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ABSTRACT

Multi-agent reinforcement learning (MARL) demonstrates significant progress
in solving cooperative and competitive multi-agent problems in various environ-
ments. One of the principal challenges in MARL is the need for explicit prediction
of the agents’ behavior to achieve cooperation. To resolve this issue, we pro-
pose the Shared Recurrent Memory Transformer (SRMT) which extends memory
transformers to multi-agent settings by pooling and globally broadcasting individ-
ual working memories, enabling agents to exchange information implicitly and
coordinate their actions. We evaluate SRMT on the Partially Observable Multi-
Agent Pathfinding problem in a toy Bottleneck navigation task that requires agents
to pass through a narrow corridor and on a POGEMA benchmark set of tasks. In
the Bottleneck task, SRMT consistently outperforms a variety of reinforcement
learning baselines, especially under sparse rewards, and generalizes effectively
to longer corridors than those seen during training. On POGEMA maps, includ-
ing Mazes, Random, and MovingAI, SRMT is competitive with recent MARL,
hybrid, and planning-based algorithms. These results suggest that incorporating
shared recurrent memory into the transformer-based architectures can enhance co-
ordination in decentralized multi-agent systems.

1 INTRODUCTION

Multi-agent systems have significant potential to solve complex problems through distributed intel-
ligence and collaboration. However, coordinating the interactions between multiple agents remains
challenging, often requiring sophisticated communication protocols and decision-making mecha-
nisms. We propose a novel approach to address this challenge by introducing a shared memory as
a global workspace for agents to coordinate behavior. The global workspace theory (Baars, 1988)
suggests that in the brain, there are independent functional modules that can cooperate by broad-
casting information through a global workspace. Inspired by this theory, we consider the agents
in Multi-Agent Pathfinding (MAPF) as independent modules with shared memory and propose a
Shared Recurrent Memory Transformer (SRMT) as a mechanism for exchanging information to im-
prove coordination and avoid deadlocks. SRMT extends memory transformers (Burtsev et al., 2020;
Bulatov et al., 2022; Yang et al., 2022; Cherepanov et al., 2024) to multi-agent settings by pooling
and globally broadcasting individual working memories.

In this study, we test the shared recurrent memory approach on Partially Observable Multi-agent
Pathfinding (PO-MAPF) (Stern et al., 2019), where each agent aims to reach its goal while observing
the state of the environment, including locations and actions of the other agents and static obstacles,
only locally. Multi-agent pathfinding can be considered in the decentralized manner, where each
agent independently collects rewards and makes decisions on its actions. There are many attempts
to solve this problem: in robotics (Van den Berg et al., 2008; Zhu et al., 2022), in machine and
reinforcement learning field (Damani et al., 2021; Ma et al., 2021b; Wang et al., 2023; Sartoretti
et al., 2019; Riviere et al., 2020). Such methods often involve manual reward-shaping and external
demonstrations. Also, several works utilize the communication between agents to solve decentral-
ized MAPF (Ma et al., 2021a; Li et al., 2022; Wang et al., 2023). However, the resulting solutions
are prone to deadlocks and poorly generalizable to the maps not used for training. In this work, we
compare SRMT to a range of reinforcement learning baselines and show that it consistently out-
performs them in the Bottleneck navigation task. Tests on POGEMA benchmark Skrynnik et al.
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(2024a) show that SRMT is competitive with numerous recent MARL, hybrid, and planning-based
algorithms.

2 RELATED WORK

2.1 SHARED MEMORY AND COMMUNICATION IN MULTI-AGENT REINFORCEMENT LEARNING

Shared memory is designed to help agents coordinate their behavior, and it is closely related to ex-
isting approaches in multi-agent reinforcement learning (MARL), particularly those involving inter-
agent communication. Compared to a single-agent reinforcement learning, providing agents with
communication protocol presents a significant challenge in MARL (Foerster et al., 2016; Iqbal &
Sha, 2018; Zhang et al., 2018). Common strategies to address this problem include (1) a centralized
setting, where a central controller aggregates information from all agents; (2) a fully decentralized
setting, where agents make decisions based solely on local observations; and (3) a decentralized
setting with networked agents, allowing agents to share local information with each other (Zhang
et al., 2021; Hu et al., 2023; Nayak et al., 2023; Agarwal et al., 2019).

