PAFT: A PARALLEL TRAINING PARADIGM FOR EFFECTIVE LLM FINE-TUNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown remarkable abilities in diverse natural language processing (NLP) tasks. The LLMs generally undergo supervised fine-tuning (SFT) followed by preference alignment to be usable in downstream applications. However, this sequential training pipeline leads to alignment tax that degrades the LLM performance. This paper introduces PAFT, a new **PA**rallel training paradigm for effective LLM Fine-Tuning, which independently performs SFT and preference alignment (e.g., DPO and ORPO, etc.) with the same pretrained model on respective datasets. The model produced by SFT and the model from preference alignment are then merged into a final model by parameter fusing for use in downstream applications. This work reveals important findings that preference alignment like DPO naturally results in a sparse model while SFT leads to a natural dense model which needs to be sparsified for effective model merging. This paper introduces an effective interference resolution which reduces the redundancy by sparsifying the delta parameters. The LLM resulted from the new training paradigm achieved Rank #1 on the HuggingFace Open LLM Leaderboard¹. Comprehensive evaluation shows the effectiveness of the parallel training paradigm.

1 Introduction

In recent years, large language models (LLMs) have emerged as the standard approach to addressing natural language processing (NLP) tasks. The typical way of building an LLM for downstream applications generally follows a sequential training pipeline consisting of two phases: 1. Supervised Fine-tuning (SFT), where the pre-trained LLM is fine-tuned with the language modelling loss on demonstrations of the desired behaviour. 2. Alignment with human preference, where the model produced by the SFT phase is further fine-tuned with an alignment algorithm like Reinforcement Learning from Human Feedback (RLHF) or Direct Preference Optimization (DPO), etc. While this sequential pipeline has been used to seemingly great success, how the SFT and the preference alignment work better with each other is underexplored.

Recent studies OpenAI (2023); Askell et al. (2021); Song et al. (2023) have found that the preference alignment phase can cause the LLM to forget the diverse capabilities that it has acquired from earlier phases, despite aligning the LLM with human expectation. This phenomenon, also known as the *alignment tax* in the literature Ouyang et al. (2022), has accumulated substantial attention from both academia and industry. The alignment tax inherently results from catastrophic forgetting present in the staged training. Independent studies, including DeepSeek R1 DeepSeek-AI et al. (2025), challenge the necessity of sequential pipelines by demonstrating that reinforcement learning paradigms can directly optimize alignment without requiring prior SFT. This finding suggests that SFT and alignment may target orthogonal objectives, motivating alternative approaches like parallel training. To reduce catastrophic forgetting and thus alignment tax, this paper introduces a new parallel training paradigm for LLM fine-tuning, named PAFT, which independently performs SFT and preference alignment with the same pre-trained model on respective datasets, instead of sequentially conducting SFT followed by preference alignment. The model from SFT and the model from

¹https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard Uncheck the *private or deleted* option to make our private Rank #1 model visible.

055

060

061 062 063

064

065 066

067

068

069

071

072

073

074

075

076

077

079

081 082

084

085

087

088

090

092

093

095

096

097

098

099

100

102

103

105

106

107

Figure 1: Comparison of training paradigms.

preference alignment are then merged into a final model by parameter fusing for use in downstream applications.

As discovered by prior work Yadav et al. (2023); Yu et al. (2023), direct model merging causes the parameter values to interfere across models, thereby harming the performance of the final model. The interference, which reduces parameter magnitudes in the merged model and eliminates subtle distinctions among values, can attribute to the redundant delta parameters, i.e., the differences in values between fine-tuned and pre-trained parameters, resulted from fine-tuning. Previous studies on model pruning Hoefler et al. (2021); Thimm & Fiesler (1995) have shown that during fine-tuning, many model parameters can change over the course of fine-tuning but only have a small impact on performance. However, when merging a parameter that is influential for one model but redundant (i.e. not influential) for other models, the influential value may be obscured by the redundant values, lowering the overall model performance. This work reveals the dense properties of the delta parameters resulted from SFT. To mitigate the dense property of SFT, we propose an effective interference resolution which reduces the redundancy by sparsifying the delta parameters by adding a L1-norm penalty to the original SFT loss function. The existing findings indicate that the inclusion of the L1 term enhances the sparsity of the SFT. This method of implicitly inducing sparsity has been evaluated against a technique that introduces sparsity explicitly, i.e., DARE Yu et al. (2023), demonstrating the advantages of employing the L1-norm on LLM's performances in downstream tasks.

Finally, the sparse delta parameters from SFT and preference alignment are merged into a single stronger model. Different merging methods are assessed, and TIES and Task Arithmetic are shown to be the best model merging methods, depending on base models. The method of Parallel SFT_{sparse}+DPO merged through TIES based on Mistral-7B sets a new benchmark for 7B models, i.e., 0.6524 on average over the six tasks in HuggingFace Open LLM Leaderboard. Notably, Parallel SFT_{sparse}+DPO consistently outperforms Parallel SFT+DPO across all model merging methods, showing the effectiveness and robustness of the PAFT training paradigm.

