539
0.01 0.01 0.2246 0.2143 0.2038 0.1883 0.0646 0.2278 0.1681
0.01 0 0.2035 0.1274 0.0962 0.1169 0.1025 0.1576 0.2352

Table 3: Results for Energy efficiency dataset for 1st target with Linear model prior. The MAEs of cGAN,
cGAN with TabNet generator and baseline Linear Model (stats model) are 0.0849, 0.1564 and 0.2008 re-
spectively.

Variance Bias Prior model mGAN Tab-mGAN skipGAN Weights skipGAN Tab-skipGAN Weights
Tab-skipGAN

1 1 1.0837 0.3539 0.5377 0.3579 0.5313 0.4726 0.5923
1 0.1 0.9548 0.3912 0.4745 0.4254 0.4767 0.4238 0.8411
1 0.01 0.9633 0.4096 0.4841 0.4250 0.4429 0.5243 0.7531
1 0 0.9922 0.4766 0.5013 0.5103 0.3814 0.5285 0.7223

0.1 1 1.1230 0.4252 0.4411 0.4232 0.5064 0.4284 0.2557
0.1 0.1 0.5224 0.5252 0.6032 0.5225 0.3797 0.5197 0.0671
0.1 0.01 0.3800 0.3560 0.4523 0.3902 0.1867 0.3805 0.0342
0.1 0 0.4564 0.4668 0.4601 0.4567 0.2389 0.4403 0.0534
0.01 1 1.0652 0.2989 0.5498 0.2512 0.0698 0.2735 0.1933
0.01 0.1 0.4599 0.4432 0.3931 0.4498 0.2812 0.4450 0.0464
0.01 0.01 0.4025 0.4027 0.4781 0.3989 0.0131 0.3982 0.0425
0.01 0 0.3792 0.3908 0.4349 0.3865 0.4759 0.3772 0.0000

Table 4: Results for Friedman3 dataset with Gradient Boosted Trees (GBT) prior. The MAEs of cGAN,
cGAN with TabNet generator and baseline GBT (Catboost) Model are 0.4477, 0.49724 and 0.4215 respec-
tively.
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Variance Bias Prior model mGAN Tab-mGAN skipGAN Weights skipGAN Tab-skipGAN Weights
Tab-skipGAN

1 1 1.1928 0.3492 0.2812 0.2888 0.9645 0.2834 0.8963
1 0.1 0.8688 0.2892 0.2765 0.2949 0.9308 0.2731 0.8692
1 0.01 0.8406 0.3559 0.2787 0.2493 0.9953 0.2732 0.8812
1 0 0.8120 0.2821 0.2447 0.2704 0.9742 0.2696 0.93485

0.1 1 1.0098 0.2704 0.2068 0.2662 0.1860 0.2420 0.2964
0.1 0.1 0.2419 0.3634 0.2189 0.2596 0.0382 0.2640 0.0917
0.1 0.01 0.2256 0.3437 0.2206 0.2306 0.0313 0.2271 0.0021
0.1 0 0.2700 0.4463 0.2646 0.3035 0.0297 0.2666 0.0209
0.01 1 1.0205 0.3271 0.2327 0.3547 0.1945 0.3541 0.2191
0.01 0.1 0.2562 0.3181 0.2551 0.2422 0.0317 0.2493 0.0599
0.01 0.01 0.2424 0.3075 0.2640 21.9047 0.1488 0.2166 0.0550
0.01 0 0.2198 0.2683 0.2287 0.2291 0.0058 0.2179 0.0361

Table 5: Results for Boston dataset with Gradient Boosted Trees (GBT) prior. The MAEs of cGAN, cGAN
with TabNet generator and baseline GBT (Catboost) are 0.2838, 0.2729 and 0.2049 respectively.

Variance Bias Prior model mGAN Tab-mGAN skipGAN Weights skipGAN Tab-skipGAN Weights
Tab-skipGAN

1 1 1.1591 0.1462 0.0902 0.1149 0.9594 0.0983 0.9882
1 0.1 0.7870 0.0915 0.0981 0.1154 0.9798 0.0733 0.9815
1 0.01 0.7771 0.0848 0.1636 0.1339 0.9432 0.1112 0.9927
1 0 0.8482 0.0924 0.0577 0.1334 0.9834 0.1549 0.9950

0.1 1 1.0073 0.0745 0.0762 0.0937 0.2482 0.0776 0.3692
0.1 0.1 0.1178 0.0783 0.1382 0.1077 0.0671 0.0906 0.1422
0.1 0.01 0.0787 0.0656 0.0750 0.1138 0.0979 0.0964 0.2580
0.1 0 0.0801 0.0637 0.0650 0.0830 0.0028 0.0823 0.0232
0.01 1 0.9994 0.0662 0.0762 0.1157 0.2280 0.0522 0.2164
0.01 0.1 0.1004 0.1231 0.0482 0.0489 0.0751 0.0698 0.0782
0.01 0.01 0.0248 0.0265 0.0436 1048.8400 0.0184 0.0233 0.0000
0.01 0 0.0249 0.1845 0.0650 0.0287 0.0333 0.0284 0.0034

Table 6: Results for Energy Efficiency dataset for 1st target with Gradient Boosted Trees (GBT) prior. The
MAEs of cGAN, cGAN with TabNet generator and baseline GBT (Catboost) are 0.0849, 0.1564 and 0.0201
respectively.