In multi-agent pathfinding (MAPF) with reinforcement learning, various methods fit within these
three categories. Decentralized methods without communication include approaches such as
IQL (Tan, 1993), VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2020), QPLEX (Wang et al.,
2021), Follower (Skrynnik et al., 2024b), and MATS-LP (Skrynnik et al., 2024c). These meth-
ods propose to implement the agent decision-making based only on local information. Notably,
VDN, QMIX, and QPLEX adopt centralized training with a joint Q-function but operate in a de-
centralized manner during execution with individual Q-functions. In contrast, centralized methods
such as LaCAM (Okumura, 2023) and RHCR (Li et al., 2021) employ a centralized search-based
planner. Finally, decentralized methods with communication, such as DCC (Ma et al., 2021b),
MAMBA (Egorov & Shpilman, 2022), and SCRIMP (Wang et al., 2023), allow agents to share
information to enhance coordination and avoid collisions. These methods utilize various commu-
nication strategies, including selective information sharing (DCC), discrete communication pro-
tocols (MAMBA), and scalable communication mechanisms based on transformer architectures
(SCRIMP), all aimed at improving agent cooperation in complex and dynamic environments.

MAMBA (Egorov & Shpilman, 2022) is a pure MARL approach that uses communication and
centralized training within a Model-Based Reinforcement Learning framework, featuring discrete
communication and decentralized execution. A 3-layer transformer serves as the communication
block with its outputs used by the agents to update their world models and make action predic-
tions. Each agent maintains its own version of the world model, which can be updated through the
communication block.

QPLEX (Wang et al., 2021) is a pure multi-agent reinforcement learning method that employs
multi-agent Q-learning with centralized end-to-end training, providing inter-agent communication.
QPLEX learns to factorize a joint action-value function to enable decentralized execution. The
approach uses a duplex dueling mechanism that connects local and joint action-value functions,
allowing agents to make independent decisions while benefiting from centralized training.

Follower (Skrynnik et al., 2024b) is a learnable method for lifelong MAPF without communication
that uses a centralized path planning with a modified A* heuristic search to reduce agents’ colli-
sions. MATS-LP (Skrynnik et al., 2024c) is also a learnable method for lifelong MAPF without
communication that uses a learnable policy combined with Monte Carlo Tree Search (MCTS) to
reason about possible future states.

RHCR (Li et al., 2021) is a purely search-based centralized planner that does not require training.
It decomposes the lifelong MAPF into a sequence of windowed MAPF instances, with re-planning
occurring according to a predetermined schedule, resolving collisions within the current planning
window only.

The proposed shared recurrent memory approach fits into a decentralized setting with networked
agents. Unlike other methods, SRMT allows agents to communicate indirectly through a shared
memory. Each agent uses a recurrently updated memory and learns to read and write its individ-
ual memory representations to a shared space. This allows agents to retain information over time
steps in the episode and enables the effective individual and collective decision-making process in
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pathfinding tasks. Furthermore, unlike approaches that rely on a joint Q-function for centralized
training, our method maintains decentralization throughout training and execution. The fully de-
centralized setting of the multi-agent system might be preferable over the centralized one in many
real-world applications.

2.2 SHARED MEMORY AND MEMORY TRANSFORMERS

SRMT extends the memory transformers (Burtsev et al., 2020; Bulatov et al., 2022; Yang et al., 2022;
Cherepanov et al., 2024) to multi-agent settings by pooling and globally broadcasting individual
memories of each agent.

Memory Transformer (Burtsev et al., 2020) augments the standard Transformer architec-
ture (Vaswani et al., 2017) by introducing special memory tokens appended to the input sequence,
providing the additional operational space for the model. These memory tokens are trainable and
are used by the model as working memory. In the Recurrent Memory Transformer (RMT) (Bulatov
et al., 2022), memory tokens transfer information between segments of a long input sequence. In
this case, multiple memory tokens act as a recurrent state, effectively turning the transformer into a
recurrent cell that processes each segment as input at each time step.

Agent Transformer Memory (ATM) (Yang et al., 2022) introduces a transformer-based working
memory into multi-agent reinforcement learning. Each ATM agent maintains a memory buffer of
the last N memory states, sequentially updated by a transformer network. This approach is similar
to the RMT, but instead of using only the latest memory state, ATM uses the several most recent
memory states. Additionally, each memory state in ATM consists of a single vector, whereas in
RMT, multiple memory vectors work together as a recurrent hidden state.

