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ABSTRACT

Efficient long-context language modeling remains a significant challenge in Nat-
ural Language Processing (NLP). While Transformers dominate language tasks,
they struggle with long sequences due to quadratic computational complexity in
training and linearly scaling memory costs during inference. Recent State Space
Models (SSMs) such as Mamba offer alternatives with constant memory usage,
but they underperform in tasks requiring extensive in-context retrieval. We in-
troduce Taipan, a novel hybrid architecture that combines Mamba-2 with Selec-
tive Attention Layers (SALs). These SALs identify tokens requiring long-range
interactions, remove less important features, and then augment their representa-
tions using the attention module. This approach balances Mamba’s efficiency
with Transformer-like performance in memory-intensive tasks. By constraining
the attention budget, Taipan extends accurate predictions to context lengths of up
to 1 million tokens while preserving computational efficiency. Our experiments
demonstrate Taipan’s superior performance across various scales and tasks, offer-
ing a promising solution for efficient long-context language modeling.

1 INTRODUCTION

Transformer-based architectures Vaswani (2017); Brown (2020) have revolutionized Natural Lan-
guage Processing (NLP), delivering exceptional performance across diverse language modeling
tasks Touvron et al. (2023). This success stems from their ability to capture complex word de-
pendencies using the self-attention mechanism. In addition, Transformers are highly scalable and
well-suited for parallel training on large datasets. However, despite their success, they still face no-
table challenges when handling long-context sequences. Specifically, the self-attention mechanism
suffers from quadratic computational complexity, and the memory requirement grows linearly with
context length during inference, as the model must store key-value vectors for the entire context.
These factors impose practical constraints on sequence length due to the high computational and
memory costs.

To this end, recent advancements in recurrent-based architectures, particularly State Space Models
(SSMs) Gu et al. (2021b;a), have emerged as promising alternatives for efficient language modeling
Gu & Dao (2023); Dao & Gu (2024). SSMs offer constant memory usage during inference, and
architectures like Mamba-2 Dao & Gu (2024), a variant of SSMs, have demonstrated performance
comparable to Transformers in certain language tasks Waleffe et al. (2024). Some studies even
suggest that SSMs can outperform Transformers in areas like state tracking Merrill et al. (2024) due
to their Markovian nature. However, despite these advancements, SSM-based models still fall short
in scenarios requiring in-context retrieval or handling complex long-range dependencies Arora et al.
(2024); Waleffe et al. (2024).

To address these challenges, we introduce Taipan, a hybrid architecture that combines the effi-
ciency of Mamba with enhanced long-range dependency handling through Selective Attention Lay-
ers (SALs). While Mamba is highly efficient, it relies on the Markov assumption—where predictions
are based solely on the last hidden state—which can lead to information loss for tokens that need
interactions with distant tokens. To mitigate this, Taipan incorporates SALs that strategically select
key tokens in the input sequence requiring long-range dependencies. These selected tokens first
undergo feature refinement to remove unimportant information, and then are passed through an at-
tention module to capture long-range dependencies. Less critical tokens bypass the attention step, as
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Figure 1: Model Performance Comparison. a) Perplexity across different context lengths. Lower
perplexity indicates better performance. b) Latency comparison of models at various generation
lengths. Taipan exhibits significantly lower latency and superior scaling compared to other strong
baselines for longer sequences.

we hypothesize that their Markovian representations from Mamba contain sufficient information for
accurate prediction, obviating the need for additional attention-based augmentation. This selective
approach enables Taipan to balance Mamba’s computational efficiency with enhanced long-range
modeling capabilities.

SALs play a crucial role in Taipan’s design, both in enhancing performance and ensuring computa-
tional efficiency. By focusing the attention mechanism on a subset of important tokens, SALs reduce
the computational costs that come from attention modules. This targeted approach enables Taipan
to excel in memory-intensive tasks while maintaining efficiency during both training and inference.
Importantly, Taipan retains the linear memory usage characteristic of SSMs, offering a significant
advantage over traditional Transformer models in handling extremely long sequences.

