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ABSTRACT

Embedding classical data into a quantum feature space is a critical step for Hybrid Quantum
Neural Networks (HQNNs). While entanglement in this feature map layer can enhance
expressivity, heuristic choices often degrade trainability and waste the limited multiple-qubit
gate budget. We reframe the choice of encoding-layer entanglement as a multi-objective
combinatorial optimization that jointly promotes data-driven trainability and hardware-
aware noise robustness. Our framework searches over sparse entanglement patterns by
maximizing a novel data-utility term, balanced against a realistic hardware cost derived
from device topology and calibrated two-qubit fidelities on IBM Quantum systems. The
data-utility term pairs qubits based on two complementary geometric criteria: (i) high
intrinsic dependency and (ii) low Hilbert–Schmidt Distance (HSD), a combination critical
for accelerating gradient-based optimization early in HQNNs training. We solve this
with a bi-level optimization scheme: the outer loop searches over discrete entanglement
structures, evaluating each candidate’s potential based on the initial loss reduction from a
short inner-loop training. Once the optimal structure is identified, the downstream ansatz
is trained to full convergence. Our empirical results demonstrate that suggested feature
maps not only achieve superior classification performance on synthetic and real-world
benchmarks but also demonstrate enhanced robustness under realistic noise models, all
while maintaining a lower gate budget than heuristic designs. Our work establishes a
principled, automated method for creating quantum feature maps that are simultaneously
data-aware, hardware-efficient, and highly trainable.

1 INTRODUCTION

Recent advances in quantum hardware are driving innovation across many fields, with Quantum Machine
Learning (QML) holding the promise of revolutionizing computation by exploiting phenomena like super-
position and entanglement Liu (2023); Gujju et al. (2024); Abbas et al. (2024); Mazzola (2024); Ullah &
Garcia-Zapirain (2024). Quantum Neural Networks (QNNs), including hybrid approaches, have emerged as
a leading framework, demonstrating potential advantages in handling complex data correlations Bai & Hu
(2024); Oliveira Santos et al. (2024); Shi et al. (2025); Huang et al. (2021); Gil-Fuster et al. (2024); Hafeez
et al. (2024); Roh et al. (2024); Shi et al. (2024). However, a central challenge remains in understanding how
to best harness these quantum properties.

Entanglement, a key quantum resource representing interactions between qubits, is crucial for QNNs but
presents a significant challenge Horodecki et al. (2009). While essential for capturing complex feature
correlations, naive or excessive entanglement can degrade performance by inducing barren plateaus and
exacerbating the effects of hardware noise Ballarin et al. (2023); McClean et al. (2018). Furthermore,
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two-qubit entangling gates are costly operations on near-term devices, being more error-prone and often
requiring computationally intensive SWAP gates to match hardware topology Sweke et al. (2021); Baiguera
et al. (2024). This highlights a critical need for principled entanglement strategies that balance expressibility
with trainability and hardware constraints.

While much QNN research has focused on the parameterized ansatz, a growing body of work emphasizes
that the initial data encoding step is equally critical for trainability Nagarajan et al. (2021); Paler et al.
(2023); Fösel et al. (2021); Li et al. (2024); Zhang et al. (2024); Liao & Zhan (2022); Huang & Rebentrost
(2023); Wierichs et al. (2022). The barren plateau phenomenon is fundamentally linked to the geometry
of the quantum state space, which is quantitatively described by the Quantum Fisher Information (QFI).
A well-designed feature map can favorably sculpt this geometric landscape, enhancing class separability
and trainability, thereby reducing the burden on subsequent variational layers Lloyd et al. (2020); Hur et al.
(2024). However, most studies treat data encoding and entanglement composition independently, despite their
inherent interdependence. The structure of the encoded state dictates how entanglement propagates, and the
entanglement profile, in turn, affects the representational power of the features.

To address this research gap, we introduce a framework that formulates entanglement selection as a formal
multi-objective optimization problem. Our approach jointly considers three competing objectives: 1) a data-
driven utility function to maximize trainability, 2) a hardware-aware cost accounting for device connectivity
and gate errors, and 3) an efficiency regularizer promoting shallow circuits. At the core of our data utility is
the Hilbert-Schmidt Distance (HSD), a metric used to select qubit pairs whose entanglement is theoretically
linked to increasing the QFI and accelerating gradient-based learning. The outcome is a unified framework
for automatically discovering optimized quantum feature maps under realistic hardware constraints.

Our main contributions are as follows:

• A novel framework for entanglement selection formulated as a multi-objective optimization problem. We
reframe the heuristic art of entanglement design into a principled search that simultaneously optimizes for
data-driven trainability, hardware-aware costs (topology, gate fidelity), and circuit efficiency.

