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Abstract

Invariant object recognition–the ability to identify objects despite changes in
appearance–is a hallmark of visual processing in the brain, yet its understand-
ing remains a central challenge in systems neuroscience. Artificial neural networks
trained to predict neural responses to visual stimuli (“digital twins”) could provide
a powerful framework for studying such complex computations in silico. However,
while current models accurately capture single-neuron responses within individual
visual areas, their ability to reproduce how populations of neurons represent object
identity, and how these representations transform across the cortical hierarchy,
remains largely unexplored. Here we examine key functional signatures observed
experimentally and find that current models account for hierarchical changes in
basic single-neuron properties, such as receptive field size, but fail to capture more
complex population-level phenomena, particularly invariant object representations.
To address this gap, we introduce a biologically inspired hierarchical readout
scheme that mirrors cortical anatomy, modeling each visual area as a projection
from a distinct depth within a shared core network. This approach significantly
improves the prediction of population-level representational transformations, out-
performing standard models that use only the final layer, as well as alternatives
with modified architecture, regularization, and loss function. Our results suggest
that incorporating anatomical information provides a strong inductive bias in digital
twin models, enabling them to better capture general principles of brain function.

1 Introduction

Invariant object recognition refers to the ability to recognize objects despite changes in position,
shape, scale, or luminance. Despite its importance, understanding the neural basis of this computation,
and of other complex visual functions, remains a central challenge in systems neuroscience (Kar
& DiCarlo, 2024). Anatomical studies have revealed a clear hierarchical organization of visually
responsive areas in the brain across species (DiCarlo et al., 2012; Harris et al., 2019). In mice,
this hierarchy extends from the retina through the thalamus to the primary visual cortex (V1), the
lateromedial area (LM), and other higher visual areas (including RL and AL), as inferred from
anatomical connectivity (Fig. 1A). Functional studies have shown that this anatomical hierarchy
is accompanied by systematic changes in single-neuron response properties (Siegle et al., 2021;
Glickfeld & Olsen, 2017) and by increasingly linearly decodable object representations (Froudarakis
et al., 2020; Hoeller et al., 2024).

Despite significant progress, fundamental questions remain about the neural mechanisms underlying
invariant object recognition. What specific transformations in neural representations enable this
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Figure 1: Probing cortical hierarchy in the mouse visual system. (A) Hierarchy scores for four
visual areas (V1, LM, RL, AL) derived from anatomical connectivity (Harris et al., 2019). The
method analyzes laminar termination patterns of inter-areal axonal projections to assign each area a
continuous position in a global cortical hierarchy. While the original analysis included over ten areas,
we focus on those present in the MICrONS dataset (Consortium et al., 2021). Scores follow the trend
V1<LM ≲RL<AL. (B) Receptive field (RF) sizes estimated from neural responses to visual stimuli.
RF size increases approximately monotonically with anatomical hierarchy (V1<RL≲LM<AL) (Siegle
et al., 2021). (C) Rotation-invariant object recognition (Hoeller et al., 2024) assessed using static
images at different rotations, recording neural responses, training a support vector machine (SVM)
and testing it on unseen rotations. Classification accuracy increases monotonically with hierarchy
(V1<LM<RL<AL). (D) Invariant object recognition (Froudarakis et al., 2020) assessed by presenting
four moving objects undergoing identity-preserving transformations. Discriminability increases with
hierarchy, except for RL, which performs poorly (RL < V1 < LM < AL). (E) Schematic of standard
digital twin models (top), where a core network generates a multi-layer stimulus embedding and the
final layer is used to predict neural responses. In our anatomically inspired architecture (bottom),
each area is predicted from a different layer of the core, selected based on its anatomical hierarchy
score. (F) While both architectures capture RF size increase across areas (as in panel B), only the
hierarchical architecture reproduces the increase in invariant object recognition along the hierarchy
(panels C–D).

process, and how do they vary across cortical areas? Experimentally answering these questions would
require dense sampling of neural responses to high-dimensional sets of object transformations, a task
currently infeasible due to the limited recording time available in behaving animals. A promising
alternative is offered by digital twins: artificial neural networks trained to predict neural responses
to visual stimuli (Klindt et al., 2017; Ecker et al., 2018; Sinz et al., 2018; Lurz et al., 2020; Wang
et al., 2025). These models have recently emerged as powerful tools for characterizing the functional
properties of the visual system and have been shown to replicate diverse single-neuron response
features (Pogoncheff et al., 2023; Walker et al., 2019; Bashiri et al., 2025; Tong et al., 2023; Wang
et al., 2025; Ustyuzhaninov et al., 2022; Ding et al., 2023). However, most existing models focus on
predicting single-neuron responses without explicitly assessing whether they capture population-level
properties, such as differences in representational geometry across visual areas which is critical
for invariant object recognition. Without this capability, their ability to reveal how neural circuits
progressively construct more abstract visual representations is significantly constrained.

Here, we address this gap by evaluating the ability of digital twins of the mouse visual cortex to
reproduce experimental findings on how object representations evolve across the visual cortical
hierarchy. We focus on three key experimental results, each probing different aspects of the trans-
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formation from low-level to high-level representations. First, we test whether models capture the
increase in receptive field size across visual areas, a well-established signature of increasing spatial
integration that supports invariance to object position and scale (Siegle et al., 2021) (Fig. 1B). Second,
we evaluate whether models capture the increase in rotation-invariant object decoding across the
visual hierarchy, as demonstrated by Hoeller et al. (2024). In their study, linear support vector
machines (SVMs) were trained on neural activity from different areas to classify object identity under
unseen rotations (Fig. 1C). Third, we assess whether the models capture the progression of object
discriminability across areas, as discovered by Froudarakis et al. (2020). In this task, neural responses
were recorded as mice viewed four objects undergoing identity-preserving transformations, including
rotation, scaling, translation, and variations in illumination conditions (Fig. 1D).

We find that current digital twins are able to replicate low-level functional properties, such as receptive
field size gradients across areas, but fail to account for differences in higher-level representational
invariances (Fig. 1E,F). In particular, they do not reproduce the experimental findings of Hoeller et al.
(2024) or Froudarakis et al. (2020) when tested under analogous conditions. To address this limitation,
we introduce a biologically inspired modification to the model architecture. Conventional approaches
predict responses across all brain areas using a shared set of visual features, referred to as the "core
network" (Fig. 1E). However, this design overlooks the distinct computational transformations applied
within different visual regions. Instead, we propose a hierarchical readout (Fig. 1E), where neural
responses corresponding to different brain areas are mapped to distinct layers within the core network
rather than extracted from a single shared final layer. This architectural change introduces an inductive
bias that improves the alignment between in-silico and experimentally-observed population-level
representations across the hierarchy (Fig. 1F) while also improving single-neuron predictions in
higher visual areas. We show that mimicking the anatomical organization is key to achieve this
alignment, whereas other alternatives modifications to the baseline architecture fail to capture the
experimental phenomenology. Our work provides the first demonstration that digital twins can
be adapted to reproduce representational transformations across mouse visual areas, and offers a
framework for using such models to investigate the mechanisms underlying behaviorally relevant
visual computations.

We summarize our main contributions as:

• We simulated different experiments to probe hierarchical representations in digital twins
• We show that current models fail to replicate functional hierarchies across visual areas in

multiple experimental datasets (Froudarakis et al., 2020; Hoeller et al., 2024)
• We investigate different architectures and training framework
• We propose a new biologically-inspired hierarchical readout mechanism that captures

experimental results.

2 Related work

Hierarchical processing in the visual cortex. The visual system exhibits a hierarchical organization
where information flows through a network of interconnected areas (Seabrook et al., 2017; Siegle
et al., 2021). In mice, experimental evidence (de Vries et al., 2018; Consortium et al., 2021; Siegle
et al., 2021) has revealed substantial differences between primary visual cortex (V1) and higher-order
areas (LM, RL, AL) in receptive field properties (Siegle et al., 2021; Glickfeld & Olsen, 2017),
spatiotemporal characteristics (Murakami et al., 2017; Piasini et al., 2021), and critically, invariant
object recognition capabilities (Froudarakis et al., 2020; Hoeller et al., 2024). These hierarchical
transformations provide a critical baseline for evaluating computational models of visual processing
and motivate our investigation into whether digital twins can not only predict neural responses but
also capture the fundamental representational changes across cortical areas.

