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ABSTRACT

Large language models (LLMs) have shown remarkable abilities in diverse nat-
ural language processing (NLP) tasks. The LLMs generally undergo supervised
fine-tuning (SFT) followed by preference alignment to be usable in downstream
applications. However, this sequential training pipeline leads to alignment tax
that degrades the LLM performance. This paper introduces PAFT, a new PArallel
training paradigm for effective LLM Fine-Tuning, which independently performs
SFT and preference alignment (e.g., DPO and ORPO, etc.) with the same pre-
trained model on respective datasets. The model produced by SFT and the model
from preference alignment are then merged into a final model by parameter fus-
ing for use in downstream applications. This work reveals important findings
that preference alignment like DPO naturally results in a sparse model while SFT
leads to a natural dense model which needs to be sparsified for effective model
merging. This paper introduces an effective interference resolution which reduces
the redundancy by sparsifying the delta parameters. The LLM resulted from the
new training paradigm achieved Rank #1 on the HuggingFace Open LLM Leader-
boar(ﬂ Comprehensive evaluation shows the effectiveness of the parallel training
paradigm.

1 INTRODUCTION

In recent years, large language models (LLMs) have emerged as the standard approach to addressing
natural language processing (NLP) tasks. The typical way of building an LLM for downstream
applications generally follows a sequential training pipeline consisting of two phases: 1. Supervised
Fine-tuning (SFT), where the pre-trained LLM is fine-tuned with the language modelling loss on
demonstrations of the desired behaviour. 2. Alignment with human preference, where the model
produced by the SFT phase is further fine-tuned with an alignment algorithm like Reinforcement
Learning from Human Feedback (RLHF) or Direct Preference Optimization (DPO), etc. While
this sequential pipeline has been used to seemingly great success, how the SFT and the preference
alignment work better with each other is underexplored.

Recent studies |[OpenAl| (2023); |Askell et al.[(2021)); [Song et al.| (2023)) have found that the prefer-
ence alignment phase can cause the LLM to forget the diverse capabilities that it has acquired from
earlier phases, despite aligning the LLM with human expectation. This phenomenon, also known
as the alignment tax in the literature |Ouyang et al.| (2022), has accumulated substantial attention
from both academia and industry. The alignment tax inherently results from catastrophic forget-
ting present in the staged training. Independent studies, including DeepSeek R1 DeepSeek-Al et al.
(2025)), challenge the necessity of sequential pipelines by demonstrating that reinforcement learning
paradigms can directly optimize alignment without requiring prior SFT. This finding suggests that
SFT and alignment may target orthogonal objectives, motivating alternative approaches like paral-
lel training. To reduce catastrophic forgetting and thus alignment tax, this paper introduces a new
parallel training paradigm for LLM fine-tuning, named PAFT, which independently performs SFT
and preference alignment with the same pre-trained model on respective datasets, instead of sequen-
tially conducting SFT followed by preference alignment. The model from SFT and the model from

1https ://huggingface.co/spaces/open—-11lm-leaderboard-old/open_1l1lm_
leaderboard Uncheck the private or deleted option to make our private Rank #1 model visible.


https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
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Figure 1: Comparison of training paradigms.

preference alignment are then merged into a final model by parameter fusing for use in downstream
applications.

As discovered by prior work |Yadav et al.[(2023); |Yu et al.[(2023)), direct model merging causes the
parameter values to interfere across models, thereby harming the performance of the final model.
The interference, which reduces parameter magnitudes in the merged model and eliminates subtle
distinctions among values, can attribute to the redundant delta parameters, i.e., the differences in
values between fine-tuned and pre-trained parameters, resulted from fine-tuning. Previous studies
on model pruning|Hoefler et al.|(2021)); [Thimm & Fiesler|(1995) have shown that during fine-tuning,
many model parameters can change over the course of fine-tuning but only have a small impact on
performance. However, when merging a parameter that is influential for one model but redundant
(i.e. not influential) for other models, the influential value may be obscured by the redundant val-
ues, lowering the overall model performance. This work reveals the dense properties of the delta
parameters resulted from SFT. To mitigate the dense property of SFT, we propose an effective in-
terference resolution which reduces the redundancy by sparsifying the delta parameters by adding a
L1-norm penalty to the original SFT loss function. The existing findings indicate that the inclusion
of the L1 term enhances the sparsity of the SFT. This method of implicitly inducing sparsity has
been evaluated against a technique that introduces sparsity explicitly, i.e., DARE |Yu et al.| (2023)),
demonstrating the advantages of employing the L1-norm on LLM’s performances in downstream
tasks.