We scale Taipan to 190M, 450M, and 1.3B parameters, pre-training on 100B tokens. Experimental
results demonstrate Taipan’s superior performance across a wide range of tasks. In zero-shot lan-
guage modeling evaluations, Taipan consistently outperforms both Transformer and Mamba base-
lines, showcasing its strong general language understanding capabilities. More notably, in memory-
intensive tasks such as long-context retrieval and structured information extraction, Taipan exhibits
significant improvements over Mamba-2, addressing a key limitation of existing recurrent-based
models. Furthermore, Taipan demonstrates remarkable extrapolation capabilities, maintaining high
performance on sequences up to 1 million tokens in context-length - while preserving efficient gen-
eration capabilities. This combination of broad task proficiency, superior performance in memory-
intensive scenarios, and exceptional long-context modeling positions Taipan as a versatile and pow-
erful architecture for advanced language processing tasks.

2 BACKGROUND

This section briefly overviews the foundational architectures relevant to our work. We first review
Causal Self-Attention Vaswani (2017), the core mechanism of Transformer models. We then discuss
Linear Attention Katharopoulos et al. (2020), an efficient variant that achieves linear complexity. Fi-
nally, we examine Mamba-2, a recent architecture that generalizes Linear Attention using structured
state-space models (SSMs) Dao & Gu (2024). We emphasize how each model balances computa-
tional efficiency and recall accuracy, particularly in memory-intensive tasks .

2.1 CAUSAL SELF-ATTENTION

Causal Self-Attention is the key component in Transformer architectures that allows each token
in a sequence to attend to all other previous tokens (Vaswani, 2017). Given an input sequence
X = [x1, . . . ,xL] ∈ RL×d, where L is the sequence length and d is the embedding dimension,
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self-attention firsts computes the query, key, and value vectors for each token via linear projections:

qi = WQxi, ki = WKxi, vi = WV xi

where WQ,WK ,WV ∈ Rd×d are learnable weight matrices.

Then, the attention output oi for each token xi will be calculated as a weighted sum of the value
vectors over the distribution of similarity matrix between its query vector and previous key vectors:

oi =

i∑
t=1

exp(q⊤
i kt/

√
d)∑i

j=1 exp(q
⊤
i kj/

√
d)

vt

The non-linear softmax distribution allows the models to capture intricate relationships between
tokens, and concentrate on salient features Qin et al. (2022); Zhao et al. (2019). As such, self-
attention can encode complex language patterns and long-range dependencies that are crucial for
complex language understanding and generation tasks.

2.2 LINEAR ATTENTION

To address the quadratic complexity, recent work has shown that it is possible to achieve linear
complexity with the attention mechanism by replacing the softmax attention with dot-product at-
tention (Shen et al., 2021; Katharopoulos et al., 2020). Given a feature transformation ϕ(x), causal
self-attention can be rewritten as:

oi =

i∑
t=1

ϕ(qi)
⊤ϕ(kt)∑i

j=1 ϕ(qi)⊤ϕ(kj)
vt

Then, using the associate property of matrix multiplication, this can be reformulated as:

oi =
ϕ(qi)

⊤ ∑i
t=1 ϕ(kt)v

⊤
t

ϕ(qi)⊤
∑i

t=1 ϕ(kt)

Let Si =
∑i

t=1 ϕ(kt)v
⊤
t and zi =

∑i
t=1 ϕ(kt). We can then rewrite the equation in a recurrent

form:

Si = Si−1 + ϕ(ki)v
⊤
i

oi =
Siϕ(qi)

z⊤i ϕ(qi)
≈ Siϕ(qi)

This formulation allows for efficient training and inference. Let Q,K,V ∈ RL×d be the query, key,
and value matrices of the sequence input X. During training, we can use the matrix multiplication
form: O = (QK⊤ ⊙ ML)V, where ML is a causal mask. At inference time, we can use the
recurrent form for efficient sequential processing.

However, despite its computational efficiency, linear attention has notable limitations compared to
softmax attention. The dot-product approximation in linear attention lacks the nonlinear normaliza-
tion of softmax, often resulting in a more uniform distribution of attention weights Han et al. (2023).
This uniformity can impair the model’s ability to focus sharply on specific and relevant tokens. Con-
sequently, linear attention models may underperform in tasks requiring precise in-context retrieval
or focused attention on particular input segments Han et al. (2023).

