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Fig. 1: We train a highly generalizable navigation policy that can control robots in a variety of conditions and be deployed
zero-shot in new environments across the world. Our proposed method, Model-Based ReAnnotation, enables imitation learning
from noisy, crowd-sourced robot data.

Abstract—Developing broadly generalizable visual navigation
policies for robots is a significant challenge, primarily constrained
by the availability of large-scale, diverse training data. While
curated datasets collected by researchers offer high quality,
their limited size restricts policy generalization. To overcome
this, we explore leveraging abundant, passively collected data
sources, including large volumes of crowd-sourced teleoperation
data and unlabeled YouTube videos, despite their potential for
lower quality or missing action labels. We propose Model-Based
ReAnnotation (MBRA), a framework that utilizes a learned
short-horizon, model-based expert model to relabel or generate
high-quality actions for these passive datasets. This relabeled data
is then distilled into LogoNav, a long-horizon navigation policy
conditioned on visual goals or GPS waypoints. We demonstrate
that LogoNav, trained using MBRA-processed data, achieves
state-of-the-art performance, enabling robust navigation over
distances exceeding 300 meters in previously unseen indoor
and outdoor environments. Our extensive real-world evaluations,
conducted across a fleet of robots (including quadrupeds) in
six cities on three continents, validate the policy’s ability to
generalize and navigate effectively even amidst pedestrians in
crowded settings. We open-source our models and codes and
provide supplementary videos on our project page 1

I. INTRODUCTION

Machine learning has demonstrated remarkable success
across a range of tasks, including natural language process-
ing [46, 4] and computer vision [33, 22, 31]. A key factor
driving these advancements is the availability of large and
diverse training datasets. In the field of robotics, lack of data
is a major bottleneck: intentional, centralized data-collection
efforts are extremely costly, requiring real-world robots and
human operators, while Internet-scraped data is rarely directly
applicable to the robotic domain [30, 21].

In this paper, we study the problem of developing an end-to-
end navigation policy capable of generalizing to deployment
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in highly diverse outdoor and indoor environments. Our goal is
to train a single end-to-end policy capable of navigation over
hundreds of meters, while generalizing to a broad distribution
of unstructured environments. Training such an end-to-end
policy requires large amounts of diverse data to grant broad
coverage of the set of all possible environments. Previous nav-
igation works [38] have relied on centrally collected datasets
generated by robotics researchers. While these datasets tend to
be high-quality, the sum total of these datasets is on the order
of dozens of hours [39] — sufficient to learn simple abilities
but not scalable to learning more capable policies.

Facing this data limitation, we turn our attention to making
use of more abundant sources of passive data. For example,
crowd-sourced data, collected in a decentralized fashion by
a large user base, has high state coverage and a diverse
set of environments compared to what can be collected in
a centralized fashion. However, the challenging nature of
remote data collection with non-expert demonstrators makes it
difficult to train good policies directly on these datasets. In-the-
wild video is another passive data source that contains diverse
environments and can enable more generalized performance.
However, in-the-wild video does not have associated actions
readily available for training robot policies.

To enable the use of these large amounts of cheap, scalable
passive data, we propose robust model-based learning to train
a short-horizon expert relabeling policy for generating high-
quality actions connecting two nearby states. We use this short-
horizon policy to annotate actions in the passive dataset, which
then gives us much cleaner and higher-quality actions than
in the original dataset. The outputs of this relabeling policy
are then distilled into the long-horizon policy that can be
conditioned on visual goals or on a future GPS waypoint for
navigating over long distances.

We deploy our system in a comprehensive set of evalu-
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ations on both image-conditioned and waypoint-conditioned
autonomous navigation tasks across a fleet of low-cost robots
deployed globally as well as various embodiments including
the quadruped robot and find that it is able to deliver strong
generalized performance in a suite of tasks in six different
cities across three continents.

Our primary contributions are 1) a framework to learn
a well-generalized long-horizon policy by applying a short-
horizon relabeling MBRA (Model-Based ReAnnotation)
model to the passive data, 2) an instantiation of the MBRA
relabeler on the FrodoBots-2k dataset and YouTube videos,
yielding a strong short-horizon policy, and 3) LogoNav (Long-
range Goal Pose-conditioned Navigation policy), a policy
trained with MBRA that achieves robust goal-reaching capa-
bilities at 300+ meter scales, even while navigating around
pedestrians in crowded environments. Please see our supple-
mental materials for videos of LogoNav exhibiting robust
driving behavior in complex long-horizon navigation settings.