Variance Bias Prior model mGAN Tab-mGAN skipGAN Weights skipGAN Tab-skipGAN Weights
Tab-skipGAN

1 1 1.1267 0.4191 0.5205 0.4517 0.1495 0.5559 0.5722
1 0.1 1.0068 0.3514 0.4891 0.4270 0.1977 0.5288 0.7900
1 0.01 0.8485 0.3857 0.5234 0.4168 0.1942 0.5164 0.6472
1 0 0.9358 0.4052 0.4305 0.4102 0.2730 0.4468 0.7080

0.1 1 1.0669 0.4593 0.6085 0.4591 0.1444 0.5137 0.1770
0.1 0.1 0.3809 0.4044 0.4932 0.4477 0.1356 0.3329 0.0520
0.1 0.01 0.5561 0.4130 0.5409 0.4294 0.2035 0.5938 0.0309
0.1 0 0.4094 0.3674 0.4049 0.3981 0.0000 0.3828 0.0808
0.01 1 1.0446 0.3951 0.4414 0.3740 0.3830 0.4562 0.1855
0.01 0.1 0.4847 0.4940 0.5045 0.4416 0.1651 0.5273 0.1612
0.01 0.01 0.4274 0.4153 0.5523 0.5022 0.2027 0.5107 0.1883
0.01 0 0.4536 0.4328 0.4709 0.4409 0.0000 0.4727 0.1730

Table 7: Results for Friedman3 dataset with Trasformer network prior. The MAEs of cGAN, cGAN with
TabNet generator and baseline transformer (TabNet) model are 0.4477, 0.49724 and 0.5529 respectively.
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Variance Bias Prior model mGAN Tab-mGAN skipGAN Weights skipGAN Tab-skipGAN Weights
Tab-skipGAN

1 1 1.2568 0.3098 0.2527 0.2791 0.9812 0.2560 0.9347
1 0.1 0.7969 0.2417 0.2544 0.2767 0.9747 0.2336 0.9272
1 0.01 0.7705 0.2943 0.2891 0.2719 0.9670 0.2385 0.9724
1 0 1.0423 0.2798 0.2754 0.3089 0.9857 0.2915 0.8586

0.1 1 1.0238 0.3667 0.1848 0.4119 0.2430 0.2313 0.3206
0.1 0.1 0.2796 0.2951 0.2685 0.2400 0.1145 0.2506 0.1688
0.1 0.01 0.2864 0.3200 0.2885 0.3356 0.1382 0.2665 0.2107
0.1 0 0.2318 0.3291 0.2455 288.3585 0.0923 0.2643 0.2122
0.01 1 1.0746 0.4723 0.3016 0.2897 0.2173 0.2697 0.2799
0.01 0.1 0.2694 0.2977 0.2459 527.8482 0.0105 0.3008 0.1342
0.01 0.01 0.2240 0.2725 0.2142 0.2820 0.0735 0.2957 0.2292
0.01 0 0.2089 0.2849 0.1980 2303.4068 0.1503 0.2628 0.3504

Table 8: Results for Boston dataset with Transformer network prior. The MAEs of cGAN, cGAN with
TabNet generator and baseline transformer (TabNet) model are 0.2838, 0.2729 and 0.2515 respectively.

Variance Bias Prior model mGAN Tab-mGAN skipGAN Weights skipGAN Tab-skipGAN Weights
Tab-skipGAN

1 1 1.2390 0.0618 0.0903 0.0499 0.9200 0.1203 0.9702
1 0.1 0.7765 0.1274 0.1342 0.0597 0.9715 0.0693 0.9976
1 0.01 0.7958 0.1380 0.0778 0.1183 0.9353 0.0708 1.0000
1 0 0.7588 0.0548 0.1465 0.0604 0.9753 0.0970 0.9916

0.1 1 1.0056 0.3290 0.1076 0.0551 0.3679 0.0640 0.4676
0.1 0.1 0.1517 0.0489 0.0511 0.1028 0.0894 0.0945 0.4901
0.1 0.01 0.1052 0.0974 0.0894 0.0689 0.1474 0.0998 0.0420
0.1 0 0.0907 0.0708 0.0651 0.1349 0.0665 0.0652 0.1287
0.01 1 0.9865 0.0987 0.0524 0.3475 0.3747 0.0897 0.2481
0.01 0.1 0.0942 0.1016 0.0872 0.0789 0.1056 0.0941 0.0000
0.01 0.01 0.0514 0.1431 0.0698 0.1271 0.0193 0.0477 0.0379
0.01 0 0.0652 0.0429 0.0840 0.1034 0.0591 0.1034 0.0451

Table 9: Results for Energy Efficiency dataset for 1st target with Transformer network prior. The MAEs
of cGAN, cGAN with TabNet generator and baseline transformer (TabNet) model are 0.0849, 0.1564 and
0.0543 respectively.

