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ABSTRACT

Guidance in conditional diffusion generation is of great importance for sample
quality and controllability. However, existing guidance schemes are to be desired.
On one hand, mainstream methods such as classifier guidance and classifier-free
guidance both require extra training with labeled data, which is time-consuming
and unable to adapt to new conditions. On the other hand, training-free meth-
ods such as universal guidance, though more flexible, have yet to demonstrate
comparable performance. In this work, through a comprehensive investigation
into the design space, we show that it is possible to achieve significant perfor-
mance improvements over existing guidance schemes by leveraging off-the-shelf

classifiers in a training-free fashion, enjoying the best of both worlds. Em-
ploying calibration as a general guideline, we propose several pre-conditioning
techniques to better exploit pretrained off-the-shelf classifiers for guiding dif-
fusion generation. Extensive experiments on ImageNet validate our proposed
method, showing that state-of-the-art (SOTA) diffusion models (DDPM, EDM,
DiT) can be further improved (up to 20%) using off-the-shelf classifiers with
barely any extra computational cost. With the proliferation of publicly avail-
able pretrained classifiers, our proposed approach has great potential and can
be readily scaled up to text-to-image generation tasks. The code is available at
https://github.com/AlexMaOLS/EluCD/tree/main.

1 INTRODUCTION

Diffusion Probabilistic Model (DPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b)
is a powerful generative model that employs a forward diffusion process to gradually add noise
to data and generate new data from noise through a reversed process. DPM’s exceptional sample
quality and scalability have significantly contributed to the success of Artificial Intelligence Generated
Content (AIGC) in various domains, including images (Saharia et al., 2022; Ramesh et al., 2022;
2021; Rombach et al., 2022), videos (Ho et al., 2022b; Singer et al., 2022; Ho et al., 2022a; Molad
et al., 2023), and 3D objects (Poole et al., 2022; Lin et al., 2023; Wang et al., 2023).

Conditional generation is one of the core tasks of AIGC. With the diffusion formulation, condition
injection, especially the classical class condition, becomes more transparent as it can be modeled
as an extra term during the reverse process. To align with the diffusion process, Dhariwal &
Nichol (2021) proposed classifier guidance (CG) to train a time/noise-dependent classifier and
demonstrated significant quality improvement over the unguided baseline. Ho & Salimans (2022)
later proposed classifier-free guidance (CFG) to implicitly implement the classifier gradient with the
score function difference and achieved superior performance in the classical class-conditional image
generation. However, both CG and CFG require extra training with labeled data, which is not only
time-consuming but also practically cumbersome, especially when adapting to new conditions. To
reduce computational costs, training-free guidance methods have been proposed (Bansal et al., 2023)
that take advantage of pretrained discriminative models. Despite the improved flexibility, they have
not demonstrated convincing performance compared to CG & CFG in formal quantitative evaluation
of guiding diffusion generation. There seems to be an irreconcilable trade-off between performance
and flexibility and the current guidance schemes are still to be desired.

⇤Correspondence to Tianyang Hu (hutianyang.up@outlook.com)
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In this work, we focus on the classical class-conditional diffusion generation setting and investigate
the ideal method for guiding the diffusion generation, considering the following criteria: (1) Efficiency
with training-free effort; (2) Superior performance in formal evaluation of guided conditional diffusion
generation; and (3) Flexibility and adaptability to various new conditions. To this end, we delve
into the properties of classifiers and rethink the design space of classifier guidance for diffusion
generation. Through a comprehensive investigation both empirically and theoretically, we reveal
that: (a) Trained/finetuned time-dependent classifiers have limitations; (b) Off-the-shelf classifiers’
potential is far from realized.

