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Abstract
Modern policy optimization methods roughly fol-
low the policy mirror descent (PMD) algorithmic
template, for which there are by now numerous
theoretical convergence results. However, most
of these either target tabular environments, or can
be applied effectively only when the class of poli-
cies being optimized over satisfies strong closure
conditions, which is typically not the case when
working with parametric policy classes in large-
scale environments. In this work, we develop a
theoretical framework for PMD for general policy
classes where we replace the closure conditions
with a strictly weaker variational gradient dom-
inance assumption, and obtain upper bounds on
the rate of convergence to the best-in-class pol-
icy. Our main result leverages a novel notion of
smoothness with respect to a local norm induced
by the occupancy measure of the current policy,
and casts PMD as a particular instance of smooth
non-convex optimization in non-Euclidean space.

1. Introduction
Modern policy optimization algorithms (Peters & Schaal,
2006; 2008; Lillicrap, 2015; Schulman et al., 2015; 2017)
operate by solving a sequence of stochastic optimization
problems, each of which being roughly equivalent to:

𝜋𝑘+1 ← arg min
𝜋∈Π

𝔼𝑠∼𝜇𝑘

[〈
𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝐵(𝜋𝑠 , 𝜋𝑘𝑠 )

]
, (1)

where 𝜇𝑘 is a state probability measure (typically related,
or equal to, the occupancy measure of the current policy
𝜋𝑘) from which sampling is granted through interaction
with the environment; 𝑄𝑘 is an estimate of the action-value
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function of 𝜋𝑘 , and 𝐵 is a distance-like function employed to
regularize the update so as to not stray too far from 𝜋𝑘 . The
solution to Equation (1) is usually produced by optimizing
a parametric neural network model 𝜋𝜃 (known as the actor,
or policy network) via multiple steps of stochastic gradient
descent, and consequently, the policy class Π is the set of
policies representable by the model; Π = {𝜋𝜃 | 𝜃 ∈ ℝ𝑝},
where 𝑝 denotes the number of parameters in the network.

Contemporary theoretical analyses of this algorithm (Shani
et al., 2020; Agarwal et al., 2021; Xiao, 2022; Ju & Lan,
2022; Zhan et al., 2023; Yuan et al., 2023; Alfano et al.,
2023) all have their roots in the online Markov decision pro-
cess (MDP) framework, and roughly build on decomposing
Equation (1) state-wise and casting the problem as a collec-
tion of independent online mirror descent steps (Even-Dar
et al., 2009). The disadvantage of such an approach lies
in the requirement that the update step be exact (or almost
exact) in each state independently, effectively limiting the
applicability of such analyses to policy classes that are com-
plete, (i.e., Π = Δ(A)S), or otherwise satisfy strong closure
conditions.

Largely, papers that develop convergence upper bounds for
algorithms following Equation (1), commonly known as
Policy Mirror Descent (PMD; Tomar et al., 2020; Xiao,
2022; Lan, 2023), fall into two main categories. The first
category includes studies that target the tabular setup (e.g.,
Geist et al., 2019; Shani et al., 2020; Agarwal et al., 2021;
Xiao, 2022; Johnson et al., 2023; Lan, 2023; Zhan et al.,
2023), where no sampling distribution 𝜇𝑘 is involved (or it
has no effect) and updates are performed in a per-state man-
ner. The second category consists of papers that consider
parametric policy classes (e.g., Agarwal et al., 2021; Alfano
& Rebeschini, 2022; Ju & Lan, 2022; Yuan et al., 2023; Al-
fano et al., 2023; Xiong et al., 2024) often building—either
directly or indirectly—on the compatible function approx-
imation framework (Sutton et al., 1999). As such, these
works essentially assume that the update in Equation (1)
remains “close” to the one that would have been performed
over the complete policy class (see Section 1.2 for further
discussion). This state of affairs is (at least partially) due to
the fact that policy gradient methods in the general policy
class setting are prone to local optima (Bhandari & Russo,
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2024), and as a result, structural assumptions are necessary
to establish global optimality guarantees.

The present paper aims to establish best-in-class conver-
gence of PMD (Equation (1)) for general policy classes,
relaxing the stringent closure conditions and assuming in-
stead a variational gradient dominance (VGD) condition
(Bhandari & Russo, 2024; Agarwal et al., 2021; Xiao, 2022).
It can be shown that a general form of closure conditions
implies VGD and that the converse does not hold, hence it
is a strict relaxation of the setup assumptions (see detailed
discussion in Section 1.2 and Appendix A). Our main result
features a novel analysis technique that casts Equation (1) as
a particular instance of smooth non-convex optimization in a
non-Euclidean space, where the smoothness of the objective
is w.r.t. a local norm induced by the current policy occu-
pancy measure. Importantly, this approach leads to rates
independent of the cardinality of the state space. In contrast,
previous results that establish convergence of gradient based
methods (though not of PMD; e.g., Agarwal et al., 2021;
Bhandari & Russo, 2024; Xiao, 2022) that are applicable
in our setting, lead to bounds that depend on the size of
the state-space, thus rendering them useful only in tabular
setups.

1.1. Main results

We consider the problem of finding an (approximately) op-
timal policy in a discounted MDPM = (S,A,ℙ, 𝑟, 𝛾, 𝜌0)
within a general policy class Π ⊂ Δ(A)S . We assume
the action set is finite 𝐴 := |A|, and denote the effective
horizon by 𝐻 := 1

1−𝛾 . Our goal is to minimize the value
𝑉 (𝜋), defined as the long term discounted cost (we interpret
𝑟 : S × A → [0, 1] as measuring regret, or cost). Our cen-
tral structural assumption, that replaces and relaxes specific
closure conditions, is the following.

Definition 1 (Variational Gradient Dominance). We say
that Π satisfies a (𝐶★, 𝜀vgd)-variational gradient domi-
nance (VGD) condition w.r.t. M, if there exist constants
𝐶★, 𝜀vgd > 0, such that for any policy 𝜋 ∈ Π:

𝑉 (𝜋) −𝑉★(Π) ≤ 𝐶★max
�̃�∈Π
⟨∇𝑉 (𝜋), 𝜋 − �̃�⟩ + 𝜀vgd. (2)

We note that any policy class satisfies the above conditions
with some 𝐶★ ≥ 1, 𝜀vgd ≤ 𝐻, and that the complete policy
class is (𝐻 ∥𝜇★/𝜌0∥∞ , 0)-VGD w.r.t. any MDP (see Bhan-
dari & Russo, 2024; Agarwal et al., 2021, and Lemma 16
for completeness). Our main result is the following.
Theorem (informal). Let Π ⊂ Δ(A)S be convex and as-
sume it satisfies (𝐶★, 𝜀vgd)-VGD w.r.t.M. Suppose further
that the actor and critic are approximately optimal up to
some error 𝜀stat > 0. Then, with well tuned 𝜀-greedy explo-
ration and learning rate 𝜂, we have that the PMD method
(Equation (1)) converges as follows. With Euclidean regu-

larization, 𝑉 (𝜋𝑘) −min𝜋★∈Π 𝑉 (𝜋★) =

O
(
𝐶2
★𝐻

3𝐴3/2

𝑘2/3 +
(
𝐶★𝐻 + 𝐴𝐻2𝑘1/6

) √
𝜀stat + 𝜀vgd

)
,

and with negative Entropy regularization, we have that
𝑉 (𝜋𝑘) −min𝜋★∈Π 𝑉 (𝜋★) =

O
(
𝐶2
★𝐻

3𝐴3/2

𝑘2/7 +
(
𝐶★𝐻 + 𝐴2𝐻3𝑘4/7

) √
𝜀stat + 𝜀vgd

)
,

where the big-O only suppresses constant numerical factors.

To obtain our main result, our analysis casts PMD as a
proximal point algorithm in a non-Euclidean setting (see
Teboulle, 2018 for a review), where the proximal operator
uses a regularizer that adapts to local smoothness of the ob-
jective. As we demonstrate in Lemma 2, the approximation
error of the linearization of the objective 𝑉 (·) at 𝜋𝑘 can be
bounded w.r.t. the local norm ∥·∥𝐿2 (𝜇𝑘 ) ; crucially, a norm
according to which the decision set Π has diameter indepen-
dent of the cardinality of the state-space. This significantly
deviates from the commonly used smoothness of the value
function w.r.t. the Euclidean norm (Agarwal et al., 2021),
which assigns a diameter of |S| to Π, and therefore leads to
rates that have merit only in tabular environments.

1.2. Discussion: VGD vs. Closure

Our work establishes best-in-class convergence subject to
the VGD condition presented in the previous section. This is
a substantially different starting point than that of the preva-
lent closure conditions based on the compatible function
approximation approach (Sutton et al., 1999) assumed in
recent works on parametric policy classes (Agarwal et al.,
2021; Yuan et al., 2023; Alfano et al., 2023; Xiong et al.,
2024). The assumptions employed in these works fall into
two main categories; The first and more general one is that
of a bounded approximation error (e.g., Alfano et al., 2023;
Yuan et al., 2023), which essentially requires that the update
step in Equation (1) be close (up to a small error) to the
update that would have been performed over the complete
policy class Πall := Δ(A)S . The second is that of bounded
transfer error (e.g., Agarwal et al., 2021; Yuan et al., 2023),
which roughly requires that the update be accurate (up to
a small error) when accuracy is measured over the optimal
policy occupancy measure. This assumption is commonly
employed in the specific log-linear policy class setup; to
the best of our knowledge, there do not exist results that
employ these conditions in a fully general policy class set-
ting (Agarwal et al., 2021 consider a non-PMD method in a
bounded transfer error setup where the policy class satisfies
additional smoothness assumptions).

The relation between closure and VGD is subtle, primarily
because closure conditions are algorithm dependent. Typ-
ically, they relate to one or more of the following three
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Table 1: Comparison of assumptions and bounds of representative prior works for PMD with fixed step size. Columns refer to assumptions
required either implicitly or explicitly by different works. VGD is implied by a natural extension of closure; see Appendix A.1 for
further details. The Realizability column refers to approximate realizability, which is implied by closure conditions. The Rate column
suppresses all factors other than 𝐾, and ignores error floors. • Closure (perfect): The policy class is closed to a PMD update up to
ℓ∞-norm error. • Closure (approx): The policy class is closed to a PMD update up to error that depends on the sampling distribution. •
General dual with EMaP parametrization: EMaP stands for Exact Mirror and Project; in these works the policy class is induced by a
general dual variable parametrization, combined with an operator that performs the mirror and project steps accurately.

Paper VGD Π Convexity Realizability Closure Parametric
Assumptions Rate

Xiao (2022);
Lan (2023) Yes Noa Yes Yes (perfect) Tabular 1/𝐾

Yuan et al. (2023) Yesb No Yes Yes (approx) Log-linear 1/𝐾

Ju & Lan (2022)c Yes No Yes Yes (perfect) General dual
w/ EMaP 1/

√
𝐾

Alfano et al. (2023) Yes No Yes Yes (approx) General dual
w/ EMaP 1/𝐾

This Workd Yes Yese No No No 1/𝐾2/3

a Prior works on the tabular setting typically assume the policy class is complete Π = Δ(A)S , and thus convex. However their
arguments extend to the case that Π satisfies perfect closure, which eliminates the need for Π being convex.

b We refer to the bounds obtained by Yuan et al. (2023) subject to bounded approximation error. Yuan et al. (2023) also obtain
convergence subject to bounded transfer error — it is unclear to what extent (if at all) bounded transfer error implies VGD.

c Ju & Lan (2022) also obtain an 𝑂 (1/𝐾) rate for regularized PMD.
d We report our rate for Euclidean PMD. More generally, our bounds depend on the smoothness of the action regularizer, and

dependence on 𝐾 degrades for non-Euclidean regularizers such as negative entropy.
e Assuming only VGD without closure, our analysis requires convexity of Π. However, in the presence of closure assumptions such as

those of Alfano et al. (2023), our analysis does not require convexity of Π (see Appendix A.2 for further details).

elements; step-size range, action regularizer, and the partic-
ular algorithmic approach employed to solve Equation (1).
At the same time, the VGD condition is algorithm indepen-
dent, as it relates only to the policy class-MDP combination.
Nonetheless, as we show in Appendix A.1, a reasonable
extension of PMD closure conditions implies variational
gradient dominance, effectively establishing PMD closure
⇒ VGD. At a high level, this builds on a similar claim
from Bhandari & Russo (2024), that closure to policy im-
provement implies VGD. We further demonstrate in Ap-
pendix A.3 that the converse does not hold; that there exist
simple examples where the VGD condition holds whereas
closure does not take place. We refer to Table 1 for a high
level comparison between our work and prior art, and con-
clude this section with the following additional remarks.

• Realizability. Closure conditions generally imply
(approximate) realizability, thus under this assump-
tion convergence w.r.t. the true optimal policy 𝜋★ =

arg min𝜋∈Δ(A)S 𝑉 (𝜋) is possible. We do not assume real-
izability and therefore prove convergence to the optimal
in-class policy. Specifically, all prior works prove bounds
that only hold in (approximately) realizable settings, while
our bounds do not require realizability.

• Geometric rates. Table 1 reports rates for fixed step

size PMD. Many prior works that study PMD in the tabu-
lar setup or subject to closure conditions establish linear
convergence for geometrically increasing step size se-
quences (Xiao, 2022; Johnson et al., 2023; Yuan et al.,
2023; Alfano et al., 2023). We do not expect such rates
are possible assuming only VGD. Roughly speaking, the
reason these rates are attainable subject to closure is that
the algorithm dynamics mimic those of policy iteration in
the tabular setting, where convergence is indeed at a lin-
ear rate. Assuming only VGD, policy iteration no longer
converges, as the policy class loses the favorable structure
allowing for convergence of such an aggressive algorithm.
This should highlight the value in studying the function
approximation setup without closure assumptions.

• Convexity of the policy class. Unlike prior works, we
consider VGD instead of closure but additionally require
convexity of the policy class Π. However, subject to
perfect closure, it can be shown that the iterates of PMD
satisfy optimality conditions w.r.t. a convex policy class
that contains Π (concretely, it will be the complete policy
class Δ(A)S), which is the key element required in our
analysis. Thus, our analysis accommodates non convex
policy classes as long as perfect closure holds. We refer
the reader to Appendix A.2 for a more formal discussion.
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1.3. Additional Related work

PMD with non-tabular policy classes. Most closely re-
lated to our work are papers that study convergence of PMD
in setups where the policy class is given by function approx-
imators (Vaswani et al., 2022; Ju & Lan, 2022; Grudzien
et al., 2022; Alfano et al., 2023; Xiong et al., 2024). The
motivation of Alfano et al. (2023); Xiong et al. (2024) is
somewhat related to ours but they address a different as-
pect of the problem in question. These works focus on the
approximation errors in the update step (thus essentially
assuming closure) and propose algorithmic mechanisms
to ensure it is small, but obtain meaningful upper bounds
only when it is indeed small w.r.t. the exact steps over the
complete policy class (as discussed in the previous section).
There is a long line of works on parametric policy classes
and specific instantiations of PMD such as the Natural Pol-
icy Gradient (NPG; Kakade, 2001); which is the focus of,
e.g., Alfano & Rebeschini (2022); Yuan et al. (2023); Cayci
et al. (2024) as well as Agarwal et al. (2021). Many works
also study convergence dynamics induced by particular pol-
icy classes, e.g., Liu et al. (2019); Wang et al. (2020); Liu
et al. (2020); we refer the reader to Alfano et al. (2023) for
an excellent and more detailed account of these works.

Several prior works have made the observation that PMD
is a mirror descent step on the linearization of the value
function with a dynamically weighted regularization term
(Shani et al., 2020; Tomar et al., 2020; Vaswani et al., 2022;
Xiao, 2022), which is the starting point of our work. In
particular, this perspective is the focus of Vaswani et al.
(2022); however this work did not establish any convergence
guarantees.

PMD in the tabular setting. The modern analysis ap-
proach for PMD in the generic (agnostic to the regularizer)
tabular setup is due to Xiao (2022). Additional works that
study the tabular setup include Geist et al. (2019); Lan
(2023); Johnson et al. (2023); Zhan et al. (2023). As in
the function approximation case, many works study conver-
gence of the prototypical PMD instantiation; the NPG or its
derivatives TRPO (Schulman et al., 2015) and PPO (Schul-
man et al., 2017) in tabular or softmax-tabular settings, e.g.,
Agarwal et al. (2021); Shani et al. (2020); Cen et al. (2022);
Bhandari & Russo (2021); Khodadadian et al. (2021; 2022).

Policy Gradients in parameter space. There is a rich line
of work into policy gradient algorithms that take gradient
steps in parameter space, both in the tabular and non-tabular
setups (Zhang et al., 2020; Mei et al., 2020; 2021; Yuan
et al., 2022; Mu & Klabjan, 2024). This class of algorithms
are a special case of on-policy PMD only in the case of
the direct parametrization, but are not PMD algorithms in
general. Most of the results in the case of non-tabular,
generic parameterizations characterize convergence in terms

of conditions on the parametric representation. We refer the
reader to Yuan et al. (2022) for further review.

Bregman proximal point methods. As mentioned, our
analysis builds on realizing PMD as an instance of a Breg-
man proximal point algorithm — roughly, this is a proximal
point algorithm (Rockafellar, 1976) in a non-Euclidean set-
ting (see Teboulle (2018) for a review). There are numerous
studies that investigate non-Euclidean proximal point meth-
ods for both convex and non-convex objective functions
(e.g., Tseng, 2010; Ghadimi et al., 2016; Bauschke et al.,
2017; Lu et al., 2018; Zhang & He, 2018; Fatkhullin &
He, 2024; see also Beck, 2017) , although none of them
accommodate the particular setup that PMD fits into (see
Appendix E for details). Our analysis for the proximal point
method presented in Section 3.2 is mostly inspired by the
work of Xiao (2022); specifically, their upper bounds for
projected gradient descent, where they apply a proximal
point analysis in the euclidean setting.

2. Preliminaries
Discounted MDPs. A discounted MDPM is defined by
a tupleM = (S,A,ℙ, 𝑟, 𝛾, 𝜌0), where S denotes the state-
space, A the action set, ℙ : S × A → Δ(S) the transition
dynamics, 𝑟 : S × A → [0, 1] the reward function, 0 <

𝛾 < 1 the discount factor, 𝐻 := 1
1−𝛾 the effective horizon,

and 𝜌0 ∈ Δ(S) the initial state distribution. For notational
convenience, for 𝑠, 𝑎 ∈ S × A we let ℙ𝑠,𝑎 := ℙ(· | 𝑠, 𝑎) ∈
Δ(S) denote the next state probability measure.

We assume the action set is finite with 𝐴 := |A|, and identify
ℝ𝐴 with ℝA . We additionally assume, for clarity of expo-
sition and in favor of simplified technical arguments, that
the state space is finite with 𝑆 := |S|, and identify ℝS with
ℝ𝑆 . We emphasize that all our arguments may be extended
to the infinite state-space setting with additional technical
work. An agent interacting with the MDP is modeled by a
policy 𝜋 : S → Δ(A), for which we let 𝜋𝑠 ∈ Δ(A) ⊂ ℝ𝐴

denote the action probability vector at 𝑠 and 𝜋𝑠,𝑎 ∈ [0, 1]
denote the probability of taking action 𝑎 at 𝑠. We denote the
value of 𝜋 when starting from a state 𝑠 ∈ S by 𝑉𝑠 (𝜋):

𝑉𝑠 (𝜋) := 𝔼

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠0 = 𝑠, 𝜋

]
,

and more generally for any 𝜌 ∈ Δ(S), 𝑉𝜌 (𝜋) := 𝔼𝑠∼𝜌𝑉𝑠 (𝜋).
When the subscript is omitted, 𝑉 (𝜋) denotes value of 𝜋
when starting from the initial state distribution 𝜌0:

𝑉 (𝜋) := 𝑉𝜌0 (𝜋) = 𝔼

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠0 ∼ 𝜌0, 𝜋

]
.

For any state action pair 𝑠, 𝑎 ∈ S × A, the action-value
function of 𝜋, or 𝑄-function, measures the value of 𝜋 when
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starting from 𝑠, taking action 𝑎, and then following 𝜋 for
the reset of the interaction:

𝑄 𝜋𝑠,𝑎 := 𝔼

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋

]
We further denote the discounted state-occupancy measure
of 𝜋 induced by any start state distribution 𝜌 ∈ Δ(S) by 𝜇𝜋𝜌 :

𝜇𝜋𝜌 (𝑠) := (1 − 𝛾)
∞∑︁
𝑡=0

𝛾𝑡 Pr(𝑠𝑡 = 𝑠 | 𝑠0 ∼ 𝜌, 𝜋).

