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Abstract001

Fine-tuning large language models (LLMs) on002
decentralized data offers opportunities while003
also posing challenges, especially concern-004
ing data privacy and reducing overhead. Al-005
though federated learning (FL) combined with006
parameter-efficient methods like low-rank adap-007
tation (LoRA) has shown promise, current ap-008
proaches often necessitate multiple communi-009
cation rounds to mitigate client drift, result-010
ing in significant communication and computa-011
tion overhead. To address these challenges, we012
propose a novel one-shot parameter-efficient013
federated tuning (OnePeFT) framework for014
LLMs that views global model aggregation as015
heterogeneous knowledge alignment. In this016
framework, each client applies LoRA to its lo-017
cal model while training only the adapters on018
domain-specific data, then uploads the adapters019
to the server with one-round communication.020
The server uses a novel SVD-based aggrega-021
tion for low-rank reparameterization to cre-022
ate a global initialization. The global adapter023
is refined via distillation with a public task-024
agnostic dataset, aligning shared semantics025
across clients to reduce bias and enhance gen-026
eralization and domain-specific performance.027
Extensive experiments on LLaMA3-8B and028
Qwen2-7B show that OnePeFT achieves the029
state-of-the-art performance while significantly030
reducing communication overhead up to 20×.031

1 Introduction032

Recent advances in large language models (LLMs)033

(Guo et al., 2025; Yang et al., 2024b; Achiam et al.,034

2023) have demonstrated impressive performance035

across a wide range of tasks, such as question an-036

swering and problem solving. To further adapt037

LLMs to domain-specific scenarios while preserv-038

ing data privacy, recent studies (Kuang et al., 2024;039

Chen et al., 2023; Zhang et al., 2023) have ex-040

plored fine-tuning LLMs using federated learn-041

ing (FL) on decentralized data. Given the high re-042

source demands of full-model tuning in this setting,043
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Figure 1: Comparison between multi-round FL-based
LLM finetune and OnePeFT. OnePeFT achieves one-
shot communication by SVD-based aggregation for ini-
tialization, followed by heterogeneous knowledge align-
ment via distillation on a task-agnostic dataset.

parameter-efficient fine-tuning (PEFT) methods- 044

especially LoRA (Hu et al., 2022)—have become 045

a practical choice for local adaptation. Its low com- 046

munication cost and relatively low local computa- 047

tional burdens make LoRA particularly appealing 048

for federated LLM tuning. 049

However, current FL-based LLM tuning meth- 050

ods (Sun et al., 2024; Cho et al., 2024; Zhang et al., 051

2023) still face a key challenge: high communi- 052

cation frequency. Most approaches rely on multi- 053

ple rounds of communication, as gradual aggrega- 054

tion is needed to mitigate client drift and optimize 055

the global model. Although PEFT methods such 056

as LoRA reduce computational and communica- 057

tion costs per round, the overall overhead remains 058

significant due to the high number of communi- 059

cation rounds. Moreover, frequent communica- 060

tion amplifies privacy risks, exposing the system 061

to attacks such as man-in-the-middle interception 062

(Wang et al., 2020) and gradient-based data recon- 063

struction (Yin et al., 2021). 064

In response to these challenges, one-shot FL 065

methods (Zhang et al., 2022a,b; Dai et al., 2024) 066

have emerged as a promising solution. By leverag- 067

ing techniques such as distribution reconstruction, 068
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pseudo-sample generation, and knowledge distil-069

