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ABSTRACT

Millions of new pieces of malware are introduced each year. This poses signif-
icant challenges for antivirus vendors, who use machine learning to detect and
analyze malware, and must keep up with changes in the distribution while retain-
ing knowledge of older variants. Continual learning (CL) holds the potential to
address this challenge by reducing the storage and computational costs of regu-
larly retraining over all the collected data. Prior work, however, shows that CL
techniques designed primarily for computer vision tasks fare poorly when applied
to malware classification. To address these issues, we begin with an exploratory
analysis of a typical malware dataset, which reveals that malware families are di-
verse and difficult to characterize, requiring a wide variety of samples to learn
a robust representation. Based on these findings, we propose Malware Analysis
with Diversity-Aware Replay (MADAR), a CL framework that accounts for the
unique properties and challenges of the malware data distribution. We extensively
evaluate these techniques using both Windows and Android malware, showing
that MADAR significantly outperforms prior work. This highlights the impor-
tance of understanding domain characteristics when designing CL techniques and
demonstrates a path forward for the malware classification domain.

1 INTRODUCTION

Advances in machine learning have significantly improved detection and classification of malicious
software, with notable success across various settings, such as Windows executables (Dahl et al.,
2013; Kovacs, 2018), PDFs (Maiorca et al., 2012), and Android applications (Arp et al., 2014).
Traditional models, trained on static datasets, are expected to perform well on new data under the
assumption of a constant data distribution. In reality, though, both malicious (i.e., malware) and
benign software (i.e., goodware) are ever-evolving and require regular model updates to keep up with
these changes in data distribution to maintain effectiveness. For example, the AV-TEST Institute logs
about 450,000 new malware samples daily (AV-TEST, 2023), and VirusTotal processes about one
million new submissions each day (VirusTotal, 2023).

Training a malware classification model solely on new data can lead to catastrophic forgetting
(CF) (French, 1999), which may result in both misclassifying goodware and allowing attackers
to bypass detection with older malware strains. To address this, antivirus vendors can keep older
samples and retrain over all of them during model updates, but the enormous volume of these sam-
ples makes the storage and computational costs of this approach excessive. Continual learning (CL)
offers a solution to this problem by enabling models to adapt to new data without the need for
maintaining large datasets or extensive retraining (van de Ven et al., 2020; Bhat et al., 2023).

While designs for CL have been extensively studied in the context of computer vision (Shin et al.,
2017; Hsu et al., 2018; van de Ven et al., 2020), there are very few such studies in the malware
classification domain. An exception is the work of Rahman et al. (2022), who found that none of
the CL techniques originally designed for computer vision problems offer acceptable performance
in malware classification, due in part to the strong semantics of malware features and the high level
of diversity found in the malware ecosystem.
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In this study, we first delve into the complexities of malware data distributions using the EMBER
dataset (Anderson & Roth, 2018) of Windows malware and goodware. Our analysis highlights the
diversity in malware, both between and even within families—groups of related malware. Lever-
aging this insight, we devise MADAR, Malware Analysis with Diversity-Aware Replay, a replay-
based continual learning strategy that accounts for diversity and achieves improved malware clas-
sification performance. MADAR replays a mix of representative samples and novel samples (i.e.,
outliers) to enhance the model’s ability to retain knowledge and identify new malware variants de-
spite memory constraints. Our techniques use Isolation Forests (IF) to find these novel samples.

We then evaluate MADAR with comprehensive experiments on the EMBER dataset in three CL
scenarios that mirror common malware classification tasks: domain incremental learning (Domain-
IL), class incremental learning (Class-IL), and task incremental learning (Task-IL). Additionally, we
have curated two new benchmarks of Android malware from the AndroZoo repository (Allix et al.,
2016): AZ-Domain for Domain-IL experiments and AZ-Class for Class-IL and Task-IL scenarios.
Our results on these datasets confirm that MADAR is indeed effective and much better than prior
state-of-the-art CL methods in the face of realistic data distribution shifts.

In summary, the contributions of this study are:

• We provide an exploratory analysis of the diversity of malware distributions and show how it
creates unique challenges for continuous learning.

• We develop two large-scale, realistic Android malware benchmarks covering all three CL scenar-
ios – Domain-IL, Class-IL, and Task-IL.

• In Domain-IL scenarios, we show that MADAR performs much better than prior CL techniques.
On the AZ dataset, for example, MADAR comes within 0.4% average accuracy of the joint train-
ing baseline using just 100K training samples versus 680K for joint.

• MADAR is also effective in Class-IL scenarios, where it consistently outperforms all prior meth-
ods over a wide range of budgets. With a budget of 20K training samples on EMBER, MADAR
gets an average accuracy of 85.8% versus 66.8% for the best prior method.

• For Task-IL, MADAR outperforms all prior methods across all memory budgets for both the
EMBER and AZ datasets. For example, in the AZ dataset, the MADAR-U variant achieves an
average accuracy of 98.7% (within 0.1% of joint) with a budget of only 20K replay samples
(versus approximately 250K for joint).

2 RELATED WORK

Replay in Continual Learning. The fundamental challenge in developing a CL system is ad-
dressing catastrophic forgetting (CF), and one of the widely studied methods to overcome CF is
replay (Zhang et al., 2024; Elsayed & Mahmood, 2024; Bhat et al., 2023; Rebuffi et al., 2017).
These techniques can further be classified into one of two major subcategories – exact replay and
generative replay.

Exact-replay techniques are designed to choose replay samples from previously learned data to
be combined with new samples for retraining. The goal of these techniques is to maximize the
performance with minimal replay samples (Rolnick et al., 2019; Chaudhry et al., 2019a; Rebuffi
et al., 2017; Bhat et al., 2023). Selecting and using the replay samples involves determining a
memory budget, denoted as M, and choosing an optimal value of M remains an open research
question (Aljundi et al., 2019; Chaudhry et al., 2019b). Generative or pseudo-replay strategies are
designed to replicate the original data (Li & Hoiem, 2017; Shin et al., 2017; van de Ven et al., 2020).
These techniques either generate a representative of the original data using a separate generative
model or generate pseudo-data by using an earlier model’s predictions as soft labels for training
subsequent models. We experimentally compare the performance of MADAR against the leading
exact and generative replay techniques, and we find that it’s diversity-aware approach outperforms
all of them in the malware domain.