It is easily verified that 𝜇𝜋 ∈ Δ(S) is indeed a state prob-
ability measure. In the sake of brevity, we take the MDP
true start state distribution 𝜌0 as the default in case one is
not specified:

𝜇𝜋 := 𝜇𝜋𝜌0 . (3)

Learning objective. In the conventional formulation of
MDPs, the objective is to maximize the discounted total
reward, i.e., max𝜋 𝑉 (𝜋). In this paper, we follow Xiao
(2022) and adopt a minimization formulation in order to
better align with conventions in the optimization literature.
To this end, we regard each 𝑟 (𝑠, 𝑎) ∈ [0, 1] as a value
measuring regret, or cost, rather than reward. Given any
reward function 𝑟, we may reset 𝑟 (𝑠, 𝑎) ← 1 − 𝑟 (𝑠, 𝑎) for
all 𝑠, 𝑎 ∈ S × A to transform it into a regret function.
With this in mind, we consider the problem of finding an
approximately optimal policy within a given policy class
Π ⊂ Δ(A)S :

arg min
𝜋∈Π

𝑉 (𝜋). (4)

To avoid ambiguity, we denote the optimal value attainable
by an in-class policy (a solution to Equation (4)) by 𝑉★(Π),
and the optimal value attainable by any policy by 𝑉★:

𝑉★(Π) := arg min
𝜋★∈Π

𝑉 (𝜋★); 𝑉★ := arg min
𝜋★∈Δ(A)S

𝑉 (𝜋★). (5)

We note that we do not make any explicit structural assump-
tions aboutM. We will however make some assumptions
about the policy class Π, which will be made clear in the
statements of our theorems.

2.1. Problem Setup

In this work, we focus on the PMD method Algorithm 1 for
solving Equation (4) in the case that the policy class is non-
complete, Π ≠ Δ(A)S . In each iteration, PMD solves a
stochastic optimization sub-problem formed by an estimate
of the current policy 𝑄-function and a Bregman divergence
term which is defined below.

Algorithm 1 Policy Mirror Descent (on-policy)

Input: learning rate 𝜂 > 0, regularizer 𝑅 : ℝA → ℝ

Initialize 𝜋1 ∈ Π
for 𝑘 = 1 to 𝐾 do

Set 𝜇𝑘 := 𝜇𝜋𝑘

; 𝑄𝑘 := 𝑄 𝜋𝑘

.
𝜋𝑘+1 ← arg min

𝜋∈Π
𝔼𝑠∼𝜇𝑘

[
𝐻

〈
𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝐵𝑅 (𝜋𝑠 , 𝜋𝑘𝑠 )

]
end for

Definition 2 (Bregman divergence). Given a convex differ-
entiable regularizer 𝑅 : ℝA → ℝ, the Bregman divergence
w.r.t. 𝑅 is:

𝐵𝑅 (𝑢, 𝑣) := 𝑅(𝑢) − 𝑅(𝑣) − ⟨∇𝑅(𝑣), 𝑢 − 𝑣⟩ .

Throughout, we make the following assumptions regard-
ing the solutions to the sub-problems and the 𝑄-function
estimates Algorithm 1.

Assumption 1 (Sub-problem optimization oracle). We as-
sume that for all 𝑘 , 𝜋𝑘+1 is approximately optimal, in the
sense that constrained optimality conditions hold up to error
𝜀act:

∀𝜋 ∈ Π,
〈
∇𝜙𝑘 (𝜋𝑘+1), 𝜋 − 𝜋𝑘+1

〉
≥ −𝜀act,

where 𝜙𝑘 (𝜋) := 𝔼𝑠∼𝜇𝑘
[
𝐻

〈
𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝐵𝑅 (𝜋𝑠 , 𝜋𝑘𝑠 )

]
.

Assumption 2 (Q-function oracle). We assume that for all
𝜋,

𝔼𝑠∼𝜇𝜋

[𝑄 𝜋𝑠 −𝑄 𝜋𝑠 2
2

]
≤ 𝜀crit.

We remark that our results can be easily adapted to some-
what weaker conditions on the critic error; we defer the
discussion to Appendix B.1.

Additional notation. Given a state probability measure
𝜇 ∈ Δ(S) and an action space norm ∥·∥◦ : ℝ𝐴 → ℝ,
we define the induced state-action weighted 𝐿 𝑝 norm
∥·∥𝐿𝑝 (𝜇) ,◦ : ℝ𝑆𝐴→ ℝ as follows:

∥𝑢∥𝐿𝑝 (𝜇) ,◦ :=
(
𝔼𝑠∼𝜇 ∥𝑢𝑠 ∥ 𝑝◦

)1/𝑝
.

For any norm ∥·∥, we let ∥·∥∗ denote its dual. When dis-
cussing a generic norm and there is no risk of confusion, we
may use ∥·∥∗ to refer to its dual. We repeat the following
notation that is used throughout the paper for convenience:

𝜇𝜋 := 𝜇𝜋𝜌0 , 𝑆 := |S|, 𝐴 := |A|, 𝐻 :=
1

1 − 𝛾 .

2.2. Optimization preliminaries

We proceed with several basic definitions before concluding
the setup.

5
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Definition 3 (Lipschitz Gradient). We say a function
ℎ : Ω → ℝ, Ω ⊆ ℝ𝑑 has an 𝐿-Lipschitz gradient or is
𝐿-smooth w.r.t. a norm ∥·∥ if for all 𝑥, 𝑦 ∈ Ω:

∥∇ℎ(𝑥) − ∇ℎ(𝑦)∥∗ ≤ 𝐿 ∥𝑥 − 𝑦∥ .

Definition 4 (Gradient Dominance). We say 𝑓 : X → ℝ

satisfies the variational gradient dominance condition with
parameters (𝐶★, 𝛿), or that 𝑓 is (𝐶★, 𝛿)-VGD, if here exist
constants 𝐶★, 𝛿 > 0, such that for any 𝑥 ∈ X, it holds that:

𝑓 (𝑥) − arg min
𝑥★∈X

𝑓 (𝑥★) ≤ 𝐶★max
�̃�∈X
⟨∇ 𝑓 (𝑥), 𝑥 − 𝑥⟩ + 𝛿.

Definition 5 (Local Norm). We define a local norm over
a set X ⊆ ℝ𝑑 by a mapping 𝑥 ↦→ ∥·∥𝑥 such that ∥·∥𝑥 is a
norm for all 𝑥 ∈ X. We may denote a local norm by ∥·∥ ( ·)
or by 𝑥 ↦→ ∥·∥𝑥 .
Definition 6 (Local Smoothness). We say 𝑓 : X → ℝ is
𝛽-locally smooth w.r.t. a local norm 𝑥 ↦→ ∥·∥𝑥 if for all
𝑥, 𝑦 ∈ X:

| 𝑓 (𝑦) − 𝑓 (𝑥) − ⟨∇ 𝑓 (𝑥), 𝑦 − 𝑥⟩| ≤ 𝛽

2
∥𝑦 − 𝑥∥2𝑥 .

3. Best-in-class Convergence of Policy Mirror
Descent

In this section, we present our main results which establish
convergence rates for the PMD method in the non-complete
class setting we consider. Our main theorem, given below,
provides convergence rates for two classic instantiations of
PMD; with Euclidean regularization and negative entropy
regularization. Our results require that 𝜖-greedy exploration
be incorporated into the policy class. To that end, let Π 𝜖

denote the policy class obtained by adding 𝜖-greedy explo-
ration to Π:

Π 𝜖 := {(1 − 𝜖)𝜋 + 𝜖𝑢 | 𝜋 ∈ Π} , where 𝑢𝑠,𝑎 ≡ 1/𝐴.

We have the following.
Theorem 1. Let Π ⊂ Δ(A)S be convex and assume it
is (𝐶★, 𝜀vgd)-VGD w.r.t.M. Consider the on-policy PMD
method Algorithm 1 when run over Π𝜀expl . Then, assuming
𝜀act + 𝜀crit ≤ 𝜀stat, and with proper tuning of 𝜂, 𝜀expl, it holds
that:

i. If 𝑅(𝑝) = 1
2 ∥𝑝∥

2
2 is the Euclidean action-regularizer, we

have 𝑉 (𝜋𝐾 ) −𝑉★(Π) =

O
(
𝐶2
★𝐴

3/2𝐻3

𝐾2/3 +
(
𝐶★𝐻 + 𝐴𝐻2𝐾1/6

) √
𝜀stat + 𝜀vgd

)
ii. If 𝑅(𝑝) = ∑

𝑖 𝑝𝑖 log 𝑝𝑖 is the negative entropy action-
regularizer, we have 𝑉 (𝜋𝐾 ) −𝑉★(Π) =

O
(
𝐶2
★𝐴

3/2𝐻3

𝐾2/7 +
(
𝐶★𝐻 + 𝐴2𝐻3𝐾4/7

) √
𝜀stat + 𝜀vgd

)
.

In both cases, big-O notation suppresses only constant fac-
tors.

To our knowledge, Theorem 1 is the first result to establish
best-in-class convergence (at any rate) of PMD without clo-
sure conditions. Two additional comments are in order: (1)
Our current analysis technique requires the action regular-
izer to be smooth. This is also the source of the degraded
rate in the negative entropy case. (2) The greedy exploration
stems from the smoothness parameter we establish for the
value function, and leads to worse rates in the Euclidean
case (for negative entropy, it actually implies smoothness
of the regularizer, though this is not the primary reason for
which it is introduced). We discuss this point further in
Section 3.1.

Analysis overview. The analysis leading up to Theorem 1
builds on casting PMD as an instance of a Bregman proxi-
mal point (or equivalently, a mirror descent) algorithm. This
follows by demonstrating PMD proceeds by optimizing
subproblems formed by linear approximations of the value
function and a proximity term that adapts to local smooth-
ness of the objective, as measured by the norm induced by
the current policy occupancy measure.

In fact, it has already been previously observed (e.g., Shani
et al., 2020; Xiao, 2022) that the on-policy PMD update
step is completely equivalent to a mirror descent step
w.r.t. the value function gradient equipped with a dynami-
cally weighted proximity term. For any two policies 𝜋 and
𝜋𝑘 , by the policy gradient theorem (Sutton et al., 1999, see
also Lemma 15 in Appendix D.1):

𝔼𝑠∼𝜇𝑘
[
𝐻

〈
𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝐵𝑅 (𝜋𝑠 , 𝜋𝑘𝑠 )

]
=

〈
∇𝑉 (𝜋𝑘), 𝜋

〉
+ 1
𝜂
𝐵𝜋𝑘 (𝜋, 𝜋𝑘), (6)

where we denote 𝜇𝑘 := 𝜇𝜋𝑘

, 𝑄𝑘 := 𝑄 𝜋𝑘

, and 𝐵𝜋𝑘 (𝑢, 𝑣) :=
𝔼𝑠∼𝜇𝑘𝐵𝑅 (𝑢𝑠 , 𝑣𝑠). However, these prior observations did not
yield new convergence results, as the algorithm in question
significantly deviates from a standard instantiation of mirror
descent; a priori, it is unclear how the regularizer associated
with 𝐵𝜋𝑘 relates to the objective in optimization terms.

The high level components of our analysis are outlined
next. In Section 3.1 we establish local smoothness of the
value function (Lemma 2), which is the key element in es-
tablishing convergence of PMD through a proximal point
algorithm perspective. Then, in Section 3.2 we introduce
the optimization setup that accommodates proximal point
methods that adapt to local smoothness of the objective,
and present the convergence guarantees for this class of
algorithms. Finally, we return to prove Theorem 1 in Ap-
pendix D.3, where we apply both Lemma 2 and the result
of Section 3.2 to establish convergence of PMD.
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3.1. Local smoothness of the value function

The principal element of our approach builds on smoothness
of the value function w.r.t. the local norm induced by the
occupancy measure of the policy at which we take the linear
approximation, given by the below lemma. We defer the
proof to Appendix D.2.

Lemma 2. Let 𝜋 : S → Δ(A) be any policy such that
𝜖 := min𝑠,𝑎 {𝜋𝑠𝑎} > 0. Then, for any �̃� ∈ S → Δ(A), we
have:

|𝑉 (�̃�) −𝑉 (𝜋) − ⟨∇𝑉 (𝜋), �̃� − 𝜋⟩|

≤ min
{
𝐻3
√
𝜖
∥�̃� − 𝜋∥2

𝐿2 (𝜇𝜋 ) ,1 ,
𝐴𝐻3
√
𝜖
∥�̃� − 𝜋∥2

𝐿2 (𝜇𝜋 ) ,2

}
.

It is instructive to consider Lemma 2 in the context of the
more standard non-weighted 𝐿2 smoothness property estab-
lished in Agarwal et al. (2021).

• Dependence on 𝑺: The standard 𝐿2 smoothness leads
to rates that scale with

𝜋1 − 𝜋★


2, which scales with 𝑆
in general. Indeed, prior works that exploit smoothness
of the value function (e.g., Agarwal et al., 2021; Xiao,
2022) derive bounds for PGD (i.e., mirror descent with
non-local, euclidean regularization) that do in fact hold
in the setting we consider here, but inevitably lead to
convergence rates that scale with the cardinality of the
state-space. This is while the diameter assigned to the
decision set Π by ∥·∥𝐿2 (𝜇𝜋 ) ,◦, for any 𝜋, depends only
on the diameter assigned to Δ(A) by ∥·∥◦, and thus is
independent of 𝑆.

• Relation to PMD: The standard 𝐿2 smoothness does
not naturally integrate with the PMD framework, and
leads to algorithms (such as vanilla projected gradient
descent) where the update step cannot be framed as a
solution to a stochastic optimization problem induced by
some policy occupancy measure. As such, these do not
admit a formulation that is easily implemented in practical
applications.

• Smoothness parameter: The smoothness parameter in
Lemma 2 depends on the minimum action probability
assigned by the policy at which we linearize the value
function (and as we discuss in Appendix B.2, this is not
an artifact of our analysis). A simple resolution for this
is given by adding 𝜖-greedy exploration. Notably, the
relatively large O(1/

√
𝜖) smoothness constant ultimately

leads to a rate that is worse than the O(1/𝐾) achievable
with the standard 𝐿2 smoothness (but that crucially, does
not scale with 𝑆).

3.2. Digression: Constrained non-convex optimization
for locally smooth objectives

In this section, we consider the constrained optimization
problem:

min
𝑥∈X

𝑓 (𝑥), (7)

where the decision set X ⊆ ℝ𝑑 is convex and endowed with
a local norm 𝑥 ↦→ ∥·∥𝑥 (see Definition 5), and 𝑓 is differ-
entiable over an open domain that contains X. We assume
access to the objective is granted through an approximate
first order oracle, as defined next.
Assumption 3. We have first order access to 𝑓 through an
𝜀∇-approximate gradient oracle; For all 𝑥 ∈ X, we have∇̂ 𝑓 (𝑥) − ∇ 𝑓 (𝑥)∗

𝑥
≤ 𝜀∇ ≤ 1.

Theorem 3 given below establishes convergence rates for the
algorithm we describe next. Given an initialization 𝑥1 ∈ X,
learning rate 𝜂 > 0, and local regularizer 𝑅𝑥 : ℝ𝑑 → ℝ for
all 𝑥 ∈ X, iterate for 𝑘 = 1, . . . , 𝐾 :

𝑥𝑘+1 = arg min
𝑦∈X

{〈
∇̂ 𝑓 (𝑥), 𝑦

〉
+ 1
𝜂
𝐵𝑅𝑥
(𝑦, 𝑥)

}
. (8)

The above algorithm can be viewed as either a mirror
descent algorithm (Nemirovskij & Yudin, 1983; Beck &
Teboulle, 2003) or a proximal point algorithm (Rockafellar,
1976) in a non-Euclidean setup (see Teboulle, 2018 for a
review), where the non-smooth term is the decision set indi-
cator function. Our analysis (detailed in Appendix E) hinges
on a descent property of the algorithm, thus naturally takes
the proximal point perspective. We prove the following.
Theorem 3. Suppose that 𝑓 is (𝐶★, 𝜀vgd)-VGD as per Def-
inition 4, and that 𝑓★ := min𝑥∈X 𝑓 (𝑥) > −∞. Assume
further that:

(i) The local regularizer 𝑅𝑥 is 1-strongly convex and has
an 𝐿-Lipschitz gradient w.r.t. ∥·∥𝑥 for all 𝑥 ∈ X.

(ii) For all 𝑥 ∈ X, max𝑢,𝑣∈X ∥𝑢 − 𝑣∥𝑥 ≤ 𝐷, and
∥∇ 𝑓 (𝑥)∥∗𝑥 ≤ 𝑀 .

(iii) 𝑓 is 𝛽-locally smooth w.r.t. 𝑥 ↦→ ∥·∥𝑥 .

Then, assuming 𝑥𝑘+1 are 𝜀opt-approximately optimal (in the
same sense of Assumption 1), the proximal point algorithm
Equation (8) has the following guarantee when 𝜂 ≤ 1/(2𝛽):

𝑓 (𝑥𝐾+1) − 𝑓★ = 𝑂

(
𝐶2
★𝐿

2𝑐2
1

𝜂𝐾
+ Eerr + 𝜀vgd

)
where 𝑐1 := 𝐷 + 𝜂𝑀 and

Eerr :=
(
𝐶★𝐷 + 𝑐1𝐿

2
)
𝜀∇ + 𝐶★𝜀opt + 𝑐1𝐿

√︃
𝜀opt/𝜂.

where 𝑐1 := 𝐷 + 𝜂𝑀 .

7
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The proof of Theorem 3 as well as additional technical
details for this section are provided in Appendix E.

3.3. Proof of main result

To prove our main result, we begin with a lemma that essen-
tially “maps” the PMD setup into the optimization frame-
work of Section 3.2. The proof consists of showing that the
appropriate assumptions on actor, critic, and action regu-
larizer translate to the conditions of Theorem 3 for locally
smooth optimization.

Lemma 4. Let Π be a convex policy class that is
(
𝐶★, 𝜀vgd

)
-

VGD w.r.t. the MDP M. Consider the on-policy PMD
method Algorithm 1, and assume that the following con-
ditions hold:

(i) 𝑅 : ℝA → ℝ is 1-strongly convex and has an 𝐿-
Lipschitz gradient w.r.t. an action-space norm ∥·∥◦.

(ii) max𝑝,𝑞∈Δ(A) ∥𝑝 − 𝑞∥◦ ≤ 𝐷, and
𝑄 𝜋𝑠 ∗◦ ≤ 𝑀 for all

𝑠 ∈ S, 𝜋 ∈ Π.

(iii) The value function is 𝛽-locally smooth over Π w.r.t. the
local norm ∥·∥ 𝜋 := ∥·∥𝐿2 (𝜇𝜋 ) ,◦.

Then, we have the following guarantee:

𝑉 (𝜋𝐾 ) −𝑉★(Π) = O
(
𝐶2
★𝐿

2𝑐2
1

𝜂𝐾
+ Estat + 𝜀vgd

)
where 𝑐1 := 𝐷 + 𝜂𝐻𝑀 , and

Estat =
(
𝐶★𝐷 + 𝑐1𝐿

2
)
𝐻
√
𝜀crit + 𝐶★𝜀act + 𝑐1𝐿

√︁
𝜀act/𝜂.

For 𝜇 ∈ ℝ𝑆 , 𝑄 ∈ ℝ𝑆𝐴, we define the state to state-action
element-wise product 𝜇 ◦ 𝑄 ∈ ℝ𝑆𝐴 by (𝜇 ◦𝑄)𝑠,𝑎 :=
𝜇(𝑠)𝑄𝑠,𝑎 . Observe that for all 𝑘 , it holds that

𝔼𝑠∼𝜇𝑘
[
𝐻

〈
𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝐵𝑅 (𝜋𝑠 , 𝜋𝑘𝑠 )

]
=

〈
∇̂𝑉 (𝜋𝑘), 𝜋

〉
+ 1
𝜂
𝐵𝜋𝑘 (𝜋, 𝜋𝑘),

with: 𝐵𝜋𝑘 (𝜋, �̃�) := 𝔼𝑠∼𝜇𝑘𝐵𝑅 (𝜋𝑠 , �̃�𝑠), ∇̂𝑉 (𝜋) := 𝐻𝜇𝜋 ◦
𝑄 𝜋 . Next, we demonstrate PMD is an instance of the op-
timization algorithm Equation (8), and verify that all of
the conditions in Theorem 3 hold w.r.t. the local norm
𝜋 ↦→ ∥·∥𝐿2 (𝜇𝜋 ) ,◦. First, to see that the gradient error is
bounded by 𝐻

√
𝜀crit, observe:∇̂𝑉 (𝜋) − ∇𝑉 (𝜋)∗

𝐿2 (𝜇𝜋 ) ,◦
=

𝜇𝜋 ◦ (
𝑄 𝜋 −𝑄 𝜋

)∗
𝐿2 (𝜇𝜋 ) ,◦

=

√︂
𝔼𝑠∼𝜇𝜋

(𝑄 𝜋 −𝑄 𝜋∗
◦

)2

≤ √𝜀crit,

where second inequality follows from Lemma 12 and the
inequality from Assumption 2. Further:

1. By a simple relation (Lemma 13) between 𝑅 and the
state-action it regularizer it induces defined below,

𝑅𝜋𝑘 (𝜋) := 𝔼𝑠∼𝜇𝑘𝑅(𝜋𝑠),

we have that 𝐵𝜋𝑘 (·, ·) is the Bregman divergence of
𝑅𝜋𝑘 , and further using (i) that 𝑅𝜋𝑘 is 1-strongly convex
and has an 𝐿-Lipschitz gradient w.r.t. ∥·∥𝐿2 (𝜇𝑘 ) ,◦.