II. RELATED WORK

Vision-based robot navigation has been widely explored to
navigate toward goal positions given visual observations from
a monocular camera. [34, 32, 13] train short-horizon policies
to generate actions with access to a single goal observation.
These short-horizon policies often utilize topological memory
to extend the range of navigation [27]. Some works[37]
use exploration with a topological memory to seek out a
distant image goal, while others[36, 41] use a GPS signal for
localization and navigate toward a goal provided as a 2D po-
sition in cartesian coordinates. Goal images and poses require
prior access to the target environment and knowledge of the
environment’s geometry. Various learning methodologies such
as imitation learning (IL) [34, 38, 39], reinforcement learning
(RL) [41, 17, 42], and model-based learning (MBL) [13, 14]
have been explored for training goal-conditioned vision-based
policies on publicly available robot datasets.

These methods require a sequence of image observations
and corresponding actions parsed from accurate wheel odom-
etry [13, 12], GPS [37], and other reliable sensors. These
datasets are collected via intentional, centralized teleoperation
efforts with the downstream goal of training a navigation pol-
icy and, therefore, contain goal-directed trajectories. Collect-
ing data of this sort at a global scale would require a massive
unified effort that would be costly and time-consuming.
Robot learning with passive data. Visual SLAM [25] and
inverse dynamics models [3] can be used to estimate tra-
jectories for first-person videos, allowing us to train policies
that use these trajectories as approximations of robot actions
from action-free and non-robot data. While visual SLAM
and its successors [5, 28, 43, 44] offer good local trajectory
estimation, its accuracy relies on having consistent, good
visual features in the image view.

Robotic foundation models (RFMs) [39, 40] trained with
IL on curated data can address an embodiment gap issue
and augment passive data sources with consistent robotic
actions [16]. However, current RFMs still lack coverage of
diverse environments and cannot leverage passive data with

noisy action labels during training. To address these issues, we
learn an expert relabeling MBRA policy with MBL to better
approximate reasonable robot actions. Since MBL is robust to
noisy action labels during training, we can train the MBRA
policy with passive data sources and use it to reannotate large
amounts of passive data with a smaller embodiment gap. We
can then train a long-horizon goal pose-conditioned navigation
policy, LogoNav. LogoNav can successfully perform a diverse
set of long-distance navigation tasks and demonstrates an
explicit advantage against the baseline policies.

III. LEARNING SHORT-HORIZON RELABELING POLICIES
WITH MODEL-BASED LEARNING

In this paper, we focus on learning long-horizon navigation
policy from a highly diverse but suboptimal passive dataset
Dn. This requires us to train policies that can predict actions
that are better than those found in the original dataset. We
assume access to a smaller clean dataset D∗ that contains
high-quality behavior but with |D∗| << |Dn|.

While observations in Dn might represent high state cov-
erage, the short-term behavior present in the data is highly
suboptimal, both because the actions themselves are inaccurate
due to state estimation errors and because the heterogeneous
population of human operators has widely varying levels of
skill when driving. To address this, we learn the MBRA
policy, using any method capable of learning goal-conditioned
policies, as the step 1 in Fig 2, and we choose to use MBL
due to its robustness to noisy and suboptimal data. This
model should provide a series of better approximate actions
{asi}i=0...N−1 linking two observations Oc and Og . Then,
the long-horizon navigation policy is trained to imitate the
relabeled actions from MBRA, as shown in step 2 of Fig. 2.

A. Learning a Short-Horizon Relabeling Policy, MBRA

We train a policy {asi}i=0...N−1 = πs(Oc;Og), which we
call the MBRA policy, to infer the optimal actions occurring
between the current observation Oc and the goal observation
Og via the model predictive control(MPC)-inspired learning
approach. Our approach directly optimizes an objective func-
tion in the counterfactual space instead of imitating the original
action labels to train MBRA on the joint dataset Dn ∪ D∗.

We use the following model-based objective for learning a
relabeler πs, following Hirose et al. [14]:

min Jmbl :=

N−1∑
i=0

(sref − ssi )
2. (1)

In Equation 1, sref is the target state and {ssi}i=0...N−1

are the estimated states at each step. ssi is defined by three
components, [p̂i, ĉi,∆asi ], to encourage the policy to smoothly
move toward the target goal pose pg without collision. Here
p̂i is the i-th virtual robot pose, ĉi is the estimated collision
state at i-th virtual robot pose p̂i (where zero indicates no
collision), and ∆asi indicates the action difference, asi+1 − asi .
Accordingly, we define sref as [pg , 0.0, 0.0].