Modeling hierarchical representations with digital twins. Deep neural networks have emerged
as powerful "digital twins" for modeling neural responses to visual stimuli, following two main
approaches: task-driven models optimized for visual tasks (Yamins et al., 2014; Bakhtiari et al., 2021;
Kubilius et al., 2019; Zhuang et al., 2021; Pogoncheff et al., 2023), and data-driven models trained
directly on neural recordings (Klindt et al., 2017; Cadena et al., 2019; Lurz et al., 2020; Safarani et al.,
2021; Willeke et al., 2022; Li et al., 2023; Wang et al., 2025). Despite their success in predicting
single-neuron responses (Turishcheva et al., 2024a; Xu et al., 2024), these models struggle to capture
the hierarchical organization of representations across the visual system (St-Yves et al., 2023; Dyballa
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et al., 2024; Liscai et al., 2025). In primates, task-driven networks trained on object recognition
revealed a clear hierarchy along the ventral stream, with early layers predicting V1 and deeper layers
aligning with V4 and IT (Yamins et al., 2014). In mice, however, no such progression was found:
ImageNet-trained and even randomly initialized networks performed similarly across V1, LM, AL,
and RL (Cadena et al., 2019), and although unsupervised objectives improved predictions and mapped
V1 to early layers and higher areas to intermediate layers, they still failed to separate higher-order
regions (Nayebi et al., 2023). This limitation highlights the need for architectural innovations that
better align with the biological organization of the visual cortex.

Single-neuron and population-level analysis. Traditionally, neural network models in visual
neuroscience have focused on single-neuron responses, investigating how individual neurons en-
code sensory stimuli. Studies have examined feature selectivity in V1 by finding the most exciting
inputs (Walker et al., 2019), phase-invariant and spatial encoding in V1 (Ding et al., 2023; Ustyuzhani-
nov et al., 2022; Bashiri et al., 2025), and the columnar organization of selectivity in V4 (Willeke
et al., 2023; Burg et al., 2024). Despite these advances, single-neuron analyses fail to capture the
broader hierarchical structure of population-level representations across visual areas. Pogoncheff
et al. (2023) investigated how population structure influences V1 predictability, while Margalit et al.
(2024) examined topological differences between early and higher-order visual regions. Expanding
on this, Liscai et al. (2025) analyzed the geometry of neural representations, showing that regu-
larization improves the differentiability of representations but still fails to replicate experimentally
observed patterns of discriminability across visual areas. To address these limitations, we intro-
duce a biologically-inspired hierarchical readout mechanism that maps different network depths to
distinct visual areas, significantly improving the model’s ability to capture both single-neuron and
population-level responses.

3 Digital twins overlook differences in object representations across areas

Digital twin of the mouse visual cortex. We modeled neuronal responses using a compact digital
twin with state-of-the-art performance that includes a core module, a readout module, a behavioral
module, and a shifter module (see Appendix A for details). The core component consists of a
four-layer 3D Convolutional Neural Network (CNN), which transforms input videos into a high
dimensional embedding. The behavioral module processes behavior data and transforms it into
a latent representation which is stacked to the core’s output. The readout module, adapted from
Lurz et al. (2020), translates this encoded representation into predictions of individual neuronal
activity belonging to different brain areas. Its functionality is organized into two key components:
a spatial mask, which defines receptive field locations, and a set of feature weights that linearly
aggregate information from the final core layer to produce frame-by-frame neural response predictions.
Additionally, the model incorporates a shifter module, which processes pupil center coordinates to
estimate gaze-related shifts in receptive field positioning. This transformation is applied linearly
across all neurons and is finalized with an ELU+1 activation function to ensure non-negative outputs.
We refer to the configuration with N = 4 layers in the core and standard readout as the baseline
model throughout the paper. We trained the baseline model, as well as of all variants discussed in
the following sections, by minimizing the Poisson loss between predicted and recorded responses.
Training was performed on 83,222 units from V1, 14,817 from LM, 12,599 from RL, and 4,734
from AL, using data from the MICrONS dataset (Consortium et al., 2021), recorded via two-photon
calcium imaging in response to grayscale natural movies. Further details on the model architecture,
training procedures, and evaluation metrics are provided in Appendix A.

Our baseline digital twin model achieved strong single-neuron prediction accuracy, comparable
to previous work (Wang et al., 2025). Prediction performance was highest in V1, with moderate
reductions observed in LM, RL, and AL (Fig. 2A). This trend likely reflects both the inherent
variability in higher-order areas (de Vries et al., 2018) and the larger number of V1 neurons, which
might have biased the model toward optimizing this area compared to the others.

Baseline model fails to capture how object representations evolve across the visual cortical
hierarchy. To assess whether digital twins of the mouse visual cortex capture functional distinctions
across areas, we evaluated whether our baseline model reproduces key experimental findings summa-
rized in Fig. 1B-D. Specifically, we replicated in silico the experimental protocols used to generate
these measurements and compared model-predicted responses to their biological counterparts. Details
of the in silico procedures are provided in Appendix B.
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Figure 2: Digital twin fails to capture hierarchical transformations in object representations
across visual areas. (A) Single-neuron prediction performance across areas for the baseline model
and its variants. Bars indicate mean±SEM across training seeds, as in subsequent analogous plots.
(B, left to right) RF size as a function of anatomical hierarchy score (dots) and best linear fit (dashed
line) for each model; decoding accuracy for SVMs trained on neural representations of the digital
twin model presented with rotated images from the Hoeller task; and object discriminability based
on neural representations of the digital twin model presented with videos from the Froudarakis task.
Here and in subsequent analogous plots: markers and errorbars represent mean and SEM across
recording sessions and training seeds; the legend indicates if the slope of the linear fit is significantly
different from zero (Wald Test): p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), p > 0.05 (n.s.). (C)
Agreement between model-predicted and experimentally observed orderings in (B), as quantified by
Kendall’s τ rank correlation coefficient, which measures the correspondence between two rankings
based on the number of concordant and discordant pairs (see definition in Appendix A.3.1).

First, we evaluated whether the units of the baseline model exhibit systematic increases in receptive
field (RF) size along the cortical hierarchy, as observed in Siegle et al. (2021). To this end, we
computed RFs by presenting spatiotemporal white noise and applying standard spike-triggered
averaging (See appendix B.1). To quantify RF size, we fit a two-dimensional Gaussian to the RF
map of each unit and defined size as the product of the standard deviations along the two principal
axes. RF size systematically increased along the model’s cortical hierarchy (Fig. 2B), aligning well
with experimental observations (Fig. 1B). This result is notable: despite all area-specific units being
projections from a shared core representation, the model trained on natural stimuli implicitly captured
topographic distinctions across areas. We further quantified the agreement using Kendall’s τ , a rank
correlation metric that compares pairwise area relationships (e.g., whether the RF size in LM exceeds
that in V1, and so on). Kendall’s τ provides a measure of the consistency between the experimentally
observed functional hierarchy for the receptive field size (V1<RL≲LM<AL, Fig. 1B) and the one
predicted by the model, where a value of +1 indicates perfect agreement, whereas a Kendall’s τ
of −1 complete disagreement. The baseline model achieved a value of 0.50, indicating moderate
consistency (Fig. 2C). The main difference was due to the predicted receptive field size in LM, which,
unlike in the data, was not significantly larger than the one in RL.

Next, we examined whether the digital twin supports rotation-invariant object recognition and how
this capacity evolves across cortical areas. Following Hoeller et al. (2024), we implemented a

5



classification task with 92 static objects at different rotations. A linear SVM was trained on the
model-predicted neural responses to identify object identity across 92 classes for held-out rotations
(details in Appendix B.2). As shown in Fig. 2B, classifiers trained on neural responses performed
significantly above chance, demonstrating that object identity information was preserved across
rotations. However, classification accuracy did not exhibit a systematic trend with anatomical
hierarchy. Kendall’s τ was negative (Fig. 2C), indicating that the area-to-area relationships predicted
by the model deviated from biological data (Fig. 1C)–for instance, performance in AL was lower
than all other areas. To further challenge the model, we introduced a more complex task inspired
by Froudarakis et al. (2020), incorporating variations in object rotation, scale, position, and lighting
(details in Appendix B.3). While object identity remained decodable above chance, classification
accuracy again failed to correlate with hierarchical level (Fig. 2B). The negative Kendall’s τ (Fig. 2C)
confirmed that model area-to-area performance orderings did not match biological observations
(Fig. 1D).

