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Abstract

Fine-tuning large language models (LLMs) on
decentralized data offers opportunities while
also posing challenges, especially concern-
ing data privacy and reducing overhead. Al-
though federated learning (FL) combined with
parameter-efficient methods like low-rank adap-
tation (LoRA) has shown promise, current ap-
proaches often necessitate multiple communi-
cation rounds to mitigate client drift, result-
ing in significant communication and computa-
tion overhead. To address these challenges, we
propose a novel one-shot parameter-efficient
federated tuning (OnePeFT) framework for
LLMs that views global model aggregation as
heterogeneous knowledge alignment. In this
framework, each client applies LoRA to its lo-
cal model while training only the adapters on
domain-specific data, then uploads the adapters
to the server with one-round communication.
The server uses a novel SVD-based aggrega-
tion for low-rank reparameterization to cre-
ate a global initialization. The global adapter
is refined via distillation with a public task-
agnostic dataset, aligning shared semantics
across clients to reduce bias and enhance gen-
eralization and domain-specific performance.
Extensive experiments on LLaMA3-8B and
Qwen2-7B show that OnePeFT achieves the
state-of-the-art performance while significantly
reducing communication overhead up to 20x.

1 Introduction

Recent advances in large language models (LLMs)
(Guo et al., 2025; Yang et al., 2024b; Achiam et al.,
2023) have demonstrated impressive performance
across a wide range of tasks, such as question an-
swering and problem solving. To further adapt
LLMs to domain-specific scenarios while preserv-
ing data privacy, recent studies (Kuang et al., 2024;
Chen et al., 2023; Zhang et al., 2023) have ex-
plored fine-tuning LLMs using federated learn-
ing (FL) on decentralized data. Given the high re-
source demands of full-model tuning in this setting,
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Figure 1: Comparison between multi-round FL-based
LLM finetune and OnePeFT. OnePeFT achieves one-
shot communication by SVD-based aggregation for ini-
tialization, followed by heterogeneous knowledge align-
ment via distillation on a task-agnostic dataset.

=— General Data Communication

parameter-efficient fine-tuning (PEFT) methods-
especially LoRA (Hu et al., 2022)—have become
a practical choice for local adaptation. Its low com-
munication cost and relatively low local computa-
tional burdens make LoRA particularly appealing
for federated LLM tuning.

However, current FL-based LLM tuning meth-
ods (Sun et al., 2024; Cho et al., 2024; Zhang et al.,
2023) still face a key challenge: high communi-
cation frequency. Most approaches rely on multi-
ple rounds of communication, as gradual aggrega-
tion is needed to mitigate client drift and optimize
the global model. Although PEFT methods such
as LoRA reduce computational and communica-
tion costs per round, the overall overhead remains
significant due to the high number of communi-
cation rounds. Moreover, frequent communica-
tion amplifies privacy risks, exposing the system
to attacks such as man-in-the-middle interception
(Wang et al., 2020) and gradient-based data recon-
struction (Yin et al., 2021).

In response to these challenges, one-shot FL
methods (Zhang et al., 2022a,b; Dai et al., 2024)
have emerged as a promising solution. By leverag-
ing techniques such as distribution reconstruction,



pseudo-sample generation, and knowledge distil-
lation, they aim to achieve single-round commu-
nication for federated model aggregation. These
methods have shown feasibility in lightweight mod-
els and simple tasks. However, scaling them to
LLM fine-tuning remains difficult. Because the
high dimensionality of LLM, combined with the
complexity of semantic modeling tasks, makes it
challenging to generate pseudo data that is both se-
mantically coherent and logically consistent. The
knowledge transfer process is then prone to accu-
mulated cognitive bias, ultimately degrading model
performance. These limitations make existing one-
shot FL approaches ill-suited for fine-tuning LLMs.

To tackle these challenges, we propose a novel
one-shot federated LLM fine-tuning framework
that views global model aggregation as a process
of heterogeneous knowledge alignment, address-
ing the cognitive bias accumulation problem in-
herent in existing approaches. Unlike prior one-
shot FL. methods that rely on generating pseudo
samples to approximate client knowledge, we di-
rectly align the semantic representations encoded in
LoRA adapters using a task-agnostic public dataset.
This dataset consists of publicly available, general-
purpose text that captures broad linguistic patterns.
Since it is entirely decoupled from client data, it
does not violate the privacy guarantees of FL.

As shown in Figure 1, in this framework, server
cannot access local data and clients collaboratively
fine-tune the model without data sharing. Each
client incorporates LoRA into its local model, freez-
ing the original LLM parameters and fully train-
ing the LoRA adapters on local data to capture
domain-specific linguistic patterns. After local
training, only the adapters are uploaded to server.
The server first performs an Singular Value De-
composition (SVD)-based Aggregation to integrate
these adapters into a global initialization. While
this merges heterogeneous client knowledge, it may
cause parameter drift and semantic inconsistency
due to differences in local adapter knowledge. To
address this, we introduce a Heterogeneous Knowl-
edge Alignment stage, where the global LoRA
adapter is further refined via distillation using a
public, task-agnostic dataset. Instead of generating
pseudo samples, we exploit the shared semantics
embedded in this general-purpose data to align the
global adapter with the diverse knowledge encoded
in the client adapters. This process effectively miti-
gates aggregation bias and ensures semantic coher-
ence, thereby improving both generalization and

domain-specific performance.

Based on our experiments, the proposed One-
shot Parameter-efficient Federated Tuning for
LLMs (OnePeFT) cuts communication costs by
10x-20x and computation by up to 54.4% versus
existing methods. Despite the low cost, OnePeFT
maintains competitive performance across all tasks
and improves the generalization ability by up to
4.46%, offering a practical FL solution. Our main
contributions can be summarized as follows:

* We propose a one-shot federated LLM fine-
tuning framework OnePeFT that requires only
a single communication round to achieve state-
of-the-art performance. To the best of our knowl-
edge, this is the first work of one-shot LLM fed-
erated fine-tuning.