2.3 MAMBA-2

Mamba Gu & Dao (2023) is a variant of structured state space models (SSMs) that uses the selective
data-dependent mechanism. Mamba-2 Dao & Gu (2024) builds on this foundation, revealing deep
connections between SSMs and linear attention Katharopoulos et al. (2020) through the framework
of structured state-space duality (SSD).
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Figure 2: An overview of the Taipan architecture.

The core of Mamba-2 can be defined by using the recurrent form:
ht = Atht−1 +Btxt

ot = Ctht

where At is further simplified to a scalar multiplied by the identity matrix. This formulation allows
Mamba-2 to be interpreted as a generalization of linear attention.

The key insight of Mamba-2 is that this recurrence can be equivalently expressed as a matrix multi-
plication:

Ot = (Lt ⊙CtB
⊤
t )Xt

where L is a 1-semiseparable matrix. This matrix form reveals the duality between the recurrent
(linear-time) and attention-like (quadratic-time) computations. Also, the 1-semiseparable matrix L
encodes the temporal dependencies, while CB⊤ represents content-based interactions similar to
attention. This formulation generalizes linear attention, which can be seen as a special case where
L is the all-ones lower triangular matrix.

While Mamba-2 is efficient, it shares the same limitations as Linear Attention in terms of precise
memory recall Arora et al. (2024); Wen et al. (2024), leading to reduced performance in tasks that
demand accurate retrieval of specific sections in the input sequence.

3 TAIPAN MODEL

To address the limited modeling capabilities of Mamba-2 and Linear Attention while preserving
their computational efficiency, we introduce Taipan, a new architecture for sequence encoding in lan-
guage modeling. In Taipan, we strategically incorporate Selective Attention Layers (SALs) within
the Mamba framework, as shown in Figure 2. SALs are inserted after every K Mamba-2 blocks,
creating a hybrid structure that combines Mamba-2’s efficiency with Transformer-style attention for
effective sequence representation.

The core of SALs is a gating network that identifies important tokens for enhanced representation
modeling. These tokens undergo two phases: (1) feature refinement to filter out irrelevant infor-
mation and (2) representation augmentation via softmax attention. This allows Taipan to capture
complex, non-Markovian dependencies when necessary.

Taipan processes input through Mamba-2 blocks, with SALs periodically refining key token rep-
resentations. These enhanced representations are then passed into the subsequent Mamba-2 layers,
influencing further processing. This hybrid structure balances Mamba-2’s efficiency with the expres-
sive power of SALs, enabling Taipan to excel in tasks requiring both speed and accurate information
retrieval. The following sections detail each component’s structure and function.
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a) Causal Attention b) Sliding Window Attention c) Our Selective Attention

Figure 3: Attention mechanisms in Taipan’s Selective Attention Layers. White areas indicate no
attention. (a) Full Causal Attention (b) Sliding Window Attention (w = 4) (c) Selective Attention
(C = 0.3, w = 5)

3.1 SELECTIVE ATTENTION LAYERS

Selective Attention Layers (SALs) are the key innovation in Taipan, designed to enhance the model’s
ability to focus on critical tokens while maintaining overall efficiency. These layers employ a
lightweight gating network Gθ to dynamically determine which tokens should undergo softmax
attention processing.

For each token hidden representation hi in the input sequence, the gating network G computes a
score vector:

si = Gθ(hi) (1)
where Gθ : Rd → R2 is parameterized by θ. This score vector si = [si,0, si,1] serves two purposes:
1) it is used to generate a binary mask mi for token selection, and 2) it guides feature refinement.

To maintain differentiability while allowing for discrete token selection, we employ the Straight-
Through Gumbel-Softmax trick Jang et al. (2017). A binary mask mi is generated from si to select
tokens during the forward pass of the network:

mi = argmax(GumbelSoftmax(si, τ)) (2)

where τ is the temperature parameter. hi will only be selected for attention processing if mi = 1.

For the backward pass, we instead use continuous Gumbel-Softmax approximation of mi to achieve
computation differentiability for the network:

m̃i =
I[mi = 0] exp((si,0 + g0)/τ) + I[mi = 1] exp((si,1 + g1)/τ)

exp((si,0 + g0)/τ) + exp((si,1 + g1)/τ)
(3)

where I[] is the indicator function, and g0 and g1 are i.i.d samples from the Gumbel(0, 1) distribution.
In this way, we are able to train our entire model, including the gating network, in an end-to-end
fashion for language modeling.