CL in Malware and Related Domains. Despite extensive work in CL, very few studies have
studied CL in the malware domain. Rahman et al. (2022) were the first to explore CL for malware
classification. They concluded that existing CL methods fall short in tackling CF in malware classi-
fication systems due to differences in the underlying nature of the data distribution shifts that occur
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Figure 1: CL scenarios in a typical malware analysis pipeline.

in practice versus those explored in the computer vision domain. Malware representations use tabu-
lar features with strong semantic constraints that limit the space of feasible samples, and within that
space, samples exhibit a high degree of diversity. Replay-based techniques were found to perform
better compared to other approaches in this setting, leading to our focus on these methods.

Related strains of work address online learning (Xu et al., 2019) and concept drift (Chen et al., 2023)
in malware classification. These works do not address overcoming CF.

Another CL domain in cybersecurity is network intrusion detection (NID), looking for malicious
activity based on network packets. Channappayya et al. (2024) explored a replay-based CL tech-
nique that incorporates class-balancing reservoir sampling and perturbation assistance for parameter
approximation NID. Another recent work explored semi-supervised CL for NID in a class incre-
mental setting (Amalapuram et al., 2024). We note that NID is a different domain with different
data characteristics than malware. Further, these works do not focus on reducing CF.

3 CL SCENARIOS IN THE MALWARE ANALYSIS PIPELINE

Continual Learning (CL) is categorized into three scenarios: Domain Incremental Learning
(Domain-IL), Class Incremental Learning (Class-IL), and Task Incremental Learning (Task-
IL) (van de Ven et al., 2022). In this section, we explain how the three CL scenarios fit into a
typical malware analysis pipeline (see Figure 1).

Domain-IL. The first step in the pipeline is the binary classification problem of distinguishing
between goodware and malware. Each day, VirusTotal receives one million never-before-seen sam-
ples (VirusTotal, 2023), highlighting the persistent and evolving nature of software.This underscores
the importance of rapidly integrating these new samples into operational systems to protect against
evolving threats. In addition, with the continual emergence of new benign software programs and
the massive class imbalance in practice (i.e., significantly more goodware than malware), it is of
utmost importance to not increase the false positive rate of the classifiers.

In this adversarial context, attackers may deploy older malware to evade detection by systems that
have forgotten their patterns, necessitating a balance between adapting to new threats and preventing
CF. To evaluate CL schemes in this regard, we segment our Domain-IL datasets into blocks of time
based on the date of each sample.

Class-IL. Once software is determined to be malicious, the next task in malware analysis involves
classifying malware into families—groups of programs with substantial code overlap and similar
functionality, as recognized by experts (Zhu et al., 2020). For instance, the zeus banking trojan
has evolved into 556 variants across 35 families, including citadel and gameover. Defining a
new class relies on consensus from multiple anti-virus engines and occurs when a significant set of
similar samples forms a new family (Kantchelian et al., 2015; Zhu et al., 2020). In our incremental
multi-class model, we start with a set of known malware families and add new ones as they emerge,
continuously adjusting and assessing the model across all known classes.

Task-IL. In malware analysis, leveraging insights from additional methods can prove beneficial.
This may involve identifying the broader malware category (e.g., adware, ransomware, etc.), mal-
ware behaviors (Berlin et al., 2015), or the infection vector (e.g., phishing, downloader, etc.). Task-
IL encapsulates this concept of constrained tasks, where the introduction of a new task may sym-
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bolize a new category or behavior set. This event occurs less frequently than adding a new family,
as found in Class-IL.Unlike Class-IL, the task identity is provided to the model at test time, sig-
nificantly simplifying the problem. In malware, this could mean learning the task identity from a
separate model, manual analysis, or field reports of the malware’s behavior. As our datasets do not
possess naturally defined tasks, we partition our dataset into tasks comprising an equal number of
independent and non-overlapping classes to act as a proxy to new behaviors, following common
practice in the CL literature (van de Ven et al., 2022; 2020). In other words, a given task would be to
perform family classification among one subset of families, and the subset that each sample belongs
to is known to the classifier. The model is expected to be able to handle multiple tasks at once, and
new tasks are being added during each experiment.

4 MADAR: MALWARE ANALYSIS WITH DIVERSITY-AWARE REPLAY

4.1 EXPLORATORY ANALYSIS OF THE EMBER DATASET

In this section, we provide an analysis of the EMBER dataset (Anderson & Roth, 2018), a widely
used benchmark for Windows malware classification. The analysis sheds light on the data distri-
bution across various families and tasks, aiding in selecting representative samples for replay. We
identified 2,899 unique malware families within a subset of EMBER, and an additional 11,433 sam-
ples lacking clear family labels were assigned the label Other.

We investigate the prevalence of malware families over time, distinguishing between recurring and
newly identified families each month. Unlike many datasets used in CL research, we see significant
churn in the representation of families over time. Of the 913 families seen in January, for example,
only 551 are seen in February, while 425 new families emerge. This churn indicates a potential issue
in training data continuity, which may aggravate catastrophic forgetting and underscores the need
for different CL strategies in the malware domain. Generally, each family has its own distribution
pattern, and together these patterns make up the total distribution of malware for a particular month.

Worse, many malware samples do not have family labels at all. Correctly labeling samples is
challenging, requiring time and expert knowledge (Kantchelian et al., 2015), so the lack of labels
matches real-world conditions. Family labels for malware are based on the av-class labels provided
by the av-test engine (AV-TEST, 2023). The Other-labeled samples do not seem from our analysis
to align with other families, meaning that many of them indeed come from unknown families.