The contributions of this paper are threefold:

- 1. Evidence is presented that parallel training of SFT and preference alignment outperforms sequential training, effectively reducing the alignment tax.
- 2. The significance of sparse model integration is highlighted as a mean to prevent model conflict while preserving the full capability of each model. We demonstrate the superiority of the L1-norm over DARE as a more effective and higher-quality method for promoting sparsity in model training across various model merging techniques.
- 3. We conduct comprehensive evaluation of PAFT on well-known public benchmarks including Open LLM Leaderboard and AlpacaEval. The PAFT-ed 7B model achieved Rank #1 in the 7B/8B model category on the Open LLM Leaderboard, and the PAFT-ed 70B model topped the Leaderboard globally.

2 RELATED WORKS

2.1 SFT AND HUMAN PREFERENCE ALIGNMENT

The standard LLM pipeline—pretraining followed by supervised fine-tuning (SFT)—was popularized by models such as BERT Devlin et al. (2019) and GPT-4 OpenAI (2023). SFT boosts downstream accuracy, but unaligned outputs can be unethical, so many systems add a second stage of

preference alignment via RLHF Christiano et al. (2023); Ziegler et al. (2020); Leike et al. (2018). RLHF typically fits a Bradley–Terry reward model on human comparisons Stiennon et al. (2022) and applies PPO Schulman et al. (2017). Lightweight alternatives include DPO, which directly links the reward model to policy gradients Rafailov et al. (2023), and ORPO, which optimizes odds-ratios in a single update Hong et al. (2024). While alignment can impose an "alignment tax" that erodes SFT gains Ouyang et al. (2022), some work reports "alignment bonuses" when RLHF-trained models exceed their SFT baselines Bai et al. (2022). Recent efforts even bypass strict sequencing by jointly optimizing task and preference losses end-to-end DeepSeek-AI et al. (2025); Kreutzer et al. (2018).

2.2 Sparsity in LLM Adaptation

Deploying LLMs on edge devices has spurred compression research, notably pruning Han et al. (2015) and LoRA adapters Hu et al. (2022). Surveys confirm that integrating sparsity can cut inference costs without large accuracy drops Zhu et al. (2023). In LoRA, fine-tuned adapter matrices often contain many near-zero weights; pruning a fraction p of these and rescaling the remainder by 1/(1-p) recovers much of the original performance Yu et al. (2023). Alternative approaches impose an ℓ_1 penalty—akin to Lasso Santosa & Symes (1986) or compressed sensing priors Candes et al. (2006)—to induce sparse adapters during training.

2.3 Model Merging

Rather than expensive multi-task training Poth et al. (2021); Wang et al. (2020); Fifty et al. (2021), merging separately fine-tuned models can efficiently combine capabilities. ModelSoup averages weights of SFT checkpoints to achieve SOTA gains Wortsman et al. (2022), and Fisher merging refines this by weighting updates by their Fisher Information Matena & Raffel (2022). Task-arithmetic extends averaging via vector addition/subtraction for analogies or forgetting Ilharco et al. (2023), while RegMean solves per-layer regressions to estimate merged parameters Jin et al. (2023). To reduce destructive interference among tasks, TIES filters by magnitude and enforces consistent update signs Yadav et al. (2023), yielding more robust merged models.

3 METHODOLOGY

3.1 PROBLEM SETTING

Given a pre-trained LLM, such as Mistral and Llama, we aim to optimize the model for a wide range of downstream tasks by fine-tuning it either fully or with parameter-efficient tuning such as LoRA Hu et al. (2022), using SFT and preference alignment. Throughout this paper, θ denotes the trainable parameters; $\theta_{\rm pre}$ denotes the parameters of the pre-trained model; $\theta_{\rm sft}$ denotes the parameters of the model fine-tuned with SFT; $\theta_{\rm xpo}$ denotes the parameters of the model fine-tuned with preference alignment, such as PPO Schulman et al. (2017); Ziegler et al. (2020), DPO Rafailov et al. (2023) and ORPO Hong et al. (2024), etc.; $\delta_{\rm sft} = \theta_{\rm sft} - \theta_{\rm pre}$ denotes the delta parameters between the SFT-ed model and the pre-trained model; and $\delta_{\rm xpo} = \theta_{\rm xpo} - \theta_{\rm pre}$ denotes the delta parameters between the preference-aligned model and the pre-trained model.

3.2 PARALLEL TRAINING

SFT and preference alignment are two distinct methodologies designed to enhance the capabilities of pre-trained LLMs for specific applications. SFT focuses on boosting the performance of LLMs on downstream tasks by fine-tuning them with datasets that closely resemble the target task. This process tailors the model's responses to be more accurate and relevant for a specific use-case. In contrast, preference alignment, such as RLHF, DPO and ORPO, etc., is a methodology that refines a model's outputs based on human preferences. It generally fine-tunes the model on pairs of responses to an input query, one of which is preferred over the other one. Preference alignment uses such feedback signal to guide the model towards generating outputs that align with human expectation and ethical standards. This approach is particularly valuable for addressing the ethical considerations that arise when deploying LLMs in real-world scenarios.