While existing methods primarily emphasize classifier accuracy, an ideal classifier should not only
provide precise label predictions but also accurate estimations of the gradient of the logarithm of
the conditional probability. Given the challenges in efficiently estimating the gradient, classifier
calibration emerges as a promising alternative, which quantifies how well a classifier recovers the
ground truth conditional probability. We show that under certain smoothness conditions, a smaller
calibration error leads to better estimation of the classifier gradient(Proposition 4.1). Accordingly, we
propose the integral calibration error (ECE) to assess classifier guidance throughout the diffusion
reverse process and subsequently, effective pre-conditioning techniques to better prepare the classifier
for guidance. Interestingly, our experiments reveal that trained/fine-tuned classifiers (Dhariwal &
Nichol, 2021) are less calibrated than off-the-shelf ones when the noise level is high (Figure 1).

Beyond a good probability estimation, an ideal classifier guidance should also integrate seamlessly
with the conditional diffusion generation process. Our investigation reveals that the naive imple-
mentation of classifier guidance will fade as the diffusion denoising step progresses, resulting in
ineffective utilization of the classifier (Figure 4). To address this newly discovered issue, we propose
a simple weighing strategy to balance the joint and conditional guidance, which significantly corrects
the guidance direction and results in significantly improved sample quality.

To sum up, this work aims to elucidate the design space of classifier-guided diffusion generation. We
carry out a comprehensive analysis of the classifier guidance, considering calibration, smoothness,
guidance direction, and scheduling. Accordingly, we propose accessible and universal designs that
significantly enhance guided sampling performance. Extensive experiments on ImageNet with various
DPMs (DDPM, EDM, and DiT) validate our proposed method, showcasing that using off-the-shelf
classifiers can consistently outperform both CG and CFG. Additionally, our method can be applied in
CFG and further enhance its generation quality. We also demonstrate the scalability and universality
of our method in text-to-image scenarios by incorporating CLIP (Radford et al., 2021) guidance with
our design. We point out that the operation of increasing recurrent guidance (Bansal et al., 2023)
does not fully exploit the potential and comes at the expense of increasing sampling time.

2 RELATED WORK

Diffusion models have gained considerable attention due to their potential. Ho et al. (2020); Nichol
& Dhariwal (2021); Song et al. (2020a); Peebles & Xie (2022); Karras et al. (2022) demonstrated
diffusion models’ capacity in generating high-quality samples. Dhariwal & Nichol (2021) introduced
fine-tuned time-dependent U-Net (Ronneberger et al., 2015) classifiers to guide diffusion model
sampling, resulting in significant improvements. Ho & Salimans (2022) introduced classifier-free
diffusion, which has been widely accepted (Rombach et al., 2022; Peebles & Xie, 2022; Ramesh
et al., 2022) for generating high-quality samples using both conditional and unconditional diffusion
models for inference. In our work, we demonstrate that our off-the-shelf classifier-guided conditional
diffusion not only significantly outperforms classifier-free diffusion but also enhances the performance
of the classifier-free diffusion model (DiT (Peebles & Xie, 2022)). For guidance in other modalities,
Nichol et al. (2021) proposed GLIDE, which utilizes fine-tuned noised CLIP for text-conditioned
diffusion sampling. However, it requires the fine-tuning of CLIP on carefully selected noisy data.

In addition, research has explored using off-the-shelf checkpoints to guide diffusion sampling. For
example, Wallace et al. (2023) examined the plug-and-play of the classifier guidance, demanding the
diffusion architecture to be invertible. Epstein et al. (2023) introduced self-guidance constraints for
CLIP-guided sampling in objects’ editing. Bansal et al. (2023) applied recurrent guidance operation to
universal pretrained models, but only provided demo figures without quantitative evaluation. However,
our experiments in Table 1 reveal that increasing the recurrent guidance steps does not significantly
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improve the generation quality. In contrast, our calibrated off-the-shelf ResNet1 significantly enhances
the sampling quality (lower Fréchet Inception Distance (FID) (Heusel et al., 2017)) without additional
time, highlighting the effectiveness of our proposed guidance scheme. In Graikos et al. (2022),
diverse types of regularization constraints are implemented in the diffusion sampling process. They
focused on demonstrating the flexibility of diffusion models but the performance limits of each
category are not thoroughly tested. Go et al. (2023) propose a multi-expert strategy that involves
training multiple classifiers for specific noise value ranges to guide the diffusion sampling process at
corresponding time steps. However, this approach requires substantial additional computation, and the
experiments in Go et al. (2023) do not provide conclusive evidence that multi-expert-guided sampling
can outperform fine-tuned classifier-guided diffusion (Dhariwal & Nichol, 2021). In contrast, our
off-the-shelf guided sampling eliminates the need for further training and demonstrates significantly
higher sampling performance compared to fine-tuned classifier-guided diffusion (Dhariwal & Nichol,
2021) and classifier-free diffusion (Ho & Salimans, 2022) in formal evaluation.