* We propose an SVD-based Aggregation method
and a Heterogeneous Knowledge Alignment strat-
egy to integrate and align client knowledge into
a global LoRA adapter, improving domain per-
formance and generalization.

» Extensive experiments on LLaMA3-8B and
Qwen2-7B demonstrate that our method achieves
superior or competitive performance compared to
the baseline methods while significantly reducing
communication costs by 10x-20x.

2 Related Work

2.1 Parameter Efficient Fine-Tuning

The prohibitive computational cost of direct fine-
tuning for ever-growing LLMs has driven the emer-
gence of parameter-efficient fine-tuning (PEFT)
methods. Existing approaches fall into two cat-
egories: (1) selective parameter modification
through head tuning (Wei et al., 2021), bias fine-
tuning (Bu et al.), or parameter subset optimization
(Zaken et al., 2022); and (2) module augmenta-
tion that introduces lightweight trainable compo-
nents like adapters (Houlsby et al., 2019), prompts
(Lester et al., 2021), prefixes (Li and Liang, 2021),
or low-rank matrices (Hu et al., 2022). Among
these, LoORA has emerged as one of the most widely
adopted PEFT methods. By optimizing a low-rank
decomposition of weight updates, LoRA reduces
the number of trainable parameters to less than
1% of full fine-tuning while achieving comparable
performance.

2.2 One-Shot Federated Learning

One-shot federated learning (OFL) reduces the
high communication and privacy costs of tradi-



tional FL by limiting knowledge transfer to a sin-
gle round. Existing OFL methods fall into three
main categories: (1) Parameter Learning via clus-
tering (Dennis et al., 2021), layer-wise aggrega-
tion (Su et al., 2023), or Fisher-based regulariza-
tion (Liu et al., 2024b); (2) Knowledge Distillation
with ensemble-based techniques (Dai et al., 2024;
Zhang et al., 2022a); and (3) Generative Models
using GANs (Kasturi and Hota, 2023), VAEs (Hein-
baugh et al., 2023), or diffusion models (Yang et al.,
2024c) to synthesize data. However, these methods
face challenges when scaling to LLMs: (i) the high
dimensionality of LLM parameters amplifies fu-
sion bias during single-round aggregation; (ii) the
complexity of semantic modeling makes it difficult
to generate pseudo data that is both semantically
coherent and logically consistent, resulting in drift.

2.3 PEFT for Federated Learning with LLM

PEFT methods reduce computational and commu-
nication costs by freezing most LLM parameters
and fine-tuning only a small subset or lightweight
modules. Some studies (Sun et al., 2022; Zhang
et al.,, 2023) have conducted a comprehensive
empirical study evaluating various representative
PEFT methods in terms of performance, privacy
preservation, and resource constraints. Given the
effectiveness and ease of implementation of LoRA,
recent research has increasingly focused on its role
in FL. For instance, FedJudge (Yue et al., 2024)
explores LoRA-based federated fine-tuning in the
Chinese legal domain. SLoRA(Babakniya et al.,
2023) and FeDeRA (Yan et al., 2024) explore dif-
ferent initialization strategies for LORA weights to
accelerate model convergence. HETLORA (Cho
et al., 2024) introduces rank-adaptive LoRA for het-
erogeneous clients. FFA-LoRA (Sun et al., 2024)
mitigates LoRA aggregation error by freezing the
low-rank matrix in LoRA’s decomposition. How-
ever, these methods typically require many com-
munication rounds to achieve satisfactory perfor-
mance, limiting their practicality—especially in
privacy-sensitive LLM fine-tuning where commu-
nication efficiency is essential.

3 Methodology

We consider a typical FL scenario with a total num-
ber of N clients, denoted as{C1,...,Cn}, each
possessing its corresponding local private, non-iid
dataset {D, ..., Dx}. The framework of our pro-
posed method, OnePeFT, is illustrated in Figure 3.
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Figure 2: Aggregating LoRA parameters via weighted
averaging may lead to inconsistency due to separately
averaging the two low-rank matrices.

It consists of three key stages of training: Client Up-
date, SVD-based Aggregation, and Heterogeneous
Knowledge Alignment. The following sections will
detail the components and processes of the pro-
posed method. Moreover, we present pseudocode
for OnePeFT in Appendix D.

3.1 Client Update

In the first stage, low-rank adaptation matrices are
inserted as adapter into each transformer block of
the LLM. The core idea of LoRA is to constrain
the weight updates in the model through two low-
rank decomposition matrices. More formally, the
weight update is represented as:

Wo+ AW = W, + BA. (1)

Here, the updates are applied on A € R™** and
B € R¥", where r < min(d, k).

Each client C; freeze the pre-trained LLM pa-
rameters and update only the inserted adapter. The
fine-tuning is carried out via instruction tuning on
local data D;. The optimization objective of the
client update stage can be formulated as:

lyl

L; = max Z ZlOg (Poo+aa©) Wilz,y<t)), 2)

(z,y)€D; t=1

where x and y represent the Instruction Input and
Instruction Output, respectively. Specifically, y;
denotes the ¢-th token in y, and y~4 indicates all
preceding tokens before y;. ®¢ refers to the frozen
pre-trained parameters of the LLM, while © de-
notes the trainable parameters introduced by LoRA,
with |O] < |Po|.

After local training, only the LoRA adapter ©
are uploaded to the central server for subsequent
knowledge alignment. Since |O| < |®y|, the com-
munication overhead is significantly reduced.