Finally, the sparse delta parameters from SFT and preference alignment are merged into a sin-
gle stronger model. Different merging methods are assessed, and TIES and Task Arithmetic are
shown to be the best model merging methods, depending on base models. The method of Parallel
SFTparse +DPO merged through TIES based on Mistral-7B sets a new benchmark for 7B models,
i.e., 0.6524 on average over the six tasks in HuggingFace Open LLM Leaderboard. Notably, Paral-
lel SFTyar5e+DPO consistently outperforms Parallel SFT+DPO across all model merging methods,
showing the effectiveness and robustness of the PAFT training paradigm.

The contributions of this paper are threefold:

1. Evidence is presented that parallel training of SFT and preference alignment outperforms
sequential training, effectively reducing the alignment tax.

2. The significance of sparse model integration is highlighted as a mean to prevent model
conflict while preserving the full capability of each model. We demonstrate the superiority
of the L1-norm over DARE as a more effective and higher-quality method for promoting
sparsity in model training across various model merging techniques.

3. We conduct comprehensive evaluation of PAFT on well-known public benchmarks includ-
ing Open LLM Leaderboard and AlpacaEval. The PAFT-ed 7B model achieved Rank #1
in the 7B/8B model category on the Open LLM Leaderboard, and the PAFT-ed 70B model
topped the Leaderboard globally.

2 RELATED WORKS

2.1 SFT AND HUMAN PREFERENCE ALIGNMENT

The standard LLM pipeline—pretraining followed by supervised fine-tuning (SFT)—was popular-
ized by models such as BERT Devlin et al.| (2019) and GPT-4 OpenAl| (2023). SFT boosts down-
stream accuracy, but unaligned outputs can be unethical, so many systems add a second stage of
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preference alignment via RLHF |Christiano et al.| (2023); Ziegler et al.| (2020); [Leike et al.| (2018]).
RLHF typically fits a Bradley—Terry reward model on human comparisons|Stiennon et al.|(2022) and
applies PPO|Schulman et al.{(2017). Lightweight alternatives include DPO, which directly links the
reward model to policy gradients |[Rafailov et al.|(2023)), and ORPO, which optimizes odds-ratios in
a single update Hong et al.|(2024). While alignment can impose an “alignment tax” that erodes SFT
gains |Ouyang et al| (2022)), some work reports “alignment bonuses” when RLHF-trained models
exceed their SFT baselines Bai et al.|(2022)). Recent efforts even bypass strict sequencing by jointly
optimizing task and preference losses end-to-end |DeepSeek-Al et al.| (2025)); Kreutzer et al.| (2018]).

2.2 SPARSITY IN LLM ADAPTATION

Deploying LLMs on edge devices has spurred compression research, notably pruning [Han et al.
(2015) and LoRA adapters [Hu et al. (2022). Surveys confirm that integrating sparsity can cut in-
ference costs without large accuracy drops Zhu et al.|(2023)). In LoRA, fine-tuned adapter matrices
often contain many near-zero weights; pruning a fraction p of these and rescaling the remainder
by 1/(1 — p) recovers much of the original performance Yu et al.| (2023). Alternative approaches
impose an ¢; penalty—akin to Lasso|Santosa & Symes| (1986) or compressed sensing priors|Candes
et al.| (2006)—to induce sparse adapters during training.

2.3 MODEL MERGING

Rather than expensive multi-task training |Poth et al.[(2021)); Wang et al.| (2020); [Fifty et al.| (2021),
merging separately fine-tuned models can efficiently combine capabilities. ModelSoup averages
weights of SFT checkpoints to achieve SOTA gains |Wortsman et al.[(2022]), and Fisher merging re-
fines this by weighting updates by their Fisher Information Matena & Raffel| (2022)). Task-arithmetic
extends averaging via vector addition/subtraction for analogies or forgetting [Ilharco et al.| (2023)),
while RegMean solves per-layer regressions to estimate merged parameters Jin et al.| (2023). To re-
duce destructive interference among tasks, TIES filters by magnitude and enforces consistent update
signs|Yadav et al.[(2023), yielding more robust merged models.