2. For all 𝜋, 𝜋′, �̃�, by (ii),

∥𝜋′ − �̃�∥𝐿2 (𝜇𝜋 ) ,◦ =
√︃
𝔼𝑠∼𝜇𝜋 ∥𝜋′𝑠 − �̃�𝑠 ∥2 ≤ 𝐷.

In addition by (ii) and the dual norm expression
(Lemma 12), for any 𝜋:

∥∇𝑉 (𝜋)∥∗
𝐿2 (𝜇𝜋 ) ,◦ = 𝐻 ∥𝜇

𝜋 ◦𝑄 𝜋 ∥∗
𝐿2 (𝜇𝜋 ) ,◦

= 𝐻

√︃
𝔼𝑠∼𝜇𝜋

(
∥𝑄 𝜋𝑠 ∥∗◦

)2 ≤ 𝐻𝑀.

3. Finally, the objective is 𝛽-locally smooth by assump-
tion (iii).

The result now follows from Theorem 3. □

We conclude with a proof sketch of Theorem 1 for the
Euclidean case; the full technical details are provided in
Appendix D.3.

Proof sketch of Theorem 1 (Euclidean case). The first step
is showing that the 𝜀expl-greedy exploration introduces an
error term that scales with 𝛿 := 𝜀expl𝐶★𝐻

2𝐴 (see Lemma 19).
This implies that Π𝜀expl is (𝐶★, 𝜀vgd + 𝛿)-VGD w.r.t.M. In
addition, by definition of Π𝜀expl we have min𝑠,𝑎

{
𝜋𝑠,𝑎

}
≥

𝜀expl/𝐴 for all 𝜋 ∈ Π𝜀expl . We now argue the following:

1. The action regularizer 𝑅(𝑝) = 1
2 ∥𝑝∥

2
2 is 1-strongly

convex and has 1-Lipschitz gradient w.r.t. ∥·∥2.

2. ∀𝑠, ∥𝜋𝑠 − �̃�𝑠 ∥2 ≤ 𝐷 = 2, ∥𝑄𝑠 ∥2 ≤ 𝑀 =
√
𝐴𝐻.

3. By Lemma 2, the value function is
(
𝛽 := 𝐴3/2𝐻3

√
𝜀expl

)
-

locally smooth w.r.t. 𝜋 ↦→ ∥·∥𝐿2 (𝜇𝜋 ) ,2.

The result now follows from Lemma 4 with 𝜂 = 1/(2𝛽) and
𝜀expl = 𝐾

−2/3. □
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4. Conclusions and Outlook
In this work, we introduced a novel theoretical framework
and established best-in-class convergence of PMD for gen-
eral policy classes, subject to an algorithm independent vari-
ational gradient dominance condition instead of a closure
condition. In addition, we discussed the relation between
VGD and closure thoroughly, and demonstrated closure
implies VGD but not the other way around (Section 1.2
and Appendix A). We conclude by outlining two directions
for valuable (in our view) future research.

• 𝜖-greedy exploration. Our approach builds on ensuring
descent on each iteration, which we establish by demon-
strating local smoothness holds globally, for any refer-
ence policy �̃�. As we discuss in Appendix B.2, it seems
that this technique cannot yield better results. However,
when the multiplicative ratio |𝜋𝑠,𝑎/�̃�𝑠,𝑎 − 1| is bounded,
arguments similar to those given in Appendix D.2 demon-
strate a somewhat weaker notion of smoothness — but
without dependence on the exploration parameter. Fur-
thermore, an analysis approach that combines with the
classic mirror descent analysis might do without the per
iteration descent property.

• Non-smooth action regularizers. Our approach encoun-
ters an obstacle that seems related to existing techniques
for non-convex, non-Euclidean proximal point methods,
which leads to the requirement of a smooth regularizer.
This is also the source of the degraded rate in the negative
entropy case. Progress can be made by either advancing
state-of-the-art in this area of optimization (or showing
the limitation is inherent to the setup), or alternatively
exploiting additional structure specific to the value func-
tion.
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A. Variational Gradient Dominance and Closure Conditions
In this section, we include detailed discussions regarding the VGD and closure conditions. In Appendix A.1, we demonstrate
closure =⇒ VGD; In Appendix A.3, we show that VGD ⇏ closure — we present a simple example where VGD holds, but
closure doesn’t and furthermore that bounds of prior works fail to capture convergence of PMD; Finally, in Appendix A.4,
we conclude with several general remarks.

A.1. Closure implies VGD

In this section, we provide formal proofs that closure conditions employed by prior works imply the VGD condition.
Throughout this section, in favor of a simpler comparison, we assume the critic and actor errors are zero, i.e., all algorithms
have access to exact action-value functions, and 𝜀act = 0. We introduce the following, slightly extended version of the VGD
condition.

Definition 7. We say a policy class Π satisfies (𝐶★, 𝜀vgd; 𝑣★)-VGD if for all 𝜋 ∈ Π:

𝑉 (𝜋) − 𝑣★ ≤ 𝐶★max
�̃�∈Π
⟨∇𝑉 (𝜋), 𝜋 − �̃�⟩ + 𝜀vgd.

The above extension of the VGD assumption enables a clearer comparison with prior works. As closure implies (approximate)
realizability, prior works obtain bounds w.r.t. the optimal (potentially out-of-class) value function 𝑉★ = min𝜋∈Δ(A)S 𝑉 (𝜋).
Our original VGD condition Definition 1 is stated with the reasonable 𝑣★ = 𝑉★(Π) choice, however our bounds hold just the
same under the assumption VGD holds for other 𝑣★ (such as 𝑣★ = 𝑉★).

As we show next, both Yuan et al. (2023)1(see Lemma 6) and Alfano et al. (2023) (see Lemma 8) adopt assumptions that
imply their policy classes satisfy Definition 7 with suitable parameters 𝐶★, 𝜀vgd and 𝑣★ = 𝑉★. Notably, the error floors in
their convergence results are indeed precisely (up to constant factors) 𝜀vgd. We note the implication we establish is not
“perfect”, to make the argument we need slight variations of the original algorithm dependent conditions — our goal here is
to highlight the strong relation between the two assumptions. Before proceeding, we specifically note the following:

• To simplify presentation, we consider closure assumptions (bounded approximation error, concentrability, and distribu-
tion mismatch) globally, rather than on the specific iterates selected by the algorithm. However, the same arguments
can be made iterate specific, which would lead to VGD conditions on the specific iterates, which is indeed all that is
required by our analyses.

• The concentrability assumptions employed by Yuan et al. (2023); Alfano et al. (2023) relate to the current policy 𝜋𝑘

and the next one 𝜋𝑘+1. The direct global extension of this condition would concern a policy 𝜋 and a policy 𝜋+ selected
by a step of the algorithm with the given step size and regularizer. Our proof requires 𝜋+ to be selected differently (e.g.,
with a different step size choice), which leads to a concentrability assumption that relates to a different 𝜋+ than the
original ones. In this sense, the assumption we make here is a different one, but still qualitatively similar. Again, to
simplify presentation we assume stronger concentrability in the lemma statements where 𝜋+ may be arbitrary, but this
can be relaxed as explained above. In addition, our concentrability requires the sampling distribution 𝑣𝑘 to support the
current occupancy measure 𝜇𝑘 rather than the next one 𝜇𝑘+1. This may actually be considered a weaker assumption
than the original one, as the next policy is only determined after performing the step that uses 𝑣𝑘 . Further, we may
always simply select 𝑣𝑘 = 𝜇𝑘 ◦ 𝜋𝑘 to obtain optimal support for 𝜇𝑘 .

• In Lemma 8, we prove that when (the natural extension of) closure assumptions of Alfano et al. (2023) hold for
Euclidean regularization, VGD holds as well. The claim can be extended to other regularizers with the price of
additional regularity assumptions. Regardless, the bounded approximation error assumption of Alfano et al. (2023)
may alternatively be interpreted as a bound on the statistical error, in which case the policy class operated over is
(𝜈★, 0;𝑉★)-VGD; we provide further details in Appendix A.2.

• The work of Bhandari & Russo (2024) demonstrated that closure to policy improvement implies VGD, and further
observed there is also a connection between bounded approximation error and VGD (Lemma 16, Appendix B in
their work). The arguments we give below may be considered a generalization of those in Bhandari & Russo (2024),
strengthening the connection between closure and VGD.

1We refer to their results based on bounded approximation error.
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Lemma 5 (Generic closure =⇒ VGD). Let Π be a policy class, 𝜋 ∈ Π a policy, and 𝑣 ∈ Δ(S × A) a state-action
probability measure. Suppose there exists 𝜋+ ∈ Π such that:

𝔼𝑠∼𝜇𝜋

〈
𝑄 𝜋𝑠 , 𝜋

+
𝑠

〉
≤ 𝔼𝑠∼𝜇𝜋 min

𝑎
𝑄 𝜋𝑠,𝑎 + 𝜀greedy,

where 𝔼𝑠,𝑎∼𝑣

[(
𝑄 𝜋𝑠,𝑎 −𝑄 𝜋𝑠,𝑎

)2
]
≤ 𝜀approx,

and further:

𝔼𝑠,𝑎∼𝑣

[(
�̃�(𝑠)�̃�𝑠,𝑎
𝑣(𝑠, 𝑎)

)2
]
≤ 𝐶𝑣 , (𝑣-concentrability)

For �̃� ∈ {𝜋, 𝜋+, 𝜋★} , �̃� ∈ {𝜇𝜋 , 𝜇★}, where 𝜋★ = arg min𝜋∈Δ(A)S 𝑉 (𝜋), 𝜇★ = 𝜇𝜋
★

. Then, it holds that

𝑉 (𝜋) −𝑉★ ≤
 𝜇★𝜇𝜋 

∞
max
�̃�∈Π
⟨∇𝑉 (𝜋), 𝜋 − �̃�⟩ + 𝐻

 𝜇★𝜇𝜋 
∞

(
𝜀greedy + 4

√︁
𝐶𝑣𝜀approx

)
.

Proof. We first establish bounds on approximation error terms, then proceed to leverage the approximate greedification
assumption to establish VGD.

Approximation error. For any policy �̃� and state-occupancy �̃�, , we have:

𝔼𝑠∼�̃�
〈
𝑄 𝜋𝑠 −𝑄 𝜋𝑠 , �̃�𝑠

〉
=

〈
𝑄 𝜋 −𝑄 𝜋 , �̃� ◦ �̃�

〉
≤

𝑄 𝜋 −𝑄 𝜋
𝐿2 (𝑣)

∥ �̃� ◦ �̃�∥∗
𝐿2 (𝑣) ≤

√
𝜀approx ∥ �̃� ◦ �̃�∥∗𝐿2 (𝑣) ,

where the last inequality is by our assumption. Further, by 𝑣-concentrability,

∥ �̃� ◦ �̃�∥∗
𝐿2 (𝑣) =

√︄
𝔼𝑠,𝑎∼𝑣

(
�̃�(𝑠)�̃�𝑠,𝑎
𝑣(𝑠, 𝑎)

)2
≤

√︁
𝐶𝑣 ,

holds for �̃� ∈ {𝜋, 𝜋+, 𝜋★} , �̃� ∈ {𝜇𝜋 , 𝜇★}. Now, for such �̃�, �̃�, we have:���𝔼𝑠∼�̃� 〈
𝑄 𝜋𝑠 −𝑄 𝜋𝑠 , 𝜋𝑠 − �̃�𝑠

〉��� ≤ ���𝔼𝑠∼�̃� 〈
𝑄 𝜋𝑠 −𝑄 𝜋𝑠 , 𝜋𝑠

〉��� + ���𝔼𝑠∼�̃� 〈
𝑄 𝜋𝑠 −𝑄 𝜋𝑠 , �̃�𝑠

〉��� ≤ 2
√︁
𝐶𝑣𝜀approx,

therefore, ���𝔼𝑠∼𝜇𝜋

〈
𝑄 𝜋𝑠 −𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋+𝑠

〉��� ≤ 2
√︁
𝐶𝑣𝜀approx,���𝔼𝑠∼𝜇★ 〈

𝑄 𝜋𝑠 −𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋★𝑠
〉��� ≤ 2

√︁
𝐶𝑣𝜀approx.

Greedification. Observe,

𝔼𝑠∼𝜇𝜋

〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋+𝑠

〉
= 𝔼𝑠∼𝜇𝜋

〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋+𝑠

〉
+ 𝔼𝑠∼𝜇𝜋

〈
𝑄 𝜋𝑠 −𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋+𝑠

〉
≥ 𝔼𝑠∼𝜇𝜋 max

𝑝

〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝑝

〉
− 𝜀greedy − 2

√︁
𝐶𝑣𝜀approx

=⇒ 𝔼𝑠∼𝜇𝜋 max
𝑝

〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝑝

〉
≤ 𝔼𝑠∼𝜇𝜋

〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋+𝑠

〉
+ 𝜀greedy + 2

√︁
𝐶𝑣𝜀approx.
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Therefore, by Lemma 14 (value difference),

1
𝐻

(
𝑉 (𝜋) −𝑉★

)
= 𝔼𝑠∼𝜇★

〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋★𝑠

〉
= 𝔼𝑠∼𝜇★

〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋★𝑠

〉
+ 𝔼𝑠∼𝜇★

〈
𝑄 𝜋𝑠 −𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋★𝑠

〉
≤ 𝔼𝑠∼𝜇★ max

𝑝∈Δ(A)

〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝑝

〉
+ 2

√︁
𝐶𝑣𝜀approx

≤
 𝜇★𝜇𝜋 

∞
𝔼𝑠∼𝜇𝜋 max

𝑝∈Δ(A)

〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝑝

〉
+ 2

√︁
𝐶𝑣𝜀approx

≤
 𝜇★𝜇𝜋 

∞
𝔼𝑠∼𝜇𝜋

〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋+𝑠

〉
+

 𝜇★𝜇𝜋 
∞

(
𝜀greedy + 2

√︁
𝐶𝑣𝜀approx

)
+ 2

√︁
𝐶𝑣𝜀approx

≤
 𝜇★𝜇𝜋 

∞
𝔼𝑠∼𝜇𝜋

〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋+𝑠

〉
+

 𝜇★𝜇𝜋 
∞

(
𝜀greedy + 4

√︁
𝐶𝑣𝜀approx

)
=

1
𝐻

 𝜇★𝜇𝜋 
∞

〈
∇𝑉 (𝜋), 𝜋 − 𝜋+

〉
+

 𝜇★𝜇𝜋 
∞

(
𝜀greedy + 4

√︁
𝐶𝑣𝜀approx

)
≤ 1
𝐻

 𝜇★𝜇𝜋 
∞

max
�̃�∈Π
⟨∇𝑉 (𝜋), 𝜋 − �̃�⟩ +

 𝜇★𝜇𝜋 
∞

(
𝜀greedy + 4

√︁
𝐶𝑣𝜀approx

)
,

which completes the proof after multiplying by 𝐻. □

Lemma 6 (Log-linear dual closure =⇒ VGD). Let
{
𝜙𝑠,𝑎

}
𝑠∈S,𝑎∈A ⊆ ℝ𝑑 be state-action feature vectors, and let Π be the

log-linear policy class Π =
{
𝜋(𝜃) | 𝜃 ∈ ℝ𝑑

}
, where

𝜋𝑠,𝑎 (𝜃) :=
exp(𝜙⊤𝑠,𝑎𝜃)∑

𝑎′∈A exp(𝜙⊤
𝑠,𝑎′𝜃)

.

Assume further that for all 𝜋 ∈ Π it holds that

min
𝑤

𝔼𝑠,𝑎∼(𝜇𝜋◦𝜋 )
[ (
𝑤⊤𝜙𝑠,𝑎 −𝑄 𝜋𝑠,𝑎

)2
]
≤ 𝜀approx,

and,  𝜇★𝜇𝜋 
∞
≤ 𝜈★,

and,

𝔼𝑠,𝑎∼(𝜇𝜋◦𝜋 )

[(
ℎ𝜋𝑠,𝑎

𝜇𝑘 (𝑠)𝜋𝑠,𝑎

)2
]
≤ 𝐶𝜈 ,

where ℎ𝜋 represents �̃� ◦ �̃� for all �̃� ∈ Π, �̃� ∈ {𝜇𝜋 , 𝜇★}, and we denote 𝜋★ = arg min𝜋∈Δ(A)S 𝑉 (𝜋), 𝜇★ = 𝜇𝜋
★

. Then Π

satisfies (𝜈★, 5𝜈★𝐻
√︁
𝐶𝜈𝜀approx;𝑉★)-VGD (Definition 7).

Proof. Let 𝜋 ∈ Π, and denote 𝑄 𝜋𝑠,𝑎 = 𝜙⊤𝑠,𝑎𝑤
𝜋
★ where

𝑤𝜋★ := arg min
𝑤

𝔼𝑠,𝑎∼(𝜇𝜋◦𝜋 )
[ (
𝑤⊤𝜙𝑠,𝑎 −𝑄 𝜋𝑠,𝑎

)2
]
.

By Lemma 7, the policy 𝜋+ := 𝜋(𝜃+) ∈ Π defined by 𝜃+ := (log(𝑑)/𝜀greedy)𝑤𝜋★ satisfies

∀𝑠 :
〈
𝑄 𝜋𝑠 , 𝜋

+
𝑠

〉
≤ min

𝑎
𝑄 𝜋𝑠,𝑎 + 𝜀greedy.

Now, by the above and our assumptions, we are in the position to apply Lemma 5, which immediately implies the desired
for 𝜀greedy =

√︁
𝐶𝜈𝜀approx. □

14
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Lemma 7 ((McSherry & Talwar, 2007; Epasto et al., 2020)). Let 𝑥1, . . . , 𝑥𝑑 ∈ ℝ. Then if 𝜏 ≥ (log 𝑑)/𝛿, it holds that∑
𝑖 𝑒
−𝜏𝑥𝑖𝑥𝑖∑

𝑖 𝑒
−𝜏𝑥𝑖 ≤ min

𝑖
𝑥𝑖 + 𝛿.

Proof. We have ∑
𝑖 𝑒
−𝜏𝑥𝑖𝑥𝑖∑

𝑖 𝑒
−𝜏𝑥𝑖 −min

𝑖
𝑥𝑖 = max

𝑖
{−𝑥𝑖} −

∑
𝑖 𝑒
−𝜏𝑥𝑖 (−𝑥𝑖)∑
𝑖 𝑒
−𝜏𝑥𝑖

The result now follows from the original statement, which says that for any 𝑧1, . . . , 𝑧𝑛 ∈ ℝ,

max
𝑖
𝑧𝑖 −

∑
𝑖 𝑒
𝜏𝑧𝑖 𝑧𝑖∑

𝑖 𝑒
𝜏𝑧𝑖
≤ 𝛿. □

Next, we provide a proof for closure conditions of Alfano et al. (2023) in the case of a regularizer with a bounded Bregman
divergence, which simplifies some technical issues and is sufficient for the Euclidean case. The implication can be shown to
hold more generally subject to some additional regularity conditions on the policy class. We note that such a general version
of the lemma would in particular imply Lemma 6, thus rendering the above proof redundant. However, we opted for an
independent proof of Lemma 6 to avoid the additional regularity assumptions.

Lemma 8 (Generic dual closure =⇒ VGD). Let Π ⊂ Δ(A)S be a policy class, and 𝑅 : ℝ𝐴→ ℝ be an action regularizer.
For any policy 𝜋 let 𝜂 > 0 be a chosen step size and 𝑣 be a chosen state-action probability measure. Define

𝑓 + := 𝑓 + (𝜋, 𝜂) := arg min
𝑓 ∈F

 𝑓 − (
𝜂−1∇𝑅(𝜋) −𝑄 𝜋

)2

𝐿2 (𝑣)

𝜋+ := 𝜋+ (𝜋, 𝜂) := 𝑃𝑅 (𝜂 𝑓 +),

where 𝑃𝑅 (𝜂 𝑓 )𝑠 := Π𝑅
Δ(A) (∇𝑅

∗ (𝜂 𝑓𝑠)). Assume that: 𝑓 + − (
𝜂−1∇𝑅(𝜋) −𝑄 𝜋

)2

𝐿2 (𝑣)
≤ 𝜀approx, (A1)

and for �̃� ∈ {𝜋, 𝜋+, 𝜋★} , �̃� ∈ {𝜇𝜋 , 𝜇★}:

𝔼𝑠,𝑎∼𝑣

[(
�̃�(𝑠)�̃�𝑠,𝑎
𝑣(𝑠, 𝑎)

)2
]
≤ 𝐶𝑣 , (A2)

and finally,

sup
𝑠

𝜇★(𝑠)
𝜇𝜋 (𝑠) ≤ 𝜈★. (A3)

Then, if 𝑅 has a bounded Bregman divergence, 𝐵 ≥ max𝑝,𝑞∈Δ(A) 𝐵𝑅 (𝑝, 𝑞), and the above holds for any 𝜂, it holds that Π

satifies
(
𝜈★, 5𝐻𝜈★

√︁
𝐶𝑣𝜀approx;𝑉★

)
-VGD (Definition 7).