Figure 2: t-SNE projection of EMBER
malware, Jan. 2018

Furthermore, the prominent malware families change with
the evolution of tasks. The 10 most common families vary
greatly across tasks. For example, the emotet malware
family was the most consistent, appearing in 11 out of 12
tasks. The next most consistent families were fareit
and zusy, appearing in eight and seven tasks, respectively.
This indicates considerable concept drift in malware data,
highlighting the need to regularly update classifiers.

Challenges in the malware domain also arise from its com-
plexity. Many malware families display complex distribu-
tional patterns in feature space, making for additional di-
versity within classes. Figure 2 shows a t-SNE projection
of EMBER features for all malware samples from January
2018. Each family (represented by color) is not clustered
into a single well-defined region. Rather, the larger families
are split up and spread out in feature space. To accurately
represent the malware distribution, it is thus important to
select samples not only from each family, but also from multiple areas within each family. This
may explain why prior CL techniques designed for computer vision datasets are less effective when
applied to the malware domain (Rahman et al., 2022).

In light of these results, we propose that selecting replay samples based on families and variations
within families could more effectively capture the diversity within the data and help mitigate CF.

4
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Algorithm 1: MADAR in Domain-IL
Input : c – Task, Xc, Yc – Samples and labels, P – Data pool, β – Memory budget, γ – Mal/goodware

split, Ω – anomalous/similar split, ξ – Ratio budgeting, Ψ – Uniform budgeting
1 init P; init D ← {Mf : Mc};
2 if c = 0 then
3 P ← Xc, Yc; Xgood, Xmal ← P;∇D ← Xmal; Xtrain, Ytrain ← Xc, Yc;

4 else
5 Xgood, Xmal ← P; βM , βG ← β · γ; βA, βS ← βM · Ω;
6 if Ψ then
7 F ← D; BF ← βM/F ;

8 Rmal ← [ ]; for Xf ⊆ Xmal do
9 FMC ← Xf ; if ξ then

10 MC ← D; BF ← (FMC/MC) · βM ;

11 if FMC ≤ BF then
12 Rmal.append(Xf );

13 else
14 (Af , Sf )← IF(Xf , βA, βS); Rmal.append(Af , Sf );

15 Rgood ← sample(Xgood,len(Rmal)); Xreplay ← (Rgood, Rmal);
16 Yreplay ← ([0]× len(Rgood), [1]× len(Rmal));
17 Xtrain ← concat(Xc, Xreplay); Ytrain ← concat(Yc, Yreplay);
18 P.append(Xc, Yc);∇D ← Xmal;

19 return (Xtrain, Ytrain)

4.2 MADAR

Here, we introduce the MADAR framework for CL in malware classification that uses a diversity-
aware replay buffer to account for the diversity of samples we saw in EMBER.

Building on our analysis in Section 4.1, we postulate that stratified sampling—where replay samples
are chosen based on their representation in malware families—may better preserve the model’s
stability compared with random sampling as used in global reservoir sampling (GRS) (Vitter, 1985;
Rahman et al., 2022). Moreover, we also seek to capture the diversity within each family’s data
distribution. Let Df = {x1, x2, . . . , xn} represent the data samples belonging to a specific family
f . We define two subsets of interest within this data: the representative samples Sf ⊂ Df capture
the frequently occurring samples within the family and the anomalous samples Af ⊂ Df capture
rare samples. The selected set of replay samples S = Sf ∪ Af captures the diversity within the
family’s data distribution by balancing representative and anomalous samples. While any single
anomalous sample is not as important to learn and remember as a single representative sample, a
collection of anomalous samples helps to track the diversity within a class.

Isolation Forest (IF) (Liu et al., 2008) is a technique for identifying outliers in high-dimensional
data. IF uses decision trees to isolate anomalous data points based on the intuition that they are easy
to separate from the rest of the data. An important parameter in IF is the contamination rate Cr,
which represents the expected fraction of outliers in the data. We found that Cr = 0.1 works best
and used it in all our experiments. The algorithm for MADAR in the Domain-IL setting is provided
in Algorithm 1. The algorithms for Class-IL and Task-IL are presented in Appendix A.

4.2.1 PROCEDURE

We now describe MADAR using the framework of Domain-IL; the process is similar for Class-IL
and Task-IL. The procedure begins by initializing a global data pool P , containing both goodware
and malware samples, and a dictionary D that tracks malware families and their frequencies in the
data up to the current task.

For each new task c, MADAR divides the data into goodware (Xgood) and malware (Xmal) subsets
from P , allocating memory budgets βM for malware and βG for goodware from the total memory
budget β, based on a split ratio γ:

βG = γ · β, βM = (1− γ) · β.

5
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For balanced datasets like EMBER, γ = 0.5 ensures an equal split between malware and goodware.
For an imbalanced dataset, it is better to tune γ. Our Android malware (AZ) datasets, for example,
have a 9:1 ratio of goodware to malware, so we use γ = 0.9.

Before training for a new task, MADAR incrementally trains the classifier using a combination of
new samples from the current task and replay samples from previous tasks. The replay samples
include both goodware (Rgood ⊂ Xgood) and malware (Rmal ⊂ Xmal), with Rmal sampled from
specific malware families rather than randomly from all of Xmal.

For each family f , we set its family budget Bf— the number of samples to select from f—using
two sub-sampling variants: Ratio budgeting and Uniform budgeting.

• Ratio Budgeting: Select the number of samples from a family f proportional to that family’s
representation in the dataset. The family budget Bf is Bf =

|Xf |
|Xmal| · βM , where |Xf | is the

number of samples in family f , and |Xmal| is the total number of malware samples. This strategy
may be more suitable in binary classification, as it provides proportional representation of the
malware families for training on the malicious class.