3 METHODOLOGY

3.1 PROBLEM SETTING

Given a pre-trained LLM, such as Mistral and Llama, we aim to optimize the model for a wide range
of downstream tasks by fine-tuning it either fully or with parameter-efficient tuning such as LoRA
Hu et al [(2022)), using SFT and preference alignment. Throughout this paper, 6 denotes the trainable
parameters; 6, denotes the parameters of the pre-trained model; 6., denotes the parameters of the
model fine-tuned with SFT; 0,, denotes the parameters of the model fine-tuned with preference
alignment, such as PPO |Schulman et al.| (2017); |Ziegler et al.| (2020), DPO [Rafailov et al.| (2023)
and ORPO|[Hong et al.|(2024), etc.; dss, = Osg — Opre denotes the delta parameters between the SFT-
ed model and the pre-trained model; and dxpo = Oxpo — Opre denotes the delta parameters between
the preference-aligned model and the pre-trained model.

3.2 PARALLEL TRAINING

SFT and preference alignment are two distinct methodologies designed to enhance the capabilities
of pre-trained LLMs for specific applications. SFT focuses on boosting the performance of LLMs
on downstream tasks by fine-tuning them with datasets that closely resemble the target task. This
process tailors the model’s responses to be more accurate and relevant for a specific use-case. In
contrast, preference alignment, such as RLHF, DPO and ORPO, etc., is a methodology that refines a
model’s outputs based on human preferences. It generally fine-tunes the model on pairs of responses
to an input query, one of which is preferred over the other one. Preference alignment uses such
feedback signal to guide the model towards generating outputs that align with human expectation
and ethical standards. This approach is particularly valuable for addressing the ethical considerations
that arise when deploying LLMs in real-world scenarios.
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Nowadays, researchers have applied SFT to enhance the performance of LLMs on targeted tasks, and
then employed preference alignment to further align the models with human preferences. However,
this sequential application of SFT followed by preference alignment has often led to a compromise in
task-specific performance - a phenomenon referred to as the alignment tax. This occurs because the
distinct objectives of SFT and preference alignment can sometimes be at odds, with the alignment
process potentially undoing some of the task-specific optimizations achieved through SFT.

We address the challenge of the alignment tax by a novel approach that involves SFT and preference
alignment concurrently using adapter training, such as LoRA Hu et al. (2022)). This method takes
full advantages and strengths of both SFT and preference alignment without sacrificing performance
in either one, i.e., ensuring that the resulting model maintains high performance in downstream tasks
while also being aligned with human preferences, thus overcoming the limitations associated with
the alignment tax. During the training process specifically, based on the same pre-trained model
Opre, the two separate adapter parameters, denoted as gy and dxpo, are learned in parallel from
downstream ground truth and human preferences, respectively. The proposed PAFT seeks to merge
the dgse and dyp, in an effective way of avoiding feature interference. Figurecompares the typical
staged training pipeline and our parallel training pipeline PAFT.

3.3 SPARSE MERGING

The integration of dense neural network models often results in a suboptimal combined model due to
the phenomenon of parameter interference. This challenge has led researchers to explore alternative
strategies. Our investigations reveal that by increasing sparsity of a fine-tuned adapter, the per-
formance of merging the adapter with the base model can be improved. Specifically, the parameter
Oxpo- derived from adapter training like LoRA for preference alignment, demonstrates clear sparsity,
as depicted in Figure [2] We hypothesize that this sparsity results from the mode-seeking behavior
inherent in the constraint optimization objective of preference learning like DPO. For example, DPO
includes a KL divergence term, which has been associated with mode-seeking properties based on
the type of initialization in prior work on preference optimization Tajwar et al.|(2024). Mode-seeking
objectives tend to concentrate probability mass on specific, high-reward outputs, potentially leading
to more focused and sparse parameter updates.

In contrast, the sparsity in a SFT adapter, denoted by dgst, is not pronounced. This can be because
SFT’s maximum likelihood objective, similar to behavior cloning, attempts to increase the likelihood
of all positive examples, potentially resulting in more distributed and dense parameter updates across
the adapter. It aligns with the findings of |Piao et al.[(2022), which showed that maximum likelihood
training tends to produce dense representations. To increase the sparsity within dgs, We propose
the incorporation of an L1 regularization term during the SFT process. This modification to the
fine-tuning procedure is expressed mathematically as follows:

Lt e = Lser + X+ |05t |1 ()

Here, Lgpr represents the conventional cross-entropy loss function, and A is a weighting factor that
controls the strength of the sparsity regularization. Our results indicate that this approach signifi-
cantly enhances the sparsity of ds¢, with sparsity levels over 90%, as illustrated by the SFT _sparse
in Figure 2]