lation, they aim to achieve single-round commu-070

nication for federated model aggregation. These071

methods have shown feasibility in lightweight mod-072

els and simple tasks. However, scaling them to073

LLM fine-tuning remains difficult. Because the074

high dimensionality of LLM, combined with the075

complexity of semantic modeling tasks, makes it076

challenging to generate pseudo data that is both se-077

mantically coherent and logically consistent. The078

knowledge transfer process is then prone to accu-079

mulated cognitive bias, ultimately degrading model080

performance. These limitations make existing one-081

shot FL approaches ill-suited for fine-tuning LLMs.082

To tackle these challenges, we propose a novel083

one-shot federated LLM fine-tuning framework084

that views global model aggregation as a process085

of heterogeneous knowledge alignment, address-086

ing the cognitive bias accumulation problem in-087

herent in existing approaches. Unlike prior one-088

shot FL methods that rely on generating pseudo089

samples to approximate client knowledge, we di-090

rectly align the semantic representations encoded in091

LoRA adapters using a task-agnostic public dataset.092

This dataset consists of publicly available, general-093

purpose text that captures broad linguistic patterns.094

Since it is entirely decoupled from client data, it095

does not violate the privacy guarantees of FL.096

As shown in Figure 1, in this framework, server097

cannot access local data and clients collaboratively098

fine-tune the model without data sharing. Each099

client incorporates LoRA into its local model, freez-100

ing the original LLM parameters and fully train-101

ing the LoRA adapters on local data to capture102

domain-specific linguistic patterns. After local103

training, only the adapters are uploaded to server.104

The server first performs an Singular Value De-105

composition (SVD)-based Aggregation to integrate106

these adapters into a global initialization. While107

this merges heterogeneous client knowledge, it may108

cause parameter drift and semantic inconsistency109

due to differences in local adapter knowledge. To110

address this, we introduce a Heterogeneous Knowl-111

edge Alignment stage, where the global LoRA112

adapter is further refined via distillation using a113

public, task-agnostic dataset. Instead of generating114

pseudo samples, we exploit the shared semantics115

embedded in this general-purpose data to align the116

global adapter with the diverse knowledge encoded117

in the client adapters. This process effectively miti-118

gates aggregation bias and ensures semantic coher-119

ence, thereby improving both generalization and120

domain-specific performance. 121

Based on our experiments, the proposed One- 122

shot Parameter-efficient Federated Tuning for 123

LLMs (OnePeFT) cuts communication costs by 124

10×–20× and computation by up to 54.4% versus 125

existing methods. Despite the low cost, OnePeFT 126

maintains competitive performance across all tasks 127

and improves the generalization ability by up to 128

4.46%, offering a practical FL solution. Our main 129

contributions can be summarized as follows: 130

• We propose a one-shot federated LLM fine- 131

tuning framework OnePeFT that requires only 132

a single communication round to achieve state- 133

of-the-art performance. To the best of our knowl- 134

edge, this is the first work of one-shot LLM fed- 135

erated fine-tuning. 136

• We propose an SVD-based Aggregation method 137

and a Heterogeneous Knowledge Alignment strat- 138

egy to integrate and align client knowledge into 139

a global LoRA adapter, improving domain per- 140

formance and generalization. 141

• Extensive experiments on LLaMA3-8B and 142

Qwen2-7B demonstrate that our method achieves 143

superior or competitive performance compared to 144

the baseline methods while significantly reducing 145

communication costs by 10×–20×. 146

2 Related Work 147

2.1 Parameter Efficient Fine-Tuning 148

The prohibitive computational cost of direct fine- 149

tuning for ever-growing LLMs has driven the emer- 150

gence of parameter-efficient fine-tuning (PEFT) 151

methods. Existing approaches fall into two cat- 152

egories: (1) selective parameter modification 153

through head tuning (Wei et al., 2021), bias fine- 154

tuning (Bu et al.), or parameter subset optimization 155

(Zaken et al., 2022); and (2) module augmenta- 156

tion that introduces lightweight trainable compo- 157

nents like adapters (Houlsby et al., 2019), prompts 158

(Lester et al., 2021), prefixes (Li and Liang, 2021), 159

or low-rank matrices (Hu et al., 2022). Among 160

these, LoRA has emerged as one of the most widely 161

adopted PEFT methods. By optimizing a low-rank 162

decomposition of weight updates, LoRA reduces 163

the number of trainable parameters to less than 164

1% of full fine-tuning while achieving comparable 165

performance. 166

2.2 One-Shot Federated Learning 167

One-shot federated learning (OFL) reduces the 168

high communication and privacy costs of tradi- 169
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tional FL by limiting knowledge transfer to a sin-170

gle round. Existing OFL methods fall into three171

main categories: (1) Parameter Learning via clus-172

tering (Dennis et al., 2021), layer-wise aggrega-173

tion (Su et al., 2023), or Fisher-based regulariza-174

tion (Liu et al., 2024b); (2) Knowledge Distillation175

with ensemble-based techniques (Dai et al., 2024;176

Zhang et al., 2022a); and (3) Generative Models177

using GANs (Kasturi and Hota, 2023), VAEs (Hein-178

baugh et al., 2023), or diffusion models (Yang et al.,179

2024c) to synthesize data. However, these methods180

face challenges when scaling to LLMs: (i) the high181

dimensionality of LLM parameters amplifies fu-182

sion bias during single-round aggregation; (ii) the183

complexity of semantic modeling makes it difficult184

to generate pseudo data that is both semantically185

coherent and logically consistent, resulting in drift.186

2.3 PEFT for Federated Learning with LLM187

PEFT methods reduce computational and commu-188

nication costs by freezing most LLM parameters189

and fine-tuning only a small subset or lightweight190

modules. Some studies (Sun et al., 2022; Zhang191

et al., 2023) have conducted a comprehensive192

empirical study evaluating various representative193

PEFT methods in terms of performance, privacy194

preservation, and resource constraints. Given the195

effectiveness and ease of implementation of LoRA,196

recent research has increasingly focused on its role197

in FL. For instance, FedJudge (Yue et al., 2024)198

explores LoRA-based federated fine-tuning in the199

Chinese legal domain. SLoRA(Babakniya et al.,200

2023) and FeDeRA (Yan et al., 2024) explore dif-201

ferent initialization strategies for LoRA weights to202

accelerate model convergence. HETLORA (Cho203

et al., 2024) introduces rank-adaptive LoRA for het-204

erogeneous clients. FFA-LoRA (Sun et al., 2024)205

mitigates LoRA aggregation error by freezing the206

low-rank matrix in LoRA’s decomposition. How-207

ever, these methods typically require many com-208

munication rounds to achieve satisfactory perfor-209

mance, limiting their practicality—especially in210

privacy-sensitive LLM fine-tuning where commu-211

nication efficiency is essential.212

3 Methodology213

We consider a typical FL scenario with a total num-214

ber of N clients, denoted as{C1, ..., CN}, each215

possessing its corresponding local private, non-iid216

dataset {D1, ...,DN}. The framework of our pro-217

posed method, OnePeFT, is illustrated in Figure 3.218

Δ𝑾𝑾𝟏𝟏 Δ𝑾𝑾𝟐𝟐 Δ𝑾𝑾𝟑𝟑 𝜟𝜟𝑾𝑾𝒂𝒂𝒂𝒂𝒂𝒂
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Figure 2: Aggregating LoRA parameters via weighted
averaging may lead to inconsistency due to separately
averaging the two low-rank matrices.

It consists of three key stages of training: Client Up- 219

date, SVD-based Aggregation, and Heterogeneous 220

Knowledge Alignment. The following sections will 221

detail the components and processes of the pro- 222

posed method. Moreover, we present pseudocode 223

for OnePeFT in Appendix D. 224

3.1 Client Update 225

In the first stage, low-rank adaptation matrices are 226

inserted as adapter into each transformer block of 227

the LLM. The core idea of LoRA is to constrain 228

the weight updates in the model through two low- 229

rank decomposition matrices. More formally, the 230

weight update is represented as: 231

W 0 +∆W = W 0 +BA. (1) 232

233
Here, the updates are applied on A ∈ Rr×k and 234

B ∈ Rd×r, where r ≪ min(d, k). 235

Each client Ci freeze the pre-trained LLM pa- 236

rameters and update only the inserted adapter. The 237

fine-tuning is carried out via instruction tuning on 238

local data Di. The optimization objective of the 239

client update stage can be formulated as: 240

Li = max
Θ

∑
(x,y)∈Di

|y|∑
t=1

log
(
pΦ0+∆Φ(Θ) (yt|x, y<t)