Taken together, these findings reveal a critical shortcoming of the baseline digital twin. While
the model successfully captured low level aspects of the cortical hierarchy, such as single neuron
responses and the systematic increase in receptive field size across areas, it failed to reproduce the
functional transformations necessary for invariant object recognition. In particular, the model did
not exhibit the progressive stabilization of object identity across areas that is characteristic of the
biological visual system.

4 Architectural and training modifications do not induce hierarchical
representations

Rebalancing visual areas during training. Like the mouse brain, the MICrONS dataset includes
many more neurons from V1 than from higher visual areas. This imbalance could bias the digital
twin toward V1-dominated representations due to the shared core, potentially explaining its failure
to capture transformations across areas. Supporting this, the model showed higher single-neuron
prediction accuracy in V1 (Fig. 2A). To test whether this imbalance affected hierarchical organization,
we trained a model variant with a reweighted loss that scaled each area’s contribution by the inverse of
its neuron count (details in Appendix A.4), ensuring equal influence during training. The reweighted
model trained successfully and produced more uniform accuracy across areas, but this was due to
reduced performance in V1, with no improvement observed in other areas (Fig. 2A). We then tested
whether this modification improved the model’s ability to capture functional hierarchy. Receptive field
sizes remained consistent with experimental observations, indicating that spatial tuning properties
were preserved (Fig. 2B,C). However, the hierarchical structure of object representations remained
unchanged. On the Hoeller task (Hoeller et al., 2024), the model still failed to reproduce the correct
order across areas (Fig. 2B,C). Similarly, on the Froudarakis task (Froudarakis et al., 2020), the
hierarchy was again reversed, with AL and LM performing below V1 and only minor differences
across areas (Fig. 2B,C). These results suggest that reweighting the training loss is not sufficient
to induce the transformations in object representations observed experimentally across the visual
hierarchy.

Readout with access to all layers features. In the baseline model, all neurons read out from the
final core layer, regardless of cortical area. However, both cortical anatomy and physiology suggest
that lower (higher) areas rely on simpler (more complex) features, paralleling how feature complexity
increases with depth in convolutional networks (Goodfellow et al., 2009; Zeiler & Fergus, 2014;
Cohen et al., 2020). Therefore, V1 neurons may be better modeled using earlier layers, while higher
areas could benefit from deeper representations. To test this hypothesis, we developed a variant of
the baseline model in which the readout for each neuron was computed as a projection of kernel
activations across multiple layers, rather than from the final layer alone (details in Appendix A.4).
Despite its biological plausibility, and the fact that it represents a generalization of the baseline, this
model underperformed relative to the baseline, with a substantial decline in single-neuron prediction
accuracy (Fig. 2A). This is likely due to the increased model complexity which made optimization
more difficult and led to overfitting, despite an L1 regularization term being added to the loss.
Receptive field size increased across cortical areas relative to the baseline model (Fig. 2B,C), with
changes that were qualitatively similar but larger in magnitude. On both Hoeller et al. (2024) and
Froudarakis et al. (2020) tasks, object discriminability decreased across all areas, and differences
between areas remained minimal (Fig. 2B,C). These results suggest that, at least given current data
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constraints, expanding the readout to include features from multiple layers in an unstructured fashion
does not enhance the model’s ability to capture area-specific functional organization in the visual
cortex.

Increasing model depth. Another limitation of the baseline model is its shallow core, only four
convolutional layers, which may constrain feature complexity and hinder its ability to capture
transformations across cortical areas. To evaluate this, we trained a series of models with increasing
depth, keeping all other architectural components fixed (details in Appendix A.4). Increasing
the number of layers from four to six yielded improvements in single-neuron predictive accuracy
across all areas (Fig. 2A). However, adding layers beyond six did not yield consistent additional
improvements (Fig. 3A), suggesting a saturation point in representational benefits under current data
constraints. Receptive field properties in this model variant showed a similar degree of agreement with
experimental data as observed in the other models discussed above (Fig. 2B,C). For the functional
hierarchy, we found that the six-layer model showed improved object-level discriminability relative
to the baseline across all areas, along with a mild improvement in capturing inter-area differences
(Fig. 2B,C). Although the six-layer model assigned higher discriminability to LM, RL, and AL than to
V1, partially recovering the experimentally observed ordering for the Hoeller task, it still misranked
AL below LM. In the Froudarakis task, performance remained flat: V1 continued to exhibit greater
discriminability than higher-order areas, contrary to physiological findings. Together, these results
suggest that increased depth improves the overall quality of object representations, likely by enabling
the learning of higher-order visual features. Yet, as shown in Fig. 2B,C, this improvement is not
sufficient to reproduce the known functional hierarchy observed in mouse visual cortex.

Evaluation of a state-of-the-art large-scale model. The foundation model of Wang et al. (2025)
represents the current state of the art in mouse visual cortex modeling, with substantially more
parameters (Table 1), neurons, and training data than typical architectures. We evaluated this model
in our population-level framework to test whether scaling alone is sufficient to reproduce hierarchical
organization (Supp. Fig. S3). At the single-neuron level, the model from Wang et al. achieved
strong predictive accuracy (median CCnorm across sessions: [0.58-0.76]). At the population level, it
captured the broad distinction between V1 and higher areas but failed to reproduce finer differences
across higher-order regions. In both the Hoeller (Hoeller et al., 2024) and Froudarakis (Froudarakis
et al., 2020) tasks, AL, RL, and LM were predicted to perform nearly identically, inconsistent with
experimental data showing a clear AL advantage (Supp. Fig. S3). These results suggest that larger
and more complex architectures, even when trained on more data, do not by themselves recover the
functional hierarchy of mouse visual cortex.

5 A biologically inspired hierarchical readout capture differences across
visual areas

Hierarchical readout improves performance and functional hierarchy. The baseline model
assumes that neural responses across the visual cortex can be described as projections from a
shared high-dimensional embedding of visual stimuli, extracted from the final layer of the core.
However, this assumption is inconsistent with known anatomical and functional features of the
visual system. For instance, V1 is the primary driver of LM (Fig. 1A), suggesting that LM’s neural
representation is not just an independent projection of a shared embedding but a transformed version
of V1 representations. A similar principle applies to other visual areas, like RL and AL, which
are positioned differently within the visual hierarchy (Fig. 1A). These observations motivate an
alternative digital twin architecture, in which the core network progressively transforms visual stimuli
through a sequence of layers, and neurons from each area are read out from different depths along
this transformation, consistent with their anatomical positions. We refer to this architecture as the
hierarchical readout model (details in Appendix A.4). As previously noted, single-neuron prediction
accuracy in the baseline model increased with depth up to six layers and then plateaued (Fig. 2A and
Fig. 3A). We therefore used an 8-layer core to ensure V1 was read out at its optimal depth (layer 6),
with readouts for LM and RL assigned to the same layer (layer 7) due to their similar anatomical
positions, and AL to layer 8, consistent with its hierarchical position (Fig. 1A).