Given sparse representations for adapters of both SFT and preference alignment, the challenge is
to effectively merge these delta parameters, dg¢; and dxpo, With the original pre-trained model, Opye,
while preserving the performance benefits of SFT and preference alignment. The merging process
can be formalized by the equation:

gmerge = f(oprea 5dea 6sft) (2)

In our study, we explore a variety of merging methods proposed in the literature, including SLERP,
Task Arithmetic, TIES, DARE TIES, and Linear. Detailed discussions of these merging methods
are provided in the Related Work section.
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Figure 2: Adapter sparsity for SFT and DPO. The sparsity levels are computed by first merging
the parameters from LoRA matrices d4 and dp through matrix multiplication (§ = dp X d4), and
computing the percentage of elements within § that are less than a threshold of 1 x e~?, indicating
the proportion of weights approaching zero. The reported sparsity is the average across all layers.

4 EXPERIMENTS

4.1 EVALUATION SETTINGS

In this study, we conduct comprehensive evaluation on both the Open LLM leaderboard provided
by HuggingFace and the AlpacaEval benchmark. The Open LLM Leaderboard benchmark suite
encompasses a diverse set of six benchmark tasks, namely ARC, HellaSwag, MMLU, TruthfulQA,
Winogrande, and GSMS8K, along with their aggregated performance metrics.

In our experiments, we employ two state-of-the-art pre-trained models: Mistral-7B Jiang et al.
(2023) and Llama-3-8B [Team| (2024). This section presents the experimental results of merging
the delta parameters obtained through SFT and DPO using the LoRA technique. We also study
another preference alignment method ORPO for PAFT, which results in the same observations and
conclusions as those from DPO. It shows the generalizability of PAFT to different preference align-
ment techniques. Due to space limit, we put the experimental results for ORPO in the appendix.

Following the Zephyr work Tunstall et al.| (2023), we use the UltraChat Ding et al.| (2023) dataset
for SFT and the UltraFeedback [Tunstall et al.| (2023)) dataset for DPO. UltraChat is a self-refinement
dataset consisting of 200K multi-turn dialogues generated by GPT-3.5-Turbo over 30 topics and 20
different types of text material. UltraFeedback consists of 64k prompts, each of which have four
LLM responses that are rated by GPT-4 according to criteria like instruction-following, honesty, and
helpfulness.

We meticulously explore a spectrum of merging methods, including SLERP, Task Arithmetic, TIES,
DARE-enhanced TIES, and Linear combination. Each of these merging strategies is scrutinized to
determine its efficacy in integrating the sparsity-induced parameters from LoRA with the original
pre-trained models. The goal is to ascertain which method most effectively preserves the perfor-
mance enhancements attributed to SFT and DPO, thereby contributing to the advancement of model
merging methods in LLM research. For training individual adapters, we have used the same settings
as in the zephyr-7b-beta developmentﬂ Our evaluation is conducted using the EleutherAl’'s LM
Evaluation Harness framework |Gao et al.|(2023). We adhere to the same branch (b281b09) used by

2https://github.com/huggingface/alignment—handbook/tree/main/recipes/
zephyr-"T7b-beta
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Base Model: Mistral-7B