Table 1: Evaluation of off-the-shelf ResNet with recurrent guidance operation and our calibrated
designs in the guided sampling. The ResNet is the official Pytorch ResNet checkpoint; the diffusion
model is from Dhariwal & Nichol (2021). We generate 10,000 ImageNet 128x128 samples with 250
DDPM steps for evaluation. Sampling time is recorded as GPU hours on NVIDIA V100.

Classifier type recurrent steps FID Time (hour)

ResNet 1 7.17 14.1
ResNet 2 7.06 16.0
ResNet 3 7.14 18.0
ResNet (Our-Calibrated) 1 5.19 14.1

3 PRELIMINARIES

Diffusion model contains a series of time-dependent model components that apply the forward
and reverse processes (Ho et al., 2020; Sohl-Dickstein et al., 2015). Forward process refers to the
gradual increment of noise on the original sample x0: q(xt|x0) = N (xt;

p
↵̄tx0, (1� ↵̄t)) , where

�t denotes forward process variance, ↵t = 1 � �t, ↵̄t = ⇧t
s=1↵s. The reverse process refers to

gradually generating clean samples from noisy samples: p✓(x̂t�1|x̂t) = N (x̂t�1;µ✓(x̂t, t),�t),
where µ✓(x̂t, t) is derived from removing the diffusion estimated ✏✓(x̂t, t) from noisy samples x̂t:
µ✓(x̂t, t) =

1
p
↵t
(x̂t �

�tp
1�↵̄t

✏✓(x̂t, t)) and �t denotes the reverse process variance.

Classifier guidance (Dhariwal & Nichol, 2021) can be applied in the reverse process for improving
generation quality. For conditional diffusion classifier guidance and class y, the guided reverse process
is adding µ✓ with the gradient of the logarithm of the conditional probability: N (x̂t�1;µ✓(x̂t, t) +
s�trx̂t log(p(y|x̂t)),�t). Specifically, the gradient of the logarithm of classifier f logit in softmax
operation rx̂t log(softmax(fy(x̂t))) is used for rx̂t log(p(y|x̂t)).

Classifier-free guidance (Ho & Salimans, 2022) uses the difference between conditional and
unconditional noise (score) to represent the conditional probability guidance during the sam-
pling, rx̂t log(p(y|x̂t)) / ✏✓(x̂t, y, t) � ✏✓(x̂t, ;, t). The classifier-free guided sampling becomes
✏⇤t = ✏✓(x̂t, y, t) + (s� 1)(✏✓(x̂t, y, t)� ✏✓(x̂t, ;, t)), where s > 1 is the classifier-free scale. The
unconditional ✏✓(x̂t, ;, t) is trained by randomly replacing the class with null class ;.

4 DESIGN SPACE OF CLASSIFIER GUIDANCE

4.1 CLASSIFIERS: FINE-TUNED VS OFF-THE-SHELF

According to Dhariwal & Nichol (2021), a classifier to be used for guiding diffusion generation
requires dedicated training or fine-tuning to adapt to noisy images at different time steps during the
diffusion process. To implement the time-dependency, the classifier usually employs the downsam-
pling component of U-Net (Ronneberger et al., 2015), and fine-tuning is performed on noisy samples
xt for every t along the forward diffusion process. Such a training procedure is time-consuming
(200+ GPU hours for ImageNet 128x128).