• Uniform Budgeting: In this method, the memory budget βM is uniformly distributed across all
malware families: Bf = βM

|F| , where |F| is the total number of malware families. Compared with
Ratio budgeting, Uniform budgeting may work well for multi-class classification to determine
which family a sample belongs to, as it ensures better class balance.

Within each family f , we further split the family budget Bf into two parts: representative samples
Sf and anomalous samples Af , using IF, controlled by a split parameter α:

|Sf | = α · Bf , |Af | = (1− α) · Bf

We found empirically that a balanced split (α = 0.5) between representative and anomalous samples
provides optimal performance. In this setup, the model learns equally the core class characteristics
from representative samples and less common variations from anomalous samples.

The malware replay set Rmal is then constructed by combining the representative and anomalous
samples from all malware families:

Rmal =
⋃
f∈F

{Sf ∪Af}.

The total replay set consists of both goodware and malware replay samples, which are then concate-
nated with the new task samples to form the training set for the current task c. After training, the data
pool P is updated with the new task samples, P ← P∪{Xc, Yc}, and the malware family dictionary
D is updated to reflect the new frequencies of malware families in Xmal: D ← D + freq(Xmal).

5 EVALUATION

5.1 EXPERIMENTAL SETUP, DATASETS, AND BASELINES

We now present the results of our MADAR framework in the Domain-IL, Class-IL, and Task-
IL scenarios for EMBER and AZ datasets. We use the following two abbreviations to de-
note our techniques—MADAR-R for MADAR-Ratio and MADAR-U for MADAR-Uniform.
For all three scenarios, we compare MADAR with the most widely studied replay-based CL
techniques: experience replay (ER) (Rolnick et al., 2019), average gradient episodic memory
(AGEM) (Chaudhry et al., 2019a), deep generative replay (GR) (Shin et al., 2017), Replay-through-
Feedback (RtF) (van de Ven & Tolias, 2018), and Brain-inspired Replay (BI-R) (van de Ven et al.,
2020). In addition, we compare MADAR with iCaRL (Rebuffi et al., 2017), a replay-based technique
specifically designed for Class-IL. Furthermore, we compare MADAR with Task-specific Attention
Modules in Lifelong learning (TAMiL) (Bhat et al., 2023) which is designed for Class-IL and Task-
IL scenarios. We observe that recent works mostly focus on Class-IL and Task-IL scenarios which
limits what we can compare with in the Domain-IL scenario. The results of the best-performing
method, as well as those within the error range of the best results, are highlighted in the results
tables. We built upon the code of the prior work by Rahman et al. (2022).
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Table 1: Domain-IL: Global average accuracies.

Group Method
EMBER AZ
Budget Budget

1K 100K 200K 400K 1K 100K 200K 400K

Baselines Joint 96.4±0.3 97.3±0.1
None 93.1±0.1 94.4±0.1

Prior
Work

ER 80.6±0.1 69.9±0.1 70.0±0.1 70.0±0.1 40.4±0.1 42.6±0.1 44.0±0.1 48.6±1.1
AGEM 80.5±0.1 70.0±0.1 70.0±0.2 70.0±0.1 45.4±0.1 53.7±0.6 54.2±0.3 56.7±0.3
GR 93.1±0.2 93.3±0.4
RtF 93.2±0.2 93.4±0.2
BI-R 93.4±0.1 93.5±0.1
GRS 93.6±0.3 95.3±0.7 95.9±0.1 96.0±0.3 95.3±0.1 97.1±0.1 97.1±0.1 97.2±0.1

Ours MADAR-R 93.7±0.1 95.3±0.6 96.0±0.1 96.1±0.1 95.8±0.1 97.0±0.1 97.0±0.1 97.0±0.1
MADAR-U 93.6±0.2 95.3±0.1 95.5±0.1 95.8±0.1 95.7±0.1 95.2±0.1 95.4±0.1 96.3±0.2

In this study, we utilize large-scale malware datasets, including the EMBER dataset (Anderson &
Roth, 2018), a widely used benchmark for Windows malware classification, and two Android mal-
ware datasets derived from AndroZoo (Allix et al., 2016), specifically assembled for this research.
We compare our approach against two baselines: None, where the model is trained sequentially on
each new task without any CL techniques, serving as an informal lower bound; and Joint, which
trains on both new and previous data at each step, representing an informal upper bound. Although
resource-intensive, Joint ensures consistently strong results. Additionally, we introduce Global
Reservoir Sampling (GRS), an approach based on reservoir sampling (Vitter, 1985) and Rahman
et al. (2022), which provides an unbiased representation of class distributions and serves as a strong
point of comparison for our diversity-aware approach.

More details on the experimental setup and additional results with more memory buffer configura-
tions are provided in Appendix B and Appendix C, respectively.

5.2 DOMAIN-IL

In EMBER, we have 12 tasks, each representing the monthly data distribution spanning January–
December 2018. Our results, detailed in Table 1, present a nuanced view of each method’s perfor-
mance, reported as the average accuracy over all tasks AP. The informal lower and upper perfor-
mance bounds for this configuration can be approximated by the None and Joint methods, which get
AP of 93.1% and 96.4%, respectively. Meanwhile, GRS represents a strong baseline for unbiased
sampling without awareness of sample diversity.

At lower budget of 1K, GRS, MADAR-R, and MADAR-U exhibit competitive performance, all
significantly better than prior work with AP above 93.6%, indicating their effective utilization of
limited resources. ER and AGEM performed far below even the None baseline, while GR could
only match it. For higher budgets, GRS and MADAR methods all show excellent performance. At a
200K budget, MADAR-R yields AP of 96.0%, close to the 96.4% reached by the Joint baseline that
used over 670K samples. GRS is competitive, while Uniform strategies are only slightly behind.

For the experiments with AZ-Domain, we have 9 tasks, each representing a year from 2008 to 2016.
The performance of each method is shown in Table 1 as AP and compared with two baselines:
None at 94.4± 0.1 and Joint at 97.3± 0.1.