Nowadays, researchers have applied SFT to enhance the performance of LLMs on targeted tasks, and then employed preference alignment to further align the models with human preferences. However, this sequential application of SFT followed by preference alignment has often led to a compromise in task-specific performance - a phenomenon referred to as the alignment tax. This occurs because the distinct objectives of SFT and preference alignment can sometimes be at odds, with the alignment process potentially undoing some of the task-specific optimizations achieved through SFT.

We address the challenge of the alignment tax by a novel approach that involves SFT and preference alignment concurrently using adapter training, such as LoRA Hu et al. (2022). This method takes full advantages and strengths of both SFT and preference alignment without sacrificing performance in either one, i.e., ensuring that the resulting model maintains high performance in downstream tasks while also being aligned with human preferences, thus overcoming the limitations associated with the alignment tax. During the training process specifically, based on the same pre-trained model $\theta_{\rm pre}$, the two separate adapter parameters, denoted as $\delta_{\rm sft}$ and $\delta_{\rm xpo}$, are learned in parallel from downstream ground truth and human preferences, respectively. The proposed PAFT seeks to merge the $\delta_{\rm sft}$ and $\delta_{\rm xpo}$ in an effective way of avoiding feature interference. Figure 1 compares the typical staged training pipeline and our parallel training pipeline PAFT.

3.3 Sparse Merging

The integration of dense neural network models often results in a suboptimal combined model due to the phenomenon of parameter interference. This challenge has led researchers to explore alternative strategies. Our investigations reveal that by increasing sparsity of a fine-tuned adapter, the performance of merging the adapter with the base model can be improved. Specifically, the parameter $\delta_{\rm xpo}$, derived from adapter training like LoRA for preference alignment, demonstrates clear sparsity, as depicted in Figure 2. We hypothesize that this sparsity results from the mode-seeking behavior inherent in the constraint optimization objective of preference learning like DPO. For example, DPO includes a KL divergence term, which has been associated with mode-seeking properties based on the type of initialization in prior work on preference optimization Tajwar et al. (2024). Mode-seeking objectives tend to concentrate probability mass on specific, high-reward outputs, potentially leading to more focused and sparse parameter updates.

In contrast, the sparsity in a SFT adapter, denoted by δ_{sft} , is not pronounced. This can be because SFT's maximum likelihood objective, similar to behavior cloning, attempts to increase the likelihood of all positive examples, potentially resulting in more distributed and dense parameter updates across the adapter. It aligns with the findings of Piao et al. (2022), which showed that maximum likelihood training tends to produce dense representations. To increase the sparsity within δ_{sft} , we propose the incorporation of an L1 regularization term during the SFT process. This modification to the fine-tuning procedure is expressed mathematically as follows:

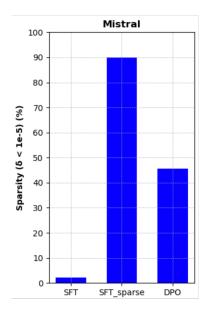
$$L_{\text{SFT}_{\text{sparse}}} = L_{\text{SFT}} + \lambda \cdot \|\delta_{\text{sft}}\|_{1} \tag{1}$$

Here, $L_{\rm SFT}$ represents the conventional cross-entropy loss function, and λ is a weighting factor that controls the strength of the sparsity regularization. Our results indicate that this approach significantly enhances the sparsity of $\delta_{\rm sft}$, with sparsity levels over 90%, as illustrated by the SFT_sparse in Figure 2.

Given sparse representations for adapters of both SFT and preference alignment, the challenge is to effectively merge these delta parameters, $\delta_{\rm sft}$ and $\delta_{\rm xpo}$, with the original pre-trained model, $\theta_{\rm pre}$, while preserving the performance benefits of SFT and preference alignment. The merging process can be formalized by the equation:

$$\theta_{\text{merge}} = f(\theta_{\text{pre}}, \delta_{\text{dpo}}, \delta_{\text{sft}})$$
 (2)

In our study, we explore a variety of merging methods proposed in the literature, including SLERP, Task Arithmetic, TIES, DARE TIES, and Linear. Detailed discussions of these merging methods are provided in the Related Work section.



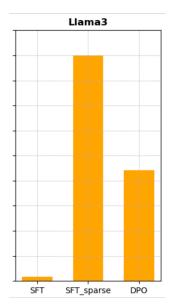


Figure 2: Adapter sparsity for SFT and DPO. The sparsity levels are computed by first merging the parameters from LoRA matrices δ_A and δ_B through matrix multiplication ($\delta = \delta_B \times \delta_A$), and computing the percentage of elements within δ that are less than a threshold of $1 \times e^{-5}$, indicating the proportion of weights approaching zero. The reported sparsity is the average across all layers.