1Pytorch ResNet checkpoints: https://pytorch.org/vision/main/models/resnet.html
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In comparison, “off-the-shelf” classifiers refer to the publicly available checkpoints that can be
directly deployed without further fine-tuning. The collection of such pretrained classifiers is becoming
increasingly more powerful and diverse. There is a line of research, under the umbrella of “model
zoo”, that specifically studies how to explore and exploit pretrained models for various downstream
tasks (Shu et al., 2021; Dong et al., 2022; Chen et al., 2023; Luo et al., 2023). However, when
it comes to guiding diffusion generation, “off-the-shelf” classifiers tend to be not robust against
Gaussian noise and not adaptable to time-dependent diffusion architectures. Successfully exploiting
their knowledge for diffusion models is non-trivial. In our work, we use the official Pytorch ResNet
checkpoints as the off-the-shelf classifiers.

As stated earlier, while an ideal classifier for guiding diffusion should provide accurate estimations of
r logP (y|x), calibration error is a promising alternative criterion due to the challenges in efficient
gradient estimation. Proposition 4.1 suggests that if a classifier satisfies certain smoothness conditions,
a small calibration error indicates a good estimation of the gradient of the log conditional probability.
Proposition 4.1. Let p 2 H

k(⌦) be the underlying true density function, where H
k(⌦) is the

Sobolev space with smoothness k > 1 defined on a compact and convex region ⌦. Assume that

there exist constants c1, c2 > 0 such that c2 � p(x) � c1, 8x 2 ⌦. Suppose pn is an estimate of p
such that kpnkHk(⌦)  C for some constant C not depending on n, where n is the sample size. If

kpn � pkL2(⌦) = oP(1), we have kr log p�r log pnkL2(⌦) = oP(1).

To assess the calibration of a classifier and its compatibility with the diffusion model, we propose the
integral calibration error ECE (Eq.1) as an estimation of

R
t ECEt, where ECEt (Expected Calibration

Error (Naeini et al., 2015)) measures the sample average of the difference between the classifier’s
accuracy and probability confidence within bins B based on the reverse process sample x̂t at time t.

ECE =
1

k

kX

t=0

ECEt, where ECEt =
MX

m=1

|Bm|

n
|acc(Bm(x̂t))� conf(Bm(x̂t))|. (1)

Figure 1 depicts the ECEt curves of the two classifiers at different time stages (250 DDPM steps in
total). From time 0 to 50, the fine-tuned classifier exhibits lower ECEt values compared to ResNet,
demonstrating its robustness to Gaussian noise when the images are less noisy. However, as the
time steps progress and the noise magnitude increases, the off-the-shelf ResNet achieves lower ECEt

values than the fine-tuned classifier. This suggests that training on highly noisy or low signal-to-noise
samples does not contribute to the fine-tuned classifier guidance. This observation forms the basis
that off-the-shelf guidance has the potential to not only match but also surpass the performance of
fine-tuned classifiers in our subsequent experiments.

Figure 1: The ECEt of the fine-tuned and the off-the-shelf classifiers throughout sampling step.

In the subsequent sections, we explore the design space of classifier-guided diffusion generation to
enhance the quality of the classifier gradients along the diffusion process and have better synergy with
the diffusion score function: 1. Classifier inputs: to facilitate calibration with the diffusion reverse
process, we provide the off-the-shelf classifier with the predicted denoised sample x̂0(t) during
reverse sampling. 2. Smooth guidance: building on Proposition 4.1, we enhance the smoothness of
the classifier, enabling calibration to result in improved guidance(gradient estimation). 3. Guidance
direction: we uncover the classifier guidance diminishes as the diffusion denoising step advances
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in Figure 4. To address this, we balance the joint and conditional guidance direction and result in
optimal guidance direction. 4. Guidance schedule: we propose a simple yet effective Sine guidance
schedule that better aligns with the calibration error curve (Figure 1) of the off-the-shelf classifier.