For the selected tokens (those with a mask value mi of 1), we compute their attention-based repre-
sentations:

oi = Attention(qi,K,V) (4)
where qi is the query vector for the i-th selected token (denoted hs

i ), and K and V are the key and
value matrices for previous tokens.

In our model, the score vector si is also used to refine the representations of selected tokens. We
employ the softmax of si to compute the mixing weights: [1 − αi, αi] = softmax(si). The final
output for a selected token hs

i is a weighted combination:

hs
i = (1− αi)h

s
i + αioi (5)

As such, Taipan can adaptively preserve key information in hs
i while enriching the representation

with the attention output oi. In other words, αi acts as the data-dependent factor, filtering out
unimportant features from the original representation while integrating richer information from the
attention outputs. Here, it is important to note that unselected tokens (i.e., mi = 0) skip the attention
module and retain their original representations from Mamba-2.
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Finally, all token representations are passed through a residual SwiGLU Shazeer (2020) layer:

h = h+ SwiGLU(h) (6)

This final transformation ensures that all token representations undergo consistent non-linear pro-
cessing before being passed to the next layer in the network, enhancing the model’s ability to capture
complex dependencies.

3.2 SLIDING WINDOW ATTENTION

To maintain linear time complexity while leveraging the benefits of attention, Taipan employs Slid-
ing Window Attention (SWA) Beltagy et al. (2020). SWA’s computational complexity scales linearly
with sequence length, allowing Taipan to handle theoretically unlimited context lengths during infer-
ence. Importantly, the combination of Selective Attention and Sliding Window Attention in Taipan
leads to a significantly sparser attention weight map compared to full attention or standard windowed
attention (Figure 3), thus enhancing the computational efficiency of Selective Attention for process-
ing long sequences for our model. In addition, the sparser attention map allows us to afford a longer
sliding window (i.e., w = 2048 in our work) to effectively capture longer-range dependencies for
input sequences. In this way, our designed Taipan architecture offers a mechanism to balance the ef-
ficient processing of long sequences with the ability to capture important long-range dependencies,
thereby addressing a key limitation of existing efficient attention mechanisms. Finally, removing
positional embeddings from the Attention Module improves extrapolation capabilities, suggesting
that the model can better generalize temporal relationships. We explore this impact of positional
embeddings in more detail in Section 5.2.

3.3 TRAINING AND INFERENCE

To better balance efficiency and expressiveness, we introduce an attention budget constraint. Given a
predefined budget C, representing the desired fraction of tokens to receive attention, we incorporate
a constraint loss into our training objective:

Lconstraint =

N∑
n=1

∥∥∥∥∥C −
∑L

i=1 mi

L

∥∥∥∥∥
2

2

(7)

Here, N is the number of SALs, L is the sequence length, and
∑L

i=1 mi represents the number of
tokens selected for attention processing. During training, we employ the Straight Through Gumbel
Softmax estimator for m̃i in the backward pass Jang et al. (2017); Bengio et al. (2013), ensuring
differentiability while maintaining discrete token selection in the forward pass, thereby enabling
end-to-end training of the entire model. As such, our overall training objective includes a standard
cross-entropy loss LCE for language modeling and the budget constraint term: L = LCE+λLconstraint,
where λ is a hyperparameter.

During inference, Taipan processes input tokens sequentially through Mamba-2 blocks. At each Se-
lective Attention Layer, the gating network Gθ computes a score vector si = Gθ(hi) for each token
representation hi. This score computes a binary mask mi to determine if hi should be used for at-
tention processing. Consequently, our selective attention approach maintains Mamba-2’s efficiency
for most tokens while applying targeted attention to critical elements, enabling effective long-range
dependency modeling with minimal computational overhead.