3.2 SVD-based Aggregation

After receiving the LoRA adapters uploaded by
the clients, the server integrates them into a global
initialization to serve as the starting point for sub-
sequent alignment. The traditional model aggre-
gation method, FedAvg, updates the global model
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Figure 3: Framework of OnePeFT. @ Clients perform local LoRA-based instruction tuning with frozen LLM
backbones (Sec. 3.1). ® Upon receiving the client LoRA adapters, the server performs SVD-based aggregation to
mitigate model drift and initialize a global adapter (Sec. 3.2). ® The global adapter is aligned with heterogeneous
client LoRA adapters via distillation, enhancing domain knowledge while preserving generalization. (Sec. 3.3).

by weighted averaging of local models, i.e., W =
Zi\il A W;, where )\, is the weight of client i, re-
flects the data proportion of client 7. This approach
has been widely used in previous works on fine-
tuning LL.Ms in FL scenarios (Zhang et al., 2023;
Yue et al., 2024; Yan et al., 2024).

However, we argue that directly applying FedAvg
to the LoRA adapter overlooks the core idea behind
it, which jointly optimizes two low-rank matrices.
As shown in Figure 2, after using FedAvg to aggre-
gate the low-rank matrices, the produced Byg Aayg
is inconsistent with ideal update Zf\i 1NMAW,, po-
tentially undermining convergence. To mitigate
this mismatch, FFA-LoRA freezes A and averages
only B across clients. However, this strategy im-
plicitly restricts the global optimization space to
the linear subspace spanned by the frozen A and
depends heavily on initialization. As a result, FFA-
LoRA lacks the flexibility to fully capture client
features and may suffer from suboptimal general-
ization under heterogeneous data.

Perform SVD on LoRA parameters. Therefore,
to mitigate the impact of the locally quadratic na-
ture of LoRA, we reformulate the global update
into a locally linear task. Specifically, we ap-
proximate the weight updates AW; ~ B; A; and
then perform FedAvg over these approximatations
to obtain the optimal global model update, i.e.,
AW,oe = SN N AW, Since AW,y has the

same dimension as the original weight matrix, it
needs to be further decomposed into Bayg, Aayg.

We utilize Singular Value Decomposition (SVD)
to perform low-rank reparameterization. Given a
matrix M € R™*"™ SVD factorizes it as M =
UXV7T, where U € R™*™ 3 € R™*" is a di-
agonal matrix with singular values in descending
order, and VT € R"*". Specifically, we approx-
imate AW, by preserving its most significant
information through a low-rank factorization, i.e.,
AW gy & BanAan, where Bavg eR™XT, Aavg €
R™™ and r < min(m,n). This approximation
is obtained by retaining the top-r singular values
of 3 with the corresponding vectors of U and V.
The final matrices are then constructed as:

Bavg - U[l:m,l:r] z:[1:7",1:1"] )
Aan = V[Iizn,lzr] :

It is worth noting that the computational over-
head introduced by the SVD-based aggregation
and reparameterization is very small, taking up less
than 1% of each client’s local training time, which
is acceptable in practic.

3)

3.3 Heterogeneous Knowledge Alignment

Although the SVD-based aggregation provides a
well-initialized global adapter Bavg and Aavg, di-
rectly merging client adapters may still lead to pa-
rameter drift and sub-optimal performance. Tradi-
tional FL requires multiple communication rounds



for convergence. However, such high communi-
cation cost may be impractical, while the LoRA
adapters are at an increased risk of being attacked.
To mitigate these issues, we propose a heteroge-
neous knowledge alignment strategy that performs
effective alignment between the global and client-
specific LoRA adapters via multi-teacher distil-
lation within a single communication round. In
this stage, client-uploaded LoRA adapters serve as
lightweight teachers from which the server distills
the global adapter.

While traditional Knowledge Distillation (KD)
(Hinton et al., 2015) relies on a proxy dataset to
transfer knowledge from the teacher to student,
FL imposes strict privacy constraints that limit
data sharing. To address this, We utilize a public,
task-agnostic dataset (e.g., Alpaca) for distillation,
which is independent of any client’s private data.
Though not domain-specific, its diverse instruction-
response pairs and broad linguistic coverage allow
it to serve as a semantically meaningful medium for
aligning the knowledge encoded in client adapters.
This setup implicitly transfers domain knowledge
through general data, enabling the global adapter
to inherit domain-specific capabilities without vi-
olating privacy constraints. Our approach aligns
with recent studies (Dong et al., 2024), which show
that domain-specific tuning followed by general-
data adaptation can effectively transfer knowledge.
By aligning the global adapter Bavg and Aavg with
client-specific knowledge, our method enables effi-
cient transfer of domain-specific insights.

The loss during the KD process consists of two
parts. The first part is the cross-entropy loss, which
is used to enhance the model’s general capabilities:

|y|

Leg=— Y Y log(a(vilz.y<t)). @)

(:an)eppub t=1

This formula is similar to Equation (2), where
Dpup represents a general dataset, distinct from
the domain-specific datasets {Dy, ..., Dy} of indi-
vidual clients. Minimizing the cross-entropy loss
allows the model to learn general knowledge from
the general public dataset. Here gg is the predicted
distribution based on the frozen pre-trained param-
eters of the LLM and the global LoRA adapter. By
doing so, the model retains its ability to perform
well on general tasks.

The second part of the loss is the KL divergence,
which incorporates the distributions from all the
clients. It encourages the student model to align its

output distribution with those of the teacher models,
thereby enhancing its domain-specific capability.
The KL divergence is formulated as:

[yl N
Lk = — Z z Z (Z)\ipi(yt%yd))
(5)

(z,y)EDpu t=1 yr €V \1i=1

Zf\;l Xipi(ye|z, y<i)
qo (ye|z, y<t)

log

where p; denotes the predicted distribution based
on the frozen pre-trained parameters of the LLM
and the client :’s LoRA adapter.