)
, (2) 241

where x and y represent the Instruction Input and 242

Instruction Output, respectively. Specifically, yt 243

denotes the t-th token in y, and y<t indicates all 244

preceding tokens before yt. Φ0 refers to the frozen 245

pre-trained parameters of the LLM, while Θ de- 246

notes the trainable parameters introduced by LoRA, 247

with |Θ| ≪ |Φ0|. 248

After local training, only the LoRA adapter Θ 249

are uploaded to the central server for subsequent 250

knowledge alignment. Since |Θ| ≪ |Φ0|, the com- 251

munication overhead is significantly reduced. 252

3.2 SVD-based Aggregation 253

After receiving the LoRA adapters uploaded by 254

the clients, the server integrates them into a global 255

initialization to serve as the starting point for sub- 256

sequent alignment. The traditional model aggre- 257

gation method, FedAvg, updates the global model 258
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Figure 3: Framework of OnePeFT. ❶ Clients perform local LoRA-based instruction tuning with frozen LLM
backbones (Sec. 3.1). ❷ Upon receiving the client LoRA adapters, the server performs SVD-based aggregation to
mitigate model drift and initialize a global adapter (Sec. 3.2). ❸ The global adapter is aligned with heterogeneous
client LoRA adapters via distillation, enhancing domain knowledge while preserving generalization. (Sec. 3.3).

by weighted averaging of local models, i.e.,W =259 ∑N
i=1 λiWi, where λi is the weight of client i, re-260

flects the data proportion of client i. This approach261

has been widely used in previous works on fine-262

tuning LLMs in FL scenarios (Zhang et al., 2023;263

Yue et al., 2024; Yan et al., 2024).264

However, we argue that directly applying FedAvg265

to the LoRA adapter overlooks the core idea behind266

it, which jointly optimizes two low-rank matrices.267

As shown in Figure 2, after using FedAvg to aggre-268

gate the low-rank matrices, the produced BavgAavg269

is inconsistent with ideal update
∑N

i=1λi∆Wi, po-270

tentially undermining convergence. To mitigate271

this mismatch, FFA-LoRA freezes A and averages272

only B across clients. However, this strategy im-273

plicitly restricts the global optimization space to274

the linear subspace spanned by the frozen A and275

depends heavily on initialization. As a result, FFA-276

LoRA lacks the flexibility to fully capture client277

features and may suffer from suboptimal general-278

ization under heterogeneous data.279

Perform SVD on LoRA parameters. Therefore,280

to mitigate the impact of the locally quadratic na-281

ture of LoRA, we reformulate the global update282

into a locally linear task. Specifically, we ap-283

proximate the weight updates ∆W i ≈ BiAi and284

then perform FedAvg over these approximatations285

to obtain the optimal global model update, i.e.,286

∆Wavg =
∑N

i=1 λi∆Wi. Since ∆Wavg has the287

same dimension as the original weight matrix, it 288

needs to be further decomposed into Bavg,Aavg. 289

We utilize Singular Value Decomposition (SVD) 290

to perform low-rank reparameterization. Given a 291

matrix M ∈ Rm×n, SVD factorizes it as M = 292

UΣV T , where U ∈ Rm×m, Σ ∈ Rm×n is a di- 293

agonal matrix with singular values in descending 294

order, and V T ∈ Rn×n. Specifically, we approx- 295

imate ∆W avg by preserving its most significant 296

information through a low-rank factorization, i.e., 297

∆W avg ≈ B̃avgÃavg, where B̃avg∈Rm×r, Ãavg∈ 298

Rr×n and r ≪ min(m,n). This approximation 299

is obtained by retaining the top-r singular values 300

of Σ with the corresponding vectors of U and V . 301

The final matrices are then constructed as: 302

B̃avg=U [1:m,1:r]Σ[1:r,1:r],

Ãavg=V T
[1:n,1:r].

(3) 303

It is worth noting that the computational over- 304

head introduced by the SVD-based aggregation 305

and reparameterization is very small, taking up less 306

than 1% of each client’s local training time, which 307

is acceptable in practic. 308

3.3 Heterogeneous Knowledge Alignment 309

Although the SVD-based aggregation provides a 310

well-initialized global adapter B̃avg and Ãavg, di- 311

rectly merging client adapters may still lead to pa- 312

rameter drift and sub-optimal performance. Tradi- 313

tional FL requires multiple communication rounds 314
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for convergence. However, such high communi-315

cation cost may be impractical, while the LoRA316

adapters are at an increased risk of being attacked.317

To mitigate these issues, we propose a heteroge-318

neous knowledge alignment strategy that performs319

effective alignment between the global and client-320

specific LoRA adapters via multi-teacher distil-321

lation within a single communication round. In322

this stage, client-uploaded LoRA adapters serve as323

lightweight teachers from which the server distills324

the global adapter.325

While traditional Knowledge Distillation (KD)326

(Hinton et al., 2015) relies on a proxy dataset to327

transfer knowledge from the teacher to student,328

FL imposes strict privacy constraints that limit329

data sharing. To address this, We utilize a public,330

task-agnostic dataset (e.g., Alpaca) for distillation,331

which is independent of any client’s private data.332

Though not domain-specific, its diverse instruction-333

response pairs and broad linguistic coverage allow334

it to serve as a semantically meaningful medium for335

aligning the knowledge encoded in client adapters.336

This setup implicitly transfers domain knowledge337

through general data, enabling the global adapter338

to inherit domain-specific capabilities without vi-339

olating privacy constraints. Our approach aligns340

with recent studies (Dong et al., 2024), which show341

that domain-specific tuning followed by general-342

data adaptation can effectively transfer knowledge.343

By aligning the global adapter B̃avg and Ãavg with344

client-specific knowledge, our method enables effi-345

cient transfer of domain-specific insights.346

The loss during the KD process consists of two347

parts. The first part is the cross-entropy loss, which348

is used to enhance the model’s general capabilities:349

LCE = −
∑

(x,y)∈Dpub

|y|∑
t=1

log (qθ (yt|x, y<t)) . (4)350

351 This formula is similar to Equation (2), where352

Dpub represents a general dataset, distinct from353

the domain-specific datasets {D1, ...,DN} of indi-354

vidual clients. Minimizing the cross-entropy loss355

allows the model to learn general knowledge from356

the general public dataset. Here qθ is the predicted357

distribution based on the frozen pre-trained param-358

eters of the LLM and the global LoRA adapter. By359

doing so, the model retains its ability to perform360

well on general tasks.361

The second part of the loss is the KL divergence,362

which incorporates the distributions from all the363

clients. It encourages the student model to align its364

output distribution with those of the teacher models, 365

thereby enhancing its domain-specific capability. 366

The KL divergence is formulated as: 367

LKL = −
∑

(x,y)∈Dpub

|y|∑
t=1

∑
yt∈V

(
N∑
i=1

λipi(yt|x, y<t)