Proof. Fix 𝜋 ∈ Π, and define

𝑄 𝜋 := 𝜂−1∇𝑅(𝜋) − 𝑓 +

=⇒ 𝑓 + = 𝜂−1∇𝑅(𝜋) −𝑄 𝜋 ,

which implies that:

∀𝑠, 𝜋+𝑠 = arg min
𝑝∈Δ(A)

〈
𝑄 𝜋𝑠 , 𝑝

〉
+ 1
𝜂
𝐵𝑅 (𝑝, 𝜋𝑠)

15
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We have: 𝑄 𝜋 −𝑄 𝜋2

𝐿2 (𝑣)
=

 𝑓 + − (
𝜂−1∇𝑅(𝜋) −𝑄 𝜋

)2

𝐿2 (𝑣)
≤ 𝜀approx,

and for 𝜂 = 𝐵/𝜀greedy, by Lemma 9:

∀𝑠,
〈
𝑄 𝜋𝑠 , 𝜋

+
𝑠

〉
≤ min

𝑎
𝑄 𝜋𝑠,𝑎 + 𝜀greedy.

Choosing 𝜀greedy =
√︁
𝐶𝑣𝜀approx, the result follows by Lemma 5. □

Lemma 9. Let 𝜖 > 0, 𝑅 : ℝ𝐴→ ℝ be a convex regularizer with bounded Bregman divergence 𝐵 ≥ max𝑝,𝑞∈Δ(A) 𝐵𝑅 (𝑝, 𝑞),
and 𝑔 ∈ ℝ𝐴 be a linear objective, with 𝑎★ = arg min𝑎 𝑔𝑎. Then, for any 𝑥 ∈ Δ(𝐴), for 𝜂 ≥ 𝐵/𝜖 , we have:

𝑥+ = arg min
𝑧∈Δ(𝐴)

{
⟨𝑔, 𝑧⟩ + 1

𝜂
𝐵𝑅 (𝑧, 𝑥)

}
=⇒ 𝑔(𝑥+) ≤ 𝑔𝑎★ + 𝜖 .

Proof. By optimality of 𝑥+:

𝑔(𝑥+) ≤ 𝑔(𝑒𝑎★) +
1
𝜂
𝐵𝑅 (𝑒𝑎★ , 𝑥) −

1
𝜂
𝐵𝑅 (𝑥+, 𝑥)

≤ 𝑔𝑎★ + 𝐵/𝜂
= 𝑔𝑎★ + 𝜖,

and the result follows. □

A.2. Closure without convexity

In this section, we explain how the approximate closure conditions of Alfano et al. (2023) eliminate the need for convexity
of Π in our analysis. Roughly speaking, closure conditions imply approximate optimality conditions hold for the PMD
iterates w.r.t. the complete policy class. And, in our analysis, we obtain guarantees w.r.t. the policy class the PMD iterates
satisfy optimality conditions with respect to, regardless of actual policy class the algorithm operates over. To make the
argument formal, we consider the following assumption, which characterizes the behavior of the algorithm in relation to an
“ambient” policy class Π̃.

Assumption 4 (PMD w.r.t. ambient Π̃). For Π̃ a policy class, and 𝜋1, . . . , 𝜋𝐾+1 is a sequence of policies, it holds that:

1. Π̃ is convex.

2. Π̃ satisfies (𝐶★, 𝜀vgd; 𝑣★)-VGD on the iterates 𝜋1, . . . , 𝜋𝐾+1:

𝑉 (𝜋𝑘) − 𝑣★ ≤ 𝐶★max
�̃�∈Π̃

〈
∇𝑉 (𝜋𝑘), 𝜋𝑘 − �̃�

〉
+ 𝜀vgd.

3. 𝜋1, . . . , 𝜋𝐾+1 satisfy PMD approximate optimality conditions w.r.t. Π̃′:

∀𝜋 ∈ Π̃′,
〈
∇𝜙𝑘 (𝜋𝑘+1), 𝜋 − 𝜋𝑘+1

〉
≥ −𝜀act,

where 𝜙𝑘 (𝜋) := 𝔼𝑠∼𝜇𝑘
[〈
𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝐵𝑅 (𝜋𝑠 , 𝜋𝑘𝑠 )

]
.

We note that a PMD algorithm does not necessarily need access to Π̃ to satisfy Assumption 4. In particular, it may be
that the algorithm operates over non-convex Π, but satisfies Assumption 4 with Π̃ = Π̃′ = Δ(A)S . Next, we restate our
guarantees for the Euclidean case reframed in the context of Assumption 4, and then proceed to demonstrate assumptions of
Alfano et al. (2023) imply Assumption 4.
Theorem (Restatement of Theorem 1; Euclidean case). Let Π̃ ⊂ Δ(A)S be a policy class and suppose 𝜋1, 𝜋2, . . . , 𝜋𝐾+1 is a
sequence of policies for which Assumption 4 holds with Π̃′ = Π̃𝜀expl , 𝑅(𝑝) = 1

2 ∥𝑝∥
2
2, and 𝜂, 𝜀expl properly tuned. Then, it

holds that:

𝑉 (𝜋𝐾 ) − 𝑣★ = O
(
𝐶2
★𝐴

3/2𝐻3

𝐾2/3 +
(
𝐶★𝐻 + 𝐴𝐻2𝐾1/6

) √
𝜀act + 𝜀vgd

)
16
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To establish the next lemma, we interpret the colure conditions of Alfano et al. (2023) as perfect closure, where 𝜀approx
bounds the actor error, rather than relating to expressivity of the dual policy parametrization.

Lemma 10. Suppose that for all 𝑘 ∈ [𝐾], 𝑓 𝑘+1 − (
𝜂−1∇𝑅(𝜋𝑘) −𝑄𝑘

)2

𝐿2 (𝑣𝑘 )
≤ 𝜀approx, (A1)

and 𝜋𝑘+1 = 𝑃𝑅 (𝜂 𝑓 𝑘+1) where 𝑃𝑅 (𝜂 𝑓 )𝑠 := Π𝑅
Δ(A) (∇𝑅

∗ (𝜂 𝑓𝑠)). Suppose further that for all 𝑘 ,

sup
𝑠

𝜇★(𝑠)
𝜇𝑘 (𝑠)

≤ 𝜈★. (A3)

Then, with the choice of 𝑣𝑘 = 𝜇𝑘 ◦ 𝑢, i.e., 𝑠, 𝑎 ∼ 𝑣𝑘 =⇒ 𝑠 ∼ 𝜇𝑘 , 𝑎 ∼ Unif (A), we have that Assumption 4 is satisfied with
Π̃ = Π̃′ = Δ(A)S , 𝑣★ = 𝑉★, 𝐶★ = 𝜈★, 𝜀vgd = 0, and 𝜀act ≤ 2

√︁
𝐴𝜀approx.

Proof. Let 𝜁 𝑘+1 := 𝑓 𝑘+1 −
(
𝜂−1∇𝑅(𝜋𝑘) −𝑄𝑘

)
. Then

𝜁 𝑘+12
𝐿2 (𝑣𝑘 ) ≤ 𝜀approx, and

𝑓 𝑘+1 = 𝜂−1∇𝑅(𝜋𝑘) −
(
𝑄𝑘 + 𝜁 𝑘+1

)
.

Now by definition of 𝜋𝑘+1,

𝜋𝑘+1𝑠 = arg min
𝜋𝑠∈Δ(A)

〈
𝑄𝑘𝑠 + 𝜁 𝑘+1𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝐵𝑅 (𝜋𝑠 , 𝜋𝑘𝑠 )

hence, by optimality conditions, for any 𝜋 ∈ Δ(A)S :〈
𝑄𝑘𝑠 + 𝜁 𝑘+1𝑠 + 1

𝜂

(
∇𝑅(𝜋𝑘+1𝑠 ) − ∇𝑅(𝜋𝑘𝑠 )

)
, 𝜋𝑠 − 𝜋𝑘+1𝑠

〉
≥ 0

⇐⇒
〈
𝑄𝑘𝑠 +

1
𝜂

(
∇𝑅(𝜋𝑘+1𝑠 ) − ∇𝑅(𝜋𝑘𝑠 )

)
, 𝜋𝑠 − 𝜋𝑘+1𝑠

〉
≥

〈
𝜁 𝑘+1𝑠 , 𝜋𝑘+1𝑠 − 𝜋𝑠

〉
Now, note that

𝔼𝑠∼𝜇𝑘
〈
𝜁 𝑘+1𝑠 , 𝜋𝑘+1𝑠 − 𝜋𝑠

〉
=

〈
𝜇𝑘 ◦ 𝜁 𝑘+1, 𝜋𝑘+1 − 𝜋

〉
≤

𝜇𝑘 ◦ 𝜁 𝑘+1∗
𝐿2 (𝜇𝑘 ) ,2

𝜋𝑘+1 − 𝜋
𝐿2 (𝜇𝑘 ) ,2

≤ 2
√︃
𝔼𝑠∼𝜇𝑘

𝜁 𝑘+1𝑠

2
2

Further, by the choice of 𝑣𝑘 = 𝜇𝑘 ◦ 𝑢,

𝔼𝑠∼𝜇𝑘
𝜁 𝑘+1𝑠

2
2 = 𝔼𝑠∼𝜇𝑘

[ ∑︁
𝑎∈A

(
𝜁 𝑘+1𝑠,𝑎

)2
]
= 𝐴𝔼𝑠∼𝜇𝑘

[ ∑︁
𝑎∈A

1
𝐴

(
𝜁 𝑘+1𝑠,𝑎

)2
]
= 𝐴

𝜁 𝑘+12
𝐿2 (𝑣𝑘 ) .

Therefore, for all 𝜋 ∈ Δ(A)S :

𝔼𝑠∼𝜇𝑘

〈
𝑄𝑘𝑠 +

1
𝜂

(
∇𝑅(𝜋𝑘+1𝑠 ) − ∇𝑅(𝜋𝑘𝑠 )

)
, 𝜋𝑠 − 𝜋𝑘+1𝑠

〉
≥ −𝜀act

with 𝜀act ≤ 2
√︁
𝐴𝜀approx. Finally, the complete class satisfies (𝜈★, 0)-VGD on the 𝜋𝑘 iterates by Lemma 16, with 𝜈★ in place

of 𝐻𝜈0 owed to our assumption (A3). □

Finally, we note that we could have traded the dependence on the action set with an additional concentrability assumption.
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𝑆0

𝑆1 𝑆2

(
1
0

) (
0
1

)

(
0
1

) (
1
0

)

1

(
1
0

)
1

(
0
1

)

Figure 1: A simple MDP with a convex value landscape. Each action represented by a (feature-vector, edge) pair leads deterministically
to the state at the other end of the edge. The two outer bold edges labeled 1 inflict a cost of 1, the others have cost 0.

A.3. VGD does not imply closure

In this section, we present a sinple example where the VGD condition holds but closure does not, and as a result existing
analyses fail to establish convergence of PMD. We note that the fact that VGD does not imply closure is immediate, as
closure implies realizability but VGD does not. We go further here to show that the bounds of prior works may indeed
become vacuous in setups where VGD holds and closure does not. We consider the MDP depicted in Figure 1 with the
log-linear policy class Π induced by the state-action feature vectors shown in the diagram.

For simplicity we assume there are no statistical errors in the execution of the algorithm (𝜀stat = 0). In this example the
value landscape is convex (in state-action space) over Π, and thus Π is (1, 0)-VGD and convergence of PMD follows by our
main theorem:

𝑉 (𝜋𝐾 )− min
𝜋★∈Π

𝑉 (𝜋★) −−−−−→
𝐾→∞

0.

At the same time, results based on closure imply convergence to an error floor that is larger than 𝐻. For instance, by Theorem
1 of Yuan et al. (2023) establishes that:

𝑉 (𝜋𝐾 )− min
𝜋★∈Π

𝑉 (𝜋★) ≲ 2𝐻
(
1 − 1

𝜈0

)𝐾
+ 2𝐻𝜈0

√︁
𝐴𝐶0𝜀bias, (9)

meaning:

𝑉 (𝜋𝐾 )− min
𝜋★∈Π

𝑉 (𝜋★) −−−−−→
𝐾→∞

2𝐻𝜈0
√︁
𝐴𝐶0𝜀bias ≥ 10𝐻,

where 𝜀bias = Ω(1), 𝜈0 := 𝐻
 𝜇★𝜌0


∞

, and 𝐶0 is a certain concentrability coefficient larger than 1. Here, both the transfer error
and approximation error are Ω(𝜀bias). A rigorous analysis is given below in Appendix A.3.1. Recent papers such as Alfano
et al. (2023); Xiong et al. (2024) accommodate more general policy parameterizations but still include the log-linear setup
as a special case (see discussion in Alfano et al., 2023 and Appendix F). The error floor in their results is also larger than 𝐻
for the example in question for exactly the same reasons; their results depend on the approximation error, which for this
example as mentioned behaves the same as the transfer error.

Finally, we note that the example is not realizable and the discussion focuses on best-in class convergence as the objective.
If we were to look for convergence w.r.t. the true optimal policy, our Theorem 1 establishes convergence to an error floor of
𝑉 (Π★) −𝑉★ ≈ 𝐻/2, while closure based analyses suffer from the same ≥ 𝐻 error floor. In all that follows, we focus on the
transfer error 𝜀bias; the argument for the approximation error is the same.

A.3.1. ANALYSIS

We denote the actions:

𝑢 :=

(
1
0

)
, 𝑏 :=

(
0
1

)
,

18



Convergence of Policy Mirror Descent Beyond Compatible Function Approximation

and the state-action features, for all 𝑠:

𝜙𝑠,1 :=

(
1
0

)
, 𝜙𝑠,2 :=

(
0
1

)
, 𝜙𝑠 := (𝜙𝑠,1, 𝜙𝑠,2) = (

(
1
0

) (
0
1

)
) ∈ ℝ2×2.

In favor of conciseness, we will let

𝜙𝑖, · := 𝜙𝑆𝑖 , · .

For 𝜃 ∈ ℝ2, we denote the log-linear policy 𝜋𝜃𝑠 := 𝜎(𝜙⊤𝑠 𝜃), where 𝜎 is the softmax function:

𝜎(𝑢)𝑖 :=
𝑒𝑢𝑖∑
𝑗 𝑒
𝑢 𝑗
.

This gives rise to the log-linear policy class:

Π :=
{
𝜋𝜃 | 𝜃 ∈ ℝ2} .

Since such a policy 𝜋𝜃 in this MDP must select actions independent of the state, we let 𝛼 denote the probability it chooses 𝑢
and 1− 𝛼 the probability it chooses 𝑏; 𝛼 := 𝜋𝜃𝑠,𝑢 =⇒ 1− 𝛼 = 𝜋𝜃

𝑠,𝑏
. Now, denote 𝑉 𝛼

𝑖
:= 𝑉𝑆𝑖

(
𝜋𝜃

)
, 𝑄𝛼

𝑖, · := 𝑄 𝜋 𝜃

𝑆𝑖 , · , and observe
that by direct computation:

𝑉0 (𝛼) =
𝛾

(1 − 𝛾) (1 + 𝛾)

(
𝛼2 + (1 − 𝛼)2

)
=: 𝐻

(
𝛼2 + (1 − 𝛼)2

)
𝑉1 (𝛼) = 𝛼 + 𝛾𝐻

(
𝛼2 + (1 − 𝛼)2

)
𝑉2 (𝛼) = (1 − 𝛼) + 𝛾𝐻

(
𝛼2 + (1 − 𝛼)2

)
.

and,

𝑄𝛼0,𝑢 = 𝛾𝑉1 (𝛼), 𝑄𝛼0,𝑏 = 𝛾𝑉2 (𝛼);
𝑄𝛼1,𝑢 = 1 + 𝛾𝑉0 (𝛼), 𝑄𝛼1,𝑏 = 𝛾𝑉0 (𝛼);
𝑄𝛼2,𝑢 = 𝛾𝑉0 (𝛼), 𝑄𝛼2,𝑏 = 1 + 𝛾𝑉0 (𝛼).

Let 𝜌0 (𝑆0) = 1 − 𝑝, 𝜌0 (𝑆1) = 𝜌0 (𝑆2) = 𝑝/2 for some 𝑝 ∈ [0, 1). Then

𝑉 (𝛼) = (1 − 𝑝 + 𝛾𝑝)𝐻
(
𝛼2 + (1 − 𝛼)2

)
+ 𝑝/2.

The VGD condition holds. It is not hard to verify the value function is convex (in state-action space) over this policy
class. Indeed, we have 〈

∇𝜋 𝜃𝑉 (𝜋𝜃 ), 𝜋𝜃 − 𝜋𝜃
〉
=
𝜕𝑉 𝛼

𝜕𝛼
(�̃� − 𝛼) ,

and therefore convexity of 𝑉 𝛼 w.r.t. 𝛼 implies convexity in the direct parametrization over Π. Hence in particular, Π is
(1, 0)-VGD w.r.t. the MDP in question. Thus, convergence of PMD follows by Theorem 1, which in this case guarantees the
sub-optimality of 𝜋𝐾 tends to 0 as 𝐾 grows (since there is no error floor).

Closure does not hold, and the error floor in closure based analyses is ≥ 𝐻 = 1
1−𝛾 . Let 𝜇𝛼 := 𝜇𝜋 𝜃

, then

𝜇𝛼 (𝑆0) =
(1 − 𝛾) (1 − 𝑝) + 𝛾

1 + 𝛾 =
1 − 𝑝 + 𝛾𝐻
(1 + 𝛾)𝐻

𝜇𝛼 (𝑆1) = (1 − 𝛾)𝑝 + 𝛾𝛼𝜇𝛼 (𝑆0)
𝜇𝛼 (𝑆2) = (1 − 𝛾)𝑝 + 𝛾(1 − 𝛼)𝜇𝛼 (𝑆0).
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It is immediate that the optimal in-class policy is given by 𝜃★ := (1, 1), 𝛼★ = 1/2, and satisfies,

𝜇★(𝑆0) =
1 − 𝑝 + 𝛾𝐻
(1 + 𝛾)𝐻 , 𝜇★(𝑆1) =

𝐻 + 𝑝 − 1
2(1 + 𝛾)𝐻 , 𝜇★(𝑆2) =

𝐻 + 𝑝 − 1
2(1 + 𝛾)𝐻 .

Now suppose that 𝛾 ≥ 0.99 and 𝑝 ≤ 1/100, then by direct computation,

𝜇★(𝑆0) ≈
1
2
, 𝜇★(𝑆1) ≈

1
4
, 𝜇★(𝑆2) ≈

1
4
,

where the approximation is correct up to error of 1/100. Recall that for a policy 𝜋 (𝑘 ) , in the NPG update step (Agarwal
et al., 2021; Yuan et al., 2023)

𝑤
(𝑘 )
★ := arg min

𝑤

𝔼𝑠∼𝜇𝑘 ,𝑎∼𝜋𝑘
𝑠

[(
𝜙⊤𝑠,𝑎𝑤 −𝑄𝑘𝑠,𝑎

)2
]

Meanwhile, by definition

𝜖bias ≥ 𝔼𝑠∼𝜇★,𝑎∼Unif (A)

[(
𝜙⊤𝑠,𝑎𝑤

(𝑘 )
★ −𝑄𝑘𝑠,𝑎

)2
]

≥ 1
2

arg min
𝑤1

𝔼𝑠∼𝜇★

[(
𝑤1 −𝑄𝑘𝑠,𝑢

)2
]

≈ 1
2

arg min
𝑤1

{
1
2
(𝑤1 − 𝛾𝑉1 (𝛼))2 +

1
4
(𝑤1 − 1 − 𝛾𝑉0 (𝛼))2 +

1
4
(𝑤1 − 𝛾𝑉0 (𝛼))2

}
≥ 1

8
arg min
𝑤1

{
(𝑤1 − 1 − 𝛾𝑉0 (𝛼))2 + (𝑤1 − 𝛾𝑉0 (𝛼))2

}
=

1
32

Now the bias term in Equation (9) is at least as large as

𝐻

 𝜇★𝜌0


∞

√
𝜖bias ≳ 𝐻

1
𝑝

√︂
1

32
≥ 10𝐻.

A.4. Additional Remarks

In this section we include several additional points for consideration regarding closure and VGD conditions.