As with EMBER, we find that our MADAR techniques greatly surpass previous methods like ER,
AGEM, GR, RtF, and BI-R for every budget level. For lower budgets like 1K, MADAR-R slightly
outperforms GRS and is within 1.5% of Joint. For higher budgets (100K-400K), MADAR-R per-
form well – in line with GRS and just slightly below Joint, which requires 680K training samples.

In summary, our results empirically depict the effectiveness of MADAR’s diversity-aware sam-
ple selection in maximizing the efficiency and effectiveness of a malware classifier in Domain-IL.
MADAR-R is either better or on par with GRS and significantly better than prior work.
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Table 2: Class-IL: Global average accuracies.

Group Method
EMBER AZ
Budget Budget

100 1K 10K 20K 100 1K 10K 20K

Baselines Joint 86.5±0.4 94.2±0.1
None 26.5±0.2 26.4±0.2

Prior
Work

TAMiL 32.2±0.3 35.3±0.2 38.2±0.3 38.8±0.2 53.4±0.3 57.6±0.3 63.5±0.1 67.7±0.3
iCaRL 53.9±0.7 60.0±1.0 64.6±0.8 66.8±1.1 43.6±1.2 61.7±0.7 81.5±0.6 84.6±0.5
ER 27.5±0.1 28.0±0.1 28.0±0.1 28.2±0.1 50.8±0.7 58.9±0.2 62.9±0.7 64.2±0.4
AGEM 27.3±0.1 27.7±0.1 28.2±0.1 28.2±0.1 27.3±0.7 27.1±0.3 28.2±1.0 28.0±0.8
GR 26.8±0.2 22.7±0.3
RtF 26.5±0.1 22.9±0.3
BI-R 26.9±0.1 23.4±0.2
GRS 51.9±0.4 75.4±0.7 83.5±0.1 84.6±0.2 43.8±0.7 70.2±0.4 86.4±0.2 89.1±0.2

Ours MADAR-R 68.0±0.4 76.0±0.3 83.2±0.2 84.0±0.2 59.4±0.6 71.9±0.5 86.3±0.1 89.1±0.1
MADAR-U 66.4±0.4 79.4±0.4 84.8±0.1 85.8±0.3 57.3±0.5 76.2±0.2 89.8±0.1 91.5±0.1

5.3 CLASS-IL

In this set of experiments with EMBER, we have 11 tasks, where the initial task starts with 50
classes—one for each of 50 malware families—and five classes are added in each subsequent task.
The performance of these methods, detailed in Table 2, is measured by average accuracy AP with
None and Joint training baselines at an AP of 26.5 ± 0.2 and 86.5 ± 0.4, respectively. For a very
low budget of 100 samples, MADAR methods greatly outperform GRS, with MADAR-R getting
16% higher AP. For more reasonable budgets, however, the uniform variant MADAR-U offers the
best performance. For example, with a 10K budget, MADAR-U yields at least 84.8% AP, which
is better than GRS at 83.5% AP. They also fare far better than all prior works, with ER, AGEM,
GR, RtF, and BI-R below 30%, TAMiL at 38.2%, and iCaRL at only 64.6%. These poor results for
the prior methods are in line with other findings in the malware domain (Rahman et al., 2022). For
a budget of 20K, MADAR-U reaches 85.8 ± 0.3, nearly as good as the Joint baseline that uses a
maximum budget over 150 times larger.

We have 11 tasks for the Class-IL setting of AZ-Class. The summary results of all the experiments
are shown in Table 2 and benchmarked against None and Joint with AP of 26.4±0.2 and 94.2±0.1,
respectively. As we can from Table 2 that, among TAMiL, iCaRL, ER, AGEM, GR, RtF, and BI-
R, iCaRL outperforms in most of the budget configurations. Therefore, we discuss the results of
MADAR in comparison with iCaRL. For a low budget of 100, iCaRL and GRS get less than 44%,
while all MADAR methods achieve over 57%. As budgets increase, all methods improve, with
MADAR-U offering the best results at every budget from 1K to 20K. At 20K, it reaches 91.5±0.1%,
which is 1.4% higher than GRS and 6.9% higher than iCaRL.

In summary, our experiments clearly demonstrate the effectiveness of MADAR’s diversity-aware
replay techniques in Class-IL for both EMBER and AZ datasets. Additionally, while GRS shows
significant improvement with an increased budget, the uniform variants of MADAR are more effec-
tive at every budget level. MADAR significantly improves performance in malware classification
by mitigating catastrophic forgetting, and they do so using fewer resources.

5.4 TASK-IL

In this set of experiments with EMBER, we have 20 tasks with 5 new classes in each task. Table 3
shows a summarized view of this set of experiments, where the performances are presented as the
average accuracy over all tasks (AP). Note that Task-IL is considered the easiest scenario of con-
tinual learning (van de Ven et al., 2022; 2020). The None and Joint methods, which are the informal
lower and upper bounds of this configuration, attain AP of 74.6% and AP of 97.03%, respectively.

As we can see from Table 3, ER outperforms TAMiL, A-GEM, GR, RtF, and BI-R in all budget con-
figurations and outperforms GRS for few configurations. MADAR, on the other hand, outperforms
all the prior methods significantly in lower budget constraints (100–1K). For instance, MADAR-U
reaches AP of 93.9% with only 1K replay samples, compared with 93.6% for GRS. The perfor-
mance gap among MADAR, ER, and GRS gets closer as the budget increases; however, MADAR
variants continue to either outperform or perform on par with other techniques. In particular, the
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Table 3: Task-IL: Global average accuracies.