Method ARC  HellaSwag MMLU TruthfulQA Winograde GSMS8K AVERAGE
PAFT (SFTsparse+DPO)
SLERP 0.6391 0.8464 0.63961 0.5123 0.794 0.4223 0.64228
Task Arithmetic 0.6519 0.8477 0.63325 0.563 0.794 0.4071 0.64949
TIES 0.6519 0.8551 0.63927 0.5453 0.7946 0.4284 0.65243
DARE TIES 0.6493 0.8526 0.63444 0.5454 0.7964 0.4094 0.64792
Linear 0.6348 0.8451 0.64275 0.505 0.7932 0.4246 0.64091
Parallel SFT+DPO
SLERP 0.6391 0.8479 0.63937 0.5031 0.7924 0.4124 0.63904
Task Arithmetic 0.651 0.851 0.62998 0.5397 0.8011 04117 0.64741
TIES 0.5956 0.8319 0.61651 0.3993 0.7853 0.3071 0.58928
DARE TIES 0.5922 0.8244 0.60471 0.3801 0.7577 0.2767 0.57263
Linear 0.6391 0.846 0.63935 0.4946 0.7995 0.4314 0.64166
Sequential
SFTsparse+DPO 0.6391 0.8464 0.63461 0.4403 0.7894 0.4123 0.62702
SFT+DPO 0.656 0.8459 0.62634 0.4479 0.7884 0.3836 0.62469
Mistral-7B 0.6049 0.8320 0.6369 0.4259 0.7814 0.37 0.6085
Base Model: Llama-3-8B
Method ARC  HellaSwag MMLU TruthfulQA Winograde GSMS8K AVERAGE
PAFT (SFTsparse+DPO)
SLERP 0.6067 0.8367 0.66995 0.5297 0.7837 0.5095 0.65604
Task Arithmetic 0.6118 0.8411 0.66858 0.5552 0.7806 0.5208 0.66301
TIES 0.6101 0.8414 0.67098 0.5313 0.7891 0.5185 0.66023
DARE TIES 0.6067 0.8398 0.66945 0.5232 0.7885 0.5163 0.65732
Linear 0.6049 0.8329 0.67059 0.5168 0.7837 0.5011 0.65166
Parallel SFT+DPO
SLERP 0.6152 0.8347 0.66248 0.5149 0.7869 0.5171 0.65521
Task Arithmetic 0.6254 0.837 0.66089 0.5266 0.7869 0.5133 0.65835
TIES 0.5879 0.8092 0.65863 0.4283 0.7545 0.4291 0.61127
DARE TIES 0.6007 0.8061 0.65702 0.4233 0.7609 0.4049 0.60882
Linear 0.6152 0.8331 0.66614 0.5082 0.7845 0.5095 0.65277
Sequential
SFTsparse+DPO 0.5648 0.7984 0.62204 0.4049 0.7766 0.3692 0.58932
SFT+DPO 0.5623 0.7976 0.62258 0.4057 0.7719 0.3662 0.58771
Llama-3-8B 0.5547 0.7909 0.61603 0.3991 0.7619 0.3687 0.58189

Table 1: Results of compared methods on the six Open LLM benchmark tasks

the HuggingFace Open LLM Leaderboard Beeching et al.|(2023), and evals are run with batch size
1 on an A100 GPU. The hyper parameter A in Equation [I| controls the sparsity of ds. Empirical
values 0.0001 and 0.001 are validated in our experiments to achieve reasonable sparsity.

4.2 PARALLEL TRAINING VS. SEQUENTIAL TRAINING

To demonstrate the advantages of parallel training PAFT, we conducted empirical comparison of
parallel and sequential training approaches on the six benchmark tasks using the two pre-trained
models: Mistral-7B and Llama-3-8B. The results are given in Table[I] In the Mistral-7B model sec-
tion, we firstly evaluated the sequential training of SFT followed by DPO, which gave average scores
of 0.62. The scores surpass that of the Mistral-7B base model, setting the stage for a comparison
with parallel training outcomes.

Furthermore, we performed side-by-side evaluations of SFT . +DPO training in both parallel and
sequential manners. The findings indicate that training SFT with L1 regularization alongside DPO
in parallel leads to a performance metric of 0.65 when merging with the TIES method, over 4%
higher than the score achieved by training SFT . and DPO in sequence. This outcome can be ex-
plained by a notable drawback of sequential training which is its tendency to overlook much of the
knowledge gained during the SFT stage, suggesting a suboptimal use of SFT data. In contrast, par-
allel training effectively combines the benefits from SFT and DPO by processing them concurrently.
The benefits are mostly preserved during model merging, ensuring efficient utilization of both SFT
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LLM ARC HellaSwag MMLU TruthfulQA Winograde GSM8K AVERAGE
PAFT (Ein-70B) 0.7986 0.9149 0.7805 0.7514 0.8777 0.7544 0.8129
Mixtral-8x22B-Instruct 0.727 0.8908 0.7777 0.6814 0.8516 0.8203 0.7915
Llama-3-70B-Instruct 0.7142 0.8569 0.8006 0.6181 0.8287 0.8544 0.7788
PAFT (TextBase-7B) 0.7389 0.9027 0.6478 0.7813 0.8603 0.6793 0.7684
Cohere-Command-R+ 0.7099 0.8856 0.7573 0.563 0.854 0.7074 0.7462
DBRX-132B-Instruct 0.6783 0.8885 0.7372 0.6702 0.8208 0.6732 0.7447
OpenChat-3.5 0.6604 0.8293 0.6504 0.519 0.8177 0.6816 0.693
Llama-3-8B-Instruct 0.6075 0.7855 0.6707 0.5165 0.7451 0.6869 0.6687
Mistral-7B-Instruct-v0.2 ~ 0.6314 0.8488 0.6078 0.6826 0.7719 0.4003 0.6571
Gemma-7B 0.6109 0.8247 0.6603 0.4491 0.7845 0.5277 0.6429