On-policy PMD is prone to local optima. The necessity of some structural assumption (whether VGD or closure) is
motivated in the introduction by the fact that policy gradient methods over non-complete policy classes Π ≠ Δ(A)S are
prone to local optima (Bhandari & Russo, 2024). While PMD and vanilla policy gradients are not the same algorithm, the
example given in Bhandari & Russo (2024) (Example 1) also applies to PMD with Euclidean regularization, as we explain
next. A vanilla policy gradient update in the direct parametrization case is equivalent to:

𝜋𝑘+1 = arg min
𝜋∈Π

[
𝔼𝑠∼𝜇𝑘

[〈
𝑄𝑘𝑠 , 𝜋𝑠

〉]
+ 1

2𝜂
𝜋 − 𝜋𝑘2

2

]
,

which is an “unweighted regularization” version of Euclidean PMD. While this is equivalent to PMD for Π = Δ(A)S (in
the error free case), it is indeed not equivalent in general. However, Example 1 of Bhandari & Russo (2024) indeed also
applies to Euclidean PMD because the policy class in question contains only policies 𝜋 such that 𝜋𝑠,𝑎 = 𝜋𝑠′ ,𝑎 for all 𝑠, 𝑠′, 𝑎.
Hence, for any two policies 𝜋, 𝜋𝑘 ∈ Π,

𝜋𝑠 − 𝜋𝑘𝑠 2
2 =

𝜋𝑠′ − 𝜋𝑘𝑠′2
2 for all 𝑠, 𝑠′, and ∥𝜋 − 𝜋𝑘 ∥22 = 𝑆𝔼𝑠∼𝜇𝑘

𝜋𝑠 − 𝜋𝑘𝑠 2
2 =

2𝔼𝑠∼𝜇𝑘
𝜋𝑠 − 𝜋𝑘𝑠 2

2. Thus, for the example in question the two algorithms are equivalent up to scaling of the step-size by a
constant factor.
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Closure conditions in practice. Closure conditions (that are based on bounded approximation error) roughly stipulate
the policy class is closed to a soft policy improvement step. This has a flavor that is similar to Bellman completeness
(Munos & Szepesvári, 2008; Chen & Jiang, 2019; Zanette et al., 2020; Zanette, 2023), a property of a 𝑄-function class that
says the class is closed to a Bellman backup step. Bellman completeness is widely considered too strong a condition to
hold in practice, the reasoning being that increasing capacity of a function class that violates completeness inadvertently
introduces new functions for which completeness needs to be satisfied. Therefore, an increase in capacity may actually
cause completeness to be further violated. The same can be argued for closure conditions, with one difference being that the
complete policy class Δ(A)S is naturally closed to any policy improvement step. However, in a large scale environment
setting, the complete policy class is typically many orders of magnitude too large to be well approximated by realistically
sized neural network architectures (at least at the present time).

PMD and VGD from the optimization perspective. Standard arguments from optimization literature are insufficient
to establish convergence of PMD with the VGD condition. First, PMD is not an algorithm that has (prior to our work) a
formulation within a purely optimization-based framework. Second, convergence in a smooth non-convex setting typically
scales with the distance to the optimal solution, measured by the norm induced by smoothness of the objective. Prior works
that establish convergence of gradient descent type methods (though not of PMD; e.g., Agarwal et al., 2021; Bhandari &
Russo, 2024; Xiao, 2022) exploit smoothness of the value function w.r.t. the Euclidean norm (established in Agarwal et al.,
2021), and as a result obtain bounds that scale with the cardinality of the state-space.

Divergence of Policy Iteration. Our setup with the VGD condition is general enough to accommodate examples where
the policy iteration algorithm does not converge (the same example we discuss in Appendix A.3 demonstrates this). Here,
since the policy class is non-complete, the policy improvement step is performed over the current policy occupancy measure
(see Bhandari & Russo, 2024 who introduce this natural adaptation). Arguably, it should not be expected that policy iteration
converges for real world, large-scale problems, as it is a very “non-regularized” algorithm from an optimization perspective.
At the same time, in setups where closure conditions based on bounded approximation error hold, in particular, closure to
policy improvement as studied in Bhandari & Russo (2024), the policy iteration algorithm converges at a linear rate. Thus it
is not immediately clear why should we employ more sophisticated algorithms such as PMD in such settings.

Convergence beyond the VGD condition. Using our framework, it can be shown that PMD converges to a stationary
point regardless of any VGD condition; see Appendix E.3.

B. Deferred Discussions
B.1. Assumption on the critic error

Our results can be easily adapted to the (generally weaker) assumption that

𝔼𝑠∼𝜇𝜋

𝑄 𝜋𝑠 −𝑄 𝜋𝑠 2 ≤ 𝜀crit.

(In which case the bounds would depend on 𝜀crit rather than
√
𝜀crit.) Assumption 2 in its current form simplifies presentation,

since it allows working with the weighted 𝐿2 norm for both smoothness and errors in the gradient approximation. Also
noteworthy, when working with the negative entropy regularizer, approximation w.r.t. the ∥·∥∞ norm would suffice. Since
the statistical errors are not the focus of this work, we make these concessions in favor of a more streamlined and clear
presentation.

B.2. Local smoothness of the value function requires greedy exploration

In this section we discuss why the dependence on 𝜖 in the bound of Lemma 2 cannot be improved in general. We consider the
MDP in Figure 2, for which we can show Lemma 2 has tight dependence on the 𝜖-exploration parameter. Let 𝑝 ∈ (0, 1/2)
and 0 < 𝜖 < 𝑝. Define:

𝜋 := 𝜋𝜖 , 𝜋1,0 = 1, 𝜋1,0 = 0,
�̃� := 𝜋𝑝 , �̃�1,0 = 0, �̃�1,0 = 1.

Idea. Think of 𝜖 as much smaller than 𝑝. When measuring distance with the local norm ∥�̃� − 𝜋∥𝐿2 (𝜇𝜋 ) ,1, the large
difference ∥�̃�1 − 𝜋1∥21 gets little weight: 𝜇𝜋 (𝑆1) ≈ 𝜖 . Meanwhile, the error of the linear approximation at 𝜋 behaves like
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𝑆0

𝑆1

𝜋𝛼0,0 = 1 − 𝛼

𝜋𝛼0,1 = 𝛼

𝜋𝛼1,1 =?𝜋𝛼1,0 =?

𝑎0

𝑎0 𝑎1

𝑎1

Figure 2: A two state deterministic MDP, with 𝜌0 (𝑆0) = 1. Each edge is labeled with an action (𝑎 ∈ {𝑎0, 𝑎1}) that takes the agent to the
state at the other end. A policy 𝜋𝛼, 𝛼 ∈ [0, 1] takes actions in 𝑆0 with the probabilities displayed in the diagram next to the relevant
action. The probabilities 𝜋𝛼 assigns to actions in 𝑆1 denoted by ? are unrelated to 𝛼 and left for later.

(see proof of Lemma 2 in Appendix D.2):�����∑︁
𝑠

𝜇𝜋 (𝑠)
∑︁
𝑎

(�̃�𝑠𝑎 − 𝜋𝑠𝑎)
(∑︁
𝑠′
𝜇𝜋ℙ𝑠𝑎
(𝑠′) ∥�̃�𝑠′ − 𝜋𝑠′ ∥1

)����� ,
where the weight assigned to ∥�̃�1 − 𝜋1∥21 is approximately (�̃�0,1 − 𝜋0,1) = 𝑝 − 𝜖 . Hence, if 𝜖 = 𝑝2,

|𝑉 (�̃�) −𝑉 (𝜋) − ⟨∇𝑉 (𝜋), �̃� − 𝜋⟩| ≈ 𝑝,
∥�̃� − 𝜋∥2

𝐿2 (𝜇𝜋 ) ,1 ≈ 𝑝
2,

so

|𝑉 (�̃�) −𝑉 (𝜋) − ⟨∇𝑉 (𝜋), �̃� − 𝜋⟩| ≳ 1
√
𝜖
∥�̃� − 𝜋∥2

𝐿2 (𝜇𝜋 ) ,1 .

Computations. The term that is equal to the linearization error, up to constant factors, is the following:�����∑︁
𝑠

𝜇𝜋 (𝑠)
∑︁
𝑎

(�̃�𝑠𝑎 − 𝜋𝑠𝑎)
(∑︁
𝑠′
𝜇𝜋ℙ𝑠𝑎
(𝑠′)

〈
𝑄 �̃�𝑠′ , �̃�𝑠′ − 𝜋𝑠′

〉)����� .
Assume 𝑝 > 𝜖 . By choosing a cost function 𝑟 (𝑠, 𝑖) = 𝑖 for 𝑠 ∈ {𝑆0, 𝑆1}, 𝑖 ∈ {0, 1} we have that for all 𝑠,〈

𝑄 �̃�𝑠 , �̃�𝑠 − 𝜋𝑠
〉
= Ω(∥�̃�𝑠 − 𝜋𝑠 ∥1),

hence we focus on lower bounding

(∗) :=

�����∑︁
𝑠

𝜇𝜋 (𝑠)
∑︁
𝑎

(�̃�𝑠𝑎 − 𝜋𝑠𝑎)
(∑︁
𝑠′
𝜇𝜋ℙ𝑠𝑎
(𝑠′) ∥�̃�𝑠′ − 𝜋𝑠′ ∥1

)����� .
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By direct computation,

𝜇𝜋 (𝑆0) =
1

1 + 𝛾𝜖 , 𝜇𝜋 (𝑆1) =
𝛾𝜖

(1 + 𝛾𝜖) (1 − 𝛾)

and

∥�̃�0 − 𝜋0∥1 = 2|𝑝 − 𝜖 |, ∥�̃�1 − 𝜋1∥1 = 2.

Thus,

(�̃�0,0 − 𝜋0,0)
∑︁
𝑠′
𝜇𝜋ℙ0,0
(𝑠′) ∥�̃�𝑠′ − 𝜋𝑠′ ∥1 ≈ (1 − 𝜖) (𝜖 − 𝑝) |𝑝 − 𝜖 | + 𝜖 ≥ −𝑝2 + 𝜖

(�̃�0,1 − 𝜋0,1)
∑︁
𝑠′
𝜇𝜋ℙ0,1
(𝑠′) ∥�̃�𝑠′ − 𝜋𝑠′ ∥1 ≈ 𝑝 − 𝜖,

and further, �����∑︁
𝑎

(
�̃�1,𝑎 − 𝜋1,𝑎

) (∑︁
𝑠′
𝜇𝜋ℙ1,𝑎

(𝑠′) ∥�̃�𝑠′ − 𝜋𝑠′ ∥1

)����� = 0.

We obtain

(∗) ≳ 𝜇𝜋 (𝑆0)
(
𝑝 − 𝑝2

)
≈ 𝑝 − 𝑝2.

Meanwhile,

∥�̃� − 𝜋∥2
𝐿2 (𝜇𝜋 ) ,1 =

4(𝑝 − 𝜖)2
1 + 𝛾𝜖 + 4𝛾𝜖

(1 + 𝛾𝜖) (1 − 𝛾) ≈ (𝑝 − 𝜖)
2 + 𝜖 .

Now,

|𝑉 (�̃�) −𝑉 (𝜋) − ⟨∇𝑉 (𝜋), �̃� − 𝜋⟩|
∥�̃� − 𝜋∥2

𝐿2 (𝜇𝜋 ) ,1
≈ (∗)
∥�̃� − 𝜋∥2

𝐿2 (𝜇𝜋 ) ,1
≈ 𝑝 − 𝑝2

(𝑝 − 𝜖)2 + 𝜖
.

Now, for 𝜖 := 𝑝2, 𝑝 < 1/2, we obtain

𝑝 − 𝑝2

(𝑝 − 𝜖)2 + 𝜖
=

𝑝 − 𝑝2

(𝑝 − 𝑝2)2 + 𝑝2 ≥
𝑝

4𝑝2 =
1

4𝑝
=

1
4
√
𝜖
.

C. State-weighted state-action space: Basic Facts
Given a state probability measure 𝜇 ∈ Δ(S), and an action space norm ∥·∥◦ : ℝ𝐴→ ℝ, we define the induced state-action
weighted 𝐿 𝑝 norm ∥·∥𝐿𝑝 (𝜇) ,◦ : ℝ𝑆𝐴→ ℝ:

∥𝑢∥𝐿𝑝 (𝜇) ,◦ :=
(
𝔼𝑠∼𝜇 ∥𝑢𝑠 ∥ 𝑝◦

)1/𝑝
. (10)

In addition, for 𝜇 ∈ ℝ𝑆 , 𝑄 ∈ ℝ𝑆𝐴, we define the state to state-action element-wise product 𝜇 ◦𝑄 ∈ ℝ𝑆𝐴:

(𝜇 ◦𝑄)𝑠,𝑎 := 𝜇(𝑠)𝑄𝑠,𝑎 . (11)

Lemma 11. For any strictly positive measure 𝜇 ∈ ℝ𝑆++, the dual norm of ∥·∥𝐿2 (𝜇) ,◦ is given by

∥𝑧∥∗
𝐿2 (𝜇) ,◦ =

√︄∫
𝜇(𝑠)−1 (

∥𝑧𝑠 ∥∗◦
)2 d𝑠 (12)
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Proof. First denote
𝑧∗𝑠 := arg max

𝑢𝑠∈ℝ𝐴,∥𝑢𝑠 ∥◦≤1
⟨𝑢𝑠 , 𝑧𝑠⟩

=⇒ ∥𝑧𝑠 ∥∗◦ =
〈
𝑧∗𝑠 , 𝑧𝑠

〉
, and

𝑧∗𝑠◦ = 1.

Now let 𝑥 ∈ ℝ𝑆𝐴 be defined by 𝑥𝑠 := ∥𝑧𝑠 ∥
∗
◦

𝜇 (𝑠) 𝑧
∗
𝑠 , then

⟨𝑥, 𝑧⟩ =
∫ ∥𝑧𝑠 ∥∗◦

𝜇(𝑠)
〈
𝑧∗𝑠 , 𝑧𝑠

〉
d𝑠 =

∫
1
𝜇(𝑠)

(
∥𝑧𝑠 ∥∗◦

)2 d𝑠.

Now, note that

∥𝑥∥𝐿2 (𝜇) ,◦ =

∫
𝜇(𝑠)

(
∥𝑧𝑠 ∥∗◦
𝜇(𝑠)

)2 𝑧∗𝑠2
◦ =

∫
1
𝜇(𝑠)

(
∥𝑧𝑠 ∥∗◦

)2
= ⟨𝑥, 𝑧⟩ ,

hence, for 𝑥 := 𝑥/∥𝑥∥𝐿2 (𝜇) ,◦ we have ∥𝑥∥𝐿2 (𝜇) ,◦ = 1, and

⟨𝑥, 𝑧⟩ =

√︄∫
1
𝜇(𝑠)

(
∥𝑧𝑠 ∥∗◦

)2 d𝑠.

On the other hand, for any 𝑣 such that ∥𝑣∥𝐿2 (𝜇) ,◦ ≤ 1, we have

⟨𝑣, 𝑧⟩ =
∫
⟨𝑣𝑠 , 𝑧𝑠⟩ d𝑠 =

∫ 〈
𝜇(𝑠)𝑣𝑠 , 𝜇(𝑠)−1𝑧𝑠

〉
d𝑠

≤
∫ √︁𝜇(𝑠)𝑣𝑠

◦

√︁𝜇(𝑠)−1𝑧𝑠

∗
◦

d𝑠

≤

√︄∫
𝜇(𝑠) ∥𝑣𝑠 ∥2◦ d𝑠

√︄∫
𝜇(𝑠)−1 (

∥𝑧𝑠 ∥∗◦
)2 d𝑠

≤

√︄∫
𝜇(𝑠)−1 (

∥𝑧𝑠 ∥∗◦
)2 d𝑠,

and the proof is complete. □

Lemma 12. Let 𝜇 ∈ Δ(S), and consider the state-action norm ∥·∥𝐿2 (𝜇) ,◦. For any𝑊 ∈ ℝ𝑆𝐴, we have

∥𝜇 ◦𝑊 ∥∗
𝐿2 (𝜇) ,◦ =

√︃
𝔼𝑠∼𝜇

(
∥𝑊𝑠 ∥∗◦

)2

Proof. By Lemma 11,

∥𝜇 ◦𝑊 ∥∗
𝐿2 (𝜇) ,◦ =

√︄∫
𝜇(𝑠)−1 (

∥𝜇(𝑠)𝑊𝑠 ∥∗◦
)2

=

√︃
𝔼𝑠∼𝜇

(
∥𝑊𝑠 ∥∗◦

)2
. □

Lemma 13. Assume ℎ : ℝ𝐴 → ℝ is 1-strongly convex and has 𝐿-Lipschitz gradient w.r.t. ∥·∥. Let 𝜇 ∈ Δ(S), and define
𝑅𝜇 (𝜋) := 𝔼𝑠∼𝜇 [ℎ(𝜋𝑠)]. Then

1. 𝐵𝑅𝜇
(𝜋, �̃�) = 𝔼𝑠∼𝜇𝐵𝑅 (𝜋𝑠 , �̃�𝑠).

2. 𝑅𝜇 is 1-strongly convex and has an 𝐿-Lipschitz gradient w.r.t. ∥·∥𝐿2 (𝜇) ,◦.

Proof. We have

∀𝑠,∇𝑅𝜇 (𝜋)𝑠 = 𝜇(𝑠)∇𝑅(𝜋𝑠) ∈ ℝ𝐴

=⇒ 𝐵𝑅𝜇
(𝜋, �̃�) = 𝑅𝜇 (𝜋) − 𝑅𝜇 (�̃�) −

〈
∇𝑅𝜇 (�̃�), 𝜋 − �̃�

〉
= 𝔼𝑠∼𝜇 [𝑅(𝜋𝑠) − 𝑅(�̃�𝑠) − ⟨∇𝑅(�̃�𝑠), 𝜋𝑠 − �̃�𝑠⟩]
= 𝔼𝑠∼𝜇𝐵𝑅 (𝜋𝑠 , �̃�𝑠).
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Further, 1-strongly convexity follows by

𝔼𝑠∼𝜇𝐵𝑅 (𝜋𝑠 , �̃�𝑠) ≥
1
2
𝔼𝑠∼𝜇 ∥𝜋𝑠 − �̃�𝑠 ∥2◦ ,

and the Lipschitz gradient condition from Lemma 12:∇𝑅𝜇 (𝜋) − ∇𝑅𝜇 (𝜋+)∗𝐿2 (𝜇) ,◦ =
𝜇 ◦ (

∇ℎ(𝜋𝑠) − ∇ℎ(𝜋+𝑠 )
)∗
𝐿2 (𝜇) ,◦

=

√︃
𝔼𝑠∼𝜇

(
∥∇ℎ(𝜋𝑠) − ∇ℎ(𝜋+𝑠 )∥∗◦

)2

≤ 𝐿
√︃
𝔼𝑠∼𝜇 ∥𝜋𝑠 − 𝜋+𝑠 ∥2◦

= 𝐿
𝜋 − 𝜋+

𝐿2 (𝜇) ,◦ ,

which completes the proof. □

D. Deferred proofs
D.1. Auxiliary Lemmas

Lemma 14 (Value difference; Kakade & Langford, 2002). For any 𝜌 ∈ Δ(S),

𝑉𝜌 (�̃�) −𝑉𝜌 (𝜋) =
1

1 − 𝛾𝔼𝑠∼𝜇
𝜋
𝜌

〈
𝑄 �̃�𝑠 , �̃�𝑠 − 𝜋𝑠

〉
.

Lemma 15 (Policy gradient theorem; Sutton et al., 1999). For any 𝜌 ∈ Δ(S),(
∇𝑉𝜌 (𝜋)

)
𝑠,𝑎

=
1

1 − 𝛾 𝜇
𝜋
𝜌 (𝑠)𝑄 𝜋𝑠,𝑎,〈

∇𝑉𝜌 (𝜋), �̃� − 𝜋
〉
=

1
1 − 𝛾𝔼𝑠∼𝜇

𝜋
𝜌

〈
𝑄 𝜋𝑠 , �̃�𝑠 − 𝜋𝑠

〉
.

The following lemma can be found in e.g., (Bhandari & Russo, 2024; Agarwal et al., 2021). The proof below is provided for
convenience.

Lemma 16. Let Π ⊂ Δ(A)S ,Πall := Δ(A)S and suppose that for any policy 𝜋 ∈ Π, we have

max
𝜋+∈Π

𝔼𝑠∼𝜇𝜋

〈
𝑄 𝜋 , 𝜋 − 𝜋+

〉
≥ max
𝜋′∈Πall

𝔼𝑠∼𝜇𝜋 ⟨𝑄 𝜋 , 𝜋 − 𝜋′⟩ − 𝜖 .

Then Π is (𝐻𝜈0, 𝜖𝐻
2𝜈0)-VGD w.r.t.M, for 𝜈0 :=

 𝜇★𝜌0


∞

.