4 EXPERIMENTS

We conducted extensive experiments to evaluate Taipan’s performance across various scales and
tasks. Our evaluation strategy focuses on three main areas: (1) zero-shot evaluation on diverse
benchmarks to demonstrate Taipan’s general language understanding capabilities (Section 4.2), (2)
in-context retrieval tasks to assess Taipan’s ability to retrieve information from historical contexts
(Section 4.3), and (3) extrapolation ability in long-context scenarios to evaluate performance on
extremely long sequences (Section 4.4).
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4.1 EXPERIMENTAL SETUP

We evaluate Taipan across three model sizes: 190M, 450M, and 1.3B parameters. To ensure a
comprehensive and fair comparison, we benchmark Taipan against three strong baselines:

• Transformer++ Touvron et al. (2023): An enhanced version of the LLaMA architec-
ture Touvron et al. (2023), incorporating Rotary Positional Embeddings Su et al. (2024),
SwiGLU Shazeer (2020), and RMSNorm Zhang & Sennrich (2019).

• Mamba-2 Dao & Gu (2024): A state-of-the-art linear RNN model based on State Space
Models (SSMs). Each Mamba-2 block consists of a depthwise convolutional layer Poli
et al. (2023); Gu & Dao (2023), an SSM layer Dao & Gu (2024), and MLP layers.

• Jamba Lieber et al. (2024): A hybrid model combining full Causal Self-Attention layers
(with Rotary Position Embedding Su et al. (2024)) and Mamba-2 layers. Unlike Taipan,
Jamba uses full Causal self-attention instead of selective attention, retains positional em-
beddings, and lacks a feature refinement mechanism.

Implementation Details We train all models from scratch in three configurations: 190M, 450M,
and 1.3B parameters. The training process is consistent across configurations with the following
hyperparameters: a batch size of 0.5M tokens per step, a cosine learning rate schedule with 2000
warm-up steps, and AdamW Loshchilov (2017) optimization with a peak learning rate of 5e − 4
decaying to a final rate of 1e− 5. We apply a weight decay of 0.01 and use gradient clipping with a
maximum value of 1.0. All models are trained with a fixed context length of 4096 tokens.

The training data size varies by model scale: the 190M model is trained on 27 billion tokens, while
the 450M and 1.3B models are trained on 100 billion tokens. The dataset details can be found in
Appendix A.

For Taipan-specific implementation, we use a hybrid ratio of 6 : 1, inserting a Selective Attention
Layer (SAL) after every 6 Mamba-2 Blocks. The Mamba-2 blocks are kept identical to the original
work Dao & Gu (2024). We set the attention capacity C = 0.15. The sliding window attention
mechanism uses a window size (w) of 2048 tokens.

Params Model Wino. PIQA Hella. ARCE ARCC OB. Truth. RACE BoolQ Avg.
& Data

Transformer++ 47.1 60.9 27.9 42.2 20.5 18.9 42.9 25.4 57.2 38.1
190M Mamba 49.6 60.7 29.3 45.3 21.8 20.6 40.8 27.2 59.3 39.4
27B Jamba 49.9 60.3 29.2 46.3 21.4 18.5 39.8 27.4 58.6 39.1

Taipan 51.0 62.6 29.4 46.7 20.7 21.8 41.1 26.6 58.7 39.9
Transformer++ 51.5 67.6 42.3 60.8 27.7 33.4 39.2 30.5 54.7 45.3

450M Mamba 52.7 68.9 42.7 61.4 27.1 34.0 38.5 29.3 53.2 45.3
100B Jamba 53.1 69.3 44.3 62.6 28.7 34.4 37.5 31.3 55.7 46.3

Taipan 53.0 69.6 46.6 65.6 32.9 36.6 38.6 30.7 60.4 48.2
Transformer++ 53.8 71.6 53.8 63.2 36.3 36.4 44.0 31.2 59.4 49.9

1.3B Mamba 55.2 73.0 55.6 70.7 38.0 39.0 39.9 32.0 61.8 51.7
100B Jamba 54.7 73.8 55.8 69.7 37.6 41.8 40.4 32.8 59.2 51.8

Taipan 57.0 74.9 57.9 71.2 39.3 40.4 43.0 34.4 61.5 53.3

Table 1: Zero shot results of Taipan against baseline models.