Recurrent Action Transformer with Memory (RATE) (Cherepanov et al., 2024) extends the De-
cision Transformer (Chen et al., 2021) by incorporating memory tokens and a dedicated memory
update module, the Memory Retention Valve, which updates memory states to effectively handle
long segmented trajectories.

Relational Recurrent Neural Network (RRNN) (Santoro et al., 2018) utilizes the multi-head dot
product attention to update the memory state given the new input data. Then it employs the modifi-
cation of a standard LSTM (Hochreiter, 1997) treating the memory matrix as a matrix of recurrent
cell states to predict the model outputs.

Approaches such as ATM, RATE, and RRNN are focused on maintaining individual memory states
for each agent. In contrast, SRMT extends recurrent memory to multi-agent RL and facilitates
the shared access to individual agents’ memories, enabling coordination and joint decision-making
among all agents in the environment.

3 SHARED RECURRENT MEMORY TRANSFORMER

Multi-agent pathfinding task is set as follows. The agents interact in the two-dimensional environ-
ment represented as graph G = (V,E) with the vertices corresponding to the locations and the
edges to the transitions between these locations. The timeline consists of discrete time steps. The
predefined final step of the agent interaction episode is called the episode length. At the beginning
of the episode, each agent i is given a start location si ∈ V and a goal location gi ∈ V to be reached
until the end of the episode. At each time step, an agent performs an action to stay in its current
location or move to an adjacent one. The task of multi-agent pathfinding is to make each agent reach
its goal until the end of the episode without colliding with the other agents.

In this study, we work with a decentralized Partially Observable Multi-agent Pathfinding (PO-
MAPF) (Stern et al., 2019). Decentralization of MAPF means that the multi-agent system has
no global controller, each agent performs actions and collects rewards independently of the oth-
ers. Also, each agent observes the environment obstacles, other agents, and their goals only locally,
from a squared window of fixed size centered at the agent’s current location. Formally, the partially
observable multi-agent Markov decision process M is defined (Bernstein et al., 2002):

M = ⟨S,U,A, P,R,O,O, γ⟩,
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Figure 1: Shared Recurrent Memory Transformer architecture. SRMT pools recurrent mem-
ories memi,t of individual agents at a moment t and provides global access to them via cross-
attention.

where S is the set of environment states, U = {1, . . . , n} represents the agents, A is the set of
possible actions with action of agent u denoted as a(u). At each time step of the episode, agents
form a joint action a(U) ∈ An. Then, the environment state is updated with the transition function

P (s′ | s, a(U)) : S ×An × S → [0, 1].

After all agents performed their actions, each of them receives the following scalar reward

R(s, u, a(U)) : S × U ×An → R,

reflecting the agent’s performance during the previous step. The future rewards are discounted by a
factor 0 ≤ γ ≤ 1 defining their importance. Before the next step, each agent also receives its local
observation o(u) ∈ O based on the following global observation function

O(s, a) : S ×A → O.

The historical sequence of observations and respective actions h(u) is preserved for each agent to
estimate a learnable stochastic policy

π(u)(a(u) | h(u)) : T ×A → [0, 1].

To train the policy approximation model the expected cumulative reward is used as an objective
function to maximize over time.

We approximate the policy with a deep neural network depicted in Figure 1. The policy consists of
the spatial encoder to process agent observation and the actor-critic network. The agents are assumed
to be homogeneous, so the policy is shared between agents during training. The spatial encoder uses
ResNet (He et al., 2016) with an additional Multi-Layer Perceptron (MLP) in the output layer. The
Action Decoder and the Critic Head are Dense layers. The policy neural network is presented in
Figure 1. We adopt the Skrynnik et al. (2024b) approach for configuring the policy-approximating
model and input-output data pipelines. The model input is the agent’s local observation tensor of
shape 3 ×m ×m tensor, where m is the observation range. The channels of the tensor encode the
static obstacle locations combined with the current path, the other agents, and their targets.