Proof. Let 𝜋★ ∈ arg min𝜋∈Π 𝑉 (𝜋). By value difference Lemma 14,

𝑉 (𝜋) −𝑉 (𝜋★) = 𝐻𝔼𝑠∼𝜇★
[〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋★𝑠

〉]
≤ 𝐻 max

𝜋′∈Πall
𝔼𝑠∼𝜇★

[〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋′𝑠

〉]
(∗)
≤ 𝐻

 𝜇★𝜇𝜋 
∞

max
𝜋′∈Πall

𝔼𝑠∼𝜇𝜋

[〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋′𝑠

〉]
≤ 𝐻

 𝜇★𝜇𝜋 
∞

max
𝜋+∈Π

𝔼𝑠∼𝜇𝜋

[〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋+𝑠

〉]
+ 𝜖𝐻

 𝜇★𝜇𝜋 
∞

=

 𝜇★𝜇𝜋 
∞

max
𝜋+∈Π

〈
∇𝑉 𝜋 , 𝜋 − 𝜋+

〉
+ 𝜖𝐻

 𝜇★𝜇𝜋 
∞

(∗∗)
≤ 𝐻

 𝜇★𝜌0


∞

max
𝑧∈Π
⟨∇𝑉 𝜋 , 𝜋 − 𝑧⟩ + 𝜖𝐻2

 𝜇★𝜌0


∞
.
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To explain the transitions above, (∗) follows by the fact that within the complete policy class we may choose 𝜋′ to be greedy
w.r.t. 𝑄 𝜋 , which means

〈
𝑄 𝜋𝑠 , 𝜋𝑠 − 𝜋′𝑠

〉
≥ 0 for all 𝑠 ∈ S. The last transition (∗∗) follows from the fact that:

𝜇𝜋 (𝑠) = 1
𝐻

∞∑︁
𝑡=0

Pr(𝑠𝑡 = 𝑠 | 𝜌0, 𝜋) =
1
𝐻
𝜌0 (𝑠) +

∞∑︁
𝑡=1

Pr(𝑠𝑡 = 𝑠 | 𝜌0, 𝜋) ≥
1
𝐻
𝜌0 (𝑠). □

Lemma 17. For any policy 𝜋 : S → Δ(A), 𝑠, 𝑎 ∈ S × A:

𝑄 �̃�𝑠,𝑎 −𝑄 𝜋𝑠,𝑎 = 𝛾𝐻𝔼𝑠′∼𝜇𝜋
ℙ𝑠,𝑎

〈
𝑄 �̃�𝑠′ , �̃�𝑠′ − 𝜋𝑠′

〉
.

Proof. By Lemma 14, we have:

𝑄 �̃�𝑠,𝑎 −𝑄 𝜋𝑠,𝑎 = 𝛾𝔼𝑠′∼ℙ𝑠,𝑎

[
𝑉 �̃� (𝑠′) −𝑉 𝜋 (𝑠′)

]
= 𝛾𝐻𝔼𝑠′∼ℙ𝑠,𝑎

[
𝔼𝑠′′∼𝜇𝜋

𝑠′

〈
𝑄 �̃�𝑠′′ , �̃�𝑠′′ − 𝜋𝑠′′

〉]
= 𝛾𝐻

∑︁
𝑠′

ℙ(𝑠′ |𝑠, 𝑎)
∑︁
𝑠′′
𝜇𝜋𝑠′ (𝑠′′)

〈
𝑄 �̃�𝑠′′ , �̃�𝑠′′ − 𝜋𝑠′′

〉
= 𝛾𝐻

∑︁
𝑠′′

∑︁
𝑠′

ℙ(𝑠′ |𝑠, 𝑎)𝜇𝜋𝑠′ (𝑠′′)
〈
𝑄 �̃�𝑠′′ , �̃�𝑠′′ − 𝜋𝑠′′

〉
= 𝛾𝐻

∑︁
𝑠′′
𝜇𝜋ℙ𝑠,𝑎

(𝑠′′)
〈
𝑄 �̃�𝑠′′ , �̃�𝑠′′ − 𝜋𝑠′′

〉
= 𝛾𝐻𝔼𝑠′′∼𝜇𝜋

ℙ𝑠,𝑎

〈
𝑄 �̃�𝑠′′ , �̃�𝑠′′ − 𝜋𝑠′′

〉
. □

Lemma 18. Let ℎ : ℝ𝐴→ ℝ be the negative entropy regularizer ℎ(𝑝) :=
∑
𝑖 𝑝𝑖 log 𝑝𝑖 , and assume Δ𝜖 (A) ⊂ Δ(A) is such

that 𝑝𝑖 ≥ 𝜖 for all 𝑝 ∈ Δ𝜖 (A). Then ℎ has 1/𝜖-Lipschitz gradient w.r.t. ∥·∥1 over Δ𝜖 (A).

Proof. Let 𝑝, 𝑝 ∈ Δ𝜖 (A), and note,

∥∇ℎ(𝑝) − ∇ℎ(𝑝)∥∗1 = ∥∇ℎ(𝑝) − ∇ℎ(𝑝)∥∞ .

Let 𝑖 ∈ A, and observe that by the mean value theorem, for some 𝛼 ∈ [𝑝𝑖 , 𝑝𝑖],

|log(𝑝𝑖) − log(𝑝𝑖) | =
����𝜕 log(𝑥)

𝜕𝑥

����
𝑥=𝛼

|𝑝𝑖 − 𝑝𝑖 | =
1
𝛼
|𝑝𝑖 − 𝑝𝑖 | ≤

1
𝜖
|𝑝𝑖 − 𝑝𝑖 | ≤

1
𝜖
∥𝑝 − 𝑝∥1 ,

since 𝑝𝑖 , 𝑝𝑖 ≥ 𝜖 . □

D.2. Proof of Lemma 2

We have, by Lemmas 14 and 15,��𝑉 �̃� −𝑉 𝜋 − ⟨∇𝑉 𝜋 , �̃� − 𝜋⟩�� = ��𝐻𝔼𝑠∼𝜇𝜋

〈
𝑄 �̃�𝑠 , �̃�𝑠 − 𝜋𝑠

〉
− 𝐻𝔼𝑠∼𝜇𝜋

〈
𝑄 𝜋𝑠 , �̃�𝑠 − 𝜋𝑠

〉��
= 𝐻

��𝔼𝑠∼𝜇𝜋

〈
𝑄 �̃�𝑠 −𝑄 𝜋𝑠 , �̃�𝑠 − 𝜋𝑠

〉�� .
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Applying Lemma 17 yields,

1
𝛾𝐻2

��𝑉 �̃� −𝑉 𝜋 − ⟨∇𝑉 𝜋 , �̃� − 𝜋⟩��
=

�����𝔼𝑠∼𝜇𝜋

[∑︁
𝑎

(
𝔼𝑠′∼𝜇𝜋

ℙ𝑠,𝑎

〈
𝑄 �̃�𝑠′ , �̃�𝑠′ − 𝜋𝑠′

〉)
(�̃�𝑠𝑎 − 𝜋𝑠𝑎)

] �����
=

�����∑︁
𝑠

𝜇𝜋 (𝑠)
∑︁
𝑎

(�̃�𝑠𝑎 − 𝜋𝑠𝑎)
(∑︁
𝑠′
𝜇𝜋ℙ𝑠𝑎
(𝑠′)

〈
𝑄 �̃�𝑠′ , �̃�𝑠′ − 𝜋𝑠′

〉)�����
=

�����∑︁
𝑠,𝑎

√︁
𝜇𝜋 (𝑠) (�̃�𝑠𝑎 − 𝜋𝑠𝑎)

(√︁
𝜇𝜋 (𝑠)

∑︁
𝑠′
𝜇𝜋ℙ𝑠𝑎
(𝑠′)

〈
𝑄 �̃�𝑠′ , �̃�𝑠′ − 𝜋𝑠′

〉)�����
≤

√︄∑︁
𝑠,𝑎

𝜇𝜋 (𝑠) (�̃�𝑠𝑎 − 𝜋𝑠𝑎)2

√√√√∑︁
𝑠,𝑎

𝜇𝜋 (𝑠)
(∑︁
𝑠′
𝜇𝜋
ℙ𝑠𝑎
(𝑠′)

〈
𝑄 �̃�
𝑠′ , �̃�𝑠′ − 𝜋𝑠′

〉)2

(Cauchy-Schwarz)

≤
√︄∑︁
𝑠,𝑎

𝜇𝜋 (𝑠) (�̃�𝑠𝑎 − 𝜋𝑠𝑎)2
√︄∑︁
𝑠,𝑎

𝜇𝜋 (𝑠)
∑︁
𝑠′
𝜇𝜋
ℙ𝑠𝑎
(𝑠′)

〈
𝑄 �̃�
𝑠′ , �̃�𝑠′ − 𝜋𝑠′

〉2 (Jensen)

=

√︄∑︁
𝑠

𝜇𝜋 (𝑠) ∥�̃�𝑠 − 𝜋𝑠 ∥22

√√√∑︁
𝑠′

(∑︁
𝑠,𝑎

1
𝜋𝑠𝑎

𝜇𝜋 (𝑠)𝜋𝑠𝑎𝜇𝜋ℙ𝑠𝑎
(𝑠′)

) 〈
𝑄 �̃�
𝑠′ , �̃�𝑠′ − 𝜋𝑠′

〉2

≤ 1
√
𝜖

√︄∑︁
𝑠

𝜇𝜋 (𝑠) ∥�̃�𝑠 − 𝜋𝑠 ∥22

√√√∑︁
𝑠′

(∑︁
𝑠,𝑎

𝜇𝜋 (𝑠)𝜋𝑠𝑎𝜇𝜋ℙ𝑠𝑎
(𝑠′)

) 〈
𝑄 �̃�
𝑠′ , �̃�𝑠′ − 𝜋𝑠′

〉2
,

for 𝜖 := min𝑠,𝑎 {𝜋𝑠𝑎}. Now, by the law of total probability (applied on the discounted probability measure 𝜇𝜋):∑︁
𝑠,𝑎

𝜇𝜋 (𝑠)𝜋𝑠𝑎𝜇𝜋ℙ𝑠𝑎
(𝑠′) =

∑︁
𝑠,𝑎

𝜇𝜋 (𝑠 | 𝑠0 ∼ 𝜌0)𝜋(𝑎 |𝑠)𝜇𝜋 (𝑠′ | 𝑠′0 ∼ ℙ𝑠𝑎)

=
∑︁
𝑠,𝑎

𝜇𝜋 (𝑠, 𝑎 | 𝑠0 ∼ 𝜌0)𝜇𝜋 (𝑠′ | 𝑠′0 ∼ ℙ𝑠𝑎)

= 𝜇𝜋 (𝑠′ | 𝑠0 ∼ 𝜌0)
= 𝜇𝜋 (𝑠′).

Combining with our previous inequality, we obtain��𝑉 �̃� −𝑉 𝜋 − ⟨∇𝑉 𝜋 , �̃� − 𝜋⟩�� ≤ 𝛾𝐻2
√
𝜖

√︄∑︁
𝑠

𝜇𝜋 (𝑠) ∥�̃�𝑠 − 𝜋𝑠 ∥22
√︄∑︁

𝑠′
𝜇𝜋 (𝑠′)

〈
𝑄 �̃�
𝑠′ , �̃�𝑠′ − 𝜋𝑠′

〉2

=
𝛾𝐻2
√
𝜖
∥�̃� − 𝜋∥𝐿2 (𝜇𝜋 ) ,2

√︄∑︁
𝑠′
𝜇𝜋 (𝑠′)

〈
𝑄 �̃�
𝑠′ , �̃�𝑠′ − 𝜋𝑠′

〉2
.

Further, √︄∑︁
𝑠′
𝜇𝜋 (𝑠′)

〈
𝑄 �̃�
𝑠′ , �̃�𝑠′ − 𝜋𝑠′

〉2 ≤
√︄∑︁

𝑠′
𝜇𝜋 (𝑠′)

𝑄 �̃�
𝑠′

2
∞ ∥�̃�𝑠′ − 𝜋𝑠′ ∥

2
1 ≤ 𝐻 ∥�̃� − 𝜋∥𝐿2 (𝜇𝜋 ) ,1 ,

and √︄∑︁
𝑠′
𝜇𝜋 (𝑠′)

〈
𝑄 �̃�
𝑠′ , �̃�𝑠′ − 𝜋𝑠′

〉2 ≤
√︄∑︁

𝑠′
𝜇𝜋 (𝑠′)

𝑄 �̃�
𝑠′

2
2 ∥�̃�𝑠′ − 𝜋𝑠′ ∥

2
2 ≤ 𝐴𝐻 ∥�̃� − 𝜋∥𝐿2 (𝜇𝜋 ) ,2 .
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The first inequality above gives��𝑉 �̃� −𝑉 𝜋 − ⟨∇𝑉 𝜋 , �̃� − 𝜋⟩�� ≤ 𝛾𝐻3
√
𝜖
∥�̃� − 𝜋∥𝐿2 (𝜇𝜋 ) ,2 ∥�̃� − 𝜋∥𝐿2 (𝜇𝜋 ) ,1 ≤

𝛾𝐻3
√
𝜖
∥�̃� − 𝜋∥2

𝐿2 (𝜇𝜋 ) ,1 ,

which proves the first claim, and the second one��𝑉 �̃� −𝑉 𝜋 − ⟨∇𝑉 𝜋 , �̃� − 𝜋⟩�� ≤ 𝛾𝐴𝐻3
√
𝜖
∥�̃� − 𝜋∥𝐿2 (𝜇𝜋 ) ,2 ∥�̃� − 𝜋∥𝐿2 (𝜇𝜋 ) ,2 =

𝛾𝐴𝐻3
√
𝜖
∥�̃� − 𝜋∥2

𝐿2 (𝜇𝜋 ) ,2 ,

which proves the second and completes the proof. □

D.3. Proof of Theorem 1

The theorem makes use of the following.

Lemma 19. Assume Π is (𝐶★, 𝜀vgd)-VGD w.r.t. M, and consider the 𝜖-greedy exploratory version of Π, Π 𝜖 :=
{(1 − 𝜖)𝜋 + 𝜖𝑢 | 𝜋 ∈ Π}, where 𝑢𝑠,𝑎 ≡ 1/𝐴. Then Π 𝜖 is (𝐶★, 𝛿)-VGD with 𝛿 := 𝜀vgd + 12𝐶★𝐻2𝐴𝜖 . Concretely, for
any 𝜋𝜖 ∈ Π 𝜖 , we have:

𝐶★ max
�̃� 𝜖 ∈Π𝜖

⟨∇𝑉 (𝜋𝜖 ), �̃�𝜖 − 𝜋𝜖 ⟩ ≥ 𝑉 (𝜋𝜖 ) −𝑉★(Π 𝜖 ) − 𝜀vgd − 12𝜖𝐶★𝐻2𝐴.

We now prove our corollary and return to prove the above lemma later in Appendix D.4.

Proof of Theorem 1. By Lemma 19, we have that Π𝜀expl is (𝐶★, 𝛿)-VGD with 𝛿 = 𝜀vgd + 12𝜀expl𝐶★𝐻
2𝐴. Therefore, under

the conditions of Theorem 3 and the value difference Lemma 14,

𝑉 (𝜋𝐾+1) −𝑉★(Π) ≤ 𝑉 (𝜋𝐾+1) −𝑉★(Π𝜀expl ) +
��𝑉★(Π𝜀expl ) −𝑉★(Π)

��
= 𝑂

(
𝐶2
★𝐿

2𝑐2
1

𝜂𝐾
+

(
𝐶★𝐷 + 𝑐1𝐿

2
)
𝐻
√
𝜀crit + 𝐶★𝜀act + 𝑐1𝐿𝜂

−1/2√𝜀act + 𝛿
)
,

where 𝑐1 := 𝐷 + 𝜂𝐻𝑀 . Next we apply Lemma 4 in the both cases considered, using the fact that for all 𝜋 ∈ Π𝜀expl , we have
min𝑠,𝑎

{
𝜋𝑠,𝑎

}
≥ 𝜀expl/𝐴. In the euclidean case, we argue the following:

1. 𝑅 is 1-strongly convex and has 1-Lipschitz gradient w.r.t. ∥·∥2.

2. ∀𝑠, ∥𝜋𝑠 − �̃�𝑠 ∥2 ≤ 𝐷 = 2, ∥𝑄𝑠 ∥2 ≤ 𝑀 =
√
𝐴𝐻.

3. The value function is
(
𝛽 := 𝐴3/2𝐻3

√
𝜀expl

)
-locally smooth w.r.t. 𝜋 ↦→ ∥·∥𝐿2 (𝜇𝜋 ) ,2.

Hence, 𝑐1 = 𝑂 (1), and Lemma 4 gives:

𝑉 (𝜋𝐾+1) −𝑉★(Π) ≲
𝐶2
★

𝜂𝐾
+ 𝐶★

(
𝐻
√
𝜀crit + 𝜀act

)
+ 𝜂−1/2√𝜀act + 𝛿

=
2𝐴3/2𝐻3𝐶2

★√
𝜀expl𝐾

+ 𝐶★
(
𝐻
√
𝜀crit + 𝜀act

)
+
√

2𝐴3/2𝐻3

𝜀expl1/4
√
𝜀act + 𝛿.

Setting 𝜀expl = 𝐾
−2/3, we obtain

𝑉 (𝜋𝐾+1) −𝑉★(Π) = 𝑂
(
𝐶2
★𝐴

3/2𝐻3

𝐾2/3 + 𝐶★
(
𝐻
√
𝜀crit + 𝜀act

)
+ 𝐴𝐻2𝐾1/6√𝜀act + 𝜀vgd

)
.

In the negative-entropy case, we have the following.

1. 𝑅 is 1-strongly convex and has a
(
𝐴/𝜀expl

)
-Lipschitz gradient w.r.t. ∥·∥1 (by Pinsker’s inequality and Lemma 18).
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2. ∀𝑠, ∥𝜋𝑠 − �̃�𝑠 ∥1 ≤ 𝐷 = 2, ∥𝑄𝑠 ∥1 ≤ 𝑀 = 𝐻.

3. The value function is
(
𝛽 := 𝐴1/2𝐻3

√
𝜀expl

)
-locally smooth w.r.t. 𝜋 ↦→ ∥·∥𝐿2 (𝜇𝜋 ) ,1.

Hence, 𝑐1 = 𝑂 (1), and Lemma 4 gives:

𝑉 (𝜋𝐾+1) −𝑉★(Π) ≲
𝐶2
★𝐴

2

𝜀expl2𝜂𝐾
+

(
𝐶★ +

𝐴2

𝜀expl2

)
𝐻
√
𝜀crit + 𝐶★𝜀act +

𝐴

𝜀expl
√
𝜂

√
𝜀act + 𝛿

=
2𝐴5/2𝐻3𝐶2

★

𝜀expl5/2𝐾
+

(
𝐶★ +

𝐴2

𝜀expl2

)
𝐻
√
𝜀crit + 𝐶★𝜀act +

𝐴3/2𝐻3

𝜀expl5/4
√
𝜀act + 𝛿.

We now set 𝜀expl = 𝐾
−2/7𝐴2/5 in order to balance the terms,

2𝐴5/2𝐻3𝐶2
★

𝜀expl5/2𝐾
+ 𝐶★𝐻2𝐴𝜀expl,

which yields,

𝑉 (𝜋𝐾+1) −𝑉★(Π)

= 𝑂

(
𝐶2
★𝐴

3/2𝐻3

𝐾2/7 +
(
𝐶★ + 𝐴2𝐾4/7

)
𝐻
√
𝜀crit + 𝐶★𝜀act + 𝐴3/2𝐻3𝐾5/14√𝜀act + 𝜀vgd

)
,

and completes the proof. □

D.4. Proof of Lemma 19

Lemma 20. For any MDPM = (S,A,ℙ, ℓ, 𝛾, 𝜌0) and two policies 𝜋, �̃� : S → Δ(A), we have:𝜇 �̃� − 𝜇𝜋1 ≤ 𝐻 ∥�̃� − 𝜋∥𝐿1 (𝜇𝜋 ) ,1 .

Proof. Consider the MDPM𝑥 = (S,A,ℙ, 𝑟𝑥 , 𝛾, 𝜌0); i.e., the same MDPM but with reward function defined by 𝑟𝑥 (𝑠, 𝑎) :=
𝕀 {𝑠 = 𝑥}. Let 𝑉·;𝑟𝑥 , 𝑄 ·, ·;𝑟𝑥 denote its value and action-value functions, respectively. We have

𝑄 �̃�𝑠,𝑎;𝑟𝑥 = 𝔼

[ ∞∑︁
𝑡=0

𝛾𝑡 𝕀 {𝑠𝑡 = 𝑥} | 𝑠0 = 𝑠, 𝑎0 = 𝑎, �̃�

]
=

∞∑︁
𝑡=0

𝛾𝑡 Pr (𝑠𝑡 = 𝑥 | 𝑠0 = 𝑠, 𝑎0 = 𝑎, �̃�)

= 𝕀 {𝑠 = 𝑥} +
∞∑︁
𝑡=1

𝛾𝑡 Pr (𝑠𝑡 = 𝑥 | 𝑠0 = 𝑠, 𝑎0 = 𝑎, �̃�)

= 𝕀 {𝑠 = 𝑥} + 𝛾
∞∑︁
𝑡=1

𝛾𝑡−1 Pr (𝑠𝑡 = 𝑥 | 𝑠1 ∼ ℙ𝑠𝑎, �̃�)

= 𝕀 {𝑠 = 𝑥} + 𝛾𝜇 �̃�ℙ𝑠𝑎
(𝑥).
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Hence,

𝜇 �̃� (𝑥) − 𝜇𝜋 (𝑥) = 𝑉 �̃�𝜌0;𝑟𝑥 −𝑉
𝜋
𝜌0;𝑟𝑥

= 𝐻𝔼𝑠∼𝜇𝜋

〈
𝑄 �̃�𝑠;𝑟𝑥 , �̃�𝑠 − 𝜋𝑠

〉
(Lemma 14)

= 𝐻𝔼𝑠∼𝜇𝜋

[∑︁
𝑎

(
𝕀 {𝑠 = 𝑥} + 𝛾𝜇 �̃�ℙ𝑠𝑎

(𝑥)
)
(�̃�𝑠𝑎 − 𝜋𝑠𝑎)

]
= 𝐻𝔼𝑠∼𝜇𝜋

[∑︁
𝑎

𝕀 {𝑠 = 𝑥} (�̃�𝑠𝑎 − 𝜋𝑠𝑎) + 𝛾
∑︁
𝑎

𝜇 �̃�ℙ𝑠𝑎
(𝑥) (�̃�𝑠𝑎 − 𝜋𝑠𝑎)

]
= 𝛾𝐻𝔼𝑠∼𝜇𝜋

[∑︁
𝑎

𝜇 �̃�ℙ𝑠𝑎
(𝑥) (�̃�𝑠𝑎 − 𝜋𝑠𝑎)

]
.