The states {ssi}i=0...N−1 are calculated by computing roll-
outs through a differentiable dynamic forward model f (in
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Fig. 2: Overview of MBRA. We propose a two-step process: In the first stage, we train a short-horizon reannotation policy with a robust
MBL approach on the noisy dataset, which can be used for short-horizon image-conditioned navigation and which we leverage to relabel
the noisy dataset with improved action labels. In step 2, we train a long-horizon navigation policy with the generated action labels.

this case, the unicycle model). The forward model [11]
considers the current observation Oc and generated actions
{asi}i=0...N−1 from the short-horizon MBRA policy, πs:

{ssi}i=0...N−1 = f(Oc, {asi}i=0...N−1), (2)

where Oc is the current observation. While the states
{ssi}i=0...N−1 are conditioned on actions {asi}i=0...N−1 and
f is differentiable, we can calculate the gradient of πs to min-
imize Jmbl in each training step and learn πs by repetitively
update the parameters of πs similar to other machine learning
approaches. Note that we freeze f while training πs.

Our approach differs from pure IL in that it does not imitate
the noisy action commands at each step. While the target pose
pg is relatively far from the robot current pose, the negative
impact of suboptimal or noisy actions is mitigated. Therefore,
MBRA is robust to data with these properties. Implementation
details and discussion are included in the later sections.

B. Learning a Long-Horizon Navigation Policy, LogoNav
After reannotating the passive dataset with the short-horizon

relabeling expert, MBRA, we have a clean set of action
labels that can be distilled into a more complex long-horizon
navigation policy. We want a navigation policy πl to predict
actions as follows:

{ali}i=0...N−1 = πl(Oc, pg), (3)

where Oc is the current observation and pg is the 2D relative
goal pose from the robot coordinate. Notably, pg is at least
10 times further than the usual goal pose for the short-
horizon navigation policy, on the order of 50 meters, compared
to the previous 3 meters. We train this IL policy on the
reannotated action commands {asi}i=0...N−1 from the short-
horizon navigation policy,

min Jil :=

N−1∑
i=0

(asi − ali)
2. (4)

By imitating the cleaned action commands linking Oc and
Og , our long-horizon policy, LogoNav , can learn reasonable
conventions such as staying on paths, avoiding collisions,
and not disturbing pedestrians, which is representative of the
“good” navigation behavior modeled by the MBRA policy.
Note that we only reannotate the noisy passive data, using
accurate raw action labels from D∗. We freeze πs while
training πl.

TABLE I: Survey of public datasets for learning vision-based
navigation policies in real-world.

Dataset Policy hour Sensors

KITTI odom [10] teleop 0.7 RGB, 3D LiDAR, GPS
NCLT [6] teleop 34.9 RGB, 3D LiDAR, odom, GPS, IMU
GO Stanford [12, 13] teleop 10.3 RGBs, odom
FLOBOT [47] auto 0.46 RGBD, 3D and 2D LiDAR, odom, IMU.
RECON [37] auto 25.0 stereo RGBD, 2D LiDAR, GPS, IMU
JRDB [26] teleop 1.1 stereo RGBD, 3D and 2D LiDAR, IMU
SCAND [20] teleop 8.7 RGBD, 3D LiDAR, odom
TartanDrive [45] teleop 5.0 RGBD, GPS, IMU
HuRoN [15] teleop 75.0 RGBs, 2D LiDAR, odom, bumper

FrodoBots-2k teleop 2000 RGBs, GPS, IMU, odom,
FrodoBots-2k-filtered teleop 700 RGBs, filtered 2D localization

IV. IMPLEMENTATION

We provide the implementation details of our navigation
system, covering the dataset used, network and objective
design, and hyperparameter settings.

A. Passive Dataset

We evaluate our approach with two different datasets, a
crowd-sourced robotic dataset, FrodoBots-2k, and an in-the-
wild YouTube video dataset described in [16]. We focus on
results using FrodoBots-2k to demonstrate the effectiveness of
our proposed approach and additionally evaluate its capabili-
ties on the YouTube video dataset.
Crowd-sourced robotic dataset: The FrodoBots-2k
dataset [1] includes 2000 hours of data from over 10 cities and
was collected as part of FrodoBots AI, where users explore
locations worldwide by teleoperating robots to reach target
positions. The FrodoBots-2k dataset is significantly larger than
other publicly available datasets for vision-based navigation
tasks. As shown in Table I, the full version of the FrodoBots-
2k dataset is more than 25 times larger than other datasets and
includes a diverse set of real robot trajectories teleoperated by
humans.

While the scale and diversity of this dataset are enticing,
the inexpensive hardware setup of the robots and crowd-
sourcing approach result in significant noise. Since the sensor
measurements cannot be reliably used to estimate robot poses,
policies trained on the raw actions have poor performance.
The main factors of the noisy action labels are 1) robot
inconsistencies and corresponding user adjustments, 2) low-
cost GPS and IMU, 3) inevitable wheel slips during turning,



4) robot vibration during turning, and 5) system time delay.
The details of the robot system and the noisy action labeling
are shown in the appendix.
In-the-wild YouTube videos: We also evaluate the ability
of MBRA to enable the use of non-robot data. We reannotate
100 hours of action-free in-the-wild YouTube videos, listed
in [16], and train a version of LogoNav with the generated
actions. These videos include inside and outside walking tours
from 32 different countries across varying weather conditions,
time of day, and environment types (urban, rural, etc.).