4.2 LANGUAGE MODELING PERFORMANCE

We report the zero-shot performance of Taipan and baseline models on a diverse set of common-
sense reasoning and question-answering tasks. These include Winograd (Wino.) Sakaguchi et al.
(2021), PIQA Bisk et al. (2020), HellaSwag (Hella.) Zellers et al. (2019), ARC-easy and ARC-
challenge (ARCe & ARCc) Clark et al. (2018), OpenbookQA (OB.) Mihaylov et al. (2018), Truth-
fulQA (Truth.) Lin et al. (2021), RACE Lai et al. (2017), and BoolQ Clark et al. (2019). It is
worth noting that these tasks are brief and do not involve in-context learning, thus inadequately
demonstrating long-context modeling or in-context learning retrieval abilities.
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Table 1 presents the zero-shot results for models of three sizes: 190M, 450M, and 1.3B parameters.
The results are evaluated using the lm-evaluation-harness1 Gao et al. (2024) framework.

As can be seen, Taipan consistently outperforms the baseline models across most tasks for all model
sizes. Notably, the performance gap widens as the model size increases, with the 1.3B Taipan model
showing significant improvements over other baselines. This suggests that Taipan’s architecture
effectively captures and utilizes linguistic patterns, even in tasks that do not fully showcase its long-
context modeling capabilities.

4.3 IN-CONTEXT RECALL-INTENSIVE PERFORMANCE

To evaluate Taipan’s proficiency in precise in-context retrieval, we assessed all models on a set
of recall-intensive tasks Arora et al. (2024). These tasks are designed to test a model’s ability to
extract and utilize information from longer contexts, a capability particularly relevant to Taipan’s
architecture. Our evaluation suite includes two types of tasks: structured information extraction and
question answering. For structured information extraction, we used the SWDE and FDA tasks Arora
et al. (2024), which involve extracting structured data from HTML and PDF documents, respectively.
To assess question-answering capabilities, we employed SQuAD Rajpurkar et al. (2018), which
requires models to ground their answers in provided documents.

Params Model SWDE FDA SQuAD Avg.

450M

Transformer++ 43.0 48.7 18.1 36.6
Mamba 27.9 9.8 12.5 16.7
Jamba 35.4 36.6 16.3 29.4
Taipan 41.4 39.6 17.8 32.9

1.3B

Transformer++ 64.2 64.5 41.2 56.6
Mamba 48.6 32.3 31.2 37.4
Jamba 56.4 49.7 33.4 46.5
Taipan 61.5 59.7 36.9 52.7

Figure 4: Performance on in-context retrieval tasks.

Table 4 demonstrates Taipan’s significant
performance advantages over both Mamba
and Jamba in in-context retrieval tasks.
Notably, Taipan achieves this superiority
while consuming fewer computational re-
sources than Jamba, which utilizes full at-
tention mechanisms. This efficiency is
attributed to Taipan’s architecture, which
combines Mamba-like elements with se-
lective attention mechanisms, allowing
it to filter out less important features.
We also notice that Transformers excel
at memory-intensive tasks in this exper-
iment; however, they are constrained by

linear memory scaling with sequence length, limiting their effectiveness and applicability for very
long sequences. In contrast, Taipan maintains constant memory usage, offering a more efficient
solution for processing long documents.

4.4 LONG-CONTEXT EXTRAPOLATION

Figure 1 illustrates Taipan’s superior performance in handling extended sequences compared to
Transformer, Jamba, and Mamba models. In perplexity evaluations across context lengths from
1K to 1M tokens (Figure 1a), Taipan yields the lowest perplexity, particularly excelling beyond
the training context length. This performance contrasts sharply with other models: Transformers
struggle with longer contexts due to quadratic computational complexity and linear memory scaling
with sequence length, often leading to out-of-memory errors. Jamba, despite its hybrid nature, faces
similar challenges due to its use of full attention mechanisms. Both Transformer and Jamba mod-
els exhibit limited extrapolation ability beyond their training context lengths. Mamba, while more
efficient than Transformers and Jamba, still shows performance degradation for very long sequences.

Latency comparisons (Figure 1b) further highlight Taipan’s exceptional efficiency. It demonstrates
the lowest latency among all models, with linear scaling across sequence lengths. This contrasts
with the quadratic scaling of Transformers and higher latency growth of Jamba. Notably, Taipan
consistently outperforms Mamba-2, primarily due to its selective attention mechanism.