We integrate the above losses to form the full
objective:

Liotal = aLcE + (1 - Oé);CKL, (6)

where « controls the trade-off between these two
components, balancing the model’s generalization
ability (via Lcg) and domain-specific knowledge
transfer (via Lgp).

4 Experiments

4.1 Experimental Setup

Datasets. In our experiments, we train and evaluate
LLM on three NLP tasks: math problem-solving,
code generation, and legal document analysis.

¢ For math problem-solving, we use the GSM-8K
dataset (Cobbe et al., 2021), a grade school math
problem dataset released by OpenAl.

* For code generation, we fine-tune the model on
the Rosetta-Alpaca dataset (Chaudhary, 2023),
and evaluate it on the HumanEvalX benchmark
(Zheng et al., 2023) that requires the model to
generate code solutions for given problems.

* For legal document analysis, we collect datasets
for five Chinese legal NLP tasks from publicly
available legal benchmarks. All datasets are split
into training and test sets.

* For the public dataset used in OnePeFT’s dis-
tillation, we adopt Alpaca (Taori et al., 2023)
for math and code tasks, and Alpaca-GPT4-zh
(LlamaFactory, 2023) for the legal task, due to
their diverse, high-quality instruction-following
samples in English and Chinese. To evaluate gen-
eralization, we also test on HELM (Liang et al.,
2022) tasks and the Alpaca-GPT4-zh test set.
Although the public datasets are not tailored to

our target domains, their broad linguistic coverage

and general-purpose nature make them effective
proxies for aligning the global adapter with client-
specific knowledge. Details of the datasets and

client data partitioning are provided in Appendix A.



Methods C++ Java GO Python
a=0.1 =03 a=0.7 | a=0.1 a=0.3 «a=0.7 | @=0.1 a=0.3 «a=0.7 | a=0.1 a=0.3 «a=0.7
Zero-shot 33.32 33.32 3332|3579 3579 35.79 | 24.27 2427 24.27|37.16 37.16 37.16
Local 3340 34.19 34.22 | 36.02 36.64 37.01 | 26.21 26.85 27.68 | 37.71 37.56 38.63
FedPETuning || 34.15 35.62 35.89 | 37.85 38.71 39.06 | 28.18 28.20 29.97 | 38.95 40.52 41.63
FeDeRA 3422 3577 35.82|37.93 38.65 39.17 | 28.31 2895 29.70 | 38.66 40.13 41.78
FFA-LoRA || 33.67 3691 37.92 | 37.31 39.81 39.85|26.52 28.01 30.19 | 38.87 41.59 42.06
OnePeFT 35.60 37.08 37.95 | 38.12 39.53 40.49 | 29.76 30.28 31.13 | 39.58 41.18 42.75
Zero-shot 40.24 40.24 40.24 | 45.73 45.73 45.73 | 35.67 35.67 35.67 | 48.93 48.93 48.93
Local 40.51 40.66 40.95 | 46.07 46.43 46.47 | 35771 35.77 36.16 | 48.94 49.10 49.21
FedPETuning || 40.96 41.24 4198 | 47.50 4829 48.79 | 37.13 37.74 38.05 | 49.48 49.57 49.77
FeDeRA 41.32 41.25 41.78 | 47.82 4831 48.76 | 37.41 37.69 38.13 | 49.61 49.68 49.74
FFA-LoRA || 41.42 43.69 43.89 | 48.15 49.03 49.31 | 38.05 37.89 38.43 | 50.95 5091 5143
OnePeFT 42.05 43.72 44.12 | 48.61 49.27 49.61 | 37.56 39.48 40.13 | 50.74 51.29 51.83

Table 1: Pass@1 performance comparison on HumanEvalX across different non-i.i.d. settings. Bold is the best.

Models | Methods || ACC
Centralized || 56.03% (739/1319)
Few-shot CoT || 43.59% (575/1319)
Local 47.99% (633/1319)
LLaMA3-8B | FedPETuning || 50.72% (669/1319)
FeDeRA || 51.71% (682/1319)
FFA-LoRA || 54.59% (720/1319)
OnePeFT || 54.13% (714/1319)
Centralized || 82.87% (1093/1319)
Few-shot CoT || 79.38% (1047/1319)
Local 79.91% (1054/1319)
Qwen2-7B | FedPETuning || 80.36% (1060/1319)
FeDeRA || 79.83% (1053/1319)
FFA-LoRA || 81.50% (1075/1319)
OnePeFT || 82.49% (1088/1319)

Table 2: Accuracy (%) comparison on the GSM-8K
dataset. Bold is the best.

Baselines. We compare OnePeFT with representa-
tive FL-based LLM fine-tuning methods, including
FedPETuning (Zhang et al., 2023), FeDeRA (Yan
et al., 2024), and FFA-LoRA (Sun et al., 2024).
We also include the original pre-trained model, a
centrally trained model, and client-specific models
for reference.

Implementation Details. In this paper, all methods
utilize LLaMA3-8B (Grattafiori et al., 2024) and
Qwen2-7B (Yang et al., 2024a) as the pre-trained
LLM. The number of clients varies by task, as
detailed in Appendix A. During training, the LoORA
rank is set to 8, and the LoRA scaling factor is set to
16. The balance factor « is set to 0.5. Due to space
constraints, a full description of the experimental
setup is provided in Appendix B.

Evaluation Metrics. The evaluation metrics for
math problem-solving and code generation follow
previous work (Kuang et al., 2024; Wu et al., 2024),
while legal document analysis uses task-specific
metrics for each subtask, detailed in Appendix C.