In addition to the passive data, we use the public expert
datasets RECON [37], GO Stanford [12, 13], CoryHall [18],
TartanDrive [45], HuRoN [15], Seattle [35], and SCAND [20]
with accurate action labels. The weighting of each dataset is
the same as the original GNM dataset mixture.

B. Pre-Processing and Filtering

As shown on the leftmost side of Fig. 2, we use a classical
state estimation pipeline to get better coarse robot pose esti-
mates for FrodoBots-2k. We use a smoothing system based on
a bidirectional Extended Kalman Filter (EKF) [19] to fuse raw
actions with wheel speed measurements, GPS location, and
compass heading (all of which are noisy) to get a smoothed
estimate of the robot’s position. We also filter out data where
the robot is paused for a long time to prioritize learning
desirable behaviors. The cleaned and filtered data consists of
approximately 700 hours of real-world navigation trajectories
collected worldwide, which is still an order of magnitude
larger than any currently available visual navigation dataset as
shown in Table I. While the EKF-based state estimation helps
produce a less noisy action estimate [7], the signal remains
too noisy for direct training.

C. Training Details

We describe the training settings for both our short- and
long-horizon policies.
Short-horizon relabeling policy: Since the robot system has
L steps system delay [9, 2] when operating remote robot via
internet, we design our objective and network architecture to
account for system delay to prevent overshooting or oscillating
around target trajectories. Inspiring the previous works of
model predictive control [24, 23], we consider the robotic
states with the previous action commands {ai}i=−L...−1 to
genrate the actions {ai}i=0...N−1.

In training, we set the observation and action rate for
trajectory sampling at 3 Hz for consistency with the GNM
dataset. During training, we randomly select an image frame
from the entire dataset as the current observation, and then
randomly select a goal frame from up to Ng = 20 steps (about
7 seconds) in the future. This short distance to the goal lets us
learn precise labels to reannotate the action between Oc and
Og . A more detailed description of our MBL configuration is
available in the appendix.
Long-horizon navigation policy: For long-horizon naviga-
tion, we use a larger Ng = 100 to sample a goal position up
to 33 seconds into the future. We reannotate actions with the
short-horizon MBRA model to get high-quality action labels

for the FrodoBots-2k dataset. This process yields action labels
with a chunk size of N = 8 steps. We train on the IL objective
outlined in Eq. 4 using the same parameters and settings as
the short-horizon navigation policy otherwise.

Following [39], we design the network structure for each
policy. The details are shown in the appendix.

V. EVALUATION

To evaluate LogoNav and the impact of MBRA relabeling
in the real world, we focus our experiments on answering the
following questions:
Q1 Can we apply MBRA to learn an effective long-horizon

navigation policy?
Q2 Can we use MBRA for action-free in-the-wild data?
Q3 Is MBL be better than IL for learning relabelers?

A. Evaluation Setup

We concretely describe both short-horizon and long-horizon
navigation tasks we evaluate our method on along with their
associated baselines.
Short-horizon navigation policy: Our short-horizon naviga-
tion policy can navigate the robot toward a goal up to 3 meters
away, so we use a topological memory to enable the robot to
navigate to further goal positions, similar to other vision-based
navigation approaches [34, 13, 39]. To collect this goal loop,
we teleoperate the robot and record image observations at a
fixed frame rate of 1 Hz. To deploy the policy, we start from
the initial observation and continuously estimate the closest
node from the topological memory. At each time step, we
estimate the current node following [39, 40] and feed the
image from the next node as the goal image Og to our policy
to compute the next action.
Long-horizon navigation policy: Our long-horizon navi-
gation policy can navigate to goals between 25-100 meters
from the initial robot pose. We rely on GPS to get robot
positions and specify goals. We evaluate longer trajectories
by setting multiple subgoals at intervals of approximately 80
meters apart. At every time step, we calculate the current
relative goal pose pg on the way to the next goal pose. When
|pg| < 5.0 m, we consider the goal reached and update to the
next subgoal for a longer trajectory.