1https://github.com/EleutherAI/lm-evaluation-harness
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5 ABLATION STUDY

We conducted a comprehensive ablation study to investigate the effect of the two key components
in Taipan’s architecture, i.e., the attention budget capacity C and the inclusion of Positional Embed-
dings in the SALs, on its performance and efficacy.

5.1 EFFECT OF ATTENTION BUDGET CAPACITY

Our first experiment aimed to determine the optimal value of Capacity C that would maintain com-
putational efficiency while maximizing performance on downstream tasks. We trained multiple
variants of Taipan, each with 1.3B parameters, using different Capacity C values: 0.10, 0.15, 0.20,
and 0.25. Each variant was trained for 24, 000 steps, allowing us to observe both the immediate
impact of different C values and their effect on model performance over time.

We evaluated the performance of each variant at regular intervals on two representative tasks: SWDE
Arora et al. (2024) (for structured information extraction) and HellaSwag Zellers et al. (2019) (for
commonsense reasoning). These tasks were chosen to assess both the model’s ability to handle
long-context retrieval and its general language understanding capabilities.
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Figure 5: Effect of Attention Budget Capacity C on Taipan’s Performance

As illustrated in Figure 5, Taipan achieves optimal performance with a Capacity C = 0.15. We
observed that increasing C beyond 0.15 does not lead to significant improvements in results while
increasing computational costs. Conversely, reducing C below 0.15 resulted in a noticeable drop
in performance on tasks requiring precise in-context retrieval or complex long-range dependencies.
These findings support our hypothesis that computational demands vary across tokens, with many
adequately represented by Mamba’s Markovian structure without requiring attention mechanisms.
By selectively applying attention only to tokens that benefit from it, Taipan optimizes resource
allocation, enabling high performance while improving computational efficiency.

5.2 IMPACT OF POSITIONAL EMBEDDINGS

Our second experiment investigated the impact of Positional Embeddings in Taipan’s Attention
mechanism, focusing on the model’s ability to handle and generalize to various context lengths.
We trained two variants of the 1.3B parameter Taipan model for 24, 000 steps with a fixed context
length of 4096 tokens. One variant incorporates Rotary Positional Embeddings Su et al. (2024) in
the Selective Attention layers, while the other excludes them. Figure 6 illustrates the performance
of both variants in terms of perplexity across different context lengths.

The results reveal that Taipan without Positional Embeddings performs superiorly in generalizing
context lengths beyond the training context. Both variants show comparable performance for se-
quences similar to or shorter than the training context length. However, as the sequence length
increases, the performance gap between the two variants widens, with Taipan without Positional
Embeddings maintaining lower perplexity scores. This suggests that the absence of Positional Em-
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beddings enables more robust scaling to longer sequences. We attribute this improved generalization
to the model’s increased reliance on attention representation rather than positional biases.

6 RELATED WORK

1k 2k 4k 8k 16k 32k 64k 128k
Sequence Length
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Figure 6: Perplexity comparison of Taipan vari-
ants with and without Positional Embeddings
across different context lengths. Lower perplex-
ity indicates better performance.

Our approach builds on a foundation of rele-
vant previous research. We will now discuss
key studies that inform our methodology.

State Space Models: SSMs have emerged
as a promising approach in attention-free
architectures for language processing tasks.
These models offer improved computational
and memory efficiency compared to traditional
attention-based models. The development of
SSMs has progressed through several key iter-
ations: S4 Gu et al. (2021a) introduced the first
structured SSM, focusing on diagonal and di-
agonal plus low-rank (DPLR) structures. Sub-
sequent variants like DSS Gupta et al. (2022),
S4D Gu et al. (2022), and S5 Smith et al.
(2023) improved on this foundation. Frame-
works like GSS Mehta et al. (2023), H3 Fu
et al. (2023), and RetNet Sun et al. (2023) in-
corporated SSMs into broader neural network
architectures, often combining them with gat-
ing mechanisms or efficient attention approximations. Recently, Mamba Gu & Dao (2023) intro-
duced time-varying or selective SSMs, which addresses limitations of static dynamics in previous
SSMs by incorporating input-dependent state transitions, leading to improved performance in vari-
ous tasks.