4 EXPERIMENTS

4.1 EVALUATION SETTINGS

In this study, we conduct comprehensive evaluation on both the Open LLM leaderboard provided by HuggingFace and the AlpacaEval benchmark. The Open LLM Leaderboard benchmark suite encompasses a diverse set of six benchmark tasks, namely ARC, HellaSwag, MMLU, TruthfulQA, Winogrande, and GSM8K, along with their aggregated performance metrics.

In our experiments, we employ two state-of-the-art pre-trained models: Mistral-7B Jiang et al. (2023) and Llama-3-8B Team (2024). This section presents the experimental results of merging the delta parameters obtained through SFT and DPO using the LoRA technique. We also study another preference alignment method ORPO for PAFT, which results in the same observations and conclusions as those from DPO. It shows the generalizability of PAFT to different preference alignment techniques. Due to space limit, we put the experimental results for ORPO in the appendix.

Following the Zephyr work Tunstall et al. (2023), we use the UltraChat Ding et al. (2023) dataset for SFT and the UltraFeedback Tunstall et al. (2023) dataset for DPO. UltraChat is a self-refinement dataset consisting of 200K multi-turn dialogues generated by GPT-3.5-Turbo over 30 topics and 20 different types of text material. UltraFeedback consists of 64k prompts, each of which have four LLM responses that are rated by GPT-4 according to criteria like instruction-following, honesty, and helpfulness.

We meticulously explore a spectrum of merging methods, including SLERP, Task Arithmetic, TIES, DARE-enhanced TIES, and Linear combination. Each of these merging strategies is scrutinized to determine its efficacy in integrating the sparsity-induced parameters from LoRA with the original pre-trained models. The goal is to ascertain which method most effectively preserves the performance enhancements attributed to SFT and DPO, thereby contributing to the advancement of model merging methods in LLM research. For training individual adapters, we have used the same settings as in the *zephyr-7b-beta* development². Our evaluation is conducted using the EleutherAI's LM Evaluation Harness framework Gao et al. (2023). We adhere to the same branch (b281b09) used by

 $^{^2}$ https://github.com/huggingface/alignment-handbook/tree/main/recipes/zephyr-7b-beta

Base Model: Mistral-7B								
Method	ARC	HellaSwag	MMLU	TruthfulQA	Winograde	GSM8K	AVERAGE	
PAFT (SFT _{sparse} +DPO)								
SLERP	0.6391	0.8464	0.63961	0.5123	0.794	0.4223	0.64228	
Task Arithmetic	0.6519	0.8477	0.63325	0.563	0.794	0.4071	0.64949	
TIES	0.6519	0.8551	0.63927	0.5453	0.7946	0.4284	0.65243	
DARE TIES	0.6493	0.8526	0.63444	0.5454	0.7964	0.4094	0.64792	
Linear	0.6348	0.8451	0.64275	0.505	0.7932	0.4246	0.64091	
Parallel SFT+DPO								
SLERP	0.6391	0.8479	0.63937	0.5031	0.7924	0.4124	0.63904	
Task Arithmetic	0.651	0.851	0.62998	0.5397	0.8011	0.4117	0.64741	
TIES	0.5956	0.8319	0.61651	0.3993	0.7853	0.3071	0.58928	
DARE TIES	0.5922	0.8244	0.60471	0.3801	0.7577	0.2767	0.57263	
Linear	0.6391	0.846	0.63935	0.4946	0.7995	0.4314	0.64166	
Sequential								
SFT _{sparse} +DPO	0.6391	0.8464	0.63461	0.4403	0.7894	0.4123	0.62702	
SFT+DPO	0.656	0.8459	0.62634	0.4479	0.7884	0.3836	0.62469	
Mistral-7B	0.6049	0.8320	0.6369	0.4259	0.7814	0.37	0.6085	

Base Model: Llama-3-8B								
Method	ARC	HellaSwag	MMLU	TruthfulQA	Winograde	GSM8K	AVERAGE	
PAFT (SFT _{sparse} +DPO)								
SLERP	0.6067	0.8367	0.66995	0.5297	0.7837	0.5095	0.65604	
Task Arithmetic	0.6118	0.8411	0.66858	0.5552	0.7806	0.5208	0.66301	
TIES	0.6101	0.8414	0.67098	0.5313	0.7891	0.5185	0.66023	
DARE TIES	0.6067	0.8398	0.66945	0.5232	0.7885	0.5163	0.65732	
Linear	0.6049	0.8329	0.67059	0.5168	0.7837	0.5011	0.65166	
Parallel SFT+DPO								
SLERP	0.6152	0.8347	0.66248	0.5149	0.7869	0.5171	0.65521	
Task Arithmetic	0.6254	0.837	0.66089	0.5266	0.7869	0.5133	0.65835	
TIES	0.5879	0.8092	0.65863	0.4283	0.7545	0.4291	0.61127	
DARE TIES	0.6007	0.8061	0.65702	0.4233	0.7609	0.4049	0.60882	
Linear	0.6152	0.8331	0.66614	0.5082	0.7845	0.5095	0.65277	
Sequential								
SFT _{sparse} +DPO	0.5648	0.7984	0.62204	0.4049	0.7766	0.3692	0.58932	
SFT+DPO	0.5623	0.7976	0.62258	0.4057	0.7719	0.3662	0.58771	
Llama-3-8B	0.5547	0.7909	0.61603	0.3991	0.7619	0.3687	0.58189	