4.2 PREDICTED DENOISED SAMPLES

During the classifier-guided reverse process, there are two types of diffusion-generated sam-
ple: the reverse processing sample x̂t and the predicted denoised sample x̂0(t) = (x̂t �

(
p
1� ↵t)✏✓(x̂t, t))/

p
↵t (Song et al., 2020a; Bansal et al., 2023). Considering off-the-shelf clas-

sifiers are typically not robust to Gaussian noise and not time-dependent, selecting the appropriate
classifier input type is crucial to ensure the best fit. In Table 2, we compare the calibration of two
input types: the reverse processing samples x̂t and the predicted denoised samples x̂0(t) used in
the guided diffusion. Table 2 demonstrates that the off-the-shelf ResNet classifier achieves better
calibration when provided with the denoised sample x̂0(t) compared to x̂t. This improvement in
calibration enhances the guided sampling quality with a smaller FID.

Table 2: Comparison of classifier inputs in guided sampling with respect to ECE and FID. Denote the
guidance of classifier f as Guidance(x) := rx log(softmax(fy(x))).

GUIDANCE(x̂t) GUIDANCE(x̂0(t))

ECE 0.36 0.28
FID 8.61 7.17

4.3 SMOOTH CLASSIFIER

A smooth classifier is important to guided diffusion generation. On one hand, Proposition 4.1
indicates that the smoothness of the classifier is key to ensuring good gradient estimation. On the
other hand, gradient-based optimization also benefits from increased smoothness. For better guidance,
we propose to enhance the smoothness of the classifier. According to Zhu et al. (2021), the Softplus
activation, Softplus�(x) =

1
� log(1 + exp(�x)), is effective in smoothing the classifier gradient. As

parameter � approaches infinity, the Softplus function converges to the ReLU activation function.
Table 3 and Figure 2 demonstrate that as � decreases, the ECE decreases as well, indicating that
smoother activation benefits classifier calibration. Consequently, the well-calibrated design enhances
the guided sampling performance compared to the baseline (ReLU), reducing FID from 7.17 to 6.61.

Table 3: Ablation study of � in Softplus with respect to integral calibration error ECE and FID.

RELU SOFTPLUS(�=8) SOFTPLUS(�=5) SOFTPLUS(�=4) SOFTPLUS(�=3)

ECE 0.34 0.31 0.26 0.21 0.07
FID 7.17 6.99 6.89 6.73 6.61

Figure 2: The ECEt curves of the off-the-shelf ResNet with ReLU and Softplus activation functions.
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4.4 JOINT VS CONDITIONAL DIRECTION

In this section, we demonstrate that properly weighing the joint and conditional guidance can
significantly improve sampling quality. In Dhariwal & Nichol (2021), the classifier guidance is
defined as the gradient of the conditional probability, which can be interpreted as the gradient of the
joint and marginal energy (Grathwohl et al., 2019) difference, shown in Eq.2 and 3 as

log p⌧ (y|x) = log
exp(⌧fy(x))PN
i=1 exp(⌧fi(x))

= ⌧fy(x)� log
NX

i=1

exp(⌧fi(x)) := �E⌧ (x, y) + E⌧ (x),

(2)
rx log p⌧ (y|x) = �rxE⌧ (x, y) +rxE⌧ (x) (3)

To gain a deeper understanding of the guidance direction, we conduct a closed-form analysis in
mixed-Gaussian scenarios. Proposition 4.2 provides the derived closed-form joint and conditional
directions in mixed-Gaussian scenarios: for conditional probability gradient, the guidance direction
is a combination of class mode differences; while the joint probability gradient directly targets the
objective class mode µl. Figure 3 provides a visual illustration of the two types of guidance directions.

Figure 3: Mixed-Gaussian settings of joint and conditional probability guidance toward Class3.