Figure 3: Box plots for comparison of models in the Boston dataset. All ABC-GAN models outperform the
Linear, GBT and transformer prior models. Large outliers (MAE ≥ 20) for skipGAN were removed.

.
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Figure 4: cGAN and cGAN with TabNet generator models on 100 samples and 503 samples (entire dataset)
of Boston dataset.

Figure 5: mGAN model for Linear model, GBT and Transformer priors on 100 samples and 503 samples
(entire dataset) of Boston dataset.

Figure 6: Tab-mGAN model for Linear model, GBT and Transformer priors on 100 samples and 503 samples
(entire dataset) of Boston dataset.
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Figure 7: skipGAN model for Linear model, GBT and Transformer priors on 100 samples and 503 samples
(entire dataset) of Boston dataset.

Figure 8: Tab-skipGAN model for Linear model, GBT and Transformer priors on 100 samples and 503
samples (entire dataset) of Boston dataset.
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is more explicit in it’s way of working than most pre-existing black-box models. Our ABC-GAN models
outperform prior models with the same amount of misspecification, and perform equivalent or better than
these priors even in the ideal situation of perfectly specified models.

How is our experimentation on regression any different than the other existing work, among the wide
variety of literature that exists on regression, including non-parametric approaches such as Gaussian process
regression [Wang]? While being useful in the ML community, these methods don’t solve the problems of (1)
correcting likelihood misspecification in the models or data and (2) performing equivalent or better than
to the prior models under perfect condition (no noise condition). Our model caters mainly to correcting
misspecification in the prior models, and performs equivalently or better than the prior models in the ideal
case in several regression tasks.

In this paper, the objective that we want to achieve is to regularise the GAN generator by prepending
the complex sampler(s), which ideally would have all the domain knowledge (which would be otherwise
captured by the prior on the parameters in case of the ABC, thereby biasing the training of the GAN).
In this case, although there is just one complex sampler initially, we have multiple samplers - one for each
candidate model, with each sampler trying to learn a different transformation. The distance between the
simulated and actual data is measured using a divergence metric and ultimately only those samplers or
models are chosen which lie within a certain threshold. We argued that, the proposed method can do no
worse than the baselines, but also significantly outperforms the baseline priors, and can successfully correct
the likelihood misspecification in them 1. Hence, in the ABC-GAN framework, the Generator is correcting
for the misspecification, while the Discriminator is learning summary statistics (data representations) along
with the rejection region. Our simple and elegant formulation can absorb a variety of paradigms. It will be
interesting to investigate a full Bayesian setup, and draw posterior samples for the baseline. Likewise, on the
adversarial optimization side, owing to incorporation of prior knowledge, stability dynamics could be studied.
Our extensive experimentation involving wide variety of datasets, baseline models and tasks reaffirms our
belief that, the proposed regime can be used for continuous model improvement, in an inter-operable way.

Our work opens up many future directions. In our current work, we have not yet exploited obtaining
posterior inference. Can we compute the posterior quantities, like in ABC? A reasonable hunch is to calculate
approximate posterior quantities, under change of measure. Here, we view T ≡ GGAN as fixed, deterministic,
but differential transformation. Recent advances in gradient-based normalizing flows inspire us in this
direction [Song & Ermon (2019)]. It is relatively straightforward to obtaining posterior predictive distribution
- sample from the ABC-Pre Generator, and pass it through GAN Generator, and treat the samples as
approximate draws with which any statistics can be computed. Another interesting question to ask is -
does the discriminating function learnt by DGAN approximate the Bayes Factor and/or the likelihood ratio?
Previous work in this direction provide hints [Shirazi et al. (2017)]. Likewise, it will be of interest to
know whether the representations learnt by DGAN showcase sufficient statistics? Earlier work on learning
summary statistics via deep neural networks for ABC provide clues [Wong et al. (2018)]. Under linear models
or generalized linear models, we find an affirmative answer. From stability standpoint, can the specific type
of regularization of GGAN be tuned such that an optimum between explicit and implicit generative models
is found? Pursuing the above questions will help us understand ABC-GANs better.
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