• The establishment of a theoretical link between data geometry and QNN trainability. We theoretically
and empirically demonstrate that pairing qubits with low Hilbert-Schmidt Distance (HSD) is a concrete
mechanism for accelerating gradient-based optimization by directly influencing the Quantum Fisher
Information (QFI).

• A practical and automated bi-level search algorithm for discovering robust QNN architectures. Our
algorithm efficiently navigates the vast combinatorial space of entanglement structures, yielding circuits
that not only achieve superior performance but also exhibit enhanced robustness to hardware noise.

2 RELATED WORK

Our work intersects with Quantum Architecture Search (QAS), data-driven feature map design, and hardware-
aware circuit construction.

Quantum Architecture Search (QAS) QAS frameworks aim to automate the design of variational circuits
by searching for optimal structures, often optimizing for task performance while considering hardware costs
like depth or SWAP penalties Zhang et al. (2022); Chen et al. (2024). Related pruning techniques use
sensitivity or QFI-based metrics to sparsify circuits and mitigate barren plateaus Liu et al. (2024); Ohno
(2024). While these methods typically optimize the entire ansatz holistically, our work focuses specifically on
the foundational problem of selecting the initial entanglement structure within the data encoding layer itself.
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Data-Driven and Hardware-Efficient Ansatz Design A significant body of work aims to tailor circuits
to specific data or hardware. Data-driven methods engineer the feature map to reflect data structure. This
includes techniques like quantum metric learning, which trains parameters to maximize class separability
using metrics like HSD Hubregtsen et al. (2022); Gentinetta & Sutter (2023), and data re-uploading, which
enhances model expressivity by repeatedly encoding inputs throughout the circuit Pérez-Salinas et al. (2020).
More recent approaches such as Adaptive Pruning (ATP) analyze the input data to prune non-essential features
before encoding, thereby reducing the required quantum resources and entanglement Afane et al. (2025).
Separately, hardware-efficient ansätze are designed to respect device constraints, such as native gates and
qubit connectivity, to minimize noise Kandala et al. (2017).

QFI and Quantum Gradients The QFI provides a fundamental upper bound on gradient magnitudes,
establishing it as a direct measure of a circuit’s learning potential Stokes et al. (2020). It also informs advanced
optimization methods like the quantum natural gradient (QNG), which leverages the full QFI matrix to align
the optimization path with the underlying geometry of the quantum state space.

3 SEARCHING THE OPTIMAL DATA ENCODING ENTANGLEMENT SELECTION WITH
HARDWARE AND DATA AWARENESS

In this section, we present our framework for hardware-aware and data-driven entanglement structure search.
We begin by defining the multi-objective function that guides our search, which holistically evaluates an
entanglement structure based on data-driven metrics, hardware constraints, and classification loss functions.
We then detail the bi-level combinatorial optimization algorithm designed to navigate the vast, discrete search
space of possible entanglement topologies.

3.1 OVERVIEW: ENTANGLEMENT AS A MULTI-OBJECTIVE OPTIMIZATION PROBLEM

We move beyond heuristic approaches by formulating the selection of an optimal entanglement structure,
denoted as a set of qubit pairs M∗, as a formal optimization problem. The goal is to find the structure that
maximizes a comprehensive objective function J(M, θ∗), where θ∗ represents the trained parameters of the
Quantum Neural Network (QNN) for a given structure M. The objective function is composed of several,
often competing, terms:

M∗ = argmax
M

J(M, θ∗) = Udata(M)− αChardware(M)− βReff(M) (1)

where α, β are hyperparameters that balance the trade-offs between the different objectives.

To ensure a fair and stable optimization across these potentially different-scaled objectives, all utility and cost
terms are normalized before being combined. Specifically, we employ a rank-based scaling that maps the raw
scores for all possible entanglement pairs onto a common [0, 1] interval, making the optimization robust to
outliers and simplifying the tuning of the hyperparameters α and β.

3.2 DATA-DRIVEN UTILITY FUNCTION (UDATA)

This term evaluates the intrinsic potential of an entanglement structure based on the statistical and geometrical
properties of the input data. The design of this term is grounded in enhancing the trainability of the QNN,
which is fundamentally linked to the Gradient Norm and Quantum Fisher Information (QFI). The calculation
process is as follows.