Proposition 4.2. Let X ⇠ P be a random variable defined on Rd
, with the density function

f(x) =
PK

k=1 bkfk(x), where fk(x) is a normal density function with mean µk and covariance

matrix ⌃k, and bk > 0 with
PK

k=1 bk = 1. Let Z 2 {1, ...,K} be a random variable satisfying

P (Z = l,X = x) = blfl(x). Then we have

rxP (Z = l|X = x) /
KX

k=1

bke
�

1
2 (x�µk)

>⌃�1
k (x�µk)(⌃�1

l (x� µl)�⌃�1
k (x� µk)),

rxP (Z = l,X = x) / ⌃�1
l (µl � x).

Proposition 4.2 reveals that if all ⌃k are identity matrices, the gradient of the joint distribution is
simply µl � x, directing towards the mode of density fl(x); while the gradient of the conditional
distribution is

PK
k=1 bke

�
1
2 (x�µk)

>(x�µk)(µk � µl), which may point to low-density region.

To strengthen the joint fy(x) guidance (joint energy E⌧1(x, y)), we reduce the value of marginal
temperature ⌧2 relative to the joint temperature ⌧1, shown in Eq.4. The ablation study in Table 4
validates the improvement in the sampling quality by weighing the joint & marginal guidance.

rx log p⌧1,⌧2(y|x) = rx(⌧1fy(x)� log(
NX

i=1

exp(⌧2fi(x)))) := �rxE⌧1(x, y) +rxE⌧2(x).

(4)In addition to quantitative metrics, we visually demonstrate the impact of enhancing joint guidance
on classifier-guided sampling. Figure 4 displays the intermediate sampling images and the classifier
gradient figures over 250 DDPM steps. Figure 4 (a) represents the traditional conditional probability
settings (⌧1 = 1, ⌧2 = 1): the classifier gradient figure gradually fades from t=50 to 0, indicating a
loss of dog depiction guidance during the sampling. In contrast, Figure 4 (b) showcases strengthened
joint guidance (⌧1 = 1, ⌧2 = 0.5): the classifier gradient figure increasingly highlights the dog outline,
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Table 4: Ablation study of marginal logit temperature ⌧2 with respect to FID. ⌧1 is fixed as 1.

⌧2 1.0 0.8 0.7 0.5 0.3

FID 6.20 5.62 5.45 5.27 5.30

providing consistent and accurate guidance direction throughout the entire sampling process. It aligns
with Proposition 4.2, highlighting that the gradient of the conditional distribution may point to a
low-density region, while the jointly amplified gradient targets the mode of density more precisely.

Figure 4: The visualization of intermediate sampling images and classifier gradient figures under
conditional probability and joint-strengthened guidance over 250 DDPM steps.

4.5 GUIDANCE SCHEDULE

In Dhariwal & Nichol (2021), the classifier guidance scale schedule employs a linear timely-decay
variance �t = �t (Ho et al., 2020). To fully leverage the benefits of a well-calibrated classifier, we
introduce a sin factor � to the guidance schedule: �t = �t + ��T · sin(⇡t/T ), where �t denotes
the variance at time t. This design choice is motivated by the observation in Figure 1, where the
off-the-shelf classifier exhibits consistently lower and more stable ECEt values during the large noise
period (from the beginning to the middle of the reverse process). Consequently, we can amplify
the guidance scale during this period to better exploit its effectiveness. The parameter � is used for
controlling the magnitude of the guidance amplifying: the bigger the parameter �, the greater the
time-dependent sin value added to the guidance schedule. Figure D.1 in Appendix A demonstrates
the original schedule and the � added schedule. The impact of the sin factor � is examined in the
ablation study presented in Table A.3 of Appendix A.