The hierarchical readout model trained successfully and achieved single-neuron prediction accuracy
that matched or exceeded that of the previously tested architectures (Fig. 2A and Fig. 3A). Notably,
unlike the baseline 8-layer model with readouts from the final layer alone, the hierarchical model
showed improved performance in predicting responses in AL compared to the 6-layer baseline. This
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Figure 3: The hierarchical model captures gradient in invariant object classification along
visual areas. (A) Single-neuron prediction performance across areas for the baseline model (6 or
8 layers) and the hierarchical model. In baseline models (top), neural responses are predicted from
the final layer of a shared core network. In the hierarchical model (bottom), each area is predicted
from a different layer, selected based on its anatomical hierarchy score. (B, left to right) RF size,
classification accuracy in the Hoeller task, and object discriminability in the Froudarakis task, each
plotted as a function of anatomical hierarchy score (dots) with best linear fits (dashed lines), shown
separately for the baseline and hierarchical models. (C) Agreement between model-predicted and
experimentally observed orderings in (B), as quantified by Kendall’s τ rank correlation coefficient.

suggests that distributing readouts across layers in accordance with anatomical hierarchy facilitates
the learning of area-specific neural representations. This architectural change also improved the
model’s ability to capture the functional hierarchies observed experimentally in receptive field size
(Fig. 3B,C) and object recognition tasks (Fig. 3B,C) . In the hierarchical readout model, receptive
field size increased monotonically along the cortical hierarchy, in agreement with experimental data.
In both the Hoeller and Froudarakis tasks, the hierarchical model not only achieved the highest
recognition accuracy across all tested models (Fig. 3B,C) but also exhibited a gradient of decoding
performance across areas that mirrored experimental findings (Fig. 3B,C): accuracy increased from
V1 to RL and LM, peaking in AL. Interestingly, the model placed RL in an intermediate position
(between AL and LM) in both discrimination tasks. This result is consistent with Hoeller et al.’s
findings, but at odds with Froudarakis et al.’s results. We were unable to reconcile this discrepancy
and will address it in the discussion.

Aligning readout structure with anatomical hierarchy improves functional predictions. We
next asked whether the specific anatomical ordering of hierarchical readouts was critical for the
observed improvements. In principle, the better alignment could simply arise from distributing the
readouts across different layers, rather than placing them all in the final layer, as in the baseline
8-layer model, thereby increasing representational flexibility, without requiring alignment to the
actual cortical hierarchy. To disentangle these possibilities, we trained a set of control models in
which we systematically permuted the assignment of the visual areas readouts to the last three layers
(details in Appendix A.4). For example, in one such configuration, AL was assigned to layer 6, V1 to
layer 7, and LM/RL to layer 8. To quantify the degree of alignment between readout assignment and
the known cortical hierarchy (V1<LM ≲RL<AL, Fig. 1A), we computed Kendall’s τ between the
readout layer indices and the anatomical order. Single-neuron prediction accuracy in AL increased
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Figure 4: Impact of architecture-anatomy alignment on model performance. Agreement between
various model-predicted and experimental observables orderings in different tasks, as a function
of readout–hierarchy alignment, quantified by Kendall’s τ between readout layer indices and the
anatomical order (V1 < LM/RL < AL). Each dot corresponds to a different permutation of area-to-
layer assignments across the last three layers of the network. Dashed lines indicate best linear fits.
(A) RF size; (B) decoding accuracy (Hoeller task); (C) object discriminability (Froudarakis task).

systematically with the degree of alignment (Supp. Fig. S2), as well as in LM that recorded a minor
positive trend. For V1 and RL, performance remained relatively stable across configurations. At
the functional level, models with more anatomically aligned readouts exhibited stronger agreement
with experimental data, especially in object recognition tasks (Fig. 4). These findings demonstrate
that hierarchical readout is critical for capturing cortical functional organization, and that anatomical
alignment of readout positions provides a powerful inductive bias for learning biologically plausible
hierarchical representations in digital twin models.

Alternative configurations of RL and LM readout depth. To test whether our results depend
on the assumption that LM and RL share the same readout depth, we trained two additional model
variants. First, we developed a 9-layer model in which each visual area was assigned to a distinct
depth, following the anatomical order V1 < LM < RL < AL. In this design, V1 read out from layer
6, LM from layer 7, RL from layer 8, and AL from layer 9. This variant produced similar overall
results, maintaining consistent single-neuron accuracy and a hierarchical structure of receptive fields
and object representations (Supp. Fig. S3). Second, motivated by evidence for dorsal/ventral stream
separation in mouse visual cortex (Harris et al., 2019; D’Souza et al., 2022), we implemented a
two-stream architecture. After layer 6, the network split into a ventral branch with a dedicated LM
readout at layer 7, and a dorsal branch with RL and AL readouts at layers 7 and 8, respectively.
This variant yielded similar prediction accuracy and maintained the global ordering of inter-area
relationships (Supp. Fig. S3). Together, these results confirm that our main findings are robust to
alternative architectural choices for LM and RL readout depth, and that grouping them in the main
model is a reasonable simplification.

6 Discussion and limitations

Our work demonstrates that incorporating a biologically inspired hierarchical readout significantly
enhances the ability of digital twins to replicate population-level phenomena in the visual cortex,
particularly the emergence of invariant object representations. While a sufficiently large model,
given enough training data, might achieve similar performance without a hierarchical readout, our
architecture accomplishes this more efficiently in terms of both data and parameters. These findings
contribute to a growing body of evidence that anatomical organization serves as a powerful inductive
bias for neural network models of the brain (Kubilius et al., 2019; Margalit et al., 2024).

In our architecture, responses in each visual area are computed from a shared convolutional core,
with parallel linear readouts from different layers. The core is hierarchical and cascaded, with deeper
layers (e.g., layer 8 for AL) building on earlier ones (e.g., layer 7 for LM/RL). We do not, however,
explicitly model inter-area communication as in biological circuits, where the output of one area
informs the next. This simplification reflects current data-driven practices: routing activity from
one readout to another might be more realistic but is unlikely to substantially change our results,
as the shared core already approximates such computations. Moreover, because only a subset of
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neurons is observed in each area, constraining downstream areas to rely solely on recorded upstream
activity could limit performance. Allowing readouts to access shared internal representations instead
yields a more complete embedding and improves generalization. Future work could explore modular
architectures with explicit inter-area pathways to better capture distributed processing.

Hoeller et al. (2024) showed that invariant object recognition in mouse visual cortex and deeper layers
of AlexNet relies on different underlying representations. In both biological and artificial networks,
object representations become increasingly invariant to rotation along the hierarchy. However, the
mouse visual system also preserves equivariant representations, where geometric transformations
in the visual input lead to corresponding transformations of neuronal representations, whereas
AlexNet appears to achieve invariance by suppressing these equivariant responses. Other studies have
further shown that invariance and equivariance reflect not only network architecture but also training
objectives and data, with task-driven models exhibiting mirror-symmetric viewpoint tuning (Cheon
et al., 2022) and even randomly initialized networks displaying invariance properties (Farzmahdi
et al., 2024). Our hierarchical model reproduces the experimentally observed increase in rotational
invariance, but it remains unclear whether it also preserves equivariance. Addressing this question
requires a layer-wise analysis of representational geometry and remains an important direction for
future work.

Our findings also raise questions about the role of area RL in visual processing. Anatomically,
RL ranks high in the cortical hierarchy–just above LM and below AL–and performs well in the
object recognition task of Hoeller et al. (2024), yet it ranks lowest in the task of Froudarakis et al.
(2020). This discrepancy may reflect differences in experimental conditions, such as the range of
transformations or temporal structure. However, our model, which should be able to predict neural
responses across conditions, predicts similar performance for RL across both tasks and hence fails to
reproduce the result of Froudarakis. This suggests that task-level differences alone may not explain
the experimental discrepancy. One possibility is that RL supports a distinct processing stream that is
selectively engaged depending on task demands. Interestingly, anatomical and physiological studies
have reported evidence for two partially segregated pathways in mouse visual cortex separating
LM and RL (Wang et al., 2012; D’Souza et al., 2022). We tested this hypothesis in our dual-
stream variant, which produced similar RL behavior, indicating that anatomical separation alone
is insufficient. Instead, the divergent functional roles of RL may depend on additional factors not
captured by our current framework, such as feedback from higher-order regions, behavioral state, or
temporal integration across stimuli.

To evaluate representational hierarchy, we focused on two established metrics: receptive field size at
the single-neuron level and invariant object recognition at the population level. While these are widely
used indicators of cortical hierarchy, they capture only part of the full picture. Electrophysiological
studies have revealed additional systematic variations across areas, such as differences in spatial and
temporal frequency tuning (Glickfeld & Olsen, 2017), which future work could incorporate. At the
population level, further studies might examine how cortical circuits support other computations
beyond object recognition, such as spatial integration or motion processing. Although experimental
data for these metrics remain limited, models like ours can help generate hypotheses and guide future
experimental design.