4.2 Domain-Specific Experimental Results

Results on Math Problem-Solving. We present
the results on GSM-8K in Table 2. For LLaMA3-
8B, FFA-LoRA achieves the best accuracy, while
OnePeFT performs competitively performance
with 10x less communication. For Qwen2-7B,
OnePeFT outperforms all baselines. Although cen-
tralized training yields the best accuracy, it requires
full data sharing, which is often impractical. More-
over, we observe larger gains from fine-tuning on
LLaMA3-8B than on Qwen2-7B, suggesting that
fine-tuning is more effective when the pre-trained
model is less aligned with the target domain.
Results on Code Generation. Table 1 shows
Pass @1 results across different programming lan-
guages under various non-i.i.d. settings. For both
pre-trained LLM, OnePeFT consistently achieves
best or close to best performance across all settings,
particularly under the most challenging setting with
a=0.1, with only a single round of communica-
tion. Although FFA-LoRA attains slightly higher
scores in a few specific cases, OnePeFT demon-
strates a more balanced and robust performance
overall. These results highlight the effectiveness
of our method in enabling efficient federated fine-
tuning for code generation.

Results on Legal Document Analysis. Since
Qwen2-7B offers stronger chinese understanding,
and the legal data focuses on chinese texts, we fine-
tune only on Qwen2-7B. As shown in Table 3, Zero-
shot performance remains lowest, highlighting the
difficulty of applying LLMs to legal tasks. While
all baselines improve legal performance, they sacri-
fice general ability. In contrast, OnePeFT achieves
the best general-domain performance (72.08) while
maintaining competitive or leading results on legal



Methods DRC JE LEE JP DS General
BertScore | Accuracy BertScore | Accuracy | Accuracy BertScore | BertScore | BertScore
Zero-shot 77.83 42.99 74.99 37.29 33.63 70.29 69.53 71.04
Local 78.81 42.80 75.51 42.63 40.94 71.03 70.14 69.11
FedPETuning 81.84 42.48 74.95 58.71 67.55 69.84 71.44 65.24
FeDeRA 82.96 43.52 75.39 58.62 68.78 72.58 72.10 63.19
FFA-LoRA 84.37 45.31 78.28 62.07 71.56 74.84 73.32 67.25
OnePeFT 85.03 47.22 76.53 64.25 72.24 73.70 73.50 72.08
Table 3: Performance comparison on five legal tasks and a general-domain task using Qwen2-7B. Bold is the best.
_oe Trainable Comm. Comm. Comp.
3\7:’32 LA Param. Round Costs Costs
22 60 FedPETuning 20.19 20 30884 7.11x10°
E 50 FFA-LoRA 11.01 20 15442  7.09%x10°
< 40 OnePeFT 20.19 1 1544 3.24x10°
S 30 II III — : :
a 20 lll I Table 4: Communication and computation efficiency

NQ-C QuAC OBQA NQ-O NQA
FedPETuning ®™FeDeRA ®FFA-LoRA ®FedSVD

Figure 4: Performance comparison on the HELM bench-
mark after fine-tuning LLaMA3-8B on GSM-8K.

tasks. These results demonstrate the effectiveness
of our method in balancing domain adaptation and
generalization.

4.3 General Ability Experimental Results

To evaluate general capability retention after
domain-specific fine-tuning, we assess all meth-
ods on the HELM benchmark. As shown in Fig-
ure 4, most baselines exhibit noticeable perfor-
mance drops—particularly FeDeRA. In contrast,
OnePeFT, aided by distillation on general data,
consistently outperforms all baselines across tasks.
This highlights that our distillation strategy not
only adapts well to target domains but also miti-
gates catastrophic forgetting of general abilities.

4.4 Computation and Communication Costs

As shown in Table 4, we compare the commu-
nication and computation efficiency of different
methods. Since FeDeRA and FedPETuning share
the same costs, only the latter is report. Al-
though both FedPETuning and OnePeFT fine-tune
20.19M parameters, OnePeFT completes training
in a single round, reducing communication cost
from 3088.4MB to just 154.4MB—a 20x reduc-
tion. Compared to FFA-LoRA, which transmits
only half of the parameters but requires 20 rounds,
our method still achieves lower overall cost. In
terms of computation, OnePeFT also shows sig-
nificant savings. While it introduces server-side
distillation, the overall computation cost is greatly
reduced by eliminating costly local training on
clients. Specifically, OnePeFT lowers total com-
putation to 3.24 x 109 GFLOPs, a 54% reduction

comparison of different methods using Qwen2-7B.

SVD HKA || ACC | Pass@1 | Top-1 Acc.

45.94% | 33.96 57.17

v 47.08% | 34.58 56.91
v 52.99% | 37.71 61.99

v v 54.13% | 38.08 62.16

Table 5: Ablation study on the key components of
OnePeFT using LLaMA3-8B

compared to 7.11x10° for FedPETuning. Although
FFA-LoRA halves the number of trainable param-
eters, the LoRA parameters make up only a small
portion of the full model, resulting in limited com-
putation savings. These results highlight the effi-
ciency of OnePeFT, making it well-suited for FL.

4.5 Ablation Study

To better understand the contributions of each com-
ponent in OnePeFT, we conduct an ablation study
using LL.aMA3-8B, as shown in Table 5. Remov-
ing both SVD-based aggregation (SVD) and Het-
erogeneous Knowledge Alignment (HKA) yields
the lowest performance, indicating that directly av-
eraging client-trained adapters leads to parameter
drift and sub-optimal results. Introducing SVD
alone improves performance, confirming its effec-
tiveness in aggregating LoRA parameters. Simi-
larly, using only HKA brings notable gains, show-
ing its role in aligning the global adapter with client
knowledge. Combining both achieves the best re-
sults, demonstrating that SVD provides a better
initialization for the alignment process and that the
two components are complementary.