5 EXPERIMENTS

5.1 OFF-THE-SHELF GUIDANCE FOR DDPM

Guided diffusion (Dhariwal & Nichol, 2021) demonstrates that incorporating a fine-tuned U-Net
classifier can significantly enhance image generation quality. However, the classifier is demanded
to be a time-dependent U-Net, and the fine-tuning process is time-consuming (200+ GPU hours for
ImageNet128x128 classifier fine-tuning). In our approach, we utilize off-the-shelf PyTorch ResNet-50
and ResNet-101 checkpoints with our calibrated design to directly guide the diffusion sampling. Table
5 confirms that our calibrated off-the-shelf ResNet-50 (FID: 2.36) and ResNet-101 (FID: 2.19) not
only improve the diffusion baseline quality (FID: 5.91) but also outperforms the fine-tuned classifier
guided diffusion (FID: 2.97) and the classifier-free diffusion (Ho & Salimans, 2022) (FID: 2.43) by
a significant margin. By leveraging off-the-shelf classifiers, we integrate external knowledge into
conditional diffusion models, surpassing existing approaches. The guided sampling algorithm is
outlined in Algorithm 1 and the hyper-parameter settings can be found in Appendix C.3.
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Table 5: The comparison of the baseline DDPM diffusion, the fine-tuned classifier-guided, classifier-
free diffusion, and the off-the-shelf ResNet guided sampling. All models generate 50,000 ImageNet
128x128 samples with 250 DDPM steps.

IMAGENET 128X128 CLASSIFIER IS FID

DIFFUSION BASELINE (DHARIWAL & NICHOL, 2021) - - 5.91
DIFFUSION FINETUNE GUIDED (DHARIWAL & NICHOL, 2021) FINE-TUNE 182.69 2.97
CLASSIFIER-FREE DIFFUSION (HO & SALIMANS, 2022) - 158.47 2.43
DIFFUSION RESNET50 GUIDED (OURS) OFF-THE-SHELF 183.51 2.36

DIFFUSION RESNET101 GUIDED (OURS) OFF-THE-SHELF 187.83 2.19

Algorithm 1 DDPM off-the-shelf classifier guided sampling.
Parameter: SoftPlus activation �, joint logit temperature ⌧1, marginal logit temperature ⌧2.
classifier guidance scale �t.
Required: Diffusion model D✓, variance schedule �t, class label y, reverse process sample x̂t,
predicted denoised sample x̂0(t), reverse process noise ✏✓(x̂t, y, t), classifier logit of input x on
class y: fy(x).
x̂T sampled from N (0, I)
for t 2 {T, ..., 1} do

µ, ✏✓(x̂t, y, t) D✓(x̂t, y, t)
x̂0(t) (x̂t � (

p
1� ↵t✏✓(x̂t, y, t)))/

p
↵t . get predicted denoised sample

g  rx̂0(t) log(exp(⌧1fy(x̂0(t)))/(
PN

i=1 exp(⌧2fi(x̂0(t))))) . classifier gradient guidance
x̂t�1  sample from N (µ+ �tg,�t)

end for

return x̂0

5.2 OFF-THE-SHELF GUIDANCE FOR EDM

In this section, we demonstrate the effectiveness of off-the-shelf classifier guidance in fewer sampling
steps based on EDM (Karras et al., 2022) model. EDM utilizes a sampling trajectory based on the
sampling curvature dt = dx/dt, enabling efficient and high-quality image generation. Our EDM
guided-sampling algorithm is outlined in Algorithm 2 of Appendix C.2, where the normalized sample
x̂i/kx̂ik2 is used as the classifier guidance inputs g = r log(softmaxf(x̂i/kx̂ik2)), then the gradient
g is normalized to align with the sample x̂i and curvature di: x̂i�1  x̂i+(ti�ti�1)di+�i(g/kgk2).
In our experiments, we present the results of off-the-shelf classifier guidance results of ODE sampling
on ImageNet 64x64 in Table 6, with the sampling time recorded as GPU hours. The results of 256
steps of SDE sampling (Kingma & Gao, 2023) can be found in Table C.1 of Appendix C.4.

Table 6: EDM baseline and the off-the-shelf ResNet guided EDM sampling. Sampled for mutiple
ODE steps. We generate 50,000 ImageNet 64x64 samples for evaluation.