Table 1: Results of compared methods on the six Open LLM benchmark tasks

the HuggingFace Open LLM Leaderboard Beeching et al. (2023), and evals are run with batch size 1 on an A100 GPU. The hyper parameter λ in Equation 1 controls the sparsity of δ_{sft} . Empirical values 0.0001 and 0.001 are validated in our experiments to achieve reasonable sparsity.

4.2 PARALLEL TRAINING VS. SEQUENTIAL TRAINING

To demonstrate the advantages of parallel training PAFT, we conducted empirical comparison of parallel and sequential training approaches on the six benchmark tasks using the two pre-trained models: Mistral-7B and Llama-3-8B. The results are given in Table 1. In the Mistral-7B model section, we firstly evaluated the sequential training of SFT followed by DPO, which gave average scores of 0.62. The scores surpass that of the Mistral-7B base model, setting the stage for a comparison with parallel training outcomes.

Furthermore, we performed side-by-side evaluations of SFT_{sparse}+DPO training in both parallel and sequential manners. The findings indicate that training SFT with L1 regularization alongside DPO in parallel leads to a performance metric of 0.65 when merging with the TIES method, over 4% higher than the score achieved by training SFT_{sparse} and DPO in sequence. This outcome can be explained by a notable drawback of sequential training which is its tendency to overlook much of the knowledge gained during the SFT stage, suggesting a suboptimal use of SFT data. In contrast, parallel training effectively combines the benefits from SFT and DPO by processing them concurrently. The benefits are mostly preserved during model merging, ensuring efficient utilization of both SFT

LLM	ARC	HellaSwag	MMLU	TruthfulQA	Winograde	GSM8K	AVERAGE
PAFT (Ein-70B)	0.7986	0.9149	0.7805	0.7514	0.8777	0.7544	0.8129
Mixtral-8x22B-Instruct	0.727	0.8908	0.7777	0.6814	0.8516	0.8203	0.7915
Llama-3-70B-Instruct	0.7142	0.8569	0.8006	0.6181	0.8287	0.8544	0.7788
PAFT (TextBase-7B)	0.7389	0.9027	0.6478	0.7813	0.8603	0.6793	0.7684
Cohere-Command-R+	0.7099	0.8856	0.7573	0.563	0.854	0.7074	0.7462
DBRX-132B-Instruct	0.6783	0.8885	0.7372	0.6702	0.8208	0.6732	0.7447
OpenChat-3.5	0.6604	0.8293	0.6504	0.519	0.8177	0.6816	0.693
Llama-3-8B-Instruct	0.6075	0.7855	0.6707	0.5165	0.7451	0.6869	0.6687
Mistral-7B-Instruct-v0.2	0.6314	0.8488	0.6078	0.6826	0.7719	0.4003	0.6571
Gemma-7B	0.6109	0.8247	0.6603	0.4491	0.7845	0.5277	0.6429

Table 2: Comparison with state-of-the-art LLMs on Open LLM Leaderboard (All the scores are obtained from the Leaderboard.)

and DPO data. Our work underscores the enhanced efficacy of the parallel training approach PAFT, which not only maintains the distinct advantages of SFT and DPO, but also outperforms these techniques when they are used sequentially. This finding is confirmed by the evaluation results of using Llama-3-8B as a base model.

4.3 Sparse Merging vs. Dense Merging

Our study has demonstrated the advantages of incorporating sparsity into fine-tuned models. In the context of sequential training, the inclusion of L1 regularization has yielded a modest yet notable improvement. Specifically, in the Mistral-7B section of Table 1, the average score for the sequential SFT $_{sparse}$ +DPO stands at 0.627, surpassing the sequential SFT+DPO without L1 regularization, with a score of 0.625. Although the improvement is marginal, it underscores the value of integrating the L1-norm to induce sparsity.

The impact of sparsity becomes more pronounced when examining parallel training scenarios. Across all considered model merging techniques, Parallel SFT_{sparse}+DPO, i.e., PAFT, consistently outperforms its counterpart without L1 regularization, Parallel SFT+DPO, thereby highlighting the efficacy of the sparsity induced by L1-norm. Notably, in the case of the TIES and DARE TIES merging methods, the average score disparity is significant. With TIES, PAFT (SFT_{sparse}+DPO) achieves a score of 0.6524, while Parallel SFT+DPO without sparsification lags behind at 0.5893. Similarly, for DARE TIES, PAFT (SFT_{sparse}+DPO) scores 0.6479, outstripping Parallel SFT+DPO's 0.5726. This substantial margin illustrates the robustness of L1-norm sparsity for various merging methods.