Despite the incorporation of biologically inspired constraints, our model omits several important
features of the visual system. It is entirely feedforward, lacking recurrence or feedback mechanisms
that are known to shape neural responses, particularly in higher-level visual areas. Additionally, the
model bypasses early sensory processing stages, such as those performed by the retina and lateral
geniculate nucleus. Addressing these limitations will be crucial for closing the gap between digital
twins and real cortical circuits, further refining both models and experimental approaches.
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Supplementary information
A Model Architecture, Training, and Evaluation

All code used for data processing, model training, and analysis is publicly available at https:
//github.com/NeuroBLab/anatomically_inspired_digital_twin.

A.1 Baseline model architecture

The model architecture consists of four primary components: a core component, a behavioral module,
a readout component, and a shifter module. The model takes videos and behavioral variables (pupil
size, pupil center coordinates, running speed) as inputs. Videos are processed by the core component,
returning an embedded representation of the visual stimuli. Behavior is transformed by the behavioral
module into a latent representation which is stacked to the output of the last layer of the core. This
representation is passed to the "readout", which determines the spatial position for each neuron
and linearly combines the representation in the learned position with a set of learnable feature
weights. The spatial position is further adjusted by the "shifter" module, which takes the pupil
center’s coordinates as input. Predicted responses are then generated frame by frame by applying a
final nonlinearity (ELU+1) to maintain non-negativity. More details about each element are provided
below.

Inputs. The inputs to the neural network model are:

1. Videos (Tensor V): A 5-dimensional tensor with shape (Batch, Channels, Frames, Height,
Width), with Channels=1 (gray-screen movies), Height=36 and Width =64 pixels, respec-
tively.

2. Behavior (Tensor B): a 3-dimensional tensor with shape (Batch, Channels, Frames) where
Channels=4 represent pupil size, pupil center coordinates and running speed.

3. Pupil center (Tensor P): A 3-dimensional tensor with shape (Batch, Frames, Coordinates),
where Coordinates=2 are the x, y positions of pupil center.

The input resolution (36×64 pixels) represents a trade-off between biological plausibility and com-
putational efficiency, aligning with the limited visual acuity of mice and supported by prior work
showing that lower-resolution training can improve predictivity (Nayebi et al., 2023). Performance
remains comparable to higher-resolution models trained on the same dataset (Wang et al., 2025).

Core. The core component, inspired from (Höfling et al., 2022), is composed of 4 layers of 3D
Convolutional Network with 16, 32, 64, and 128 channels, respectively. The 3D convolutions are
factorized into spatial (2D) and temporal (1D) dimensions. Batch normalization is applied between
the two convolutions. Spatial kernels are 11 × 11 in the first layer and 5 × 5 in subsequent layers,
while temporal kernels are 11 × 1 in the first layer and 5 × 1 thereafter. Padding was added to both
2D and 1D convolutions to keep the original spatial dimensions unchanged and to maintain temporal
causality, respectively. Batch normalization and an ELU + 1 non-linearity are applied after each layer.
This component is shared across all recording sessions (see Appendix A.2).

This baseline design follows the Sensorium 2023 architecture (Turishcheva et al., 2024b), chosen for
its suitability to dynamic visual stimuli and its status as the strongest available benchmark for mouse
visual cortex. Earlier models used shallower CNNs with fewer channels (Lurz et al., 2020; Sinz et al.,
2018; Klindt et al., 2017), making this architecture a natural starting point. We later examine deeper
variants (6- and 8-layer cores) to assess whether increased expressivity alone can capture hierarchical
transformations (see Section A.4).

Behavioral module. The behavioral module, inspired by (Li et al., 2023),consists of a 2-layer
(4-128-32 units) multilayer perceptron (MLP), with Tanh and Dropout applied after each layer. A
1D convolution with kernel size 5 is applied along the temporal dimension, with pooling applied
to enforce causality. The representation generated (a 32 channels vector frame-by-frame) is then
stacked to the output of the core component. This component is shared across all recording sessions
(see Appendix A.2).
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Readout. To compute single responses during stimulus presentations, we adopted the readout
described by (Lurz et al., 2020). Each neuron is associated with a learnable spatial position pn ∈
[−1, 1]2, used for bilinear interpolation at the specified positions in the core’s output. This feature
vector is then linearly combined with a learnable feature weight wn ∈ R160 (128 channels coming
from the core and 32 channels coming from the behavioral module) and a bias term to predict neuron
activity frame-by-frame. A final (ELU + 1) non-linearity ensures non-negative responses. Each
recording session is paired with its corresponding readout module.

We adopted the Gaussian spatial readout (Lurz et al., 2020), which has proven effective in previous
large-scale mouse modeling studies. The number of features per neuron is fixed by the dimensionality
of the accessed core layer (128 in our baseline). Larger feature counts, as used in foundation
models (Wang et al., 2025), offer only marginal gains, suggesting our choice is sufficient and not a
critical parameter for the results.

Shifter. The shifter is a multilayer perceptron (MLP) with three layers (2-5-5-2 units) (Sinz et al.,
2018). It maps the pupil center coordinates to a shift applied to the neuron positions pn. A Tanh
nonlinearity at each layer ensures the output stays within the range ∈ [−1, 1]2. Each recording
session is paired with its corresponding shifter module.

A.2 Training

Training dataset. We trained the model on publicly available functional calcium imaging data
from the MICrONS dataset (Consortium et al., 2021), which integrates large-scale, multimodal
functional recordings with structural reconstructions of the mouse visual cortex. All acquisition
details, stimulus protocols, and preprocessing steps are comprehensively described in the original
MICrONS publication (Consortium et al., 2021). Here, we report the key aspects relevant for
reproducing our results.

Functional recordings were obtained using two-photon random access mesoscopy, capturing the
activity of approximately 75,000 excitatory neurons across four cortical areas: the primary visual
cortex (VISp) and three higher-order visual areas (VISlm, VISrl, and VISal). The dataset consists
of 14 recording sessions from a single transgenic mouse passively viewing visual stimuli. Visual
stimuli consisted of diverse gray-scale natural and parametric videos, including cinematic movie
clips, naturalistic sports videos, and rendered 3D scenes, designed to probe a broad range of neuronal
tuning properties. Behavioral data were recorded simultaneously and aligned with neural activity.
During imaging, the mouse was head-fixed but free to walk on a treadmill. Behavioral variables were
precisely tracked and synchronized with neural recordings, including running speed measured via a
rotary optical encoder (57–100 Hz) and eye movements recorded at 20 Hz using an infrared camera
capturing pupil center coordinates and dilation.

We used all available sessions, which comprise 83,222 neurons from primary visual cortex (V1),
14,817 neurons from lateral medial area (LM), 12,599 from rostrolateral area (RL), and 4,734 from
anterolateral area (AL). All videos were isotropically downsampled to a resolution of 36 × 64 pixels
per frame. Functional and behavioral signals were resampled to 30 Hz by linear spline interpolation.
Visual stimuli were normalized by subtracting the mean and dividing by the standard deviation across
all recording sessions. Behavioral data, and pupil center coordinates were normalized by subtracting
the mean and dividing by the standard deviation of each recording session. Neural responses were
standardized to ensure non-negativity.

Loss Function and Training Details. Batches consisted of 150 consecutive frames, randomly
sampled from 300-frame trials. Training used a batch size of 2. Learning rate was set to 0.005.
AdamW (with default hyperparameters) was employed for parameter optimization, minimizing the
negative Poisson log-likelihood loss:

LPoisson
s =

nt∑
t=1

ns∑
i=1

ri,t − oi,tlog(ri,t)

between the recorded responses o and predicted responses r, where nt is the number of frames in one
batch and nm is the number of neurons for recording session s. Parameter updates were applied after
completing one full pass through all sessions, a strategy previously found to enhance performance
(Li et al., 2023). Training employed a learning rate schedule with linear warm-up during the first 10
epochs. After each epoch, we computed the correlation to average (see below) between predicted and
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observed responses on a validation set averaged across all neurons (excluding the initial 50 frames).
The validation set is composed by 6 videos which were repeated 10 times during each recording
session and held-out during training. If this score did not improve for eight epochs, training was
halted, and the model was reverted to the checkpoint with the highest validation score. The learning
rate was then reduced by a factor of 0.3 unless the maximum number of decay steps (n = 4) had
been reached, in which case training was terminated. Each model described was trained with three
different random seeds.