SRMT is used as a core subnetwork of the actor-critic model. As the main mechanism in SRMT, we
consider the attention block implemented in the Huggingface GPT-21 model. In SRMT, the input
sequence for each agent at each time step is constructed by combining three key components: the

1https://huggingface.co/docs/transformers/model_doc/gpt2
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agent’s personal memory vector; the historical sequence of the agent’s observations from the past
ĥ = 8 time steps; and the current step observation. This sequence undergoes a full self-attention
mechanism. Next, the output of the self-attention is passed through a cross-attention layer between
current hidden representations and shared memory. The shared memory consists of a globally ac-
cessible, ordered sequence of all agents’ memory vectors for the current time step. This interaction
between personal and shared memory enables each agent to incorporate global context into the
decision-making process. The resulting output is then passed through a memory head, which up-
dates the agent’s personal memory vector for the next time step. Simultaneously, the model output
is also fed into the decoder part of the policy model, which generates the agent’s action.

4 EXPERIMENTS AND RESULTS

4.1 CLASSICAL MAPF ON BOTTLENECKS

We use the POGEMA (Skrynnik et al., 2024a) framework for our experiments. In POGEMA the
two-dimensional environment is represented as a grid composed of obstacles and free cells. At each
time step each agent can perform two types of actions: moving to an adjacent cell or remaining at
their current position. Agents have limited observational capabilities, perceiving other agents only
within a local R×R area centered on their current position. The episode ends when the predefined
time step, episode length, is reached. The episode can also end before this time step if certain
conditions are met, i.e. all agents reach their goal locations.

As an initial test of our approach, we selected a simple two-agent coordination task where the agents
must navigate through a narrow passage. The environment consists of two rooms connected by a
one-cell-wide corridor, as illustrated in Fig. 2a. Each agent has a 5 × 5 field of view and starts in
one room, and their goal is located in the opposite room, requiring both agents to pass through the
narrow corridor to complete the task. To train the model, we utilized 16 maps with corridor lengths
uniformly selected between 3 and 30 cells. To evaluate the performance, we utilize three metrics:

• Cooperative Success Rate (CSR) – a binary measure indicating whether all agents reached
their goals before the episode’s end;

• Individual Success Rate (ISR) – the fraction of the agents that achieved their goals during
the episode;

• Sum-of-Costs (SoC) – the total number of time steps taken by all agents to reach their
respective goals (the lower the value the better).

The policy function is approximated with a deep neural network (see Fig. 1, left). To benchmark the
effectiveness of SRMT, we compared it against MAMBA, QPLEX, ATM, RATE, and RRNN mod-
els. As additional baselines that also serve as ablations of SRMT, we evaluate the following core
subnetwork architectures: the recurrent memory transformer that allows agents to process individ-
ual memory representations without sharing them (RMT), the memoryless transformer (Attention),
the empty core that uses the direct connection of spatial encoder to the actor-critic action decoder
(Empty), and GRU RNN (RNN) to assess the difference between the attention-based and RNN-
based observation processing. Additional details regarding the training procedure can be found in
Appendix A.1. For the Bottleneck task, we apply no advanced heuristics or methods for path plan-
ning to test the impact of memory addition. Our path-planning strategy is simple: each agent aims
to follow the shortest path to the goal at each time step. If according to the planned movements, the
agents may collide, their final decision will be to retain their current positions until the next step.
We hypothesize that a shared memory mechanism will help to solve such bottleneck problems.

We first evaluated SRMT against the baseline models using three variations of the reward function:
Directional, Moving Negative, and Sparse.2 In the Directional setting, the agent was rewarded for
reaching the goal and for every step that brought it closer to the goal. In the Moving Negative
strategy movements are slightly penalized to minimize the path to the goal but no information about
goal location is provided. In contrast, the Sparse reward function only gives a reward when the agent
successfully achieves the goal cell, offering no intermediate rewards.

2See Appendix A for details of rewards and extra results.
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(a) Bottleneck (b) Maze (c) Random

(d) Puzzle (e) Warehouse (f) MovingAI

Figure 2: Examples of environments. (a) Bottleneck task. This is a toy task on coordination.
Two agents start in rooms opposite their goals and should coordinate passing the corridor. Agents
are shown as solid-colored circles, their goals are empty circles with the same border color. (b)-(f)
Maps from POGEMA benchmark (images for POGEMA maps are from (Skrynnik et al., 2024a)).
POGEMA allows testing the planning methods’ generalization across different maps and problem
sizes.

The comparison of evaluation scores, shown in Figure 3, demonstrates that SRMT successfully
solves the task under considered reward functions. In particular, SRMT consistently performed
well, even in the challenging Moving Negative and Sparse reward scenarios where other methods
struggled. The ability to coordinate agents via shared memory proved critical, especially when
feedback from the environment was minimal.