)

log

∑N
i=1 λipi(yt|x, y<t)

qθ(yt|x, y<t)
,

(5) 368

where pi denotes the predicted distribution based 369

on the frozen pre-trained parameters of the LLM 370

and the client i’s LoRA adapter. 371

We integrate the above losses to form the full 372

objective: 373

Ltotal = αLCE + (1− α)LKL, (6) 374

375where α controls the trade-off between these two 376

components, balancing the model’s generalization 377

ability (via LCE) and domain-specific knowledge 378

transfer (via LKL). 379

4 Experiments 380

4.1 Experimental Setup 381

Datasets. In our experiments, we train and evaluate 382

LLM on three NLP tasks: math problem-solving, 383

code generation, and legal document analysis. 384

• For math problem-solving, we use the GSM-8K 385

dataset (Cobbe et al., 2021), a grade school math 386

problem dataset released by OpenAI. 387

• For code generation, we fine-tune the model on 388

the Rosetta-Alpaca dataset (Chaudhary, 2023), 389

and evaluate it on the HumanEvalX benchmark 390

(Zheng et al., 2023) that requires the model to 391

generate code solutions for given problems. 392

• For legal document analysis, we collect datasets 393

for five Chinese legal NLP tasks from publicly 394

available legal benchmarks. All datasets are split 395

into training and test sets. 396

• For the public dataset used in OnePeFT’s dis- 397

tillation, we adopt Alpaca (Taori et al., 2023) 398

for math and code tasks, and Alpaca-GPT4-zh 399

(LlamaFactory, 2023) for the legal task, due to 400

their diverse, high-quality instruction-following 401

samples in English and Chinese. To evaluate gen- 402

eralization, we also test on HELM (Liang et al., 403

2022) tasks and the Alpaca-GPT4-zh test set. 404

Although the public datasets are not tailored to 405

our target domains, their broad linguistic coverage 406

and general-purpose nature make them effective 407

proxies for aligning the global adapter with client- 408

specific knowledge. Details of the datasets and 409

client data partitioning are provided in Appendix A. 410
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C++ Java GO Python
Methods

α=0.1 α=0.3 α=0.7 α=0.1 α=0.3 α=0.7 α=0.1 α=0.3 α=0.7 α=0.1 α=0.3 α=0.7
LLaMA3-8B

Zero-shot 33.32 33.32 33.32 35.79 35.79 35.79 24.27 24.27 24.27 37.16 37.16 37.16
Local 33.40 34.19 34.22 36.02 36.64 37.01 26.21 26.85 27.68 37.71 37.56 38.63

FedPETuning 34.15 35.62 35.89 37.85 38.71 39.06 28.18 28.20 29.97 38.95 40.52 41.63
FeDeRA 34.22 35.77 35.82 37.93 38.65 39.17 28.31 28.95 29.70 38.66 40.13 41.78

FFA-LoRA 33.67 36.91 37.92 37.31 39.81 39.85 26.52 28.01 30.19 38.87 41.59 42.06
OnePeFT 35.60 37.08 37.95 38.12 39.53 40.49 29.76 30.28 31.13 39.58 41.18 42.75

Qwen2-7B
Zero-shot 40.24 40.24 40.24 45.73 45.73 45.73 35.67 35.67 35.67 48.93 48.93 48.93

Local 40.51 40.66 40.95 46.07 46.43 46.47 35.71 35.77 36.16 48.94 49.10 49.21
FedPETuning 40.96 41.24 41.98 47.50 48.29 48.79 37.13 37.74 38.05 49.48 49.57 49.77

FeDeRA 41.32 41.25 41.78 47.82 48.31 48.76 37.41 37.69 38.13 49.61 49.68 49.74
FFA-LoRA 41.42 43.69 43.89 48.15 49.03 49.31 38.05 37.89 38.43 50.95 50.91 51.43
OnePeFT 42.05 43.72 44.12 48.61 49.27 49.61 37.56 39.48 40.13 50.74 51.29 51.83

Table 1: Pass@1 performance comparison on HumanEvalX across different non-i.i.d. settings. Bold is the best.

Models Methods ACC ↑
Centralized 56.03% (739/1319)

Few-shot CoT 43.59% (575/1319)
Local 47.99% (633/1319)

FedPETuning 50.72% (669/1319)
FeDeRA 51.71% (682/1319)

FFA-LoRA 54.59% (720/1319)

LLaMA3-8B

OnePeFT 54.13% (714/1319)
Centralized 82.87% (1093/1319)

Few-shot CoT 79.38% (1047/1319)
Local 79.91% (1054/1319)

FedPETuning 80.36% (1060/1319)
FeDeRA 79.83% (1053/1319)

FFA-LoRA 81.50% (1075/1319)

Qwen2-7B

OnePeFT 82.49% (1088/1319)
Table 2: Accuracy (%) comparison on the GSM-8K
dataset. Bold is the best.