The same insights as given in the Mistral-7B section can be gained from the Llama-3-8B section in Table 1. PAFT on Llama-3-8B significantly outperforms Parallel SFT+DPO and sequential training. The experimental results confirm the generalizability of PAFT to various pre-trained models.

When comparing different model merging strategies, TIES generally performs better than other methods do on both Mistral-7B and Llama-3-8B, exhibiting superior performance over DARE TIES. DARE, which stands for "Drop And REscale", is a method that explicitly increases sparsity by eliminating elements below a certain threshold and rescaling the remaining parameters. In contrast, the L1-norm introduces sparsity implicitly by integrating it into the objective function. Consequently, the impact of the eliminated terms is less pronounced in the final results compared to DARE. This comparison reveals the advantages of the L1-norm's explicit sparsity induction over the implicit approach employed by DARE.

4.4 Comparison with State-of-the-art LLMs

On the online Open LLM Leaderboard, we performed PAFT on the Neurotic-7B³ and MoMo-70B⁴ base models. The two PAFT-ed models significantly improved over the respective base models, and achieved Rank #1 in the 7B/8B model category and globally on the online Open LLM Leaderboard⁵,

³https://huggingface.co/liminerity/Neurotic-Jomainotrik-7b-slerp

⁴https://huggingface.co/leejunhyeok/MoMo-70B-LoRA-V1.2_1

⁵https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard Uncheck the *Private or deleted* option to make our private Rank #1 model visible.

LLM	LC WinRate	WinRate
GPT-4 Preview	50.0%	50.0%
Claude 3 Opus	40.5%	29.1%
PAFT 70B	38.6%	26.5%
GPT-4 (03/14)	35.3%	22.1%
Claude 3 Sonnet	34.9%	25.6%
Llama 3 70B Instruct	34.4%	33.2%
Mixtral 8x22B v0.1	30.9%	22.2%
PAFT 7B	30.6%	22.8%
DBRX Instruct	25.4%	18.4%
Mixtral 8x7B v0.1	23.7%	18.3%
Llama 3 8B Instruct	22.9%	22.6%
GPT 3.5 Turbo	22.7%	14.1%
Mistral 7B v0.2	17.1%	14.7%

Table 3: Comparison with state-of-the-art LLMs on AlpacaEval benchmark using GPT-4 as a judge

λ	1.0	0.1	0.01	0.001	0.0001	0.00001
	0.6354	0.6408	0.6488	0.6524	0.6522	0.6505

Table 4: Performance ablation with various L1 regularization strengths (λ). Higher λ increases adapter sparsity but can degrade task performance if taken to an extreme.

respectively, showing the effectiveness of PAFT on various base models. Table 2 gives the results of our PAFT-ed models and the existing state-of-the-art models on the Leaderboard.

Additionally, we compared the two PAFT-ed models with existing state-of-the-art LLMs on the AlpacaEval benchmark Li et al. (2023), where every model generates responses to 805 questions on different topics, mostly focused on helpfulness. The models are judged by GPT-4, and the final metric is the pairwise win-rate against GPT-4. As shown in Table 3, the PAFT-ed 70B model outperforms existing state-of-the-art LLMs, except *GPT-4 Preview* and *Claude 3 Opus* in LC (Length-controlled) Win-Rate. While the GPT-4 judge favors its own GPT model family, the PAFT-ed 70B model performs better than *GPT-4* (03/14) and *GPT 3.5 Turbo* do. On the other hand, the PAFT-ed 7B model outperforms all the 7B/8B and smaller models on AlpacaEval. It even beats some larger models, such as *DBRX Instruct* and *Mixtral 8x7B*.

5 ABLATION STUDIES

5.1 Role of Sparsification Factor λ

We previously showed that sparsifying the SFT adapter with an L1 penalty (i.e., $\lambda \| \delta_{\rm sft} \|_1$) helps reduce parameter interference when merging with DPO. Here, we extend our ablation by varying λ over a wider range. Table 4 shows the average downstream performance on the same six Open LLM benchmark tasks for *Parallel* SFT_{sparse} + DPO using TIES merging under different λ values. We observe that $\lambda = 0.001$ provides the best trade-off between sparsity and downstream performance.

5.2 EVALUATION ON ALPACAEVAL

Beyond the six classification-style tasks used by the Open LLM Leaderboard, we further evaluated different training strategies on the AlpacaEval benchmark Li et al. (2023). Table 5 shows that our parallel training (PAFT) consistently surpasses sequential training in both the 7B and 70B model size categories, indicating improved alignment and response quality. The parallel 70B model not only outperforms the sequential 70B baseline, but also surpasses older snapshots of GPT-4 in some cases. These results support our main claim that *parallel* training successfully retains both the specialized skills from SFT and the alignment benefits from DPO while mitigating catastrophic forgetting.