A.3 Evaluation Metrics

Model evaluation used two metrics: correlation to average and normalized correlation coefficient
CCnorm. The former is calculated as follows:

avg. corr.(r, o) =
∑

i(r̄i − r̄)(oi − ō)√∑
i(r̄i − r̄)2

∑
i(oi − ō)2

(S1)

where r̄i =
∑J

j=1 ri,j is the average response across J repeats.
The latter is defined as (Schoppe et al., 2016)

CCnorm =
CCabs

CCmax

where CCabs and CCmax are defined as:

CCabs =
Cov(r̄, ō)√
Var(r̄)Var(ō)

, CCmax =

√
NVar(ō)− Var(o)
(N − 1)Var(ō)

Here, where r is the predicted response and o is the observed response to N repeated stimuli; ō and r̄
are the average recorded and predicted responses across all trials. All plots showing single-neuron
prediction performance report the median CCnorm across neurons for each session averaged over all
the sessions, evaluated on the validation set.

A.3.1 Kendall’s τ definition

Kendall’s Tau is a rank-based statistic used to assess the ordinal relationship between two variables,
specifically quantifying the degree of agreement or disagreement in their relative rankings. It is
particularly useful when analyzing data with ordinal scales or when the assumption of linearity in
Pearson’s correlation is not valid. The statistic is defined as:

τ =
P −Q

(P +Q+ T )(P +Q+ U)

where:

• P represents the number of concordant pairs, which are pairs of observations (xi, yi) and
(xj , yj) where the relative order of both variables is the same, i.e., if xi < xj , then yi < yj
(or if xi > xj , then yi > yj).

• Q represents the number of discordant pairs, where the relative order of the two variables is
reversed, i.e., if xi < xj , then yi > yj , or if xi > xj , then yi < yj .

• T is the number of tied pairs in the first variable,
• U is the number of tied pairs in the second variable.

Kendall’s Tau measures the balance between concordant and discordant pairs, with values ranging
from −1 to +1. A value of τ = 1 indicates perfect agreement between the two variables’ rankings,
while τ = −1 indicates perfect disagreement. A value of τ = 0 suggests no association between the
variables’ rankings.

A.4 Model variations

To systematically investigate the influence of architectural choices on model performance, particularly
concerning the representation of invariant object recognition across visual areas, we developed several
model variations:
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• Area-balanced loss function. Given the substantial imbalance in neuron counts across
visual areas, standard training would bias the model toward optimizing V1 predictions
at the potential expense of higher visual areas. We addressed this by implementing an
area-normalized loss function where each area’s contribution is scaled by the inverse of its
neuron count. This weighting scheme ensures each visual area contributes equally to the loss
function regardless of neuron count, preventing the model from optimizing predominantly
for V1. This method resulted in a reduced loss magnitude which had to be balanced by an
increase in the learning rate. We searched the optimal learning rate training models with a
single session (5_6) to allow extensive experimentation.

• All-layer readout model. We explored a readout that instead of looking only at the output
of the last layer of the core can read from representations extracted at different depths,
possibly extending the model’s capability to capture visual features at multiple levels of
abstraction. In this variant, each neuron is assigned learnable feature weights that are applied
to output channels from all core layers. In order to encourage sparsity across channels,
we explored various configurations of L1 regularization (5, 10, 25, 50, 200) applied to
the learned weights. To allow extensive search, the exploration was performed using a
single recording session (5_6). We found this model variant prone to overfitting suggesting
that unconstrained multi-layer access does not provide the appropriate inductive bias for
modeling the visual hierarchy.

• Deeper network architectures. To investigate whether the hierarchical processing was
limited by model expressivity, we developed variants of the baseline model with increased
depth (6 and 8 layers). We extended the baseline 4-layer architecture with two or four
additional convolutional layers (with 256 and 128 channels in the 6-layer case and 256, 512,
256 and 128 channels in the 8-layer case). These deeper architectures were trained with the
same protocol as the baseline model, allowing us to assess whether increased depth alone
could capture hierarchical transformations without explicit anatomical constraints.
Varying the depth of the convolutional core affects the number of internal parameters, but
the number of readout parameters was kept constant across all model variants (including
both hierarchical and non-hierarchical readouts). This design choice allows us to isolate
the effect of core depth without conflating it with decoder complexity. The distribution of
parameters across model variants is shown in Table 1.

• Anatomically-constrained hierarchical readout. Our key proposed model implements
a biologically inspired readout scheme that mirrors cortical anatomy. Each visual area
is modeled as reading out from a specific depth in the network, reflecting their position
in the anatomical hierarchy. We built an 8-layer model (since the 6-layer model showed
the best performances with no significant improvements with deeper networks) where V1
neurons read out from the 6th layer, LM and RL from the 7th and AL from the last one. This
constraint enforces inputs to be processed following the cortical anatomy, enabling each
area to learn a tailored set of filters with more freedom and to benefit from representations
generated for lower-level areas. To ensure a fair comparison with other models, each area
still read from an output consisting of 128 channels (resulting in a 16-32-64-128-256-128-
128-128 channels for the corresponding layers).

• Control hierarchical readouts. To verify that performance improvements from our hierar-
chical model derive from meaningful anatomical constraints rather than merely from the
assignment of areas to different layers, we implemented the following control: for each
block (V1, LM/RL, AL) we permuted the order with which they were assigned to the last
three layers (for example, AL being assigned to the 6th layer, V1 to the 7th layer and LM/RL
to the 8th layer). These control models help distinguish between benefits arising from
anatomically meaningful constraints versus those stemming merely from the flexibility of
assigning different areas to different layers.
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Table 1: Parameter counts across model variants. Core parameters vary with depth, while readout
parameters are held constant.

Model Variant Core Parameters Readout Parameters

Baseline (4 layers) 382,512 17,396,557
Baseline (6 layers) 2,432,816 17,396,557
Baseline (8 layers) 10,629,424 17,396,557
Hierarchical (8 layers) 3,417,392 17,396,557
Wang et al. (2025) 4,528,640 54,377,262

B Repetition of experiments to probe functional hierarchy

B.1 Receptive field extraction and analysis

Estimation of artificial receptive fields. We estimated artificial receptive fields (RFs) of units in
trained models following the procedure introduced by Li et al. (2023). Each trained model was
presented with N = 500,000 white noise images sampled from a uniform distribution. The receptive
field aRF,i of unit i was computed as the weighted sum of all input images, with weights given by the
unit’s response to each image:

aRF,i =

N∑
n=1

F (xn)i · xn, xn ∼ U(1× 36× 64),

where F (xn)i denotes the activation of unit i in response to input xn, and U(1× 36× 64) indicates
sampling from a uniform distribution over the input shape.

Gaussian fitting and receptive field size. To characterize spatial properties of each receptive field,
we fitted a 2D Gaussian function to extract its center location (mean) and spatial spread (covariance).
Prior to fitting, each receptive field map was smoothed using a Gaussian filter, mean-centered, and
transformed by taking its absolute value to improve fitting stability. Gaussian fitting was performed
using SciPy’s curve_fit() function. The receptive field size was defined as π ∗ σx ∗ σy (where σx

and σy are the standard deviations along the two principal axes of the fitted Gaussian).

Conversion from pixels to degrees of visual angle. To convert receptive field sizes from pixels to
degrees of visual angle, we applied a conversion factor calculated based on the spatial resolution
and viewing conditions of the input stimuli given in (Consortium et al., 2021). Visual stimuli were
presented to the left eye on a 31.8x56.5cm (heightxwidth) monitor with a resolution of 1,080x1,920
pixels, positioned 15cm away from the eye. Given this setup, each pixel corresponds to approximately
0.88 cm on the screen. Assuming the mouse fixates on the center of the screen and the eye is
perpendicular to the screen, the visual angle subtended by one pixel is calculated as:

θ = arcsin

(
0.88√

0.882 + 152

)
≈ 0.0586 radians ≈ 3.36◦.

Because receptive field size is computed as the product of standard deviations along two axes (i.e., an
area), the size in degrees squared is obtained by multiplying the pixel-based area by (3.36◦)2.
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Figure S1: Example receptive fields estimated by the model. Representative receptive fields
obtained by aggregating white noise responses of individual units. Red contours indicate iso-response
levels of the best-fitting 2D Gaussian at one and two standard deviations. These fits were used to
estimate receptive field centers and sizes.