State Preparation and Purification First, we map the classical data into a quantum state. We employ a
feature-wise Angle Encoding strategy, using the Y-axis rotation gate (Ry) which generates quantum states
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with purely real amplitudes. From this, we compute an ensemble-averaged density matrix for each feature by
averaging its quantum representations over the entire dataset. For an individual feature i, the averaged density
matrix ρ̄i is calculated as:

ρ̄i =
1

|D|
∑
x∈D

|ψ(xi)⟩⟨ψ(xi)| (2)

A similar process is used to compute the two-qubit averaged density matrix ρ̄ij . To distill the core structural
information from the noise of this classical averaging, we then purify these mixed states by projecting them
onto their dominant eigenspace, yielding representative pure states ρ̃i and ρ̃ij . (Detailed in Appendix A)
This step allows our subsequent metrics to probe the quantum correlations more directly.

Data-Driven Metrics Using these prepared states, we define two complementary metrics:

• Hilbert-Schmidt Distance (HSD): This metric quantifies the dissimilarity between the average states of
two features. A low HSD indicates that the features map to similar regions in the quantum state space,
which we found to be advantageous for achieving a high QFI and accelerating the initial increase of the
gradient norm.

DHS(ρ̃i, ρ̃j)
2 = Tr

[
(ρ̃i − ρ̃j)2

]
(3)

• Quantum Correlation Metric (IQ): This metric quantifies the dependency between a feature pair (i, j)
by measuring how far their joint representation is from a separable state. A high IQ serves as the primary
indicator for identifying feature pairs with a strong intrinsic relationship, making them candidates for
entanglement. The mathematical derivation is discussed in Appendix B.

IQ(i, j) = DHS(ρ̃ij , ρ̃i ⊗ ρ̃j)2 (4)

We adopt the Hilbert-Schmidt Distance (HSD) for its computational efficiency and straightforward estimability
on near-term hardware via SWAP tests. While HSD is not Completely Positive and Trace-Preserving (CPTP)-
monotone, our use of rank-1 projected states places our analysis in a regime where HSD maintains tighter
connections to operational measures, mitigating theoretical concerns. (See Appendix C.)

Combined Utility Function Our final utility function is designed to find a compromise that balances the
structural benefit of high correlation (high IQ) with the need to maintain high trainability (low HSD):

Udata(M) =
∑

(i,j)∈M

(
wcorrIQ(i, j)− wHDHS(ρ̃i, ρ̃j)

2
)

(5)

Theory-consistent design The HSD term is used as a geometric regularizer: by favoring manifold-local
pairings it controls sample-to-sample Hilbert–Schmidt distances within entangled neighborhoods and thus
keeps the gradient field Lipschitz, preserving favorable (non–barren-plateau) scaling for local costs in early
training (see Section 4.2 and Appendix E). While the largest per-parameter QFI gain ∆FQ for a control
rotation can arise from high-HSD pairings, repeatedly choosing such pairs across layers tends to enlarge
effective light-cones and destabilize optimization; we therefore prioritize manifold-local pairings that maintain
global trainability, even at the cost of a smaller immediate ∆FQ. Moreover, Appendix F shows that very
large IQ can suppress the attainable parameter–QFI for common post-entangler generators; accordingly, in
Eq. equation 16 we treat IQ as an informativeness signal but avoid unbounded maximization, combining it
with the HSD regularizer and a gate-budget term. These choices complement the gradient–equator sensitivity
link summarized in Appendix D.

3.3 HARDWARE-AWARE COST FUNCTIONS (CHARDWARE,REFF)

Hardware Cost (Chardware). This term quantifies the execution cost of the entanglement structure M on a
specific quantum device. We reference the IBM Strasbourg backend; however, in practice any backend for
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the target real device can be used. We first construct a hardware graph Ghw from the device’s coupling map.
For each pair (i, j) ∈M , the cost is derived from the calibrated 2-qubit gate error rate ϵuv for each physical
link (u, v) on the hardware:

Chardware(M) =
∑

(i,j)∈M

 ∑
(u,v)∈path(i,j)

NSWAP
CNOT · ϵuv

 (6)

where path(i, j) is the shortest path between qubits i and j on Ghw. If i and j are not directly connected, the
cost includes the accumulated error from the necessary SWAP gate sequence, where NSWAP

CNOT = 3.

Efficiency Regularizer (Reff). To promote sparse and resource-efficient circuits suitable for near-term
quantum hardware, we introduce an efficiency regularizer,Reff. Instead of penalizing circuit depth directly,
our regularizer controls the complexity of the entanglement structure M using two distinct constraints:

1. Total Budget Constraint: A penalty is applied if the total number of entangling pairs, |M |, exceeds a
predefined target budget, Btarget. This directly controls the overall two-qubit gate count of the encoding
layer.

2. Per-Qubit Degree Constraint: A penalty is applied to each qubit i if its degree—the number of entangling
gates it participates in—exceeds a specified threshold, τi. This constraint prevents the formation of highly
connected "hub" qubits, which can be particularly susceptible to crosstalk and accumulated error.