Group Method
EMBER AZ
Budget Budget

100 1K 10K 20K 100 1K 10K 20K

Baselines Joint 97.0±0.3 98.8±0.2
None 74.6±0.7 74.5±0.2

Prior
Work

TAMiL 72.8±0.1 86.9±0.2 90.3±0.1 94.2±0.7 80.5±0.4 91.5±0.2 93.5±0.1 94.8±0.2
ER 67.4±0.3 89.5±0.5 94.8±0.2 95.4±0.1 83.6±0.2 92.3±0.3 96.2±0.1 97.5±0.2
AGEM 79.6±0.2 83.8±0.4 86.1±0.2 89.3±0.1 76.7±0.5 85.3±0.1 86.7±0.2 91.3±0.3
GR 79.8±0.3 75.6±0.2
RtF 77.8±0.2 74.2±0.3
BI-R 87.2±0.3 85.4±0.2
GRS 86.9±0.3 93.6±0.3 94.7±0.3 95.0±0.1 85.2±0.1 90.8±0.1 93.5±0.1 95.2±0.1

Ours MADAR-R 92.1±0.2 93.8±0.2 94.8±0.2 95.6±0.1 86.0±0.3 92.4±0.1 96.7±0.1 97.9±0.2
MADAR-U 93.4±0.2 93.9±0.3 95.6±0.1 95.8±0.2 88.1±0.3 94.5±0.3 98.1±0.1 98.7±0.1

MADAR-U variant of MADAR outperforms all the other techniques and attains AP of 95.8% with
a 20K replay budget, which is close to joint level performance.

Task-IL for AZ contains 20 tasks, each with 5 non-overlapping classes. Our results are shown in Ta-
ble 3, compared against the None and Joint benchmarks, with AP of 74.5% and 98.8%, respectively.
As with EMBER, ER outperforms TAMiL, AGEM, GR, RtF, BI-R, and GRS for most budgets, so
we use it for comparison. For a low budget of 100, MADAR-U achieves an AP of 88.1%, 4.5%
higher than that of ER. For a higher budget of 20K, MADAR-U attains an AP of 98.7%, which is
1.2% higher than that of ER and very close to the joint level performance of 98.8%.

5.5 DISCUSSION

Our results show that MADAR outperforms previous methods in Domain-IL, Class-IL, and Task-
IL scenarios on both the EMBER and AZ datasets, demonstrating the effectiveness of diversity-
aware replay in maintaining stability in continual malware classification. In all scenarios, MADAR
outperforms prior replay-based methods that were designed for computer vision tasks. These prior
approaches generally performed quite poorly in the malware domain, echoing findings of Rahman
et al. (2022). For larger budgets, MADAR’s performance approaches the Joint baseline while using
a much smaller training budget, e.g., as little as 3% of the cost.

The Ratio variant performed better in Domain-IL, while the Uniform variant worked well in Class-
IL and Task-IL. Intuitively, this makes sense, as ratio budgeting captures the contributions of each
family to the overall malware distribution for binary classification in the Domain-IL setting. Addi-
tionally, since there are many small families in the Domain-IL datasets, uniformly sampling from
them consumes budget while offering little improvement in malware coverage. In contrast, Class-IL
and Task-IL require classification across families, where uniform budgeting ensures class balance
and comprehensive coverage.

GRS performs well, often close to MADAR’s performance, especially at higher budgets in Domain-
IL. GRS provides an unbiased estimate of the underlying distribution, which makes it a strong
baseline. MADAR is particularly effective in Class-IL, Task-IL, and lower-budget Domain-IL, while
GRS generally performs as well as MADAR in higher-budget Domain-IL. We hypothesize that
diversity is more important when the number of samples per class is limited.

6 CONCLUSION

In this paper, we propose MADAR, a framework for diversity-aware replay in continual learning
specially designed for the challenging setting of malware classification. Our comprehensive eval-
uation across Domain-IL, Class-IL, and Task-IL scenarios against Windows executable (EMBER)
and Android application (AZ) datasets demonstrates that diversity-aware sampling is helpful for
effective CL in malware classification. As malware and goodware continue to evolve, we hope
these insights steer continual learning towards strategic, resource-efficient methods, ensuring model
effectiveness amid the constantly shifting landscape of cybersecurity threats.

9
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A MADAR IN CLASS-IL AND TASK-IL

B EXPERIMENTAL DETAILS

B.1 DATASET DETAILS

B.1.1 WINDOWS PE FILES

For our experiments, we chose the EMBER 2018 version, containing features from one million
Windows Portable Executable (PE) files, predominantly scanned in 2018.1 The dataset comprises
400K goodware and 350K malware, with the rest labeled as unknown. EMBER provides a diverse
array of 2,381 hand-crafted features, covering general file information, header data, import/export
functions, and section details. Notably, these features capture strong semantic concepts that have a
limited space of feasible settings, outside of which the executable does not actually run.

1https://github.com/elastic/ember
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Algorithm 2: MADAR in Class-IL and Task-IL
Input : c – Task number, Xc, Yc – Malware samples and their family labels, P – Malware data pool, β –

Memory budget, Ω – Split of anomalous/similar samples, ξ – Ratio budgeting, Ψ – Uniform
budgeting

1 init P; init D ← {Mf : Mc};
2 if c = 0 then
3 P ← Xc, Yc; Xmal ← P;∇D ← Xmal; Xtrain, Ytrain ← Xc, Yc;

4 else
5 Xmal ← P; βA, βS ← β · Ω;
6 if Ψ then
7 NF ← D; BF ← β/NF ;

8 Rmal ← [ ]; for Xf ⊆ Xmal do
9 FMC ← Xf ; if ξ then

10 MC ← D; BF ← (FMC/MC) · β;

11 if FMC ≤ BF then
12 Rmal.append(Xf );

13 else
14 (Af , Sf )← IF(Xf , βA, βS); Rmal.append(Af , Sf );

15 Xreplay ← Rmal; Yreplay ← ([1]× len(Rmal));
16 Xtrain ← concat(Xc, Xreplay); Ytrain ← concat(Yc, Yreplay);
17 P.append(Xc, Yc);∇D ← Xmal;

18 return (Xtrain, Ytrain)

In our Class-IL experiments, we focused on 2018 malware samples from 2,900 families. After
filtering out families with fewer than 400 samples, we narrowed the remaining samples down to the
top 100 families, leaving 337,035 samples for analysis. For Domain-IL, we included both goodware
and malware from the entire year of 2018 for binary classification, excluding unknown samples.