Hyperparameter Analysis. We study the impact
of LoRA rank r and the balance factor a on the
GSM-8K dataset. As shown in Figure 5, we vary
one hyperparameter while keeping others fixed
to the default settings (refer to Section 4.1). In-
creasing r initially improves both domain-specific
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Figure 5: Hyperparameter analysis on GSM-8K and
HELM datasets with varying hyperparameters.

Public Dataset H #Samples ‘ ACC

Alpaca 52,002 | 54.13%
Dolly 15,011 53.83%
InstructionWild 52,190 |55.12%

Table 6: Aligning LoRA adapters fine-tuned on GSM-
8K using different public datasets with LLaMA3-8B.

and general performance, as a larger rank captures
richer subspaces. However, further increasing r
degrades performance, likely due to overparame-
terization failing to capture additional useful sub-
spaces. As for the balance factor «, the perfor-
mance remains stable across different values, sug-
gesting that Heterogeneous Knowledge Alignment
is robust and not sensitive to the choice of a.

Impact of Different Public Datasets. To investi-
gate whether the choice of public datasets affects
the alignment performance, we additionally experi-
ment with InstructWild (Ni et al., 2023) and Dolly
(Conover et al., 2023) as distillation datasets. As
shown in Table 6, the choice of public dataset has
slight impact on alignment quality, suggesting that
datasets with broad linguistic coverage and general-
purpose instructions can serve as effective proxies.

4.6 Visualization

SVD-based aggregation. To verify the superiority
of our SVD-based aggregation, we visualize the
differences between the aggregated weights and
the assumed global weight. Specifically, we first
compute the weight update matrices from the ag-
gregated LoRA parameters, and then decompose
each weight matrix into a magnitude vector m and
a normalized directional matrix V' following (Liu
et al., 2024a), based on which we compute their
differences. As shown in Figure 6, SVD-based
aggregation consistently yields smaller variations
across all LoRA weight matrices, indicating re-
duced aggregation error and mitigated model drift.
Heterogeneous Knowledge Alignment. To ex-
plore whether domain-specific knowledge can be
transferred via general datasets, we sample 100
queries from both domain-specific and general

SVD Decomposition Weighted Average
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Figure 6: Directional variation of different aggregation
methods w.r.t. the assumed global weight (lower is
better). Magnitude results are in Appendix E.
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datasets. We then extracted the hidden represen-
tations from the middle layer (15th) of the model
and visualized them using t-SNE (Van der Maaten
and Hinton, 2008). As shown in Figure 7, the orig-
inal model shows nearly orthogonal distributions
with minimal overlap. After domain-specific fine-
tuning, both distributions align in direction with
increased overlap, indicating that domain features
have been embedded into the general data represen-
tation, resulting in a more unified semantic space.

5 Conclusion

In this paper, we propose OnePeFT, a novel one-
shot FL framework for LLM fine-tuning. We in-
terpret the global model aggregation as a process
of aligning heterogeneous knowledge from clients.
To this end, we introduce an SVD-based aggrega-
tion strategy to mitigate parameter drift and obtain
a well-initialized global LoRA adapter. Further-
more, we perform knowledge alignment between
the global and client LoRA adapters via distilla-
tion on a task-agnostic dataset, thereby enhancing
domain-specific performance while preserving the
generalization. Experiments on LLaMA3-8B and
Qwen2-7B demonstrate that OnePeFT achieves
competitive performance with significantly lower
communication cost, highlighting its effectiveness
for real-world LLLM fine-tuning.



Limitations

One limitation of this work lies in the computa-
tional burden on clients. Although we leverage
LoRA for efficient fine-tuning and reduce the entire
training process to a single communication round,
each client is still required to host the full LLM
during local training. This can pose practical chal-
lenges for deployment in resource-constrained en-
vironments. We believe future work could explore
lightweight alternatives or collaborative strategies
to further lower the local cost, making federated
fine-tuning more accessible and scalable across di-
verse edge devices.

Ethical Considerations

We propose OnePeFT, a one-shot parameter-
efficient federated tuning framework for LLMs,
designed to leverage private data while safeguard-
ing user privacy. By reducing communication to a
single round, OnePeFT minimizes the risk of pri-
vacy leakage and exposure to potential adversarial
attacks. All training data used in this work are
sourced from open-source NLU and NLG projects,
strictly adhering to their license terms and public
benchmark guidelines. This research contributes to
the development of privacy-preserving LLLM adap-
tation, promoting ethical and socially responsible
use of federated learning technologies.
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A Datasets

As described in Table 7, we fine-tune the LLM
on three NLP tasks and perform distillation using
either a Chinese or an English general dataset, de-
pending on the task. This section briefly introduces
all the datasets used in our experiments.

GSM-8K. GSM-8K is a high-quality and linguis-
tically diverse dataset of grade school math word
problems released by OpenAl (Cobbe et al., 2021),
commonly used to evaluate the mathematical rea-
soning ability of LLMs. The dataset consists of
7,473 training samples and 1,319 testing samples.
Since it is not divided into categories and all sam-
ples are of relatively similar length and complexity,
we split the GSM-8K training dataset ensuring i.i.d.
across three clients.

Rosetta-Alpaca. The Rosetta-Alpaca dataset
(Chaudhary, 2023) consists of 7,969 code gener-
ation samples across nine different programming
languages. The dataset is used for fine-tuning mod-
els on code generation tasks, and the model’s per-
formance is evaluated on the HumanEvalX bench-
mark, detailed in Appendix C. According to Ta-
ble 7, we split Rosetta-Alpaca in non-i.i.d. style.
To simulate data heterogeneity across clients, we
adopt the Dirichlet distribution Dir(«) (Li et al.,
2022) to generate non-i.i.d. data splits, where a
smaller « indicates higher data heterogeneity.

Legal Datasets. The Legal Document Analysis

datasets, as detailed in Table 7, cover five legal

NLP subtasks, each assigned to a specific client.