IMAGENET 64X64 CLASSIFIER FID STEPS TIME(HOUR)

EDM BASELINE - 2.35 36 8.0
EDM RES101 GUIDED OFF-THE-SHELF 2.22 36 8.4
EDM BASELINE - 2.54 18 4.0
EDM RES101 GUIDED OFF-THE-SHELF 2.35 18 4.1
EDM BASELINE - 3.64 10 2.1
EDM RES101 GUIDED OFF-THE-SHELF 3.38 10 2.2

5.3 OFF-THE-SHELF GUIDANCE FOR DIT

In this part, we showcase the applicability of off-the-shelf guidance in enhancing latent-spaced
classifier-free diffusion models, specifically DiT (Peebles & Xie, 2022). DiT stands out in several
aspects. Firstly, it utilizes transformer architecture instead of U-Net. Secondly, DiT operates in the
latent space, which is encoded by a variational autoencoder (VAE) (Kingma & Welling, 2013) from
Stable Diffusion (Rombach et al., 2022). Lastly, DiT is trained in classifier-free setup (Ho & Salimans,
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2022). Our DiT guided-sampling algorithm is outlined in Algorithm 3 of Appendix C.2, and the
guided performance is presented in Table 7. Unlike Wallace et al. (2023), our off-the-shelf classifier
guidance does not require retraining a latent-space-based classifier and imposes no requirements on
the diffusion architectures. Notably, there are two key designs in the Algorithm 3:

1. To integrate the pixel-spaced classifier f into latent sampling, we consider the guidance g as the
gradient of composite functions, specifically the VAE decoder VD within the classifier f . It can be
expressed as: g = rẑ0(t) log(softmaxf(VD(ẑ0(t)))).

2. To incorporate classifier guidance g into classifier-free sampling, we normalize the guidance and
add the normalized ḡ to the conditional and unconditional noise difference. The formula is as follows:
✏✓(ẑt, c, t) + (s� 1)(✏✓(ẑt, c, t)� ✏✓(ẑt, ;, t) + �tḡ).

Table 7: DiT baseline and the off-the-shelf ResNet guided DiT sampling, sampled for 250 DDPM
steps. We generate 50,000 ImageNet 256x256 samples for evaluation.

IMAGENET 256X256 CLASSIFIER FID PRECISION RECALL

DIT BASELINE - 2.27 0.828 0.57
DIT RESNET101 GUIDED OFF-THE-SHELF 2.12 0.817 0.59

5.4 CLIP GUIDED DIFFUSION

In this section, we utilize off-the-shelf CLIP (Radford et al., 2021) to guide the conditional diffusion
model (Dhariwal & Nichol, 2021) in generating images based on a given prompt (see Eq.D.1 in
Appendix D). Compared to approaches in Bansal et al. (2023); Wallace et al. (2023), our text-to-image
sampling method achieves more efficient and high-quality samples. Our method does not require
recurrent guidance iteration within a single step, resulting in a sampling speed that is approximately
5 times faster than the methods in Bansal et al. (2023). In terms of generation quality, our proposed
design leads to significant improvements in CLIP scores in Figure D.6 of Appendix D. Refer to
Figure 5 and Figure D in Appendix D for more demonstration figures.

Figure 5: CLIP guided figures

6 DISCUSSION

In this work, we elucidate the design space of off-the-shelf classifier guidance in diffusion genera-
tion. Using our training-free and accessible designs, off-the-shelf classifiers can effectively guide
conditional diffusion, achieving state-of-the-art performance in ImageNet 128x128. Our approach
is applicable to various diffusion models such as DDPM, EDM, and DiT, as well as text-to-image
scenarios. We believe our work contributes significantly to the investigation of the ideal guidance
method for diffusion models that may greatly benefit the booming AIGC industry.

There are multiple directions to extend this work. First, we primarily investigated classifier guidance
in diffusion generation while there are more sophisticated discriminative models, e.g., detection
models and visual Question Answering models in other domains. Second, we only considered image
generative models, and extending to language models or other modalities would also be a promising
direction. We believe that our proposed designs and calibration methodology hold potential for
diverse modalities and we leave this for future work.
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