LLM	LC WinRate	WinRate
GPT-4 Preview	50.0%	50.0%
Claude 3 Opus	40.5%	29.1%
PAFT 70B	38.6%	26.5%
Sequential SFT+DPO 70B	36.2%	24.0%
DPO-alone 70B	35.5%	23.1%
GPT-4 (03/14)	35.3%	22.1%
PAFT 7B	30.6%	22.8%
Sequential SFT+DPO 7B	26.5%	19.3%
DPO-alone 7B	24.3%	18.1%
SFT-alone 7B	18.8%	17.0%

Table 5: Evaluation on AlpacaEval benchmark. "LC WinRate" denotes the length-controlled win rate against GPT-4, while "WinRate" is the normal pairwise win rate.

6 Conclusion

LLM fine-tuning generally undergoes a two-stage training process, with SFT applied initially, followed by preference alignment. Yet, research indicates that this sequential approach incurs an "alignment tax", compromising the LLM's overall performance. To counteract this, we advocate for a parallel training strategy PAFT which preserves the advantages of both SFT and preference alignment without incurring the alignment tax associated with sequential training. A significant hurdle in parallel training is the potential for conflict during the model merging phase, where the merging of different adapters can lead to diminished performance. In this paper, we propose the integration of an L1 regularization to the training loss during the SFT phase to induce sparsity, thereby reducing interference between models.

Our experimental results demonstrate the efficacy of incorporating an L1-norm into the SFT process for sparsification and utilizing a parallel training framework over the typical sequential approach. When combining all of them together, i.e. Parallel SFT_{sparse}+DPO achieves the state-of-art results on both the LLM leaderboard by HuggingFace and the AlpacaEval benchmark. The ORPO experimental results given in the appendix show the same patterns, demonstrating the generalizability of our PAFT to various preference alignment methods. This comprehensive strategy highlights how the methods of integrating SFT with preference alignment can greatly enhance LLM fine-tuning. Despite its effectiveness, the parallel training process is somewhat cumbersome, requiring two distinct stages: training SFT and DPO in parallel and then merging them together. A more streamlined approach that integrates SFT and DPO training while preserving the benefits of both methods in a single stage is highly desirable.

REFERENCES

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones, Nicholas Joseph, Benjamin Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, John Kernion, Kamal Ndousse, Catherine Olsson, Dario Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Christopher Olah, and Jared Kaplan. A general language assistant as a laboratory for alignment. *ArXiv*, abs/2112.00861, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open Ilm leaderboard. https://

487

488

489

490

491 492

493

494

495

496

497

498

499

500

501

504

505

506

507

509

510

511

512

513

514

515

516

517

519

520

521 522

523

524

525

526

527

528 529

530

531

532

533

534

536

538

huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard, 2023.

E.J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. *IEEE Transactions on Information Theory*, 52 (2):489–509, 2006. doi: 10.1109/TIT.2005.862083.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences, 2023.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding, 2019.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu, Maosong Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional conversations. In *The 2023 Conference on Empirical Methods in Natural Language Processing*, 2023. URL https://openreview.net/forum?id=oEsYs3WRc3.

Christopher Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently identifying task groupings for multi-task learning. In *Neural Information Processing Systems*, 2021. URL https://api.semanticscholar.org/CorpusID:237485414.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for efficient neural networks, 2015.

- Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep learning: pruning and growth for efficient inference and training in neural networks. *J. Mach. Learn. Res.*, 22(1), jan 2021. ISSN 1532-4435.
 - Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without reference model. *arXiv preprint arXiv:2403.07691*, 2(4):5, 2024.
 - Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.
 - Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=6t0Kwf8-jrj.
 - Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.
 - Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by merging weights of language models. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=FCnohuR6AnM.
 - Julia Kreutzer, Shahram Khadivi, Evgeny Matusov, and Stefan Riezler. Can neural machine translation be improved with user feedback? In Srinivas Bangalore, Jennifer Chu-Carroll, and Yunyao Li (eds.), *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)*, pp. 92–105, New Orleans Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-3012. URL https://aclanthology.org/N18-3012.
 - Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable agent alignment via reward modeling: a research direction, 2018.
 - Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following models. https://github.com/tatsu-lab/alpaca_eval, 2023.
 - Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging, 2022.
 - OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.
 - Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
 - Yinhua Piao, Sangseon Lee, Dohoon Lee, and Sun Kim. Sparse structure learning via graph neural networks for inductive document classification. *Proceedings of the AAAI Conference on Artificial Intelligence*, 36(7):13211–13218, 2022.
 - Clifton Poth, Jonas Pfeiffer, Andreas Rücklé, and Iryna Gurevych. What to pre-train on? Efficient intermediate task selection. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 10585–10605, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.827. URL https://aclanthology.org/2021.emnlp-main.827.
 - Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model, 2023.