B.1.2 ANDROID APK FILES

Additionally, we collected two datasets from AndroZoo (Allix et al., 2016) (AZ) for our experi-
ments: AZ-Domain for Domain-IL and AZ-Class for Class-IL and Task-IL. These datasets contain
Android APK files, and both use a 9:1 ratio of goodware to malware to reflect the real-world class
imbalance. Following the practice of prior work (Xu et al., 2019), the malware samples are selected
with a VirusTotal detection count of >= 4. The AZ-Domain dataset includes 80,690 malware
and 677,756 goodware samples from 2008 to 2016. We divided the AZ-Domain dataset into non-
overlapping yearly training and testing sets. The AZ-Class dataset consists of 285,582 samples from
100 Android malware families, each with at least 200 samples.

We extracted Drebin features (Arp et al., 2014) from the apps for both datasets. These features cover
various aspects of app behavior, including hardware access, permissions, app component names, fil-
tered intents, restricted API calls, used permissions, suspicious API calls, and network addresses.
Again, we note that these capture strong semantic concepts from the operation of the application.
The training sets of AZ-Domain and AZ-Class have 3,858,791 and 1,067,550 features, respectively.
We processed the test datasets to match the training feature sets and reduced dimensionality by filter-
ing features with low variance (< 0.001) using scikit-learn’s VarianceThreshold. This
resulted in final feature dimensions of 1,789 for AZ-Domain and 2,439 for AZ-Class, respectively.

B.2 MODEL SELECTION AND IMPLEMENTATION

We use a multi-layer perceptron (MLP) model for malware classification, similar to the model used
by Rahman et al. (Rahman et al., 2022), for experiments with the EMBER dataset. For the AZ
dataset, we developed a new MLP model with five fully-connected layers, quite similar to the MLP
used for EMBER. This model uses the Adam optimizer with a learning rate of 0.001, and batch
normalization and dropout for regularization.
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The implementation of the output layer varies among Domain-IL, Class-IL, and Task-IL scenarios.
Domain-IL operates as a series of binary classification tasks over 12 months for EMBER, and over
9 years for the AZ dataset, with two output units in each case: malicious and benign. In Class-IL,
the output layer comprises units – one for each class. Output units are active only if they correspond
to classes that have been seen by that point in the experiment. Class-IL begins with an initial set of
50 classes in the first task and progressively adds five more classes in each of the remaining 10 tasks
for both EMBER and AZ datasets. In Task-IL, only the output units of the classes in the current task
are active. Both the EMBER and AZ-Class datasets divide the classes equally into 20 tasks, with
each task containing five classes.

B.3 BASELINES AND METRIC

Global Reservoir Sampling (GRS). GRS simply selects samples at random from a global stored
data pool (Vitter, 1985; Zhang & Sutton, 2017). Given a memory budget β, GRS randomly picks β
samples from a data pool P , with each incremental learning task contributing to the pool. If β ≥ P ,
GRS selects all the available samples in P . Rahman et al. (Rahman et al., 2022) investigated GRS
– which they refer to as Partial Joint Replay – only for Domain-IL scenario of EMBER dataset. In
this work, we present a deeper investigation of GRS in both Domain-IL and Class-IL scenarios with
both EMBER and AZ datasets.

Global average accuracy (AP ∈ [0, 100]%). To maintain consistency with prior work, we present
results using global average accuracy as the primary metric for our evaluations (Rahman et al.,
2022; van de Ven et al., 2020; Rebuffi et al., 2017). Note that we conducted a subset of evaluations
using other metrics, such as F1 score, precision, and recall, which are not included in this paper. The
conclusions remain unchanged for all of these metrics.

Let Pi,j be the accuracy of the model on the test set of task Tj , j ≤ i, after continually training the
model on tasks 1 to i. For N total tasks, the global average accuracy AP over all tasks is computed
as:

AP =
1

N

N∑
i=1

1

i

i∑
j=1

Pi,j

 ∗ 100% (1)

B.4 TRAINING AND EVALUATION PROTOCOL

A continual learning (CL) model is sequentially trained to learn tasks from t1, t2, ..., tT , each with
its distinct data distribution p(x, y|ti). The goal is to adapt to new tasks without forgetting the
old ones. CL training involves three sets of parameters: shared parameters (θs) across all tasks,
old task-specific parameters (θ0), and new task parameters (θn) (Li & Hoiem, 2017). The Joint
training benchmark trains the model with all the available training samples up to the current task and
optimizes all these parameters simultaneously; however, it incurs incremental storage and training
costs. In contrast, CL training strives to optimize and update θs and θn , while maintaining θ0
in a relatively fixed state for each new task tn. However, updating any of the shared weights θs
risks confusing the classifier when faced with older data, as those classification decisions depend
not only on θ0 but also on θs. CL training typically boasts significantly faster speeds and far less
storage requirements than Joint training, thus permitting more frequent model retraining to adapt to
evolving data distributions or other requirements.

In our evaluations, we use a non-overlapping hold-out set corresponding to each task. For example,
the AZ-Domain dataset contains 9 years of training samples from 2008 to 2016, resulting in 9 hold-
out sets, one for each year. A CL model is evaluated on all the hold-out sets up to the current task;
formally, the model is evaluated on tasks ti to tT , for 1 ≤ i ≤ T , after it been trained on the current
task tT .

In this work, each set of experiments is performed around 10-15 times with different random param-
eter initializations. We use PyTorch on a CentOS-7 machine with an Intel Xeon processor, 40 CPU
cores, 128GB RAM, and four GeForce RTX 2080Ti GPUs, each with 12GB memory.
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C ADDITIONAL RESULTS

C.1 DOMAIL-IL

Table 4: Additional Results: Summary of EMBER and AZ Domain-IL Experiments.