Baselines. We compare OnePeFT with representa-411

tive FL-based LLM fine-tuning methods, including412

FedPETuning (Zhang et al., 2023), FeDeRA (Yan413

et al., 2024), and FFA-LoRA (Sun et al., 2024).414

We also include the original pre-trained model, a415

centrally trained model, and client-specific models416

for reference.417

Implementation Details. In this paper, all methods418

utilize LLaMA3-8B (Grattafiori et al., 2024) and419

Qwen2-7B (Yang et al., 2024a) as the pre-trained420

LLM. The number of clients varies by task, as421

detailed in Appendix A. During training, the LoRA422

rank is set to 8, and the LoRA scaling factor is set to423

16. The balance factor α is set to 0.5. Due to space424

constraints, a full description of the experimental425

setup is provided in Appendix B.426

Evaluation Metrics. The evaluation metrics for427

math problem-solving and code generation follow428

previous work (Kuang et al., 2024; Wu et al., 2024),429

while legal document analysis uses task-specific430

metrics for each subtask, detailed in Appendix C.431

4.2 Domain-Specific Experimental Results 432

Results on Math Problem-Solving. We present 433

the results on GSM-8K in Table 2. For LLaMA3- 434

8B, FFA-LoRA achieves the best accuracy, while 435

OnePeFT performs competitively performance 436

with 10× less communication. For Qwen2-7B, 437

OnePeFT outperforms all baselines. Although cen- 438

tralized training yields the best accuracy, it requires 439

full data sharing, which is often impractical. More- 440

over, we observe larger gains from fine-tuning on 441

LLaMA3-8B than on Qwen2-7B, suggesting that 442

fine-tuning is more effective when the pre-trained 443

model is less aligned with the target domain. 444

Results on Code Generation. Table 1 shows 445

Pass@1 results across different programming lan- 446

guages under various non-i.i.d. settings. For both 447

pre-trained LLM, OnePeFT consistently achieves 448

best or close to best performance across all settings, 449

particularly under the most challenging setting with 450

α=0.1, with only a single round of communica- 451

tion. Although FFA-LoRA attains slightly higher 452

scores in a few specific cases, OnePeFT demon- 453

strates a more balanced and robust performance 454

overall. These results highlight the effectiveness 455

of our method in enabling efficient federated fine- 456

tuning for code generation. 457

Results on Legal Document Analysis. Since 458

Qwen2-7B offers stronger chinese understanding, 459

and the legal data focuses on chinese texts, we fine- 460

tune only on Qwen2-7B. As shown in Table 3, Zero- 461

shot performance remains lowest, highlighting the 462

difficulty of applying LLMs to legal tasks. While 463

all baselines improve legal performance, they sacri- 464

fice general ability. In contrast, OnePeFT achieves 465

the best general-domain performance (72.08) while 466

maintaining competitive or leading results on legal 467
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DRC JE LEE JP DS General
Methods

BertScore Accuracy BertScore Accuracy Accuracy BertScore BertScore BertScore
Zero-shot 77.83 42.99 74.99 37.29 33.63 70.29 69.53 71.04

Local 78.81 42.80 75.51 42.63 40.94 71.03 70.14 69.11
FedPETuning 81.84 42.48 74.95 58.71 67.55 69.84 71.44 65.24

FeDeRA 82.96 43.52 75.39 58.62 68.78 72.58 72.10 63.19
FFA-LoRA 84.37 45.31 78.28 62.07 71.56 74.84 73.32 67.25
OnePeFT 85.03 47.22 76.53 64.25 72.24 73.70 73.50 72.08

Table 3: Performance comparison on five legal tasks and a general-domain task using Qwen2-7B. Bold is the best.
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Figure 4: Performance comparison on the HELM bench-
mark after fine-tuning LLaMA3-8B on GSM-8K.

tasks. These results demonstrate the effectiveness468

of our method in balancing domain adaptation and469

generalization.470

4.3 General Ability Experimental Results471

To evaluate general capability retention after472

domain-specific fine-tuning, we assess all meth-473

ods on the HELM benchmark. As shown in Fig-474

ure 4, most baselines exhibit noticeable perfor-475

mance drops—particularly FeDeRA. In contrast,476

OnePeFT, aided by distillation on general data,477

consistently outperforms all baselines across tasks.478

This highlights that our distillation strategy not479

only adapts well to target domains but also miti-480

gates catastrophic forgetting of general abilities.481

4.4 Computation and Communication Costs482

As shown in Table 4, we compare the commu-483

nication and computation efficiency of different484

methods. Since FeDeRA and FedPETuning share485

the same costs, only the latter is report. Al-486

though both FedPETuning and OnePeFT fine-tune487

20.19M parameters, OnePeFT completes training488

in a single round, reducing communication cost489

from 3088.4MB to just 154.4MB—a 20× reduc-490

tion. Compared to FFA-LoRA, which transmits491

only half of the parameters but requires 20 rounds,492

our method still achieves lower overall cost. In493

terms of computation, OnePeFT also shows sig-494

nificant savings. While it introduces server-side495

distillation, the overall computation cost is greatly496

reduced by eliminating costly local training on497

clients. Specifically, OnePeFT lowers total com-498

putation to 3.24×109 GFLOPs, a 54% reduction499

Trainable Comm. Comm. Comp.
Methods

Param. Round Costs Costs
FedPETuning 20.19 20 3088.4 7.11×109
FFA-LoRA 11.01 20 1544.2 7.09×109
OnePeFT 20.19 1 154.4 3.24×109

Table 4: Communication and computation efficiency
comparison of different methods using Qwen2-7B.

SVD HKA ACC Pass@1 Top-1 Acc.
45.94% 33.96 57.17

✓ 47.08% 34.58 56.91
✓ 52.99% 37.71 61.99

✓ ✓ 54.13% 38.08 62.16
Table 5: Ablation study on the key components of
OnePeFT using LLaMA3-8B

compared to 7.11×109 for FedPETuning. Although 500

FFA-LoRA halves the number of trainable param- 501

eters, the LoRA parameters make up only a small 502

portion of the full model, resulting in limited com- 503

putation savings. These results highlight the effi- 504

ciency of OnePeFT, making it well-suited for FL. 505

4.5 Ablation Study 506

To better understand the contributions of each com- 507

ponent in OnePeFT, we conduct an ablation study 508

using LLaMA3-8B, as shown in Table 5. Remov- 509

ing both SVD-based aggregation (SVD) and Het- 510

erogeneous Knowledge Alignment (HKA) yields 511

the lowest performance, indicating that directly av- 512

eraging client-trained adapters leads to parameter 513

drift and sub-optimal results. Introducing SVD 514

alone improves performance, confirming its effec- 515

tiveness in aggregating LoRA parameters. Simi- 516

larly, using only HKA brings notable gains, show- 517

ing its role in aligning the global adapter with client 518

knowledge. Combining both achieves the best re- 519

sults, demonstrating that SVD provides a better 520

initialization for the alignment process and that the 521

two components are complementary. 522

Hyperparameter Analysis. We study the impact 523

of LoRA rank r and the balance factor α on the 524

GSM-8K dataset. As shown in Figure 5, we vary 525

one hyperparameter while keeping others fixed 526

to the default settings (refer to Section 4.1). In- 527

creasing r initially improves both domain-specific 528
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Figure 5: Hyperparameter analysis on GSM-8K and
HELM datasets with varying hyperparameters.