- Fadil Santosa and William W. Symes. Linear inversion of band-limited reflection seismograms. *SIAM Journal on Scientific and Statistical Computing*, 7(4):1307–1330, 1986. doi: 10.1137/0907087. URL https://doi.org/10.1137/0907087.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms, 2017.
 - Ziang Song, Tianle Cai, Jason D. Lee, and Weijie J. Su. Reward collapse in aligning large language models. *arXiv*, 2023.
 - Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, and Paul Christiano. Learning to summarize from human feedback, 2022.
 - Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Stefano Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of LLMs should leverage suboptimal, on-policy data. In *Forty-first International Conference on Machine Learning*, 2024.
 - Llama 3 Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.
 - Georg Thimm and Emile Fiesler. Evaluating pruning methods. 1995.
 - Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada, Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar Sanseviero, Alexander M. Rush, and Thomas Wolf. Zephyr: Direct distillation of lm alignment, 2023.
 - Jing Wang, Mayank Kulkarni, and Daniel Preotiuc-Pietro. Multi-domain named entity recognition with genre-aware and agnostic inference. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 8476–8488, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.750. URL https://aclanthology.org/2020.acl-main.750.
 - Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 23965–23998. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/wortsman22a.html.
 - Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging: Resolving interference when merging models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
 - Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Absorbing abilities from homologous models as a free lunch. *arXiv preprint arXiv:2311.03099*, 2023.
 - Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large language models, 2023.
 - Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2020.

Base Model: Meta-Llama-3-8B							
Method	ARC	HellaSwag	MMLU	TruthfulQA	Winograde	GSM8K	AVERAGE
PAFT (SFT _{sparse} +ORPO)							
SLERP	0.599	0.8217	0.665	0.4926	0.7845	0.4898	0.6421
Task Arithmetic	0.5964	0.8214	0.6655	0.4995	0.783	0.4814	0.6412
TIES	0.5947	0.8226	0.66358	0.4931	0.783	0.4852	0.64036
DARE TIES	0.593	0.8224	0.6637	0.4921	0.783	0.4738	0.638
Linear	0.5964	0.8206	0.6654	0.4923	0.7814	0.4905	0.6411
Parallel SFT+ORPO							
SLERP	0.6049	0.8227	0.668	0.4905	0.783	0.4951	0.644
Task Arithmetic	0.6152	0.8209	0.6621	0.4908	0.7845	0.4989	0.6454
TIES	0.593	0.8139	0.6633	0.4446	0.768	0.467	0.6250
DARE TIES	0.5981	0.8101	0.66	0.4398	0.7632	0.4534	0.6208
Linear	0.6067	0.8222	0.6685	0.4868	0.783	0.4989	0.6444
Sequential							
SFT _{sparse} +ORPO	0.5563	0.8018	0.62116	0.4068	0.7719	0.3662	0.58736
SFT+ORPO	0.5589	0.8021	0.62142	0.4092	0.7711	0.3677	0.5884
Llama-3-8B	0.5547	0.8009	0.61854	0.3991	0.7619	0.3587	0.58231

Table 6: Results of compared methods with ORPO on the six benchmark tasks

A APPENDIX

A.1 PAFT GENERALIZATION TO DIFFERENT PREFERENCE OPTIMIZATION ALGORITHMS

To demonstrate the generality of *parallel* training with other preference-alignment algorithms, we validated our approach using ORPO Hong et al. (2024), which directly optimizes preferences between two candidate responses in single stage. Table 6 reports the results of combining SFT and ORPO in parallel (denoted as *Parallel SFT+ORPO* and *Parallel SFT_{sparse}+ORPO*) on a Llama-3-8B base model. We observe the same pattern of parallel training consistently outperforming sequential training.

Table 6 shows experimental results with ORPO as the preference alignment method alongside SFT with the Llama-3-8B base model. We observe a similar trend where finetuning the LLM sequentially via SFT followed by ORPO underperforms all the parallelly trained variants. Even simple model merging methods such as Task Arithmetic and Linear merging perform strongly, outperforming more complicated methods like DARE TIES in both experiment settings.

These findings confirm that the proposed *Parallel* SFT + preference alignment strategy is not specific to DPO and generalizes effectively to other preference-based algorithms.

A.2 DISCUSSION

There are a couple of limitations of the parallel training of SFT and preference alignment. Firstly, we have found that sparsity aids in model merging, though the reasons behind this benefit and why DPO initially induces sparsity in the adapter remain unanswered.

Moreover, sparsity can reduce model interference during merging, but the scalability of this approach is still in question. If a merged model deployed in production fails in some cases, it is underexplored how to improve the model responses in these cases. Directly performing SFT on the merged model may lead to catastrophic forgetting of what it learned earlier. On the other hand, parallel training necessitates merging a new SFT-ed model with the existing merged model, adding complexity to the process.

The primary risk associated with this paper pertains to its data usage. Currently, UltraChat data is employed for SFT, while UltraFeedback data is used for preference alignment. UltraChat consists solely of multi-round dialogue data, which inherently limits its format diversity. To enhance the robustness and applicability of the model, it is crucial to incorporate a wider variety of data types beyond dialogue data. Additionally, UltraFeedback relies on annotations generated by GPT-4, which inevitably include errors and inaccurate feedback. To mitigate these risks, higher-quality datasets are needed in the future.