These datasets were sourced from publicly avail-

able legal benchmarks and open-source instruction

datasets. These include Legal Text Summarization

(CAIL, 2020, 2022), LEVEN (Yao et al., 2022),

Legal Question Answering (Zhong et al., 2020),

Lawyer LLaMA (Huang et al., 2023), LawGPT-zh

(Liu et al., 2023), and DISC-LawLLM (Yue et al.,

2023). All datasets are transformed into "input-

output” pairs, which are then split into training and

test sets. In the following, we provide a detailed
description of the five task categories.

— Document Reading Comprehension(DRC):
Given a case description or legal document, an-
swer the given questions to assess LLM’s ability
to understand legal texts.

— Judicial Examination(JE): Provide answers and
explanations for legal exam questions, evaluating
the LLM’s knowledge retention and analytical
reasoning in the context of legal assessments.
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— Legal Element Extraction(LEE): Divided into
two parts: event detection and element extraction.
The LLM is tasked with labeling legal cases or
extracting key entities, assessing its proficiency
in identifying and extracting legal elements.

— Judgment Prediction(JP): Divided into two

parts: legal case classification and case judgment

prediction. The LLM is required to classify cases
or predict judicial outcomes, evaluating its ability
to comprehend and reason about legal cases.

Document Summarization(DS): To generate

summaries for the provided legal documents or

public opinion reports, assessing the LLM’s abil-
ity to condense and extract key information from
legal texts.

Alpaca. The Alpaca dataset (Taori et al., 2023),
introduced by Stanford’s CRFM, comprises 52,002
instruction-following demonstrations generated us-
ing OpenAlT’s text-davinci-003 model. This dataset
is designed to facilitate instruction-tuning for lan-
guage models, enhancing their ability to follow
diverse instructions. In our study, we utilize the
Alpaca dataset as a general dataset during the
Task-Agnostic Distillation phase for math problem-
solving and code generation tasks.

Alpaca-GPT4-zh. The Alpaca-GPT4-zh dataset
(LlamaFactory, 2023) is a Chinese-language
instruction-following dataset. It contains 43,937
instruction-output pairs, formatted similarly to the
original Alpaca dataset, but with outputs generated
by GPT-4. This dataset is specifically designed
to improve the instruction-following capabilities
of LLMs in Chinese. In our study, we utilize the
Alpaca-GPT4-zh dataset as a general dataset during
the Task-Agnostic Distillation phase for the legal
document analysis task.

B Complete Experimental Setup

Base LLM. We adopt LLaMA3-8B (Grattafiori
et al., 2024) and Qwen2-7B (Yang et al., 2024a)
as the pre-trained large language models for all
experiments.

Hyperparameters. For training, the LoRA rank
is set to 8 with a scaling factor of 16, and the
balance factor « is set to 0.5. The number of
communication rounds for other baseline is set to
20, whereas for OnePeFT, only a single round of
parameter upload is performed, fixing the com-
munication round to 1. The local training epoch
for baseline is set to 2, while for OnePeFT, the



Task Training #train #client Partition ~ Avg. Input Avg. Output Test srest LICENSE
Dataset Strategy Length Length Dataset
Math Problem GSM-8K 7473 3 iid. 2353 288.3 GSM-8K 1,319 MIT License
Solving
Code Generation | Rosetta-Alpaca || 7,969 8 Non-i.i.d. 1383.4 1381.1 HumanEvalX 656 Apache-2.0
DRC 34,677 601.7 59.0 DRC 3,853  Unspecified
Legal D JE 18,946 2129 311.2 JE 2,105  Unspecified
eglnafycs‘i?em LEE 1,9030 5  Task-Specific  153.9 19.0 LEE 2,022 Unspecified
JP 15,606 430.0 255.9 JP 1,733 Unspecified
DS 5,659 1187.3 176.8 DS 627  Unspecified
Alpaca 52,002 59.8 270.3 HELM — CCBY-NC4.0
. Alpaca-GPT4-zh || 43,937 21.3 2279 Alpaca-GPT4-zh 4,881  Apache-2.0
Public Dataset —
Dolly 15,011 424.7 358.1 HELM — CCBY-SA3.0
InstructionWild || 52,190 72.1 676.67 HELM — Unspecified

Table 7: Detailed statistics of datasets for LLM training and evaluation in our experiments.

local training epochs is set to 8, and the distilla-
tion epochs is set to 3. We adopt the Adam opti-
mizer and search for the optimal learning rate over
{1x1075,4x107%,8x 1075, 1x1074,2x 1074},
The momentum coefficients (81, 32) are set to
(0.9,0.95). All other optimizer-related hyperpa-
rameters follow the default settings. During train-
ing, the batch size per device is set to 1, the gradient
accumulation step is 8, and the maximum sequence
length is 2048.

Environment The experiments are conducted in
the following environment:

* Operating System: Ubuntu 20.04.1

* CPU: AMD Ryzen Threadripper PRO 5945WX
* GPU: NVIDIA GeForce RTX 3090 Ti

C Evaluation Metrics

In this section, we introduce the evaluation metrics
used to assess the fine-tuning performance of the
LLMs. As shown in Table 7, we apply various
datasets, and here we describe the metrics used to
measure the model’s performance on each of these
datasets.