Public Dataset #Samples ACC
Alpaca 52,002 54.13%
Dolly 15,011 53.83%

InstructionWild 52,190 55.12%
Table 6: Aligning LoRA adapters fine-tuned on GSM-
8K using different public datasets with LLaMA3-8B.

and general performance, as a larger rank captures529

richer subspaces. However, further increasing r530

degrades performance, likely due to overparame-531

terization failing to capture additional useful sub-532

spaces. As for the balance factor α, the perfor-533

mance remains stable across different values, sug-534

gesting that Heterogeneous Knowledge Alignment535

is robust and not sensitive to the choice of α.536

Impact of Different Public Datasets. To investi-537

gate whether the choice of public datasets affects538

the alignment performance, we additionally experi-539

ment with InstructWild (Ni et al., 2023) and Dolly540

(Conover et al., 2023) as distillation datasets. As541

shown in Table 6, the choice of public dataset has542

slight impact on alignment quality, suggesting that543

datasets with broad linguistic coverage and general-544

purpose instructions can serve as effective proxies.545

4.6 Visualization546

SVD-based aggregation. To verify the superiority547

of our SVD-based aggregation, we visualize the548

differences between the aggregated weights and549

the assumed global weight. Specifically, we first550

compute the weight update matrices from the ag-551

gregated LoRA parameters, and then decompose552

each weight matrix into a magnitude vector m and553

a normalized directional matrix V following (Liu554

et al., 2024a), based on which we compute their555

differences. As shown in Figure 6, SVD-based556

aggregation consistently yields smaller variations557

across all LoRA weight matrices, indicating re-558

duced aggregation error and mitigated model drift.559

Heterogeneous Knowledge Alignment. To ex-560

plore whether domain-specific knowledge can be561

transferred via general datasets, we sample 100562

queries from both domain-specific and general563

5 10 15 20 25

SVD Decomposition

Block Num.
5 10 15 20 25

Weighted Average

Block Num.

0.005

0.065

0.126

0.186

0.247

0.307

Figure 6: Directional variation of different aggregation
methods w.r.t. the assumed global weight (lower is
better). Magnitude results are in Appendix E.
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Figure 7: t-SNE visualization of 15th-layer representa-
tions for math and general data: (a) original Qwen2-7B,
(b) Qwen2-7B fine-tuned on GSM-8K.

datasets. We then extracted the hidden represen- 564

tations from the middle layer (15th) of the model 565

and visualized them using t-SNE (Van der Maaten 566

and Hinton, 2008). As shown in Figure 7, the orig- 567

inal model shows nearly orthogonal distributions 568

with minimal overlap. After domain-specific fine- 569

tuning, both distributions align in direction with 570

increased overlap, indicating that domain features 571

have been embedded into the general data represen- 572

tation, resulting in a more unified semantic space. 573

5 Conclusion 574

In this paper, we propose OnePeFT, a novel one- 575

shot FL framework for LLM fine-tuning. We in- 576

terpret the global model aggregation as a process 577

of aligning heterogeneous knowledge from clients. 578

To this end, we introduce an SVD-based aggrega- 579

tion strategy to mitigate parameter drift and obtain 580

a well-initialized global LoRA adapter. Further- 581

more, we perform knowledge alignment between 582

the global and client LoRA adapters via distilla- 583

tion on a task-agnostic dataset, thereby enhancing 584

domain-specific performance while preserving the 585

generalization. Experiments on LLaMA3-8B and 586

Qwen2-7B demonstrate that OnePeFT achieves 587

competitive performance with significantly lower 588

communication cost, highlighting its effectiveness 589

for real-world LLM fine-tuning. 590
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Limitations591

One limitation of this work lies in the computa-592

tional burden on clients. Although we leverage593

LoRA for efficient fine-tuning and reduce the entire594

training process to a single communication round,595

each client is still required to host the full LLM596

during local training. This can pose practical chal-597

lenges for deployment in resource-constrained en-598

vironments. We believe future work could explore599

lightweight alternatives or collaborative strategies600

to further lower the local cost, making federated601

fine-tuning more accessible and scalable across di-602

verse edge devices.603

Ethical Considerations604

We propose OnePeFT, a one-shot parameter-605

efficient federated tuning framework for LLMs,606

designed to leverage private data while safeguard-607

ing user privacy. By reducing communication to a608

single round, OnePeFT minimizes the risk of pri-609

vacy leakage and exposure to potential adversarial610

attacks. All training data used in this work are611

sourced from open-source NLU and NLG projects,612

strictly adhering to their license terms and public613

benchmark guidelines. This research contributes to614

the development of privacy-preserving LLM adap-615

tation, promoting ethical and socially responsible616

use of federated learning technologies.617
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A Datasets881