Among the non-memory sharing methods, RMT achieved the best performance, outperforming
ATM, RATE, RNN, GRU-based RNN, and the Attention models. However, without the shared
memory, RMT’s performance in the Sparse reward setting was still limited compared to SRMT,
highlighting the importance of the global information exchange.

To further assess the generalization capabilities of the trained policies, we evaluated them on bottle-
neck environments with corridor lengths significantly larger than those used during training, ranging
from 5 to 1000 cells. The evaluation results3 for the Sparse and Moving Negative reward functions
are shown in Figure 4. While implementing the RRNN, RATE, and ATM, we noticed the common
feature of these architectures to initialize the memory state with some pre-defined values (unit vec-
tor or random vector sampled from the Normal distribution with zero mean and unit variance). In
contrast, the SRMT memory state is initialized with the values generated on the first step of the
episode. To further explain the drastic difference in CSR scores of baseline memory approaches
(RRNN, RATE, ATM) and SRMT, in Figure 4 we provided the results of an additional experiment:
we modified the initial state of the RATE memory to be generated from the initial observation of
the agent similar to SRMT. The resulting performance with the Moving Negative rewarding scheme
(RATE gen) significantly increased compared to the original RATE implementation showing the
importance of the proper memory initialization procedure.

The results indicate that trained with the Sparse reward function, the SRMT-based policy consis-
tently outperforms the baseline methods from the related works and the SRMT ablations regarding

3For these evaluations, we adjusted the episode length to 2 · corridor len + 100 to ensure that both agents
had sufficient time to reach their goals within each episode.
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Figure 3: SRMT effectively solves the Bottleneck Task with different reward functions. Trained
with Directional (positive when moved towards a goal and achieved it) reward, SRMT clearly out-
performs the communication (MAMBA, QPLEX) and memory (ATM, RATE, RRNN) baselines.
The RMT, Attention, and RNN ablations also solve the task. For the case with the negative reward
for movement and no directional reward (Moving Negative) SRMT and RMT without shared mem-
ory demonstrate the clear advantage over the memory-less ablations of SRMT (Attention, Empty,
RNN) and the communicative and memory baselines (MAMBA, QPLEX, ATM, RATE, RRNN).
With the Sparse (on-goal only) reward, SRMT maintains the score while other methods drop. Error
bars indicate 95% confidence intervals. For CSR and ISR higher values are better, for SoC – the
lower the better.

Figure 4: SRMT agents generalize on corridor lengths up to 1000. After training on corridor
sizes from 3 to 30 cells all methods were evaluated on longer passages up to 1000. All non-zero
performing models show good scaling up to the corridor length of 100. For the Sparse reward, SRMT
leads up to 400 and then drops below RMT for collective performance. For the Moving Negative
reward, SRMT shows the top-1 performance on all three metrics. The shaded area indicates 95%
confidence intervals.

both the individual success rate (ISR) and the total time spent in the environment (SoC). Remark-
ably, SRMT scales effectively up to corridor lengths of 400 cells without any significant performance
degradation. For corridor lengths beyond 400 steps, the Cooperative Success Rate (CSR) of SRMT
drops from 1.0 to 0.8, which surpasses other models, except for RMT. For the Moving Negative
reward function, resulting policies with SRMT show the top-1 scores for any corridor length up to
1000 (see Fig. 4). Evaluation scores for the other reward functions and analysis of memory repre-
sentations can be found in Appendix A.
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4.2 LIFELONG MAPF

Lifelong multi-agent pathfinding (LMAPF) is an extension of MAPF, where agents receive new
destinations upon completing their current goals. The main quality metric for this task setting is
the average throughput calculated as the average number of goals reached by all agents per episode
step.

To train SRMT in the LMAPF setting we use the set of 40 maze-like environments (Fig. 2b) of size
65×65 following the (Skrynnik et al., 2024b) training procedure. The same architecture as depicted
in Fig. 1 is used for the policy approximation model with a larger number of layers compared to
the classical MAPF on bottleneck environments. The detailed listing of hyperparameters can be
found in the Appendix A.1 Table 1. We consider the following reward strategy for lifelong SRMT
experiments: if the agent follows the planned path to the goal, it receives a small positive reward
r = 0.01. Otherwise r = 0. To define the path from the current location to the goal, we consider
the A* shortest path algorithm and more advanced Heuristic Path Decider method presented in the
Follower (Skrynnik et al., 2024b). A* plans the shortest individual path to the goal, while heuristic
search finds evenly dispersed paths to alleviate the congestion problems in environments with large
populations of agents.