We use the same robotic platform, Earth Rover Zero (ERZ),
that was used to collect the FrodoBots-2k dataset for our
main evaluation results and different robot platforms for cross
embodiment analysis. See the A appendix for more details

B. Long-horizon Navigation Policy (LogoNav): GPS Goals

To answer Q1, we evaluate the long-horizon navigation
policies trained with MBRA and five baselines: a NoMaD-
like policy and IL policies trained on GNM + FrodoBots-2k
with three different annotation approaches, 1) filtered action
by EKF, 2) VPT, and 3) Multi-step VPT. Details of the
baselines are shown in the appendix. We select 7 outdoor
locations and evaluate each policy 3 times for each goal. In
Table II, we show the goal success rate and the coverage
rate for each method. The coverage rate is the ratio of the
distance reached by the robot to the distance of the target goal



Fig. 3: Policy rollouts for goal pose-conditioned navigation with long-horizon policies. Our policy trained with MBRA can keep traveling
on the road and arrive at the goal pose.

Fig. 4: Long-horizon navigation with multiple subgoals The ERZ can travel for about 20 minutes without collision and arrive at the goal
about 300 m away. The red stars indicate the subgoal locations.

TABLE II: Evaluation of LogoNav on long-horizon pose-
conditioned navigation tasks. “GS” and “COV” indicate the
goal success rate and the coverage rate, respectively.

FrodoBots-2K Data Score

Policy usage Relabeler GS COV

NoMaD [40] GNM only - 0.333 0.471
Behavior Cloning [39] ✓ EKF [7] 0.286 0.624

✓ VPT [3] 0.000 0.071
✓ multi-step VPT [3, 39] 0.619 0.752

LogoNav ✓ MBRA 0.857 0.924

pose before it fails. Our policy with MBRA shows stronger
performance than the five baselines for both goal success
rate and coverage rate. Since our MBRA can be trained on
the FrodoBots-2k dataset, MBRA can give more reasonable
annotation for the FrodoBots-2k dataset and enables us to have
better LogoNav. Later, we conduct more detail investigation
about the relabelers for Q3.

Figure 3 shows the third-person view at the start position
and the robot trajectories on a bird-eye-view map in two
scenes. Our policy distilled from MBRA actions was the
only one to successfully navigate to the distant goal pose
in both scenes, making a sharp left turn at the start to stay
on path in case A. In contrast, both NoMaD and multi-step
VPT could not execute this action, failing by colliding with
bushes or requiring interventions to avoid falling down stairs.
To show the capability of MBRA in long-horizon navigation,
we provide several subgoals, specified by latitude, longitude,
and azimuth angle values, at intervals of approximately 80
meters, and evaluate LogoNav with MBRA on traversing these
subgoals in two different scenes. As shown in Fig. 4, our
navigation system with our policy enables us to navigate the
robot toward a goal 300 meters away without collision, even
in human-occupied spaces.

Moreover, we deploy LogoNav on two more robotic em-
bodiments, including VizBot [29], a small Roomba-like robot,

TABLE III: Evaluation of MBRA on action-free in-the-wild
YouTube videos. “GS” and “SC” indicate the goal success rate
and the subgoal coverage rate.

Dataset MBRA

GNM YouTube video (LeLaN) GS SC

✓ ✗ 0.500 0.680
✓ ✓ 0.875 0.909

in an indoor setting, and the Unitree Go1 quadruped robot in
an outdoor setting. We achieve strong goal-reaching behavior
from up to 100 meters away, highlighting the policy’s general-
ization ability. The behaviors of these embodiments are shown
in the supplemental materials.

C. Training navigation policies on in-the-wild video

For Q2, we evaluate the capability of MBRA with action-
free in-the-wild video. We use MBRA policy to generate the
action labels for the in-the-wild videos and train the short-
horizon visual navigation policy conditioned on goal images,
{asi}i=0...N−1 = πs(Oc, Og). During training, we use the
same objective as Eq. 4 to imitate the action labels generated
by MBRA. We train two goal image-conditioned policies
with the GNM dataset alone and GNM + in-the-wild videos
to evaluate how well our MBRA enables us to close the
embodiment gap between robot and in-the-wild data.

To evaluate the performance in a variety of situations, we
collect the topological memories on four indoor trajectories
and four outdoor trajectories and deploy the policies with the
ERZ. The distance from the initial node to the goal node is
between 10.0 m and 31.0 m. As shown in Table III, the policy
trained with the MBRA-annotated in-the-wild video data has
an explicit advantage compared to the policy trained only
on the GNM dataset. Although the training dataset does not
contain the data from the target robot, ERZ, in our evaluation,



TABLE IV: Comparison of MBRA and multi-step VPT.

Dataset Multi-step VPT MBRA

GNM FrodoBots-2k GS SC GS SC

✓ ✗ 0.500 0.680 0.875 0.960
✓ raw label 0.000 0.308 0.500 0.777
✗ filtered label 0.125 0.377 0.875 0.940
✓ filtered label(1%) 0.750 0.887 0.875 0.889
✓ filtered label 0.375 0.576 1.000 1.000

TABLE V: Evaluation of the goal image-conditioned naviga-
tion at 6 countries.