Group Method
EMBER AZ
Budget Budget

10K 50K 300K 10K 50K 300K

Prior
Work

ER 73.5±0.5 70.5±0.3 70.0±0.1 40.1±0.1 41.1±0.2 45.9±0.1
AGEM 73.6±0.2 70.4±0.3 70.0±0.1 47.4±0.2 49.2±0.2 54.8±0.4
GR 93.1±0.2 93.3±0.4
GRS 94.1±1.3 95.3±0.2 95.8±0.6 96.4±0.1 96.9±0.1 97.2±0.1

Ours
MADAR-R 94.7±0.1 95.4±0.1 96.1±0.1 96.6±0.1 96.9±0.1 97.0±0.1
MADAR-U 94.0±0.2 95.1±0.1 95.7±0.1 95.5±0.1 95.2±0.2 95.8±0.2

At a 10K budget in EMBER, MADAR-R achieves the highest accuracy at 94.7%, lightly higher than
GRS at 94.1%. MADAR outperforms prior works which score significantly lower. At the 300K
budget, MADAR-R reaches 96.1%, while GRS follows closely at 95.8%.

In the AZ-Domain, MADAR-R reaches 96.6% at the 10K budget, slightly better than GRS at 96.4%.
At 300K, GRS performs marginally better with 97.2%, compared to 97.0% for MADAR-R. Both
methods outperform prior work, which show much lower accuracy at all budget levels. These results
demonstrate that MADAR-R performs well across budgets, with GRS having a slight edge at higher
budgets.

C.2 CLASS-IL

Table 5: Additional Results: Summary of EMBER and AZ Class-IL Experiments.

Group Method
EMBER AZ
Budget Budget

500 5K 15K 500 5K 15K

Prior
Work

TAMiL 33.1±0.2 36.7±0.1 37.2±0.2 55.2±0.3 60.8±0.2 65.3±0.5
iCaRL 58.7±0.7 63.9±1.2 65.5±1.0 54.9±1.0 77.2±0.4 83.4±0.5
ER 27.8±0.1 27.9±0.1 28.0±0.1 58.3±0.6 59.2±0.8 63.1±0.5
AGEM 27.4±0.1 28.5±0.1 28.3±0.1 28.0±1.4 28.0±0.6 29.8±2.6
GR 26.8±0.2 22.7±0.3
GRS 70.3±0.5 82.0±0.2 84.3±0.3 62.9±0.8 83.0±0.3 88.2±0.2

Ours
MADAR-R 73.6±0.2 81.5±0.2 83.8±0.2 67.8±0.9 82.9±0.2 88.2±0.2
MADAR-U 76.5±0.2 83.8±0.2 85.5±0.1 70.4±0.4 86.8±0.1 91.0±0.1

For EMBER Class-IL experiments, at a budget of 500, MADAR-U achieves the highest accuracy
of 76.5%, outperforming GRS at 70.3%. As the budget increases to 15K, MADAR-U maintains its
lead with an accuracy of 85.5%, slightly ahead of GRS at 84.3%. Prior methods like iCaRL and
TAMiL show lower performance, with iCaRL reaching 65.5% and TAMiL only achieving 37.2% at
the highest budget. This demonstrates the effectiveness of MADAR methods, particularly MADAR-
U, across all budget levels.

For the AZ dataset, MADAR-U also leads with 70.4% accuracy at the 500-sample budget, outper-
forming GRS at 62.9%. At the 15K budget, MADAR-U reaches 91.0%, compared to GRS which
achieves 88.2%. In contrast, prior methods like iCaRL and TAMiL show much lower performance,
with TAMiL yielding at 65.3% and iCaRL at 83.4%. These results highlight the consistent effec-
tiveness of MADAR-U across both EMBER and AZ domains.

C.3 TASK-IL

In the EMBER Task-IL experiments, MADAR-U shows the highest accuracy at all budget levels
with 93.7% at a budget of 500 sample and reaching 95.7% at the 15K budget. MADAR-R also
performs well, with an accuracy of 92.3% at 500 budget and matching MADAR-U at 15K with
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Table 6: Additional Results: Summary of EMBER and AZ Task-IL Experiments.

Group Method
EMBER AZ
Budget Budget

500 5K 15K 500 5K 15K

Prior Work

TAMiL 81.5±0.3 88.1±0.3 93.2±0.3 85.3±0.6 92.1±0.1 94.0±0.2
ER 84.9±0.2 93.9±0.2 95.2±0.1 90.2±0.1 95.6±0.1 97.1±0.2
AGEM 81.7±0.2 84.9±0.2 88.9±0.2 82.8±0.2 85.6±0.2 89.2±0.2
GR 79.8±0.3 75.6±0.2
GRS 87.4±0.3 94.4±0.2 94.9±0.1 89.2±0.2 91.6±0.2 93.9±0.1

Ours
MADAR-R 92.3±0.9 94.2±0.1 95.7±0.2 90.3±0.2 95.8±0.2 97.1±0.1
MADAR-U 93.7±0.3 94.8±0.2 95.7±0.1 92.9±0.2 97.2±0.2 98.2±0.1

95.7%. Both methods outperform previous approaches, including ER and GRS, which reach 95.2%
and 94.9% at the 15K budget, respectively. These results demonstrate that MADAR methods, par-
ticularly MADAR-U, are highly effective in the Task-IL setting.

For the AZ dataset, MADAR-U continues to lead, starting at 92.9% accuracy at the 500 budget
and reaching 98.2% at 15K. MADAR-R follows with 90.3% at 500 budget and 97.1% at 15K. In
comparison, prior methods such as ER and GRS achieve 97.1% and 93.9%, respectively, at the 15K
budget. These results show a consistent effectiveness of MADAR-U across all budget levels in the
AZ dataset.
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