To assess the effectiveness of SRMT for LMAPF, we compare it with LMAPF baselines from the
POGEMA benchmark (see Fig. 5). We trained the SRMT with 64 agents for 1B environment steps,

Mazes MovingAI Puzzles Random Warehouse
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Figure 5: SRMT outperforms other MARL methods in different environments. SRMT trained
on Mazes shows robust generalization when evaluated on maps not seen during training. SRMT out-
performs MARL baselines MAMBA and QPLEX on all maps except the Warehouse environment.
Mixed training with 64 or 128 agents (SRMT 64-128) does not affect the generalization abilities
of the method. In the Warehouse environment, the average throughput of SRMT with a reward
function based on the Follower heuristic path search (SRMT-FlwrPlan) surpasses that of MAMBA,
MATS-LP, QPLEX, and RHCR methods. Error bars indicate 95% confidence intervals.

SRMT (SRMT 64-128) with the mixture of 64 and 128 agents for 400M steps, and SRMT with plan-
ning algorithm from the Follower (SRMT-FlwrPlan) with 64 agents for 600M environment steps.

Figure 5 presents the average throughput of SRMT and the baseline methods across different types
of environments. The results show that SRMT trained on Mazes generalizes robustly to unseen
maps, outperforming MARL baselines MAMBA and QPLEX on all maps except the Warehouse
environment. The mixed training with 64 and 128 agents (SRMT 64-128) did not significantly
affect the generalization abilities of the method. In Appendix A.2 Figure 10, we also provided
detailed scores for evaluations of MovingAI task with increasing numbers of agents to show the
scalability of SRMT.

In the Warehouse environment, characterized by narrow corridors and high congestion, the average
throughput of SRMT with a reward function based on the Follower’s heuristic path search (SRMT-
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FlwrPlan) surpasses that of MAMBA, MATS-LP, QPLEX, and even the centralized planning method
RHCR. This indicates that integrating heuristic planning into the SRMT framework enhances per-
formance in highly congested settings.

To further evaluate the performance of SRMT, we measured its effectiveness using high-level MAPF
metrics from the POGEMA benchmark (Skrynnik et al., 2024a). These metrics provide an assess-
ment of different aspects of multi-agent coordination and scalability:

• Performance shows the relation of the average throughput of each method to the best value
among the considered methods. The metric is averaged over the results obtained on the
Random (20 × 20 grids with randomly placed obstacles) and Mazes (maze-like grids of
size 21× 21) sets of maps

• Pathfinding is a binary value that demonstrates if the path of a single agent on a large map
is optimal. To measure it, the methods were evaluated on 256 × 256 city maps from the
MovingAI (Stern et al., 2019) benchmark.

• Congestion is calculated as the average density of the agents present in the observations of
each agent compared to the overall density of the agents on the Warehouse map.

• Cooperation metric is dedicated to the ability of the method to resolve complex situations.
It is obtained as the relative average throughput with respect to the best-performing classical
LMAPF solvers measured on a small set of hand-crafted 5 × 5 Puzzles maps. The maps
were constructed to contain difficult patterns requiring agents’ cooperation.

• Out-of-Distribution demonstrates the Performance metric values on the maps unseen during
training. For evaluation, the MovingAI-tiles 64×64 patches of MovingAI maps were used.

• Scalability describes how the runtime of each method changes with the growing number
of agents on the Warehouse map. The metric is calculated as the ratio between the relative
runtimes and relative numbers of agents.

Figure 6 presents the results of a comparison of SRMT and the other methods across these key
metrics. The bar chart illustrates that SRMT and its variants demonstrate competitive performance,
particularly in Scalability and Pathfinding. When integrated with the Follower planning, SRMT
performs best in Congestion management. The centralized planning method RHCR leads in several
metrics, notably Cooperation, Out-of-distribution, Performance, and Pathfinding, reaching nearly
100% in these categories, but is performing worse in Scalability. MAMBA shows strong perfor-
mance in Congestion management and Scalability.

In terms of Performance, SRMT achieves high average throughput on Random, Mazes, and Movin-
gAI environments, indicating effective goal-reaching behavior in diverse settings. For the Pathfind-
ing metric, SRMT and its variants perform exceptionally well, suggesting that the agents find near-
optimal paths even on large-scale maps.