Selection of units for analysis First of all units were filtered based on their modeling accuracy:
neurons with a correlation to average below 0.35 were discarded to avoid producing model’s artifacts.
Furthermore, not all receptive fields yielded reliable Gaussian fits. We therefore excluded units
based on two additional criteria: (1) the center of the fitted Gaussian lay outside the stimulus image
boundaries, indicating poor localization; (2) either σx > 16pixels or σy > 14pixels, which filtered
out outliers with implausibly large RFs. This selection ensured inclusion of units with well-defined
and biologically plausible receptive fields. Figure S1 presents representative examples of accepted
receptive fields.

Summary statistics and visualization For each visual area modeled, the average receptive field size
was computed across all accepted units and used for subsequent analyses.

B.2 Hoeller task replication

To evaluate the capacity of our digital twin model to capture hierarchical improvements in rotation-
invariant object recognition, we replicated the object classification task of Hoeller et al. (2024)
using simulated neural responses generated by our model. While our analysis pipeline followed the
structure described by Hoeller et al., it was implemented independently.

Stimuli. We constructed a stimulus set analogous to that used by Hoeller et al. It comprised 92 static,
grayscale images representing 92 distinct object classes, selected from copyright-free sources using
the COCO dataset classes as a reference. Images underwent preprocessing involving masking with
a circular aperture and histogram equalization. Each image was then rotated in-plane to create 15
versions, spanning 360deg in uniform increments of ∆ϕ = 24deg. For presentation to the digital
twin, which operates on video inputs sampled at 30 fps, each static rotated image was embedded
within a short video clip. Each clip consisted of an initial 50 frames (∼ 1.67s) of a uniform gray
screen, followed by 15 frames (∼ 0.5s) where the static rotated image was displayed. This structure
allowed for the analysis of responses specifically during the image presentation period, distinct from
any preceding baseline or transient activity. Input stimuli were appropriately normalized based on
statistics derived from the dataset used for training the digital twin.
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Model responses. Digital twins trained on the MICrONS dataset were used to predict responses the
rotated object video clips. For each stimulus presentation (a specific object identity at a particular
rotation angle), the model processed the corresponding 65-frame video clip. The resulting simulated
neural activity trace for each neuron was then averaged over the final 15 frames, corresponding to
the period of static image presentation only. This produced a single scalar value representing the
response magnitude of each neuron to that specific stimulus. Responses were generated for simulated
neurons located in modeled visual cortical areas V1, LM, AL, and RL.

Reliable neuron selection. From the pool of simulated neurons in each visual area (V1, LM, AL,
RL), we selected those exhibiting reliable responses. Reliability was defined based on the neuron’s
performance during the original model training phase: we included neurons whose predicted activity
on a held-out validation set showed a correlation coefficient greater than 0.35 with the trial-averaged
predicted response for that neuron.

Preprocessing. For each selected neuron, the mean simulated response recorded during the initial 50
gray-screen frames was calculated and subtracted from the responses during the image presentation
frames for baseline correction. Following this, the responses were standardized. Using only the data
corresponding to stimuli designated as training classes (defined per iteration, see below), the standard
deviation of responses for each neuron was computed and used to z-score all responses (from both
training and test classes). Finally, the mean response across these training classes was subtracted
from all responses to mean-center the data relative to the training set.

Decoding analysis. The preprocessed, high-dimensional population response vectors for each visual
area were projected onto a lower-dimensional subspace using Principal Component Analysis (PCA).
The PCA was fitted using only the training class data, and the top 100 principal components, capturing
the directions of highest variance, were retained for subsequent classification. A linear Support Vector
Machine (SVM) classifier was trained to distinguish between the 92 object classes based on the 100-
dimensional PCA representations. We used the implementation ‘LinearSVC‘ from the scikit-learn
library, configured with a regularization parameter C=1 and number of iterations equal to 1000 to
ensure convergence. To evaluate the classifier’s ability to generalize to unseen rotations, we employed
a 15-fold cyclic cross-validation procedure based on the rotation angle, identical to that used by
Hoeller et al. (2024). In each fold, the data corresponding to three consecutive rotation angles were
held out. The linear SVM was trained using the model responses associated with the remaining 12
rotation angles, encompassing stimuli from all 92 object classes.

Performance and repetitions. The classifier’s performance was then evaluated on its ability to
predict the identity of the stimuli belonging to the 2 designated test classes (see below) presented at
the middle rotation angle of the three held-out angles. Classification performance for each fold was
measured as the accuracy (fraction of correctly classified test stimuli). The overall accuracy for one
iteration of the analysis was the average accuracy across the 15 folds. Since the performance depends
on which 2 out of the 92 classes are chosen as test classes, the entire analysis procedure—including
the random selection of 2 test classes, subsequent preprocessing, PCA fitting, SVM training, and
15-fold cross-validation testing—was repeated 50 times. Each repetition used a different random seed
to ensure different pairs of test classes were selected from the 92 classes. The final reported accuracy
for each visual area represents the mean accuracy ± standard error of the mean (SEM) calculated
across the six MICrONS sessions and three training seed for each model.

B.3 Froudarakis task replication

To assess the digital twin’s ability to support object identity discrimination based on dynamic visual
input, mirroring the experimental logic of Froudarakis et al., we replicated their paradigm using
simulated neural responses generated by our model in response to videos of objects undergoing
continuous identity-preserving transformations (rotation, translation, scale, illumination condition).
Our stimuli and analysis pipeline were designed based on the description provided by Froudarakis et
al. but implemented independently.

Stimuli. We generated a stimulus set comprising videos of four distinct three-dimensional objects
using 3D rendering in Blender, aiming to closely resemble those used in the original study by
Froudarakis et al.. Each object identity was subjected to continuous, identity-preserving transforma-
tions involving random variations in position (translation along X, Y, Z axes), scaling (size variation),
rotation (tilt), and environmental lighting conditions (intensity and position). These transformations
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resulted in smooth, coherent object motion against a uniform gray background. For each of the 4
object identities, we rendered 500 unique video clips. Each clip was 10 seconds in duration, rendered
at 30 frames per second (fps), resulting in 300 frames per clip. Input video stimuli were normalized
based on statistics derived from the dataset used for training the digital twin, consistent with the
procedure used for the Hoeller et al replication described above.

Model responses. We employed the same pre-trained digital twin model used in the previous
experiment to predict neural responses. The model processed each 10-second (300-frame) video clip.
To account for potential neural adaptation or onset transients, we excluded the simulated responses
corresponding to the initial 30 frames ( 1 second) of each clip from the analysis. The subsequent
270 frames of activity were then divided into 18 contiguous, non-overlapping temporal bins, each
spanning 15 frames (500 ms). The simulated neural activity trace for each neuron was averaged
within each 500 ms bin. This procedure yielded a sequence of 18 response vectors per video clip for
each simulated neuron, where each vector represented the average activity level in a successive 500
ms interval. Responses were generated for simulated neurons located in the modeled visual cortical
areas.

Reliable neuron selection. For each visual area (V1, LM, AL, RL), we first identified a pool of
reliable simulated neurons. Reliability was assessed based on performance during the model’s training
phase: neurons were included if the correlation coefficient between their trial-averaged predicted
response and the corresponding ground truth neural activity exceeded 0.35 on a held-out validation
dataset.

Decoding analysis. Qualifying neurons were pooled together for each visual area. Prior to classi-
fication, the neural response vectors underwent preprocessing steps within each fold of the cross-
validation procedure described below. First, using only the data designated for training within a given
fold, the mean and standard deviation of each feature (i.e., each neuron’s response) were calculated.
All features in both the training and testing sets of that fold were then standardized by subtracting the
training set mean and dividing by the training set standard deviation (z-scoring).

For each repetition of the decoding procedure, a subset of 128 neurons was randomly selected without
replacement from the pool of reliable neurons available for the target visual area, consistent with the
population size sampled by Froudarakis et al. To classify the object identity based on the 128 selected
neural responses, we employed a multi-class logistic regression approach. Specifically, a set of binary
logistic regression classifiers were trained using a one-vs-rest strategy, where each classifier learned
to distinguish one object class from the remaining three. These classifiers were optimized using an
iterative numerical method to maximize the likelihood of the observed data under the logistic model.
The optimization procedure did not include a regularization penalty term on the classifier weights,
but did fit an intercept term for each classifier.