Table 2: Comparison with state-of-the-art LLMs on Open LLM Leaderboard (All the scores are
obtained from the Leaderboard.)

and DPO data. Our work underscores the enhanced efficacy of the parallel training approach PAFT,
which not only maintains the distinct advantages of SFT and DPO, but also outperforms these tech-
niques when they are used sequentially. This finding is confirmed by the evaluation results of using
Llama-3-8B as a base model.

4.3 SPARSE MERGING VS. DENSE MERGING

Our study has demonstrated the advantages of incorporating sparsity into fine-tuned models. In the
context of sequential training, the inclusion of L1 regularization has yielded a modest yet notable
improvement. Specifically, in the Mistral-7B section of Table[T] the average score for the sequential
SFTparse+DPO stands at 0.627, surpassing the sequential SFT+DPO without L1 regularization, with
a score of 0.625. Although the improvement is marginal, it underscores the value of integrating the
L1-norm to induce sparsity.

The impact of sparsity becomes more pronounced when examining parallel training scenarios.
Across all considered model merging techniques, Parallel SFT .. +DPO, i.e., PAFT, consistently
outperforms its counterpart without L1 regularization, Parallel SFT+DPO, thereby highlighting the
efficacy of the sparsity induced by L1-norm. Notably, in the case of the TIES and DARE TIES merg-
ing methods, the average score disparity is significant. With TIES, PAFT (SFTyq.+DPO) achieves
a score of 0.6524, while Parallel SFT+DPO without sparsification lags behind at 0.5893. Similarly,
for DARE TIES, PAFT (SFT,u5.+DPO) scores 0.6479, outstripping Parallel SFT+DPO’s 0.5726.
This substantial margin illustrates the robustness of L1-norm sparsity for various merging methods.

The same insights as given in the Mistral-7B section can be gained from the Llama-3-8B section in
Table[I] PAFT on Llama-3-8B significantly outperforms Parallel SFT+DPO and sequential training.
The experimental results confirm the generalizability of PAFT to various pre-trained models.

When comparing different model merging strategies, TIES generally performs better than other
methods do on both Mistral-7B and Llama-3-8B, exhibiting superior performance over DARE TIES.
DARE, which stands for "Drop And REscale”, is a method that explicitly increases sparsity by elim-
inating elements below a certain threshold and rescaling the remaining parameters. In contrast, the
L1-norm introduces sparsity implicitly by integrating it into the objective function. Consequently,
the impact of the eliminated terms is less pronounced in the final results compared to DARE. This
comparison reveals the advantages of the L1-norm’s explicit sparsity induction over the implicit
approach employed by DARE.

4.4 COMPARISON WITH STATE-OF-THE-ART LLMS

On the online Open LLM Leaderboard, we performed PAFT on the N eurotic-7BE] and MOM0-70BE]
base models. The two PAFT-ed models significantly improved over the respective base models, and
achieved Rank #1 in the 7B/8B model category and globally on the online Open LLM Leaderboar(ﬂ

3https://huggingface.co/liminerity/Neurotic—Jomainotrik-7b-slerp

*https://huggingface.co/leejunhyeok/MoMo—-70B-LoRA-V1.2_1

5https ://huggingface.co/spaces/open—-11lm-leaderboard-old/open_1l1lm_
leaderboard Uncheck the Private or deleted option to make our private Rank #1 model visible.
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LLM LC WinRate WinRate
GPT-4 Preview 50.0% 50.0%
Claude 3 Opus 40.5% 29.1%
PAFT 70B 38.6% 26.5%
GPT-4 (03/14) 35.3% 22.1%
Claude 3 Sonnet 34.9% 25.6%
Llama 3 70B Instruct 34.4% 33.2%
Mixtral 8x22B v0.1 30.9% 22.2%
PAFT 7B 30.6% 22.8%
DBRX Instruct 25.4% 18.4%
Mixtral 8x7B vO0.1 23.7% 18.3%
Llama 3 8B Instruct 22.9% 22.6%
GPT 3.5 Turbo 22.7% 14.1%
Mistral 7B v0.2 17.1% 14.7%

Table 3: Comparison with state-of-the-art LLMs on AlpacaEval benchmark using GPT-4 as a judge

A 1.0 0.1 0.01 0.001  0.0001 0.00001
0.6354 0.6408 0.6488 0.6524 0.6522  0.6505

Table 4: Performance ablation with various L1 regularization strengths (A\). Higher A increases
adapter sparsity but can degrade task performance if taken to an extreme.

respectively, showing the effectiveness of PAFT on various base models. Table[2] gives the results of
our PAFT-ed models and the existing state-of-the-art models on the Leaderboard.