Regarding Congestion, MAMBA slightly outperforms SRMT, showcasing better handling of high-
density agent scenarios on the Warehouse map. However, SRMT maintains competitive perfor-
mance, demonstrating its ability to navigate congested areas effectively. Furthermore, SRMT per-
forms best in Congestion management when integrated with Follower planning.

The Cooperation metric highlights the centralized method RHCR’s superiority in resolving complex
situations requiring intricate coordination. While SRMT does not reach RHCR’s level in this aspect,
it outperforms the other decentralized methods except MATS-LP with MCTS planning, indicating
reasonable cooperative capabilities without centralized control.

For Out-of-Distribution generalization, SRMT variations exhibit strong performance, maintaining
high throughput on unseen maps. This emphasizes SRMT’s robustness and ability to generalize
beyond the training environments.

Our experiments demonstrate that incorporating shared memory into transformer-based architec-
tures significantly enhances coordination in decentralized multi-agent systems. SRMT effectively
enables agents to implicitly share information, enabling better decision-making and conflict avoid-
ance. The results indicate that SRMT not only outperforms traditional MARL baselines in complex
environments but also generalizes well to unseen maps and scales efficiently with an increasing
number of agents.

9
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Figure 6: Comparison of SRMT and other methods across key performance metrics in multi-
agent pathfinding. The bar chart compares the performance of SRMT and its variants (SRMT 64-
128, SRMT-FlwrPlan) against other methods – MAMBA, QPLEX, Follower, MATS-LP, and RHCR
– across six metrics: Performance, Pathfinding, Congestion, Cooperation, Out-of-Distribution, and
Scalability. SRMT and its variants demonstrate competitive performance, particularly in Scalability
and Pathfinding. When integrated with Follower planning, SRMT performs best in Congestion
management. The centralized planning method RHCR leads in several metrics, notably Cooperation,
Out-of-distribution, Performance, and Pathfinding, reaching nearly 100%. MAMBA shows strong
performance in Congestion management and Scalability.

In highly congested environments like the Warehouse, integrating heuristic planning into the SRMT
framework (SRMT-FlwrPlan) further improves performance, suggesting that combining learning-
based approaches with planning algorithms can be beneficial in certain settings. The competitive
performance of SRMT across various high-level metrics underscores its potential as a scalable and
robust solution for complex multi-agent pathfinding problems in decentralized settings, where ex-
plicit communication or centralized control may not be feasible.

5 CONCLUSION

In this paper, we introduced a novel Shared Recurrent Memory Transformer (SRMT) architecture for
enhancing coordination in multi-agent systems. SRMT enables agents to exchange information im-
plicitly and coordinate actions without explicit communication protocols. Our experimental results
on the bottleneck navigation task demonstrate that SRMT consistently outperforms baseline models,
especially in challenging scenarios with sparse rewards and extended corridor lengths. The shared
memory mechanism allows agents to generalize their learned policies to environments with signifi-
cantly longer corridors than those seen during training, demonstrating the scalability and robustness
of our approach. On POGEMA maps including Mazes, Random, Moving-AI, and Warehouse SRMT
is competitive with various recent MARL, hybrid, and planning-based algorithms. These findings
highlight the potential of incorporating shared memory structures in transformer-based architectures
for multi-agent reinforcement learning.

LIMITATIONS

As in the majority of research related to Multi-Agent Pathfinding (MAPF), in this work, we as-
sume that the agents have flawless localization and mapping abilities. Our primary focus is on the
decision-making aspect of the problem. We also consider that the agents execute actions accurately
and that their moves are synchronized. Additionally, we treat obstacles as fixed elements of the
environment.

10
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Finally, it is important to note that our approach, like other prominent learnable methods designed for
(PO)-MAPF – such as PRIMAL (Sartoretti et al., 2019), PRIMAL2 (Damani et al., 2021), DHC (Ma
et al., 2021a), and PICO (Li et al., 2022) – does not offer theoretical guarantees that agents will reach
their destinations. However, extensive experimental evidence from our work and the referenced
studies, demonstrates that these learnable methods are practically powerful and scalable solutions
for complex MAPF problems.
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A APPENDIX

A.1 TRAINING DETAILS

The environments were created with POGEMA Skrynnik et al. (2024a) framework. The Sample
Factory codebase (Petrenko et al., 2020) was used for policy model training.