Therefore, ∑︁
𝑥

��𝜇 �̃� (𝑥) − 𝜇𝜋 (𝑥)�� = 𝛾𝐻∑︁
𝑥

�����𝔼𝑠∼𝜇𝜋

[∑︁
𝑎

𝜇 �̃�ℙ𝑠𝑎
(𝑥) (�̃�𝑠𝑎 − 𝜋𝑠𝑎)

] �����
≤ 𝛾𝐻

∑︁
𝑥

𝔼𝑠∼𝜇𝜋

[∑︁
𝑎

𝜇 �̃�ℙ𝑠𝑎
(𝑥) |�̃�𝑠𝑎 − 𝜋𝑠𝑎 |

]
= 𝛾𝐻𝔼𝑠∼𝜇𝜋

[∑︁
𝑎

(∑︁
𝑥

𝜇 �̃�ℙ𝑠𝑎
(𝑥)

)
|�̃�𝑠𝑎 − 𝜋𝑠𝑎 |

]
= 𝛾𝐻𝔼𝑠∼𝜇𝜋

[∑︁
𝑎

|�̃�𝑠𝑎 − 𝜋𝑠𝑎 |
]

= 𝛾𝐻 ∥�̃� − 𝜋∥𝐿1 (𝜇𝜋 ) ,1 ,

and the proof is complete. □

Proof of Lemma 19. Let 𝜋𝜖 ∈ Π 𝜖 , and set 𝜋 ∈ Π to be the non-exploratory version of 𝜋𝜖 . We have, by Lemma 14:

𝑉 𝜋 −𝑉 𝜋 𝜖

= 𝔼𝑠∼𝜇𝜋

〈
𝑄 𝜋

𝜖

𝑠 , 𝜋𝑠 − 𝜋𝜖𝑠
〉
= 𝜖𝔼𝑠∼𝜇𝜋

〈
𝑄 𝜋

𝜖

𝑠 , 𝜋𝑠 − 𝑢
〉
≤ 2𝜖𝐻. (13)

In addition,

∥∇𝑉 (𝜋𝜖 ) − ∇𝑉 (𝜋)∥1 =
∑︁
𝑠

𝜇𝜋 𝜖 (𝑠)𝑄 𝜋 𝜖

𝑠 − 𝜇𝜋 (𝑠)𝑄 𝜋𝑠


1

≤
∑︁
𝑠

𝑄 𝜋 𝜖

𝑠


1

��𝜇𝜋 𝜖 (𝑠) − 𝜇𝜋 (𝑠)
�� +∑︁

𝑠

𝜇𝜋 (𝑠)
𝑄 𝜋𝑠 −𝑄 𝜋 𝜖

𝑠


1

≤ 𝐴𝐻
𝜇𝜋 𝜖 − 𝜇𝜋


1 +

∑︁
𝑠

𝜇𝜋 (𝑠)
𝑄 𝜋𝑠 −𝑄 𝜋 𝜖

𝑠


1 .

To bound the first term, apply Lemma 20:

𝐴𝐻
𝜇𝜋 𝜖 − 𝜇𝜋


1 ≤ 𝐴𝐻

2 ∥𝜋𝜖 − 𝜋∥𝐿1 (𝜇𝜋 ) ,1 ≤ 𝜖 𝐴𝐻2 ∥𝜋 − 𝑢∥𝐿1 (𝜇𝜋 ) ,1 ≤ 2𝜖 𝐴𝐻2.

To bound the second term, we have for any �̃�:∑︁
𝑠

𝜇𝜋 (𝑠)
𝑄 𝜋𝑠 −𝑄 �̃�𝑠 1 ≤ 𝐻

2
∑︁
𝑠

𝜇𝜋 (𝑠)
∑︁
𝑎

∑︁
𝑠′
𝜇𝜋ℙ𝑠,𝑎

(𝑠′) ∥�̃�𝑠′ − 𝜋𝑠 ∥1

= 𝐻2𝐴
∑︁
𝑠′

∑︁
𝑠,𝑎

𝜇𝜋 (𝑠) 1
𝐴
𝜇𝜋ℙ𝑠,𝑎

(𝑠′) ∥�̃�𝑠′ − 𝜋𝑠 ∥1

= 𝐻2𝐴 ∥�̃� − 𝜋∥𝐿1 (𝜈) ,1 ,
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where 𝜈 ∈ ℝS is defined by

𝜈(𝑠′) =
∑︁
𝑠,𝑎

𝜇𝜋 (𝑠) 1
𝐴
𝜇𝜋ℙ𝑠,𝑎

(𝑠′).

By the law of total probability, 𝜈 ∈ Δ(S) is in fact a state probability measure. Hence, we obtain∑︁
𝑠

𝜇𝜋 (𝑠)
𝑄 𝜋𝑠 −𝑄 𝜋 𝜖

𝑠


1 ≤ 𝐻

2𝐴 ∥𝜋𝜖 − 𝜋∥𝐿1 (𝜈) ,1 = 𝜖𝐻2𝐴 ∥𝜋 − 𝑢∥𝐿1 (𝜈) ,1 ≤ 2𝜖𝐻2𝐴.

The bounds on both terms, combined with the previous display now yields

∥∇𝑉 (𝜋𝜖 ) − ∇𝑉 (𝜋)∥1 ≤ 4𝜖 𝐴𝐻2. (14)

We now turn to apply Equations (13) and (14) to establish the claimed VGD condition. Let 𝜋𝜖 ∈ Π 𝜖 be an arbitrary 𝜖-greedy
policy and 𝜋 ∈ Π the non-exploratory version of 𝜋𝜖 . The assumption that Π is (𝐶★, 𝜀vgd)-VGD implies

max
�̃�∈Π
⟨∇𝑉 (𝜋), �̃� − 𝜋⟩ ≥ 1

𝐶★

(
𝑉 (𝜋) −𝑉★(Π) − 𝜀vgd

)
.

Let �̃� ∈ Π be the policy maximizing the LHS, and �̃�𝜖 = (1 − 𝜖)�̃� + 𝜖𝑢 ∈ Π 𝜖 its corresponding greedy exploration policy.
We have,

⟨∇𝑉 (𝜋𝜖 ), �̃�𝜖 − 𝜋𝜖 ⟩ = (1 − 𝜖) ⟨∇𝑉 (𝜋𝜖 ), �̃� − 𝜋⟩
= (1 − 𝜖) ⟨∇𝑉 (𝜋), �̃� − 𝜋⟩ + (1 − 𝜖) ⟨∇𝑉 (𝜋𝜖 ) − ∇𝑉 (𝜋), �̃� − 𝜋⟩

≥ 1 − 𝜖
𝐶★

(
𝑉 (𝜋) −𝑉★(Π) − 𝜀vgd

)
+ (1 − 𝜖) ⟨∇𝑉 (𝜋𝜖 ) − ∇𝑉 (𝜋), �̃� − 𝜋⟩

≥ 1
𝐶★

(
𝑉 (𝜋) −𝑉★(Π) − 𝜀vgd

)
− 2 ∥∇𝑉 (𝜋𝜖 ) − ∇𝑉 (𝜋)∥1

≥ 1
𝐶★

(
𝑉 (𝜋) −𝑉★(Π) − 𝜀vgd

)
− 8𝜖𝐻2𝐴 (Equation (14))

≥ 1
𝐶★

(
𝑉 (𝜋𝜖 ) −𝑉★(Π) − 𝜀vgd − |𝑉 (𝜋𝜖 ) −𝑉 (𝜋) |

)
− 8𝜖𝐻2𝐴

≥ 1
𝐶★

(
𝑉 (𝜋𝜖 ) −𝑉★(Π) − 𝜀vgd − 2𝜖𝐻

)
− 8𝜖𝐻2𝐴 (Equation (13))

≥ 1
𝐶★

(
𝑉 (𝜋𝜖 ) −𝑉★(Π 𝜖 ) − 𝜀vgd − 4𝜖𝐻

)
− 8𝜖𝐻2𝐴. (Equation (13))

(Indeed, we pay for the difference 𝑉★(Π 𝜖 ) −𝑉★(Π) here, only to pay it again in the other direction later, but it is cleaner
this way and results in only an extra constant numerical factor.) Therefore,

𝐶★ max
�̂� 𝜖 ∈Π𝜖

⟨∇𝑉 (𝜋𝜖 ), �̂�𝜖 − 𝜋𝜖 ⟩ ≥ 𝑉 (𝜋𝜖 ) −𝑉★(Π 𝜖 ) − 𝜀vgd − 12𝜖𝐶★𝐻2𝐴,

which completes the proof. □

E. Constrained non-convex optimization for locally smooth objectives: Analysis
In this section, we provide the full technical details for Section 3.2. Recall that we consider the constrained optimization
problem:

min
𝑥∈X

𝑓 (𝑥), (15)

where the decision set X ⊆ ℝ𝑑 is convex and endowed with a local norm 𝑥 ↦→ ∥·∥𝑥 (see Definition 5), and access to the
objective is granted through an approximate first order oracle, as defined in Assumption 3. We assume 𝑓 : X → ℝ is
differentiable and defined over an open domain dom 𝑓 ⊆ ℝ𝑑 that contains X. We consider an approximate version of the
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algorithm described in Equation (8), hence for the sake of rigor, we introduce some additional notation. Given any convex
regularizer ℎ : ℝ𝑑 → ℝ, we define a Bregman proximal point update with step-size 𝜂 > 0 by:

𝑇𝜂 (𝑥; ℎ) := arg min
𝑦∈X

{〈
∇̂ 𝑓 (𝑥), 𝑦

〉
+ 1
𝜂
𝐵ℎ (𝑦, 𝑥)

}
, (16)

and the set of 𝜀opt-approximate solutions by:

𝑇
𝜀opt
𝜂 (𝑥; ℎ) :=

{
𝑥+ ∈ X | ∀𝑧 ∈ X :

〈
∇̂ 𝑓 (𝑥) + 1

𝜂
∇𝐵ℎ (𝑥+, 𝑥), 𝑧 − 𝑥+

〉
≥ −𝜀opt

}
. (17)

Now, the approximate version of our algorithm is given by:

𝑘 = 1, . . . , 𝐾 : 𝑥𝑘+1 ∈ 𝑇
𝜀opt
𝜂 (𝑥𝑘 ; 𝑅𝑥𝑘 ). (18)

We recall our main theorem below.
Theorem (restatement of Theorem 3). Suppose that 𝑓 is (𝐶★, 𝜀vgd)-VGD as per Definition 4, and that 𝑓★ := min𝑥∈X 𝑓 (𝑥) >
−∞. Assume further that:

(i) The local regularizer 𝑅𝑥 is 1-strongly convex and has an 𝐿-Lipschitz gradient w.r.t. ∥·∥𝑥 for all 𝑥 ∈ X.

(ii) For all 𝑥 ∈ X, max𝑢,𝑣∈X ∥𝑢 − 𝑣∥𝑥 ≤ 𝐷, and ∥∇ 𝑓 (𝑥)∥∗𝑥 ≤ 𝑀 .

(iii) 𝑓 is 𝛽-locally smooth w.r.t. 𝑥 ↦→ ∥·∥𝑥 .

Then, for the algorithm described in Equation (18) we have following guarantee when 𝜂 ≤ 1/(2𝛽):

𝑓 (𝑥𝐾+1) − 𝑓★ = 𝑂

(
𝐶2
★𝐿

2𝑐2
1

𝜂𝐾
+

(
𝐶★𝐷 + 𝑐1𝐿

2
)
𝜀∇ + 𝐶★𝜀opt + 𝑐1𝐿𝜂

− 1
2
√
𝜀opt + 𝜀vgd

)
where 𝑐1 := 𝐷 + 𝜂𝑀 .

Evidently, since the objective is not convex, standard mirror descent analyses are inadequate, and our analysis takes the
proximal point update view of Equation (18). While there are numerous prior works that investigate non-euclidean proximal
point methods for both convex and non-convex objective functions (e.g., Tseng, 2010; Ghadimi et al., 2016; Bauschke et al.,
2017; Lu et al., 2018; Zhang & He, 2018; Fatkhullin & He, 2024; see also Beck, 2017) , non of them fit into the specific
setting we study here. The notable differences being the use of local smoothness (Definition 6), and the goal of seeking
convergence in function values for a non-convex objective by exploiting variational gradient dominance.

Our approach may be best described as one that adapts the work of Xiao (2022) to the non-euclidean (and, “local”) setup,
but without relying on the objective having a Lipschitz gradient (note that we do not claim our definition of local smoothness
implies a Lipschitz gradient condition). Since Xiao (2022) relies on global smoothness of the objective w.r.t. the euclidean
norm (as was established by Agarwal et al., 2021), their bounds inevitably scale with the size of the state-space 𝑆, which we
want to avoid. Given any convex regularizer ℎ : ℝ𝑑 → ℝ, we define Bregman gradient mapping by:

𝐺𝜂 (𝑥, 𝑥+; ℎ) :=
1
𝜂

(
∇ℎ(𝑥) − ∇ℎ(𝑥+)

)
, (19)

where 𝑥+ ∈ ℝ𝑑 should be interpreted as an approximate proximal point update step, i.e., 𝑥+ ∈ 𝑇 𝜀opt
𝜂 (𝑥; ℎ).

E.1. Bregman prox: Descent and Stationarity

In this section we provide basic results relating to proximal point descent and stationarity conditions. Our first lemma is
(roughly) a non-euclidean version of a similar lemma given in (Nesterov, 2013) for the euclidean case.

Lemma 21 (Bregman proximal step descent). Let ∥·∥ be a norm, and suppose 𝑥 ∈ X is such that

∀𝑦 ∈ X : | 𝑓 (𝑦) − 𝑓 (𝑥) − ⟨∇ 𝑓 (𝑥), 𝑦 − 𝑥⟩| ≤ 𝛽

2
∥𝑦 − 𝑥∥2 .

Assume further that:
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1. 0 < 𝜂 ≤ 1/(2𝛽),

2. ℎ : ℝ𝑑 → ℝ is 1-strongly convex and has an 𝐿ℎ-Lipschitz gradient, w.r.t. ∥·∥.

3.
∇̂ 𝑓 (𝑥) − ∇ 𝑓 (𝑥)

∗
≤ 𝜀∇.

Then, for 𝑥+ ∈ 𝑇 𝜀opt
𝜂 (𝑥; ℎ) we have that:

𝑓 (𝑥+) ≤ 𝑓 (𝑥) − 𝜂

2𝐿2
ℎ

𝐺𝜂 (𝑥, 𝑥+; ℎ)2
∗ + 𝜂𝜀∇

𝐺𝜂 (𝑥, 𝑥+; ℎ)∗ + 𝜀opt.

Proof. Observe,

𝑓 (𝑥+) ≤ 𝑓 (𝑥) +
〈
∇ 𝑓 (𝑥), 𝑥+ − 𝑥

〉
+ 𝛽

2
𝑥+ − 𝑥2

= 𝑓 (𝑥) +
〈
∇̂ 𝑓 (𝑥), 𝑥+ − 𝑥

〉
+ 𝛽

2
𝑥+ − 𝑥2 +

〈
∇ 𝑓 (𝑥) − ∇̂ 𝑓 (𝑥), 𝑥+ − 𝑥

〉
≤ 𝑓 (𝑥) +

〈
∇̂ 𝑓 (𝑥), 𝑥+ − 𝑥

〉
+ 𝛽

2
𝑥+ − 𝑥2 + 𝜀∇

𝑥+ − 𝑥
≤ 𝑓 (𝑥) +

〈
∇̂ 𝑓 (𝑥), 𝑥+ − 𝑥

〉
+ 𝛽

2
𝑥+ − 𝑥2 + 𝜂𝜀∇

𝐺𝜂 (𝑥, 𝑥+; ℎ)∗ . (Lemma 23)

Further, since 𝑥+ ∈ 𝑇 𝜀opt
𝜂 (𝑥; ℎ), for any 𝑧 ∈ X,〈

∇̂ 𝑓 (𝑥), 𝑥+ − 𝑧
〉
≤

〈
1
𝜂

(
∇ℎ(𝑥+) − ∇ℎ(𝑥)

)
, 𝑧 − 𝑥+

〉
+ 𝜀opt.

Hence,

𝑓 (𝑥) +
〈
∇̂ 𝑓 (𝑥), 𝑥+ − 𝑥

〉
+ 𝛽

2
𝑥+ − 𝑥2

≤ 𝑓 (𝑥) + 1
𝜂

〈
∇ℎ(𝑥) − ∇ℎ(𝑥+), 𝑥+ − 𝑥

〉
+ 𝛽

2
𝑥+ − 𝑥2 + 𝜀opt

= 𝑓 (𝑥) − 1
𝜂

(
𝐵ℎ (𝑥+, 𝑥) + 𝐵ℎ (𝑥, 𝑥+)

)
+ 𝛽

2
𝑥+ − 𝑥2 + 𝜀opt

≤ 𝑓 (𝑥) − 1
𝜂

(
𝐵ℎ (𝑥+, 𝑥) + 𝐵ℎ (𝑥, 𝑥+)

)
+ 𝛽𝐵ℎ (𝑥+, 𝑥) + 𝜀opt

≤ 𝑓 (𝑥) − 1
2𝜂

(
𝐵ℎ (𝑥+, 𝑥) + 𝐵ℎ (𝑥, 𝑥+)

)
+ 𝜀opt,

where the last line inequality follows from 𝜂 ≤ 1/(2𝛽). Combining with the previous derivation, we now have

𝑓 (𝑥+) ≤ 𝑓 (𝑥) − 1
2𝜂

(
𝐵ℎ (𝑥+, 𝑥) + 𝐵ℎ (𝑥, 𝑥+)

)
+ 𝜀opt + 𝜂𝜀∇

𝐺𝜂 (𝑥, 𝑥+; ℎ)∗ . (20)

Finally, the assumption that ℎ has an 𝐿ℎ-Lipschitz gradient implies that

𝜂2 𝐺𝜂 (𝑥, 𝑥+; ℎ)2
∗ =

∇ℎ(𝑥+) − ∇ℎ(𝑥)2
∗ ≤ 𝐿

2
ℎ

𝑥+ − 𝑥2 ≤ 2𝐿2
ℎ𝐵ℎ (𝑥

+, 𝑥),

and similarly 𝜂2
𝐺𝜂 (𝑥, 𝑥+; ℎ)2

∗ ≤ 2𝐿2
ℎ
𝐵ℎ (𝑥, 𝑥+). Hence,

− 1
2𝜂

(
𝐵ℎ (𝑥+, 𝑥) + 𝐵ℎ (𝑥, 𝑥+)

)
≤ − 𝜂

2𝐿2
ℎ

𝐺𝜂 (𝑥, 𝑥+; ℎ)2
∗ ,

which completes the proof after combining with Equation (20). □
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Our second lemma bounds the error in optimality conditions at any point 𝑥 ∈ X w.r.t. the gradient mapping dual norm. We
remark that here we do not assume a Lipschitz gradient condition holds for the objective function, as commonly done in
similar arguments (e.g., Nesterov, 2013; Xiao, 2022).

Lemma 22. Let ∥·∥ be a norm, and 𝑥 ∈ X. Assume that:

1. ℎ : ℝ𝑑 → ℝ is 1-strongly convex and has an 𝐿ℎ-Lipschitz gradient, w.r.t. ∥·∥.

2.
∇̂ 𝑓 (𝑥) − ∇ 𝑓 (𝑥)

∗
≤ 𝜀∇,

3. 𝐷 > 0 upper bounds the diameter of X: max𝑧,𝑦∈X ∥𝑧 − 𝑦∥ ≤ 𝐷

4. 𝑀 > 0 upper bounds the gradient dual norm at 𝑥: ∥∇ 𝑓 (𝑥)∥∗ ≤ 𝑀 .

Then, if 𝑥+ ∈ 𝑇 𝜀opt
𝜂 (𝑥; ℎ), it holds that:

∀𝑦 ∈ X : ⟨∇ 𝑓 (𝑥), 𝑥 − 𝑦⟩ ≤ (𝐷 + 𝜂𝑀)
𝐺𝜂 (𝑥, 𝑥+; ℎ)∗ + 𝜀∇𝐷 + 𝜀opt.