A 10-fold stratified cross-validation scheme was used to evaluate the generalization performance of
the classifiers. The full dataset of 500 ms response vectors (pooled across all clips and objects) was
randomly partitioned into 10 equally sized folds. Stratification ensured that the relative proportion
of samples belonging to each of the four object classes was maintained within each fold. For each
iteration of the cross-validation, one fold served as the test set, while the remaining nine folds
were used for training the logistic regression classifiers (including the calculation of standardization
parameters). This process was repeated 10 times, with each fold serving as the test set exactly once.

Performance metric. The primary measure for object discriminability was the Mutual Information
(MI), quantified in bits, between the true object labels (c) and the labels predicted by the classifier
(ĉ) on the held-out test sets across the 10 folds. MI was calculated from the aggregated confusion
matrix C (summed across folds) using the formula:

MI(c, ĉ) =
4∑

i=1

4∑
j=1

p(ci, ĉj) log2

(
p(ci, ĉj)

p(ci)p(ĉj)

)
where p(ci, ĉj) represents the joint probability of true class i and predicted class j (derived from the
normalized confusion matrix), and p(ci) and p(ĉj) are the marginal probabilities (derived from the
row and column sums of the normalized confusion matrix, respectively).

Repetitions and reporting. To ensure robust estimation of performance, the entire analysis proce-
dure—encompassing the random subsampling of 128 neurons and the subsequent 10-fold stratified
cross-validation with MI calculation—was repeated 50 times for each visual area. Each repetition
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utilized a distinct random seed to ensure different neuron subsets and data partitions were used. The
final reported discriminability value for each visual area is the mean MI computed across these 50
independent repetitions, presented as mean ± standard error of the mean (SEM) calculated across the
six MICrONS sessions and three training seed for each model.

C Implementation and implications

C.1 Computational resources

All experiments were run on two different infrastructures based on their computational demands.
Each model (including baseline and hierarchical variants) was trained on a single NVIDIA A100
80GB PCIe GPU, paired with a dual-socket Intel Xeon Gold 5317 CPU (24 cores total). Training took
approximately 3.8 days per model to reach convergence. Memory usage during training remained
well within the 80GB VRAM limit. The receptive field estimation analysis was conducted using
the same hardware as model training (A100 GPU and Xeon CPU) and required approximately 12
hours per session with settings described above. Both the Hoeller and Froudarakis task replications
were performed on a machine with an NVIDIA RTX A4000 (16GB) GPU and a single-socket Intel
Xeon Gold 6248R CPU (48 threads) with 128GM RAM associated. Each run took approximately
2.5 hours, and most of the computation was CPU-bound. All model trainings were repeated three
times with different random seeds and all experimental tasks were repeated for each trained model.
Execution was parallelized where feasible.

C.2 Broader impact

Our work represents a step toward developing more biologically informed digital twin models,
enabling the study of invariant object recognition in silico. As these models improve, they can provide
a powerful framework for conducting experiments that are not feasible in animal studies and for
reducing the need for invasive animal experiments. Eventually, as these models advance and our
understanding of brain function deepens, they may become valuable tools for investigating the neural
basis of neurological disorders and exploring potential treatments and interventions.
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D Additional supplementary figures

Figure S2: Prediction performance across areas as a function of readout–hierarchy alignment.
Single-neuron prediction performance in each area plotted against the alignment between readout
layer indices and anatomical area order (V1 < LM/RL < AL), quantified by Kendall’s τ . Each dot
represents a model defined by a distinct permutation of area-to-layer assignments across the last three
layers of the network (as in all models of Fig. 4). Dashed lines indicate best linear fits.
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Figure S3: Comparison of alternative large-scale and hierarchical model architectures. (A)
Single-neuron prediction performance across areas for the four tested architectures: the main hierar-
chical model (8 layers), the 9-layer variant with distinct readout depths for each area, the two-stream
variant separating ventral (LM) and dorsal (RL–AL) branches, and the large-scale foundation model
of Wang et al. (2025). Note that the performance of the Wang et al. (2025) model may be influenced
by how we entered behavioral variables into its publicly available implementation, which we used
directly. Importantly, this does not affect the conclusions of the following analyses, as all other
in-silico experiments were conducted without behavioral inputs. (B, left to right) Receptive-field size,
classification accuracy in the Hoeller task, and object discriminability in the Froudarakis task, each
plotted as a function of anatomical hierarchy score (dots) with best linear fits (dashed lines). (C)
Agreement between model-predicted and experimentally observed orderings in (B), quantified by
Kendall’s τ rank-correlation coefficient. All alternative hierarchical variants reproduced the gradient
in invariance and maintained consistent single-neuron accuracy across areas, whereas the Wang et al.
(2025) model failed to recover the fine-scale hierarchical distinctions among higher-order regions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The introduction clearly outlines the key contributions of the paper, which are
properly reflected in the abstract. All main claims are substantiated by the experimental
results presented, and their scope and limitations are appropriately discussed in dedicated
sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, limitations are discussed in the final section, Discussion and Limitations.
We acknowledge several important constraints of our work, including the lack of recurrent
or feedback connections in the model, the exclusion of early sensory processing stages, and
the inability to fully capture experimental discrepancies such as the role of area RL. We also
reflect on the dependence of our findings on specific datasets and experimental paradigms,
the trade-offs imposed by architectural choices, and the need for future analyses (e.g., of
equivariance) to clarify the mechanisms underlying disucssed results.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the appendix, we provide a detailed description of the model and training
pipeline used, along with any modifications made to it to obtain the different configurations
discussed in the main text. Moreover, we describe all procedures necessary to replicate
the experiments, including dataset processing and evaluation metrics. While we do not
release specific neuron IDs for visualization tasks, we follow standard practices and show
that our results generalize across multiple sessions and random seeds. The code will be
made available upon publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The experiments are based on the publicly available MICrONS dataset. Other
data used are either collected from copyright-free sources (eg., https://unsplash.com/) or
generated by us and will be realeased upon publication. We will release also the full
codebase upon publication, including instructions for data access and the reproduction of all
main results. The appendix describes all necessary procedures to replicate the experiments,
including model architecture, training configurations, evaluation metrics, and experimental
pipelines.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All relevant training and testing details are provided. The appendix specifies the
dataset used (specific recording sessions), data splits, preprocessing steps, model architecture,
optimizer, batch size, training loss, and other hyperparameters choices. We also describe how
model variants were constructed and evaluated, including reproducible pipelines for both
receptive field estimation and classification tasks. These details are sufficient to understand
and contextualize the reported results.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard error of the mean (SEM) across multiple independent
training seeds and recording sessions for all key performance metrics that support the
main claims (receptive field size, object classification accuracy and discriminability, and
Kendall’s τ ). The source of variability (across seeds and sessions) is clearly stated. The
methods section and appendix detail how error bars are computed and clarify what aspects
of variability they reflect. Error bars are visually presented in all figures containing main
results. Statistical significance is indicated in figures and criteria for p-value are clearly
stated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:We report detailed information about the computational resources required for
all experiments in the appendix (Section "Computational Resources"). This includes GPU
and CPU specifications, relevant memory specifications, and the time required for model
training and each type of experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres fully to the NeurIPS code of ethics. It uses publicly
available datasets and introduces synthetic assets that do not involve human subjects. It
poses no foreseeable safety, security, or discriminatory risks. We clearly document our
models and procedures to ensure full transparency.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact of our work in the appendix (Section "Broader
impact").

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use the publicly available MICrONS dataset, properly cited, and clearly
state its open access status in the methods. All code used in our work is either custom
or adapted from previously published open-source implementations, which are all cited
appropriately. Upon publication, we will release our code under an open-source license.
Dataset licenses and terms of use are respected in full accordance with their publications.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce two new assets: an anatomically inspired hierarchical model
architecture, and a set of four synthetic video stimuli of 3D-rendered objects undergoing
identity-preserving transformations, created to replicate the Froudarakis et al. experiment.
Both assets are described in detail in the main text and appendix. Upon publication, we will
release the code and rendered videos.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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