Hybrid Architecture: Several recent studies H3 Fu et al. (2023), Griffin De et al. (2024), Zamba
Glorioso et al. (2024), Jamba Lieber et al. (2024) suggest the potential of blending SSM and the
attention mechanism. These hybrid designs show promise in outperforming both traditional Trans-
formers and pure SSM architectures, such as Mamba, particularly in scenarios requiring in-context
learning capabilities.

Long Context Models: Recent advancements in sequence modeling have pushed the boundaries
of context length, each with distinct approaches and challenges. Recurrent Memory Transformer
Bulatov et al. (2023) demonstrated 1M token processing, but primarily on synthetic memorization
tasks. LongNet Ding et al. (2023) proposed scalability to 1B tokens, yet practical evaluations were
limited to sequences under 100K tokens. Hyena/HyenaDNA Poli et al. (2023); Nguyen et al. (2023)
claimed 1M token context, but faced efficiency issues at longer lengths. Mamba Gu & Dao (2023)
showed consistent improvements up to 1M tokens in DNA modeling and competitive performance
across various language tasks.

7 CONCLUSION

Taipan presents a significant advancement in long-context language modeling by combining the effi-
ciency of Mamba with strategically placed Selective Attention Layers. Our experiments demonstrate
Taipan’s superior performance across various scales and tasks, particularly in scenarios requiring ex-
tensive in-context retrieval, while maintaining computational efficiency. A key insight is that not all
tokens require the same computational resources. Taipan’s architecture leverages this observation
through its selective attention mechanism, which dynamically allocates computational resources
based on token importance. This hybrid approach addresses limitations of both Transformers and
SSMs, offering a promising solution for efficient, large-scale language processing. Future work
could explore further optimizations and applications of this architecture.
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A DATASETS

Our training data comprises a diverse set of datasets, carefully curated to ensure breadth and depth
across various domains. This diverse collection includes specialized mathematics datasets (Meta-
MathQA Yu et al. (2023), NuminaMath-CoT LI et al. (2024), OpenWebMath Paster et al. (2023),
Orca-Math Mitra et al. (2024)), high-quality web data (Fineweb-Edu-dedup Ben Allal et al. (2024)),
synthetic data (Cosmopedia-v2 Ben Allal et al. (2024)), code data (Starcoderdata-python-edu Li
et al. (2023)), and general knowledge sources (Wikipedia). This comprehensive approach aims to
enable our model to handle a wide array of language modeling tasks. The inclusion of both domain-
specific and broad-coverage datasets is designed to enhance the model’s versatility and robustness
across language modeling tasks.

All datasets were tokenized using the LLama3’s tokenizer Dubey et al. (2024), resulting in 300B
tokens.

The training data size varies by model scale: the 190M model is trained on 27 billion tokens (ex-
clusively from Cosmopedia-v2), while the 450M and 1.3B models are trained on 100 billion tokens
sampled from the combination of datasets mentioned above. Below are detailed descriptions of each
dataset used:

1. MetaMathQA Yu et al. (2023): A comprehensive mathematics dataset designed to en-
hance the model’s mathematical reasoning and problem-solving abilities.

2. NuminaMath-CoT LI et al. (2024): A chain-of-thought mathematics dataset that promotes
step-by-step reasoning in mathematical problem-solving.

3. Cosmopedia-v2 Ben Allal et al. (2024): A large-scale synthetic dataset for pre-training,
consisting of over 39 million textbooks, blog posts, and stories.

4. Fineweb-Edu-dedup Ben Allal et al. (2024): A high-quality subset of the FineWeb-Edu
dataset, containing 220 billion tokens of educational web pages. This dataset was filtered
using an educational quality classifier to retain only the most valuable educational content.
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5. OpenWebMath Paster et al. (2023): A diverse collection of mathematical content from
over 130,000 different domains, including forums, educational pages, and blogs. It covers
mathematics, physics, statistics, computer science, and related fields.

6. Starcoderdata-Edu Li et al. (2023): A subset of the Starcoder dataset, specifically filtered
for high-quality educational content related to Python programming. This dataset aims to
enhance the model’s coding capabilities.

7. Orca-Math Mitra et al. (2024): A dataset focused on mathematical word problems, de-
signed to improve the model’s ability to interpret and solve practical mathematical scenar-
ios.

8. Wikipedia: An English Wikipedia dataset providing a broad range of general knowledge
across various topics.
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