Additionally, we compared the two PAFT-ed models with existing state-of-the-art LLMs on the Al-
pacaEval benchmark [Li et al.| (2023)), where every model generates responses to 805 questions on
different topics, mostly focused on helpfulness. The models are judged by GPT-4, and the final
metric is the pairwise win-rate against GPT-4. As shown in Table [3| the PAFT-ed 70B model out-
performs existing state-of-the-art LLMs, except GPT-4 Preview and Claude 3 Opus in LC (Length-
controlled) Win-Rate. While the GPT-4 judge favors its own GPT model family, the PAFT-ed 70B
model performs better than GPT-4 (03/14) and GPT 3.5 Turbo do. On the other hand, the PAFT-ed
7B model outperforms all the 7B/8B and smaller models on AlpacaEval. It even beats some larger
models, such as DBRX Instruct and Mixtral 8x7B.

5 ABLATION STUDIES

5.1 ROLE OF SPARSIFICATION FACTOR A\

We previously showed that sparsifying the SFT adapter with an L1 penalty (i.e., A||dsq|l1) helps
reduce parameter interference when merging with DPO. Here, we extend our ablation by varying A
over a wider range. Table[d]shows the average downstream performance on the same six Open LLM
benchmark tasks for Parallel SFTp, . + DPO using TIES merging under different A values. We
observe that A = 0.001 provides the best trade-off between sparsity and downstream performance.

5.2 EVALUATION ON ALPACAEVAL

Beyond the six classification-style tasks used by the Open LLM Leaderboard, we further evaluated
different training strategies on the AlpacaEval benchmark [Li et al| (2023). Table [5] shows that our
parallel training (PAFT) consistently surpasses sequential training in both the 7B and 70B model size
categories, indicating improved alignment and response quality. The parallel 70B model not only
outperforms the sequential 70B baseline, but also surpasses older snapshots of GPT-4 in some cases.
These results support our main claim that parallel training successfully retains both the specialized
skills from SFT and the alignment benefits from DPO while mitigating catastrophic forgetting.
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LLM LC WinRate WinRate
GPT-4 Preview 50.0% 50.0%
Claude 3 Opus 40.5% 29.1%
PAFT 70B 38.6% 26.5%
Sequential SFT+DPO 70B 36.2% 24.0%
DPO-alone 70B 35.5% 23.1%
GPT-4 (03/14) 35.3% 22.1%
PAFT 7B 30.6% 22.8%
Sequential SFT+DPO 7B 26.5% 19.3%
DPO-alone 7B 24.3% 18.1%
SFT-alone 7B 18.8% 17.0%

Table 5: Evaluation on AlpacaEval benchmark. “LC WinRate” denotes the length-controlled win
rate against GPT-4, while “WinRate” is the normal pairwise win rate.

6 CONCLUSION

LLM fine-tuning generally undergoes a two-stage training process, with SFT applied initially, fol-
lowed by preference alignment. Yet, research indicates that this sequential approach incurs an
“alignment tax”, compromising the LLM’s overall performance. To counteract this, we advocate
for a parallel training strategy PAFT which preserves the advantages of both SFT and preference
alignment without incurring the alignment tax associated with sequential training. A significant
hurdle in parallel training is the potential for conflict during the model merging phase, where the
merging of different adapters can lead to diminished performance. In this paper, we propose the in-
tegration of an L1 regularization to the training loss during the SFT phase to induce sparsity, thereby
reducing interference between models.