As described in Table 7, we fine-tune the LLM882

on three NLP tasks and perform distillation using883

either a Chinese or an English general dataset, de-884

pending on the task. This section briefly introduces885

all the datasets used in our experiments.886

GSM-8K. GSM-8K is a high-quality and linguis-887

tically diverse dataset of grade school math word888

problems released by OpenAI (Cobbe et al., 2021),889

commonly used to evaluate the mathematical rea-890

soning ability of LLMs. The dataset consists of891

7,473 training samples and 1,319 testing samples.892

Since it is not divided into categories and all sam-893

ples are of relatively similar length and complexity,894

we split the GSM-8K training dataset ensuring i.i.d.895

across three clients.896

Rosetta-Alpaca. The Rosetta-Alpaca dataset897

(Chaudhary, 2023) consists of 7,969 code gener-898

ation samples across nine different programming899

languages. The dataset is used for fine-tuning mod-900

els on code generation tasks, and the model’s per-901

formance is evaluated on the HumanEvalX bench-902

mark, detailed in Appendix C. According to Ta-903

ble 7, we split Rosetta-Alpaca in non-i.i.d. style.904

To simulate data heterogeneity across clients, we905

adopt the Dirichlet distribution Dir(α) (Li et al.,906

2022) to generate non-i.i.d. data splits, where a907

smaller α indicates higher data heterogeneity.908

Legal Datasets. The Legal Document Analysis909

datasets, as detailed in Table 7, cover five legal910

NLP subtasks, each assigned to a specific client.911

These datasets were sourced from publicly avail-912

able legal benchmarks and open-source instruction913

datasets. These include Legal Text Summarization914

(CAIL, 2020, 2022), LEVEN (Yao et al., 2022),915

Legal Question Answering (Zhong et al., 2020),916

Lawyer LLaMA (Huang et al., 2023), LawGPT-zh917

(Liu et al., 2023), and DISC-LawLLM (Yue et al.,918

2023). All datasets are transformed into "input-919

output" pairs, which are then split into training and920

test sets. In the following, we provide a detailed921

description of the five task categories.922

– Document Reading Comprehension(DRC):923

Given a case description or legal document, an-924

swer the given questions to assess LLM’s ability925

to understand legal texts.926

– Judicial Examination(JE): Provide answers and927

explanations for legal exam questions, evaluating928

the LLM’s knowledge retention and analytical929

reasoning in the context of legal assessments.930

– Legal Element Extraction(LEE): Divided into 931

two parts: event detection and element extraction. 932

The LLM is tasked with labeling legal cases or 933

extracting key entities, assessing its proficiency 934

in identifying and extracting legal elements. 935

– Judgment Prediction(JP): Divided into two 936

parts: legal case classification and case judgment 937

prediction. The LLM is required to classify cases 938

or predict judicial outcomes, evaluating its ability 939

to comprehend and reason about legal cases. 940

– Document Summarization(DS): To generate 941

summaries for the provided legal documents or 942

public opinion reports, assessing the LLM’s abil- 943

ity to condense and extract key information from 944

legal texts. 945

Alpaca. The Alpaca dataset (Taori et al., 2023), 946

introduced by Stanford’s CRFM, comprises 52,002 947

instruction-following demonstrations generated us- 948

ing OpenAI’s text-davinci-003 model. This dataset 949

is designed to facilitate instruction-tuning for lan- 950

guage models, enhancing their ability to follow 951

diverse instructions. In our study, we utilize the 952

Alpaca dataset as a general dataset during the 953

Task-Agnostic Distillation phase for math problem- 954

solving and code generation tasks. 955

Alpaca-GPT4-zh. The Alpaca-GPT4-zh dataset 956

(LlamaFactory, 2023) is a Chinese-language 957

instruction-following dataset. It contains 43,937 958

instruction-output pairs, formatted similarly to the 959

original Alpaca dataset, but with outputs generated 960

by GPT-4. This dataset is specifically designed 961

to improve the instruction-following capabilities 962

of LLMs in Chinese. In our study, we utilize the 963

Alpaca-GPT4-zh dataset as a general dataset during 964

the Task-Agnostic Distillation phase for the legal 965

document analysis task. 966

B Complete Experimental Setup 967

Base LLM. We adopt LLaMA3-8B (Grattafiori 968

et al., 2024) and Qwen2-7B (Yang et al., 2024a) 969

as the pre-trained large language models for all 970

experiments. 971

Hyperparameters. For training, the LoRA rank 972

is set to 8 with a scaling factor of 16, and the 973

balance factor α is set to 0.5. The number of 974

communication rounds for other baseline is set to 975

20, whereas for OnePeFT, only a single round of 976

parameter upload is performed, fixing the com- 977

munication round to 1. The local training epoch 978

for baseline is set to 2, while for OnePeFT, the 979
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Task
Training
Dataset

#train #client
Partition
Strategy

Avg. Input
Length

Avg. Output
Length

Test
Dataset

#test LICENSE

Math Problem
Solving

GSM-8K 7,473 3 i.i.d. 235.3 288.3 GSM-8K 1,319 MIT License

Code Generation Rosetta-Alpaca 7,969 8 Non-i.i.d. 1383.4 1381.1 HumanEvalX 656 Apache-2.0

Legal Document
Analysis

DRC 34,677 601.7 59.0 DRC 3,853 Unspecified
JE 18,946 212.9 311.2 JE 2,105 Unspecified

LEE 1,9030 153.9 19.0 LEE 2,022 Unspecified
JP 15,606 430.0 255.9 JP 1,733 Unspecified
DS 5,659

5 Task-Specific

1187.3 176.8 DS 627 Unspecified
Alpaca 52,002 59.8 270.3 HELM — CC BY-NC 4.0

Alpaca-GPT4-zh 43,937 21.3 227.9 Alpaca-GPT4-zh 4,881 Apache-2.0
Dolly 15,011 424.7 358.1 HELM — CC BY-SA 3.0

Public Dataset

InstructionWild 52,190

— —

72.1 676.67 HELM — Unspecified

Table 7: Detailed statistics of datasets for LLM training and evaluation in our experiments.