Policy Dataset GS SC

Multi-step VPT [39] GNM 0.500 0.736
Multi-step VPT [39] GNM + FrodoBots-2k (1%) 0.792 0.906

MBRA GNM 0.833 0.899
MBRA GNM + FrodoBots-2k (full) 0.958 0.983

we achieve a high success rate by training the policy with
diverse in-the-wild video data.

D. Evaluating MBRA on effectively using crowd-sourced data

To answer Q3, we compare MBL and IL, which correspond
to the relabellers MBRA and multi-step VPT that demon-
strated the strongest performance in Table II. We train several
relabelers with different data setups for each learning method
and deploy these relabelers as the short-horizon navigation
policy in the same eight environments and topological memo-
ries as in the previous section to more thoroughly explore the
capabilities of each of these methods.

Table IV shows the goal success rate and the subgoal
coverage rate for each policy. We find that IL completely
deteriorates the performance by imitating the noisy raw action
of FrodoBots-2k dataset. The EKF filtering helps a bit, and
incorporating the GNM data improves performance as well.
In our data ablation study, we find that GNM + only 1%
FrodoBots-2k dataset can help to improve the performance.
However, IL cannot effectively leverage the entire FrodoBots-
2k dataset. Besides, MBL enables us to scalably learn our
MBRA from the noisy data. MBRA trained on GNM + filtered
100% FrodoBots-2k dataset successfully arrived at the goal
position in all cases.

In the final experiment, we aim to assess the generalization
capabilities of MBRA policies. To this end, we deploy the
short-horizon navigation policy on robots in diverse environ-
ments across 6 countries: USA, Mexico, China, Mauritius,
Costa Rica, and Brazil. In total, we collect 24 topological
graphs and evaluate each target trajectory. To the best of our
knowledge, we are the first to conduct a global evaluation for
visual navigation. We evaluate multi-step VPT and MBRA
policies trained with and without the FrodoBots-2k dataset.
Findings are summarized in Table V. MBRA had better
performance for both goal reaching and subgoal coverage than
multi-step VPT.
Comparing multi-step VPT and MBRA The key differences
between multi-step VPT and MBRA are highlighted in Fig. 5.

Fig. 5: IL and MBL on the noisy dataset.

If the noise in the dataset comes from a Gaussian distribution,
as shown in Fig. 5[a], the action labels in the data are expected
to be inconsistent for observations along the GT trajectories.
And it is expected that the GT trajectories itself are noisy due
to data collection by non-expert teleoperators. Imitating such a
noisy trajectories as shown in Fig. 5[b] is impractical because
it will be heavily skewed by intermediate inconsistent noisy
actions, leading to incorrect reannotations. In contrast, MBRA
is more robust to noisy data because it prioritizes the final goal
pose, which is typically further from the individual positions
and therefore can leverage all FrodoBots-2k dataset to train
MBRA, leading better reannotation for FrodoBots-2k dataset.

VI. CONCLUSION

MBRA allows us to leverage large amounts of low-quality
passive data for learning long-horizon navigation policies,
making affordable passive data useful for training broadly
generalizable and capable visual navigation policies. MBRA
trains a short-horizon image-conditioned navigation policy
to reannotate imprecise trajectory action labels. Then, the
reannotated labels are used as ground truth to train a goal-
pose conditioned long-horizon policy, which learns reasonable
conventions such as staying on paths and avoiding collisions.
We evaluate our method on robots in 6 countries across
multiple continents and observe significant improvements over
baselines. These results indicate that our model provides a
broadly applicable, capable, and generalizable solution for
visual navigation.
Limitations: Our approach to reannotating noisy crowd-
sourced data in the long-horizon navigation setting works
well but leaves room for improvement. In the model-based
approach, we may sometimes generate unreasonable actions
because of inaccuracies in the robot model. While we find the
model-based approach to generally outperform the imitation-
based relabeler, it does require some strong conditions on
the model itself that could prove difficult to translate to
more complex tasks like manipulation. One axis of future im-
provement is developing a more accurate differentiable model
by incorporating more accurate 3D geometry, environment
semantics, and dynamic object behaviors, such as pedestrian
behavior [15]. It would also be helpful to consider not only
goal reaching but also to incorporate humans’ preferences into
the objective design, particularly when navigating in crowds or
in settings where semantic conventions are important (e.g., not
driving on grass when it is inappropriate). While our model
inherits some semantic behaviors (like staying on paths) from
the tendencies exhibited by the human operators in the data,
such preferences are not enforced explicitly.
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APPENDIX

Model-based learning considering time delay: In training
MBRA policy, we introduce a novel objective design con-
sidering the variable system delay to consistently learn the
robotic behavior during the delay period. In the system with
L steps delay, the robot has to act by the previous action
commands {asi}i=−L...1 for L steps. In other words, after L
steps running {asi}i=−L...1, the robot can act according to the
action commands a0. Hence, without taking into account the
robotic behavior of {asi}i=−L...1 in training, the generated
action command a0 causes overshooting and/or oscillation
against the target trajectories. We train MBRA by considering
the past action commands {asi}i=−L...1 to generate more
consistent action commands.