Proof. By assumption, we have for all 𝑦 ∈ X,〈
∇̂ 𝑓 (𝑥) − 𝐺𝜂 (𝑥, 𝑥+; ℎ), 𝑦 − 𝑥+

〉
≥ −𝜀opt

⇐⇒
〈
∇ 𝑓 (𝑥), 𝑥+ − 𝑦

〉
≤

〈
𝐺𝜂 (𝑥, 𝑥+; ℎ), 𝑦 − 𝑥+

〉
+

〈
∇ 𝑓 (𝑥) − ∇̂ 𝑓 (𝑥), 𝑥+ − 𝑦

〉
+ 𝜀opt

≤
𝐺𝜂 (𝑥, 𝑥+; ℎ)∗ 𝐷 + 𝜀∇𝐷 + 𝜀opt.

Further,

⟨∇ 𝑓 (𝑥), 𝑥 − 𝑦⟩ =
〈
∇ 𝑓 (𝑥), 𝑥+ − 𝑦

〉
+

〈
∇ 𝑓 (𝑥), 𝑥 − 𝑥+

〉
≤

𝐺𝜂 (𝑥, 𝑥+; ℎ)∗ 𝐷 + 𝜀∇𝐷 + 𝜀opt +
〈
∇ 𝑓 (𝑥), 𝑥 − 𝑥+

〉
≤

𝐺𝜂 (𝑥, 𝑥+; ℎ)∗ 𝐷 + 𝜀∇𝐷 + 𝜀opt + 𝑀
𝑥 − 𝑥+

≤
𝐺𝜂 (𝑥, 𝑥+; ℎ)∗ 𝐷 + 𝜀∇𝐷 + 𝜀opt + 𝜂𝑀

𝐺𝜂 (𝑥, 𝑥+; ℎ)∗ (Lemma 23)

≤ (𝐷 + 𝜂𝑀)
𝐺𝜂 (𝑥, 𝑥+; ℎ)∗ + 𝜀∇𝐷 + 𝜀opt,

which completes the proof. □

Lemma 23. For any norm ∥·∥, and any 𝑥, 𝑥+ ∈ X, we have ∥𝑥 − 𝑥+∥ ≤ 𝜂
𝐺𝜂 (𝑥, 𝑥+; ℎ)∗ .

Proof. For any 𝑢, 𝑣 it holds that (see e.g., Hiriart-Urruty & Lemaréchal, 2004),

1
2
∥𝑢 − 𝑣∥2 ≤ 𝐵ℎ (𝑢, 𝑣) = 𝐵ℎ∗ (∇ℎ(𝑢),∇ℎ(𝑣)) ≤

1
2
∥∇ℎ(𝑢) − ∇ℎ(𝑣)∥2∗ .

The result now follows by the definition of 𝐺𝜂 (𝑥, 𝑥+; ℎ). □

E.2. Proof of Theorem 3

We begin by establishing the objective satisfies a weak gradient mapping domination condition similar (but not identical,
due to the differences mentioned above) to that considered in Xiao (2022).

Definition 8. We say that 𝑓 : X → ℝ satisfies a weak gradient mapping domination condition w.r.t. a local regularizer 𝑅 if
there exist 𝛿, 𝜔 > 0 such that for all 𝑥 ∈ X:𝐺𝜂 (𝑥, 𝑥+; ℎ)∗𝑥 ≥ √2𝜔( 𝑓 (𝑥) − 𝑓★ − 𝛿)

The lemma below establishes our objective function satisfies Definition 8 with a suitable choice of parameters.
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Lemma 24. Suppose that 𝑓 is (𝐶★, 𝜀vgd)-VGD as per Definition 4, and that 𝑓★ := min𝑥∈X 𝑓 (𝑥) > −∞. Assume further
that 𝑅𝑥 is 1-strongly convex and has an 𝐿-Lipschitz gradient w.r.t. ∥·∥𝑥 for all 𝑥 ∈ X. Then, we have the following weak
gradient mapping domination condition; for all 𝑥 ∈ X, 𝑥+ ∈ 𝑇 𝜀opt

𝜂 (𝑥; 𝑅𝑥):𝐺𝜂 (𝑥, 𝑥+; 𝑅𝑥)∗𝑥 ≥ √2𝜔
(
𝑓 (𝑥) − 𝑓★ − 𝛿

)
,

for 𝜔 := 1
2 (𝐶★(𝐷 + 𝜂𝑀))

−2, 𝛿 := 𝜀vgd + 𝜀opt𝐶★ + 𝜀∇𝐶★𝐷.

Proof. Let 𝑥 ∈ X, and apply Lemma 22 with ∥·∥ = ∥·∥𝑥 and ℎ = 𝑅𝑥 , to obtain:

∀𝑦 ∈ X : ⟨∇ 𝑓 (𝑥), 𝑥 − 𝑦⟩ ≤ (𝐷 + 𝜂𝑀)
𝐺𝜂 (𝑥, 𝑥+; 𝑅𝑥)∗𝑥 + 𝜀∇𝐷 + 𝜀opt.

Further, since 𝑓 is (𝐶★, 𝜀vgd)-VGD, we have

max
𝑦∈X
⟨∇ 𝑓 (𝑥), 𝑥 − 𝑦⟩ ≥ 1

𝐶★

(
𝑓 (𝑥) − 𝑓★ − 𝜀vgd

)
.

Combining both inequalities, the result follows. □

We are now ready to prove Theorem 3.

Proof of Theorem 3. In the sake of notational clarity, define:

G𝑘 :=
𝐺𝜂 (𝑥𝑘 , 𝑥𝑘+1; 𝑅𝑥𝑘 )

∗
𝑥𝑘
. (21)

We begin by applying Lemma 21 for every 𝑘 ∈ [𝐾] with ∥·∥ = ∥·∥𝑥𝑘 and ℎ = 𝑅𝑥𝑘 , which implies,

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) ≤ −
𝜂

2𝐿2G
2
𝑘 + 𝜂𝜀∇G𝑘 + 𝜀opt. (22)

Let us first assume that for all 𝑘 ∈ [𝐾]:

8𝐿2𝜀∇ +
4𝐿
√
𝜂

√
𝜀opt ≤ G𝑘 . (23)

Then Equation (22) along with Lemma 24 gives

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) ≤ −
𝜂

4𝐿2
ℎ

G2
𝑘 ≤ −

𝜂𝜔

4𝐿2
(
𝑓 (𝑥𝑘) − 𝑓★ − 𝛿

)2
,

with 𝜔 := 1
2 (𝐶★(𝐷 + 𝜂𝑀))

−2 and 𝛿 := 𝜀vgd + 𝜀opt𝐶★ + 𝜀∇𝐶★𝐷. We proceed to define 𝐸𝑘 := 𝑓 (𝑥𝑘) − 𝑓★, and note that the
above display implies 𝐸𝑘+1 ≤ 𝐸𝑘 . Hence, we may assume that 𝐸𝑘 ≥ 2𝛿 for all 𝑘 ∈ [𝐾], otherwise the claim holds trivially.
With this in mind, we now have,

𝐸𝑘+1 − 𝐸𝑘 ≤ −
𝜂𝜔

4𝐿2 (𝐸𝑘 − 𝛿)
2 ≤ − 𝜂𝜔

16𝐿2 𝐸
2
𝑘 .

Dividing both sides by 𝐸𝑘𝐸𝑘+1 yields

1
𝐸𝑘
− 1
𝐸𝑘+1

≤ − 𝜂𝜔

16𝐿2
𝐸𝑘

𝐸𝑘+1
.

Summing over 𝑘 = 1, . . . , 𝐾 and telescoping the sum on the LHS, we obtain

1
𝐸1
− 1
𝐸𝐾+1

≤ − 𝜂𝜔

16𝐿2

𝐾∑︁
𝑘=1

𝐸𝑘

𝐸𝑘+1

⇐⇒ 𝐸𝐾+1 − 𝐸1 ≤ −
𝜂𝜔

16𝐿2 (𝐸𝐾+1𝐸1)
𝐾∑︁
𝑘=1

𝐸𝑘

𝐸𝑘+1
≤ − 𝜂𝜔

16𝐿2 (𝐸𝐾+1𝐸1) 𝐾,
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where the last inequality follows from the descent property 𝐸𝑘+1 ≤ 𝐸𝑘 . Rearranging, we now have

0 ≤ 𝐸𝐾+1 ≤ 𝐸1

(
1 − 𝜂𝜔

16𝐿2 𝐸𝐾+1𝐾
)

=⇒ 𝐸𝐾+1 ≤
16𝐿2

𝜂𝜔𝐾
=

32𝐶2
★𝐿

2 (𝐷 + 𝜂𝑀)2

𝜂𝐾
,

which completes the proof for the case that Equation (23) holds for all 𝑘 ∈ [𝐾]. Assume now that this is not the case, and
let 𝑘0 ∈ [𝐾] be the last iteration such that

G𝑘0 < 8𝐿2𝜀∇ +
4𝐿
√
𝜂

√
𝜀opt.

Then by Lemma 22,

𝐸𝑘0 ≤ (𝐷 + 𝜂𝑀)G𝑘0 + 𝜀∇𝐷 + 𝜀opt ≤ 8(𝐷 + 𝜂𝑀)
(
𝐿2𝜀∇ + 𝐿

√︃
𝜀opt/𝜂

)
+ 𝜀∇𝐷 + 𝜀opt,

and therefore by Equation (22),

𝐸𝑘0+1 ≤ 𝐸𝑘0 + 𝜂𝜀∇G𝑘0 = 𝑂

(
(𝐷 + 𝜂𝑀)

(
𝐿2𝜀∇ + 𝐿

√︃
𝜀opt/𝜂

))
.

Now, if 𝑘0 = 𝐾 we are done. Otherwise, by the definition of 𝑘0 we have that Equation (23) holds for all 𝑘 ∈ [𝑘0 + 1, 𝐾],
hence 𝐸𝑘+1 ≤ 𝐸𝑘 for all 𝑘 ≥ 𝑘0 + 1. This implies that 𝐸𝐾+1 ≤ 𝐸𝑘0+1, which completes the proof. □

E.3. Convergence to stationary point without a VGD condition

In this section, we include a proof that the proximal point algorithm we consider converges to a stationary point, also without
assuming a VGD condition. The proof follows from standard arguments and is given for completeness; for simplicity, we
provide analysis only for the error free case. As an implication, we have that PMD converges to a stationary point in any
MDP; this follows by combining the below theorem with Lemma 4 and Lemma 2, and proceeding with an argument similar
to that of Theorem 1.

Theorem 25. Suppose that 𝑓★ := min𝑥∈X 𝑓 (𝑥) > −∞, and assume:

(i) The local regularizer 𝑅𝑥 is 1-strongly convex and has an 𝐿-Lipschitz gradient w.r.t. ∥·∥𝑥 for all 𝑥 ∈ X.

(ii) For all 𝑥 ∈ X, max𝑢,𝑣∈X ∥𝑢 − 𝑣∥𝑥 ≤ 𝐷, and ∥∇ 𝑓 (𝑥)∥∗𝑥 ≤ 𝑀 .

(iii) 𝑓 is 𝛽-locally smooth w.r.t. 𝑥 ↦→ ∥·∥𝑥 .

Consider an exact version of the proximal point algorithm Equation (8) with 𝜂 = 1/(2𝛽) where 𝜀∇ = 0 and 𝑥𝑘+1 =

𝑇𝜂 (𝑥𝑘 ; 𝑅𝑥𝑘 ) for all 𝑘 . Then, after 𝐾 iterations, there exists 𝑘★ ∈ [𝐾] such that:

∀𝑦 ∈ X, ⟨∇ 𝑓 (𝑥𝑘★), 𝑦 − 𝑥𝑘★⟩ ≥ −
2(𝐷 + 𝜂𝑀)𝐿

√︁
𝛽 ( 𝑓 (𝑥1) − 𝑓 (𝑥★))√
𝐾

,

Proof. In the sake of notational clarity, define:

G𝑘 :=
𝐺𝜂 (𝑥𝑘 , 𝑥𝑘+1; 𝑅𝑥𝑘 )

∗
𝑥𝑘
.

We begin by applying Lemma 21 for every 𝑘 ∈ [𝐾] with ∥·∥ = ∥·∥𝑥𝑘 and ℎ = 𝑅𝑥𝑘 , which implies,

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) ≤ −
𝜂

2𝐿2G
2
𝑘 . (24)

36



Convergence of Policy Mirror Descent Beyond Compatible Function Approximation

Now,

𝑓 (𝑥𝐾+1) − 𝑓 (𝑥1) =
𝐾∑︁
𝑘=1

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) ≤ −
𝜂

2𝐿2

𝐾∑︁
𝑘=1
G2
𝑘 ,

thus, rearranging and bounding 𝑓 (𝑥𝐾+1) ≥ 𝑓 (𝑥★) gives

1
𝐾

𝑇∑︁
𝑡=1
G2
𝑘 ≤

2𝐿2 ( 𝑓 (𝑥1) − 𝑓 (𝑥★))
𝜂𝐾

.

Hence, it must hold for 𝑘★ := arg min𝑘 G2
𝑘
;

G2
𝑘★ ≤

2𝐿2 ( 𝑓 (𝑥1) − 𝑓 (𝑥★))
𝜂𝐾

.

We now apply Lemma 22 to conclude,

∀𝑦 ∈ X, ⟨∇ 𝑓 (𝑥𝑘★), 𝑥𝑘★ − 𝑦⟩ ≤
(𝐷 + 𝜂𝑀)𝐿

√︁
2 ( 𝑓 (𝑥1) − 𝑓 (𝑥★))√
𝜂𝐾

,

which implies the required result.

□

F. Policy Classes with Dual Parametrizations
In general, solving the following OMD problem in some state 𝑠 ∈ S,

𝜋𝑘+1𝑠 ← arg min
𝑝∈Δ(A)

〈
𝑄𝑘𝑠 , 𝑝

〉
+ 1
𝜂
𝐵𝑅 (𝑝, 𝜋𝑘𝑠 ) (25)

is equivalent to the following two updates:

∇𝑅(�̃�𝑘+1𝑠 ) ← ∇𝑅(𝜋𝑘𝑠 ) − 𝜂𝑄𝑘𝑠
𝜋𝑘+1𝑠 = Π𝑅

Δ(A)

(
�̃�𝑘+1𝑠

)
.

Let us denote the composition of the dual-to-primal mirror-map and the projection:

𝑃𝑅 (𝑦) := Π𝑅
Δ(A) (∇𝑅

∗ (𝑦)) ,

and note that
𝜋𝑘+1𝑠 = 𝑃𝑅 (∇𝑅(�̃�𝑘+1𝑠 )).

When we are in a non-tabular setup and have a non-complete policy class Π ≠ Δ(A)S , we cannot update each state
independently according to Equation (25). There are however a number of places we can ”intervene” in the policy class
representation to derive slightly different update procedures based on the dual variables. The PMD step in its general form is
given by:

𝜋𝑘+1 ← arg min
𝜋∈Π

𝔼𝑠∼𝜇𝑘

[〈
𝑄𝑘𝑠 , 𝜋𝑠

〉
+ 1
𝜂
𝐵𝑅 (𝜋𝑠 , 𝜋𝑘𝑠 )

]
(26)

Without making any assumptions regarding the parametric form of Π, we cannot decompose Equation (26) into meaningful
dual space steps. We discuss next two types of policy class parameterizations and the update steps associated with them.
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F.1. Generic dual parameterizations

This is the approach taken in (Alfano et al., 2023) (see also the followup Xiong et al., 2024), and perhaps the most
general one that allows for an explicit dual space update as well as leads to an approximate solution of Equation (26)
that satisfies approximate optimality conditions in the complete-class setting. Consider a parametric function class
FΘ :=

{
𝑓𝜃 ∈ ℝ𝑆𝐴 | 𝜃 ∈ Θ

}
, and the policy class:

Π(F ) :=
{
𝜋 𝑓 | 𝑓 ∈ FΘ

}
, where 𝜋 𝑓𝑠 := 𝑃𝑅 ( 𝑓𝑠), ∀𝑠 ∈ S.

Then, to solve Equation (26) we can proceed by:

𝑓 𝑘+1 ← arg min
𝑓 ∈F

𝔼𝑠∼𝜇𝑘
[ 𝑓𝑠 − ∇𝑅(𝜋𝑘𝑠 ) − 𝜂𝑄𝑘𝑠 2

2

]
𝜋𝑘+1 ← the policy defined by 𝜋𝑘+1𝑠 = 𝑃𝑅 ( 𝑓 𝑘+1𝑠 ) (A)

F.2. The log-linear policy class

This is a special case of the one discussed in the previous sub-section. In general, when we try to approximate the true
solution of the unconstrained mirror descent step in a specific state:

𝑓𝑠 ≈ ∇𝑅(𝜋𝑘𝑠 ) − 𝜂𝑄𝑘𝑠 ,

we need to overcome two sources of error; one from the previous policy dual variable and one from the 𝑄 function. More
specifically, in general we have ∇𝑅(𝜋𝑘) ∉ F and 𝑄𝑘 ∉ F . (For 𝜋 ∈ ℝ𝑆𝐴 we define ∇𝑅(𝜋)𝑠 := ∇𝑅(𝜋𝑠).) In the special case
that our function class F can represent ∇𝑅(𝜋) perfectly for all 𝜋 ∈ Π(F ) and is closed to linear combinations, we can focus
our attention on approximating the 𝑄 function. Now, we may proceed by the following special case of (𝐴):

𝑄𝑘 ← arg min
𝑄∈F

𝔼𝑠,𝑎∼𝜇𝑘

[(
𝑄𝑠,𝑎 −𝑄𝑘𝑠,𝑎

)2
]

𝑓 𝑘+1 ← ∇𝑅(𝜋𝑘) − 𝜂𝑄𝑘

𝜋𝑘+1 ← the policy defined by 𝜋𝑘+1𝑠 = 𝑃𝑅 ( 𝑓 𝑘+1𝑠 ). (B)

Let 𝜙𝑠,𝑎 ∈ ℝ𝑝 be given feature vectors, and let 𝜙𝑠 := [𝜙𝑠,𝑎1 · · · 𝜙𝑠,𝑎𝐴] ∈ ℝ𝑝×𝐴, and consider the log-linear policy class:

Π :=
{
𝜋𝜃 | 𝜃 ∈ ℝ𝑝

}
where ∀𝑠 ∈ S, 𝜋𝜃𝑠 := 𝑃𝑅 (𝜙⊤𝑠 𝜃) =

𝑒𝜙
⊤
𝑠 𝜃∑

𝑎 𝑒
𝜙⊤𝑠,𝑎 𝜃

.

Note that:

1. This is the class Π(F ) for F =
{
𝜃 ↦→

(
(𝑠, 𝑎) ↦→ 𝜙⊤𝑠,𝑎𝜃

)}
.

2. This is precisely a case where F can model ∇𝑅(𝜋) if 𝑅 is the negative entropy regularizer.

Here, we may proceed as follows:

𝑤𝑘 ← arg min
𝑤∈ℝ𝑝

𝔼𝑠,𝑎∼𝜇𝑘

[(
𝜙⊤𝑠,𝑎𝑤 −𝑄𝑘𝑠,𝑎

)2
]

𝜃𝑘+1 ← 𝜃𝑘 − 𝜂𝑤𝑘

𝜋𝑘+1 ← the log-linear policy defined by 𝜃𝑘+1
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The above can be seen as a special case of (𝐵), by considering the induced updates in state-action space:

𝑄𝑘 = arg min
𝑄∈F

𝔼𝑠,𝑎∼𝜇𝑘

[(
𝑄𝑠,𝑎 −𝑄𝑘𝑠,𝑎

)2
]
= (𝑠, 𝑎) ↦→ 𝜙⊤𝑠,𝑎𝑤

𝑘

𝑓 𝑘+1𝑠 = ∇𝑅(𝜋𝑘𝑠 ) − 𝜂𝑄𝑘𝑠
= log(𝑒𝜙⊤𝑠 𝜃𝑘 ) − log(𝑍 𝑘𝑠 )1 − 𝜂𝑄𝑘𝑠
= 𝜙⊤𝑠 𝜃

𝑘 − 𝜂𝑄𝑘𝑠 − log(𝑍 𝑘𝑠 )1

𝜋𝑘+1 ← the policy defined by 𝜋𝑘+1𝑠 = 𝑃𝑅 ( 𝑓 𝑘+1𝑠 ) =
𝑒𝜙
⊤
𝑠 𝜃

𝑘+1∑
𝑎 𝑒

𝜙⊤𝑠,𝑎 𝜃𝑘+1
.

Note that in the above,
𝑓 𝑘+1𝑠,𝑎 = 𝜙⊤𝑠,𝑎𝜃

𝑘 − 𝜂𝜙⊤𝑠,𝑎𝑤𝑘 − log(𝑍 𝑘𝑠 ),

and that 𝑍 𝑘𝑠 is the same for all actions in 𝑠, hence makes no difference after the projection step..
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