local training epochs is set to 8, and the distilla-980

tion epochs is set to 3. We adopt the Adam opti-981

mizer and search for the optimal learning rate over982

{1×10−5, 4×10−5, 8×10−5, 1×10−4, 2×10−4}.983

The momentum coefficients (β1, β2) are set to984

(0.9, 0.95). All other optimizer-related hyperpa-985

rameters follow the default settings. During train-986

ing, the batch size per device is set to 1, the gradient987

accumulation step is 8, and the maximum sequence988

length is 2048.989

Environment The experiments are conducted in990

the following environment:991

• Operating System: Ubuntu 20.04.1992

• CPU: AMD Ryzen Threadripper PRO 5945WX993

• GPU: NVIDIA GeForce RTX 3090 Ti994

C Evaluation Metrics995

In this section, we introduce the evaluation metrics996

used to assess the fine-tuning performance of the997

LLMs. As shown in Table 7, we apply various998

datasets, and here we describe the metrics used to999

measure the model’s performance on each of these1000

datasets.1001

GSM-8K. We use the GSM-8K test set to eval-1002

uate the performance of a LLM in solving math1003

problems. The dataset consists of "questions" and1004

their corresponding "ground truth" answers. To1005

assess correctness, we measure the accuracy by1006

calculating the rate at which the LLM provides1007

the correct answer to a given question. We fol-1008

low the Chain of Thought (CoT) (Wei et al., 2022)1009

approach by preparing a set of sample questions1010

(i.e., few-shot prompting) and prompting the LLM1011

to generate step-by-step solutions. The generated1012

answers are then extracted and compared to the1013

ground truth to compute the correctness rate.1014

HumanevalX. This task evaluates code autofill 1015

performance using a dataset consisting of 164 1016

test samples across five programming languages 1017

(Zheng et al., 2023). For our evaluation, we focus 1018

on four languages (C++, GO, Java, and Python), 1019

as JavaScript is not included in the training dataset. 1020

Each test sample contains the following compo- 1021

nents: "task id," "prompt" (task description with 1022

partial code), "entry point" (function to be imple- 1023

mented), "canonical solution" (a reference solu- 1024

tion), and "test" (a unit test to evaluate whether the 1025

generated code produces the correct output for the 1026

given input). In this task, we treat the "prompt" 1027

as the input and generate twenty versions of code 1028

using the given model. The generated codes are 1029

then compiled, and we check if they pass the corre- 1030

sponding unit tests. Let c represent the number of 1031

correct codes that pass the test. The Pass@k metric 1032

is calculated by determining the proportion of test 1033

samples for which at least k of the generated code 1034

versions pass the unit tests: 1035

Pass@k = Eproblems

[
1−

(
n−c
k

)(
n
k

) ]
1036

Legal Datasets. For legal document analysis, we 1037

split the collected datasets into training and test 1038

sets, using the test set for evaluation. The model 1039

performance across different tasks is assessed us- 1040

ing task-specific metrics. For Document Reading 1041

Comprehension (DRC), Judgment Prediction (JP), 1042

Document Summarization (DS), and General, we 1043

use BERTScore (Zhang et al., 2020), which mea- 1044

sures the similarity between the generated and ref- 1045

erence texts. Legal Element Extraction (LEE) is 1046

evaluated based on accuracy, determining whether 1047

the extracted elements are correct. Judicial Exam- 1048

ination (JE) is assessed using both BERTScore to 1049
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Algorithm 1 OnePeFT
Input: Pretrained model Φ0, clients N , local datasets {Di}Ni=1, public general dataset Dpub, LoRA rank

r, balance factor α.
Output: Global model Φfinal = Φ0 +∆Wfinal.

Client Side:
/* Phase 1: Client Updates */
foreach client i = 1, 2, . . . , N in parallel do

Initialize local LoRA parameters Θi ← {Bi, Ai}
Train Θi on Di by maximizing Eq.(2)
Upload Θi to central server

end

Server Side:
/* Phase 2: SVD-based Aggregation */
Compute local update: ∆Wi ← BiAi

Compute weighted average: ∆Wavg ←
∑N

i=1
|Di|∑
j |Dj |∆Wi

Perform SVD decomposition: UΣV T ← SVD(∆Wavg)
Extract low-rank approximation:
B̃avg ← U[1:m,1:r]Σ[1:r,1:r]

Ãavg ← V T
[1:n,1:r]

Construct global LoRA: Θglobal ← {B̃avg, Ãavg}
/* Phase 3: Heterogeneous Knowledge Alignment */
Optimize combined loss on Dpub:
while not converged do

Compute cross-entropy loss LCE ▷ Eq.(4)
Compute KL divergence LKL ▷ Eq.(5)
Update parameters: Θfinal ← argminΘ(Θglobal)(αLCE + (1− α)LKL)

end
return Φfinal = Φ0 + B̃finalÃfinal.

measure the quality of explanations and accuracy1050

to verify the correctness of the answers. These met-1051

rics together provide a comprehensive evaluation1052

of the model’s performance on various aspects of1053

legal document analysis.1054

HELM. HELM (Liang et al., 2022) is a bench-1055

mark that encompasses a wide range of NLP tasks,1056

used to evaluate the general capabilities of fine-1057

tuned models. We upload the well-trained mod-1058

els to the benchmark and evaluate them on gen-1059

eral question-answering tasks, which include seven1060

datasets: BoolQ, NarrativeQA, Natural Questions1061

(closed-book), Natural Questions (open-book),1062

QuAC, HellaSwag, and OpenbookQA. For dif-1063

ferent tasks, the evaluation metrics vary: exact1064

match for HellaSwag and OpenbookQA; quasi-1065

exact match for BoolQ; and F1 score for the re-1066

maining tasks.1067

D Pseudocode 1068

To facilitate understanding and implementation, we 1069

present the pseudocode of the OnePeFT framework 1070

in Algorithm 1, detailing the key procedures in- 1071

cluding Client Updates, SVD-based Aggregation 1072

and Heterogeneous Knowledge Alignment. In the 1073

pseudocode, the notation x(xinit) indicates that x 1074

is initialized with xinit. 1075

E Additional Experimental Results 1076

E.1 Visualization 1077

We present the magnitude variations in Figure 8, 1078

where the SVD-based aggregation consistently re- 1079

sults in smaller variations across all LoRA weight 1080

matrices, indicating reduced aggregation errors and 1081

mitigated model drift. 1082

Additionally, we visualize the hidden represen- 1083

tations from the 15th layer of the model fine-tuned 1084
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Figure 8: Magnitude variation of different aggregation methods w.r.t. the assumed global weight (lower is better).
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Figure 9: t-SNE visualization of 15th-layer representations for code and general data: (a) original Qwen2-7B, (b)
Qwen2-7B fine-tuned on Rosetta-Alpaca.
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Figure 10: t-SNE visualization of 15th-layer representations for legal and general data: (a) original Qwen2-7B, (b)
Qwen2-7B fine-tuned on Judicial Examination.

on the code and legal domains. As show in Fig-1085

ures 9 and 10, after domain-specific fine-tuning,1086

domain features are embedded into the represen-1087

tation space of general data, resulting in a more1088

unified semantic space. This demonstrates that1089

domain-specific knowledge encoded in the client-1090

side LoRA adapters can be effectively injected into1091

the global adapter through general data during dis-1092

tillation. 1093

E.2 General Ability Experiment 1094

In addition to evaluating general capability reten- 1095

tion after domain-specific fine-tuning on the math 1096

dataset in Section 4.3, we further conduct the same 1097

evaluation on models fine-tuned with code data. 1098

As shown in Figure 11, most baselines exhibit 1099
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Figure 11: Performance comparison on the HELM benchmark after fine-tuning LLaMA3-8B on Rosetta-Alpaca.
The dashed line represents the overall performance.

noticeable performance degradation—particularly1100

FeDeRA. In contrast, OnePeFT consistently out-1101

performs all baselines across tasks. This demon-1102

strates that our distillation strategy not only adapts1103

effectively to the target domain but also alleviates1104

catastrophic forgetting of general capabilities.1105
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