Training parameters for all tested methods are listed in Table 1. A single Tesla P100 was used for
training policy models for approximately 1 hour each. The results for models trained with Sparse
and Dense reward functions were averaged over 10 runs with different random seeds. The results of
training policies with Directional and Directional Negative rewards were averaged over 5 runs with
different random seeds as they showed less variation during training. Each run evaluation was first
averaged over 10 different evaluation procedure random seeds. We carried out the grid search for the
SRMT training entropy coefficient (range [0.00001, 0.0003]) and learning rate (range [0.01, 0.05]).

Table 1: Models configuration and training hyperparameters.

Parameter MAPF (all models) SRMT LMAPF

Optimizer Adam Adam
Learning rate 0.00013 0.00022
LR Scheduler Adaptive KL Constant
γ (discount factor) 0.9716 0.9756
Recurrence rollout 8 -
Clip ratio 0.2 0.2
Batch size 16384 16384
Optimization epochs 1 1
Entropy coefficient 0.0156 0.023
Value loss coefficient 0.5 0.5
GAEλ 0.95 0.95

MLP hidden size 16 512
ResNet residual blocks 1 8
ResNet filters 8 64
Attention hidden size 16 512
Attention heads 4 8
GRU hidden size 16 -
Activation function ReLU ReLU
Network Initialization orthogonal orthogonal
Rollout workers 4 8
Envs per worker 4 4
Training steps 2× 107 109

Episode length 512 512
Observation patch 5× 5 11× 11
Number of agents 2 64

A.2 EVALUATION SCORES

We provide the evaluation results for Dense, Directional, and Directional Negative reward functions
tested for Bottleneck MAPF task. The Figures 7, 8, 9 show that SRMT has superior or comparable
performance compared to the baselines.

Figure 10 shows the evaluations of the methods from the POGEMA benchmark compared to SRMT
when evaluated on MovingAI maps with different numbers of agents equal to or greater than the
ones used for training. SRMT was trained with 64 agents, SRMT 64 128 with a mixture of 64 and
128 agents. The results show that both SRMT models consistently outperform cooperative baselines
(MAMBA and QPLEX).
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Table 2: Tested reward functions. We list the reward values for achieving the goal, moving on the
path toward the goal, or taking other actions (moving not in the direction of the goal and staying in
the same position).

Type On goal Move towards goal Else

Directional +1 +0.005 0
Sparse +1 0 0
Dense +1 -0.01 -0.01
Directional Negative +1 -0.005 -0.01

Moving Negative +1 -0.01 -0.01 for moving,
-0.005 for holding

Figure 7: Trained with Dense reward, all models except empty core policy scale with enlarging
corridor length. SRMT consistently outperforms baselines both in success rates and in the time
needed to solve the task. The shaded area indicates 95% confidence intervals.

Figure 8: Directional reward training leads to all the methods preserving the scores for all tested
corridor lengths. The shaded area indicates 95% confidence intervals.

Figure 9: Results of training with Directional Negative reward. Vanilla attention fails to scale
at corridor lengths of more than 400, compared to the SRMT which preserves the highest scores.
That proves the sufficiency of the proposed SRMT architecture. The shaded area indicates 95%
confidence intervals.
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Figure 10: The evaluation of scalability of SRMT on MovingAI maps from POGEMA benchmark.
The shaded area indicates 95% confidence intervals.

A.3 MEMORY ANALYSIS

We also explored the relations between the SRMT agents’ memory representations and the spatial
distances between agents on the map. Fig. 11 shows that SRMT distances between memory rep-
resentations are aligned with distances between agents for different corridor lengths. Starting the
episode, the agents move closer to each other quickly, and the respective cosine distances decrease
significantly. Then, agents face each other in the environment (marked with a triangle on Fig. 11)

Figure 11: SRMT memory distances are aligned with the distances between agents. The figure
shows how cosine distances between agents’ memory vectors are related to the Euclidean distances
between agents on the map for SRMT. The triangle marks the step when agents face each other in
the environment, the star shows the episode step when the first goal was achieved. The color bar
shows the step number.

and move in the same direction, keeping the spatial distance between them constant. Next, after
the moment when one of the agents reaches its goal and disappears from the environment (marked
with a star), the other agent moves away to reach the goal. This part of the episode is depicted as
increasing memory distance at the end of the episode.
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