Our experimental results demonstrate the efficacy of incorporating an L1-norm into the SFT process
for sparsification and utilizing a parallel training framework over the typical sequential approach.
When combining all of them together, i.e. Parallel SFTpa.+DPO achieves the state-of-art results
on both the LLM leaderboard by HuggingFace and the AlpacaEval benchmark. The ORPO exper-
imental results given in the appendix show the same patterns, demonstrating the generalizability of
our PAFT to various preference alignment methods. This comprehensive strategy highlights how
the methods of integrating SFT with preference alignment can greatly enhance LLM fine-tuning.
Despite its effectiveness, the parallel training process is somewhat cumbersome, requiring two dis-
tinct stages: training SFT and DPO in parallel and then merging them together. A more streamlined
approach that integrates SFT and DPO training while preserving the benefits of both methods in a
single stage is highly desirable.
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Base Model: Meta-Llama-3-8B

Method ARC  HellaSwag MMLU TruthfulQA Winograde GSMS8K AVERAGE
PAFT (SFTparse+ ORPO)

SLERP 0.599 0.8217 0.665 0.4926 0.7845 0.4898 0.6421
Task Arithmetic 0.5964 0.8214 0.6655 0.4995 0.783 0.4814 0.6412
TIES 0.5947 0.8226 0.66358 0.4931 0.783 0.4852 0.64036
DARE TIES 0.593 0.8224 0.6637 0.4921 0.783 0.4738 0.638
Linear 0.5964 0.8206 0.6654 0.4923 0.7814 0.4905 0.6411
Parallel SFT+ORPO

SLERP 0.6049 0.8227 0.668 0.4905 0.783 0.4951 0.644
Task Arithmetic 0.6152 0.8209 0.6621 0.4908 0.7845 0.4989 0.6454
TIES 0.593 0.8139 0.6633 0.4446 0.768 0.467 0.6250
DARE TIES 0.5981 0.8101 0.66 0.4398 0.7632 0.4534 0.6208
Linear 0.6067 0.8222 0.6685 0.4868 0.783 0.4989 0.6444
Sequential

SFTpurse +ORPO 0.5563 0.8018 0.62116 0.4068 0.7719 0.3662 0.58736
SFT+ORPO 0.5589 0.8021 0.62142 0.4092 0.7711 0.3677 0.5884
Llama-3-8B 0.5547 0.8009 0.61854 0.3991 0.7619 0.3587 0.58231

Table 6: Results of compared methods with ORPO on the six benchmark tasks

A APPENDIX

A.1 PAFT GENERALIZATION TO DIFFERENT PREFERENCE OPTIMIZATION ALGORITHMS

To demonstrate the generality of parallel training with other preference-alignment algorithms, we
validated our approach using ORPO [Hong et al.| (2024)), which directly optimizes preferences be-
tween two candidate responses in single stage. Table [6] reports the results of combining SFT and
ORPO in parallel (denoted as Parallel SFT+ORPO and Parallel SFT,,,+ORPO) on a Llama-3-8B
base model. We observe the same pattern of parallel training consistently outperforming sequential
training.

Table [6] shows experimental results with ORPO as the preference alignment method alongside SFT
with the Llama-3-8B base model. We observe a similar trend where finetuning the LLM sequentially
via SFT followed by ORPO underperforms all the parallelly trained variants. Even simple model
merging methods such as Task Arithmetic and Linear merging perform strongly, outperforming
more complicated methods like DARE TIES in both experiment settings.

These findings confirm that the proposed Parallel SFT + preference alignment strategy is not specific
to DPO and generalizes effectively to other preference-based algorithms.

A.2 DISCUSSION

There are a couple of limitations of the parallel training of SFT and preference alignment. Firstly,
we have found that sparsity aids in model merging, though the reasons behind this benefit and why
DPO initially induces sparsity in the adapter remain unanswered.

Moreover, sparsity can reduce model interference during merging, but the scalability of this ap-
proach is still in question. If a merged model deployed in production fails in some cases, it is
underexplored how to improve the model responses in these cases. Directly performing SFT on
the merged model may lead to catastrophic forgetting of what it learned earlier. On the other hand,
parallel training necessitates merging a new SFT-ed model with the existing merged model, adding
complexity to the process.

The primary risk associated with this paper pertains to its data usage. Currently, UltraChat data is
employed for SFT, while UltraFeedback data is used for preference alignment. UltraChat consists
solely of multi-round dialogue data, which inherently limits its format diversity. To enhance the
robustness and applicability of the model, it is crucial to incorporate a wider variety of data types
beyond dialogue data. Additionally, UltraFeedback relies on annotations generated by GPT-4, which
inevitably include errors and inaccurate feedback. To mitigate these risks, higher-quality datasets
are needed in the future.
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