We feed the previous action commands {ai}i=−Lmax...−1

and a randomly selected virtual delay step L (≤ Lmax) into
our network in addition to the visual observations. Lmax(= 6)
is the maximum step number of the assumed time delay. Then
we calculate the following objective considering the robotic
state {ssi}i=−L...N−1 for L+N steps

min
θs

Jmbl(θs) :=

N−1∑
i=−L

(sref − ssi )
2, (5)

where we estimate the states by using the previous action
commands {asi}i=−L...−1 and the generated action com-
mands {asi}i=0...N−1 from our policy as {ssi}i=−L...N−1 =
f(Oc, {asi}i=−L...N−1). In our implementation, ssi includes
the robot virtual poses pi and the number of collision points ci
in the estimated virtual 3D environment. The distance between
the goal pose pg and each pi is penalized, and ci = 0 or
collision-free behavior is encouraged by setting cref = 0.
Details are shown in the original paper of ExAug [14]. By
minimizing Jmbl, we can train πs while considering the be-
havior during the uncontrollable time delay by {asi}i=0...N−1.

In inference, we decide L depending on the system archi-
tecture and feed the generated a0 to control the robot. In our
implementation, we set L = 2 for the ERZ and L = 0 for other
robots . A more detailed description of our MBL configuration
is available in the original paper of ExAug [14].
Network Architecture: Figure 6 shows the network ar-
chitecture of both our image-goal conditioned and goal-pose
conditioned models. For short-horizon navigation policy πs,
we concatenate the current observation Oc and the goal
observation Og and generate a goal-conditioned embedding
with EfficientNet-B0. In addition, we concatenate the im-
age observation history {Oi}i=−M...0 and generate a history
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[a] short-horizon relabeling policy, MBRA 

[b] long-horizon navigation policy, LogoNav 

Fig. 6: Network architecture. In addition to the observations, We
feed the delay step and the previous actions to consider the delay in
the MBL objective. For the LogoNav policy, we replace the visual
encoder for Oc and Og with the MLP layers for pg .

embedding with EfficientNet-B0. We pass in these visual
features, the system delay L and the previous action commands
{asi}i=−L...−1 to a set of Transformer and fully connected
MLP layers to produce a sequence of 2D poses {ai}i=0...N−1.

For the long-horizon navigation policy πl, we replace the
visual encoder for Oc and Og with MLP layers for the 2D
goal pose pg and no longer include system delay length L
and previous actions {asi}i=−L...−1. Instead of considering the
delay during training, we use the Lth step of the output during
inference, similar to [8] and [39].

Evaluation platform: We use three robot platforms,
FrodoBot “Earth Rover Zero” (ERZ), VizBot, and the
quadruped robot Go1 for our cross-embodiment analysis.
FrodoBot “Earth Rover Zero” (ERZ): The FrodoBot “Earth
Rover Zero” (ERZ), shown in Fig. 7, is the platform used both
for dataset collection and our navigation policy deployment.
The ERZ is available at $349 and includes a host of sensors
such as front and back side cameras, GPS, an IMU unit
including gyroscope, accelerometer and compass sensors, and
wheel velocity sensors in all four wheels.

However, the inexpensive hardware setup of the robots and
crowd-sourcing approach result in significant noise. The main
factors of the noisy action labels are 1) robot inconsistencies
and corresponding user adjustments, 2) low-cost GPS and
IMU, 3) inevitable wheel slips during turning, 4) robot vibra-
tion during turning, and 5) system time delay. The details of
the robot hardware and the reason of the noisy action labeling
are shown in the appendix.

The operators can introduce action label noise by intuitively
making adjustments for windy conditions, controller drift, and
imbalanced wheels, which are not reflected by the visual ob-
servations of the robot. On top of that, the robot turns by using
friction to slip in place, making the turning behavior highly
dependent on the road condition and robot pose estimation
from wheel speed sensors inaccurate. This slippage also causes
significant vibration of the robot chassis that inhibits the ability
to use IMU measurements for action estimation. In addition,
all signals are sent between the robot and the workstation via



Fig. 7: Overview of Earth Rover Zero (ERZ) and its system. The
ERZ can be controlled over a 4G internet connection for gaming and
data collection and for deploying our navigation policy.