GSM-8K. We use the GSM-8K test set to eval-
uate the performance of a LLM in solving math
problems. The dataset consists of "questions" and
their corresponding "ground truth" answers. To
assess correctness, we measure the accuracy by
calculating the rate at which the LLLM provides
the correct answer to a given question. We fol-
low the Chain of Thought (CoT) (Wei et al., 2022)
approach by preparing a set of sample questions
(i.e., few-shot prompting) and prompting the LLM
to generate step-by-step solutions. The generated
answers are then extracted and compared to the
ground truth to compute the correctness rate.
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HumanevalX. This task evaluates code autofill
performance using a dataset consisting of 164
test samples across five programming languages
(Zheng et al., 2023). For our evaluation, we focus
on four languages (C++, GO, Java, and Python),
as JavaScript is not included in the training dataset.
Each test sample contains the following compo-
nents: "task id," "prompt" (task description with
partial code), "entry point" (function to be imple-
mented), "canonical solution" (a reference solu-
tion), and "test" (a unit test to evaluate whether the
generated code produces the correct output for the
given input). In this task, we treat the "prompt"
as the input and generate twenty versions of code
using the given model. The generated codes are
then compiled, and we check if they pass the corre-
sponding unit tests. Let c represent the number of
correct codes that pass the test. The Pass@k metric
is calculated by determining the proportion of test
samples for which at least k of the generated code
versions pass the unit tests:

(")
(¢)

Legal Datasets. For legal document analysis, we
split the collected datasets into training and test
sets, using the test set for evaluation. The model
performance across different tasks is assessed us-
ing task-specific metrics. For Document Reading
Comprehension (DRC), Judgment Prediction (JP),
Document Summarization (DS), and General, we
use BERTScore (Zhang et al., 2020), which mea-
sures the similarity between the generated and ref-
erence texts. Legal Element Extraction (LEE) is
evaluated based on accuracy, determining whether
the extracted elements are correct. Judicial Exam-
ination (JE) is assessed using both BERTScore to

Pass@k = Eproblems |1 —



Algorithm 1 OnePeFT

Input: Pretrained model ®(, clients NV, local datasets {Di}fil, public general dataset Dpyp, LORA rank

r, balance factor .
Output: Global model @,y = Py + AWiipar.

Client Side:

/* Phase 1: Client Updates x/
foreach client¢ = 1,2,..., N in parallel do

Initialize local LoRA parameters ©; < {B;, 4;}

Train ©; on D; by maximizing Eq.(2)
Upload ©; to central server
end

Server Side:

/* Phase 2: SVD-based Aggregation */

Compute local update: AW, < B;A;
N

Compute weighted average: AWpye <= > 50 %
j 1&3

AW,

Perform SVD decomposition: ULV « SVD(AWaye)

Extract low-rank approximation:
Ban «— U[l:m,l:r]z[lzr,lzr]

Aa\’g A Vv[{:n,l:r]

Construct global LORA: Ogjopal < {Bavg, flavg}

/* Phase 3: Heterogeneous Knowledge Alignment */

Optimize combined loss on Dpyp:

while not converged do
Compute cross-entropy loss Lcg

Compute KL divergence L1

> Eq.(4)
> Eq.(5)

Update parameters: O, < arg mine((—)global)(aECE + (1 — a)LkL)

end
return &g, = (I)O + BﬁnalAﬁnal-

measure the quality of explanations and accuracy
to verify the correctness of the answers. These met-
rics together provide a comprehensive evaluation
of the model’s performance on various aspects of
legal document analysis.

HELM. HELM (Liang et al., 2022) is a bench-
mark that encompasses a wide range of NLP tasks,
used to evaluate the general capabilities of fine-
tuned models. We upload the well-trained mod-
els to the benchmark and evaluate them on gen-
eral question-answering tasks, which include seven
datasets: BoolQ, NarrativeQA, Natural Questions
(closed-book), Natural Questions (open-book),
QuAC, HellaSwag, and OpenbookQA. For dif-
ferent tasks, the evaluation metrics vary: exact
match for HellaSwag and OpenbookQA; quasi-
exact match for BoolQ; and F1 score for the re-
maining tasks.
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D Pseudocode

To facilitate understanding and implementation, we
present the pseudocode of the OnePeFT framework
in Algorithm 1, detailing the key procedures in-
cluding Client Updates, SVD-based Aggregation
and Heterogeneous Knowledge Alignment. In the
pseudocode, the notation x (i) indicates that z
is initialized with xjp;.

E Additional Experimental Results

E.1 Visualization

We present the magnitude variations in Figure 8,
where the SVD-based aggregation consistently re-
sults in smaller variations across all LoORA weight
matrices, indicating reduced aggregation errors and
mitigated model drift.

Additionally, we visualize the hidden represen-
tations from the 15th layer of the model fine-tuned
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Figure 8: Magnitude variation of different aggregation methods w.r.t. the assumed global weight (lower is better).
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Figure 9: t-SNE visualization of 15th-layer representations for code and general data: (a) original Qwen2-7B, (b)
Qwen2-7B fine-tuned on Rosetta-Alpaca.
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Figure 10: t-SNE visualization of 15th-layer representations for legal and general data: (a) original Qwen2-7B, (b)
Qwen2-7B fine-tuned on Judicial Examination.

on the code and legal domains. As show in Fig- tillation.

ures 9 and 10, after domain-specific fine-tuning,

domain features are embedded into the represen- E.2  General Ability Experiment
tation space of general data, resulting in a more
unified semantic space. This demonstrates that
domain-specific knowledge encoded in the client-
side LoRA adapters can be effectively injected into
the global adapter through general data during dis-

In addition to evaluating general capability reten-
tion after domain-specific fine-tuning on the math
dataset in Section 4.3, we further conduct the same
evaluation on models fine-tuned with code data.
As shown in Figure 11, most baselines exhibit
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Figure 11: Performance comparison on the HELM benchmark after fine-tuning LLaMA3-8B on Rosetta-Alpaca.
The dashed line represents the overall performance.
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noticeable performance degradation—particularly
FeDeRA. In contrast, OnePeFT consistently out-
performs all baselines across tasks. This demon-
strates that our distillation strategy not only adapts
effectively to the target domain but also alleviates
catastrophic forgetting of general capabilities.
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