Fig. 8: Overview of robotic platforms, VizBot and Go1. These
robots mounts different camera from ERZ and can be controlled with
an onboard robot controller on an Nvidia Orin AGX with ROS.

the internet, resulting in about a 0.7-second time delay between
the observations and the velocity commands.

All measurements from the sensors can be accessed through
the platform’s API. Linear and angular velocity commands
can also be sent to the robot from user teleoperation for data
collection (gaming) or from our trained policies for navigation.

Other robotic platforms: We conduct additional evaluations
with different robot hardware and systems to analyze the cross-
embodiment performance of our policy. We show the overview
of the VizBot [29] and the Unitree Go1 quadruped robot in
Fig. 8. Different from the ERZ, we deploy our trained policy
on an Nvidia Orin AGX mounted on the robot and evaluate
navigation performance. Instead of using GPS, we mount a
tracking camera on top of our robot for localization indoors.
In addition, we use a different camera, a PCB-mounted fisheye
camera, and use its image observations for inference.
Baseline methods: In our evaluation of long-horizon navi-
gation, we use the following two baselines, NoMaD and IL.
For IL, we evaluate various annotation methods as the ground
truth action labels to compare with our MBRA relabeler.
NoMaD [40]: We deploy the original NoMaD policy [40]
for exploration and generate 30 possible trajectories. Out of
these options, we select the best trajectory by measuring the
distance between the last predicted position and the goal pose
and selecting the minimum one to control the robot.
Imitation learning [39]: We train a long-horizon navigation
policy on reannotated action labels by following several base-
line methods instead of using our MBRA. All learning setups
except annotation are same as our method.

Raw action label: As the simplest action commands, we
annotate the robot trajectory with the recorded GPS and
the compass readings at 1.0 Hz. To match the image frame
rate, we linearly interpolate between adjacent timesteps. For
training, we sample the raw robot poses for 8 steps at 3.0
Hz and transform them into the local robot coordinate frame
to be used as ground truth.

Filtered action label: We give the above mentioned Ex-
tended Kalman filter (EKF) for entire FrodoBots-2k dataset
to estimate the less-noisy robot pose. Similar to the raw
action label, we sample the filtered pose for 8 steps at
3.0 Hz in training and transform them into the local robot
coordinate.

VPT [3]: We train the inverse dynamics models to esti-
mate the relative pose between two consecutive observations
such as pii+1 = fidm(Oi, Oi+1). In training, we sample 9
image flames from the current frame to the 8-step future
frame at 3.0 Hz as {Oi}i=0...8 and estimate the relative poses
{pii+1}i=0...7 between each frame. Then we integrate the
estimated relative poses {pii+1}i=0...7 to have the trajectories
in the current local coordinate and use the local trajectories
as the ground truth.

Multi-step VPT [3, 39, 16]: Following [39], we train
the robotic foundation model to estimate the robotic action
to move between two frames, Oc and Og . Since we want
to annotate the actions for 8 steps, we select Og as the 8
step future frame from Oc in training. The other training
setups are same as the original paper [39]. In training, we
sample Oc and Og (8 step future frame for Oc) and estimate
the robotic action to move toward the location of Og and
supervise its estimated action commands.
For training relabelers such as VPT and multi-step VPT,

we use both the curated GNM dataset and 1 % FrodoBots-
2k dataset to be accurate models. We decide the ratio of the
FrodoBots-2k dataset as 1 % according to the ablation study
in the appendix. By mixing small FrodoBots-2k dataset with
the clean GNM dataset, our model can suppress the negative
effect of the noisy FrodoBots-2k dataset and can learn the
target robot characteristics. Note that we use all FrodoBots-2k
dataset to train the long-horizon navigation policy.
Action and observation space: The action space of our
policy and relabeler is defined as the pose—comprising the
(x, y) position and yaw angle—on a 2D plane. Following the
original implementation of [14], the MBRA model internally
generates a sequence of linear and angular velocities, which
are then integrated to produce action commands in the position
space for training LogoNav.

During inference with LogoNav, we employ a PD controller
to generate linear and angular velocity commands that track
the generated pose commands, in accordance with the original
implementations of [38, 39, 40]. Since our robotic hardware
platforms including ERZ, Vizbot, and Go1 are controlled via
linear and angular velocity commands (which are subsequently
translated into low-level control actions such as wheel an-
gular velocities or leg joint angles), we directly apply these
commands to guide the robot toward the target goal pose.
Furthermore, during inference with the MBRA model used
as a goal image-conditioned navigation policy (see Sec.V-D),
we directly use the linear and angular velocity commands
internally generated by the model, without employing a PD
controller. As visually illustrated in Figs.2 and 6, our obser-
vations consist of raw camera images. Prior to being input
to the network, these images are processed using standard
normalization.
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