These constraints are implemented as penalty terms in the objective function. Their weights, represented
by Lagrange multipliers (λbudget, λdeg), are dynamically updated during the bi-level search to guide the
optimization towards structures that satisfy the desired sparsity and efficiency criteria.

This complexity measure is not a hard constraint but is incorporated into our main objective function as a
Lagrangian penalty term. This approach creates a soft constraint that forces the bi-level optimization to find
a trade-off between maximizing the data utility and performance versus minimizing the circuit depth. The
strength of this penalty, and thus the importance of the trade-off, is controlled by a hyperparameter.

3.4 BI-LEVEL OPTIMIZATION FOR STRUCTURE SEARCH

Solving the main objective in equation 1 is challenging as it involves a complex interplay between a discrete,
high-dimensional space of entanglement structures (M ) and a continuous space of QNN parameters (θ). To
tackle this, we employ a bi-level optimization strategy, which decouples the problem into nested levels:

• The Outer Level (Structure Search): At this level, we search through the discrete space of candidate
entanglement structures M to find one that optimizes our main objective. This search is guided by the
data-driven utility function Udata and the QNN’s performance.

• The Inner Level (Parameter Training): For a given entanglement structure M fixed by the outer level,
we perform a standard continuous optimization over the QNN parameters θ to minimize the training loss,
finding the optimal parameters θ∗ for that specific structure.

A full inner-level training for every candidate structure would be computationally prohibitive. To make the
search tractable, we introduce a proxy objective for efficiently evaluating candidate structures. After a full
training run for the current best structure, we "warm-start" the evaluation of new candidates by training them
for only a small number of epochs, starting from the previously optimized parameters. After training small
steps, output of the loss function is compared with the previous inner loop. If loss improvement is observed,
current structure is adopted, otherwise rejected. This provides a computationally cheap yet effective estimate
of a candidate’s potential and implicitly considers the classification performance. More detailed explanation
is shown in Appendix G as algorithmic pseudo-code (Algorithm 1).
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Initialization with Data-Driven Heuristics. The search does not begin from a random point. Instead, we
first compute the data utility Udata(i, j) for all potential edges. Based on this, we derive two key heuristics:

• Degree Hints (τ ): We calculate a ‘node score‘ for each qubit by summing the utilities of all connected
edges. A degree hint τi for each qubit i is then computed proportionally to its score. This estimates the
"ideal" number of connections for each qubit based on its importance inferred from the data.

• Target Budget (B): The overall target number of entanglement gates (the budget B) is determined by the
sum of these degree hints: B = round( 12

∑
i τi).

Using these heuristics, an initial structure M0 is generated via a greedy matching algorithm that respects the
degree hints. Lagrange multipliers for the budget and degree constraints (λB , {λdeg

i }) are initialized to zero.

Lagrangian Dual Update. To guide the search towards structures that satisfy our constraints, we employ a
dual update mechanism. At the end of each outer round, we measure the constraint violations of the current
structure Mt (e.g., |Mt| −B for the budget). The Lagrange multipliers are then updated via a dual ascent:

λ← max(0, λ+ η × (constraint violation)) (7)
This update increases the penalty for violated constraints in the next round. For instance, if the budget is
exceeded, λB increases, which in turn decreases the adjusted weights for adding new edges, thus steering
the search back towards the budget. This creates a self-correcting feedback loop that balances the search for
high-performing structures with the need to adhere to the target constraints.

4 EMPIRICAL EXPERIMENTS

To validate the effectiveness of our data-driven entanglement search methodology, we conducted a com-
prehensive set of experiments. To demonstrate its superiority and robustness, we benchmark our proposed
Searched strategy against standard heuristics, primarily Linear and Random entanglement structures, as
baselines (Sec. 4.1). This comparison is performed across multiple datasets and under three distinct data
encoding environments Simple Angle Encoding, ATP, and Data Re-uploading to verify the generality of our
method. Beyond benchmark performance, in Sec. 4.2 we explored more deeper into the training dynamics to
provide evidence for the improved trainability and performance gain. To analyze the independent effect of
our data utility function, we conduct an ablation study in Sec. 4.3. Noise injection environment experiment
was also conducted to verifying the hardware efficiency, depicted in Sec. 4.4. Detailed experimental setups
(i.e. hyper parameter, dataset description) are described in Appendix H.

4.1 BENCHMARK EVALUATION WITH IDEAL SIMULATOR (WITHOUT NOISE)

We evaluated our searched entanglement structures against Linear and Random baselines on a synthetic
dataset with complex correlations and the real-world Heart UCI dataset. The comparison was performed
across three contexts: a base angle encoding, an advanced ATP encoding, and a data re-uploading strategy.
Table 1 summarizes the mean Area Under the Curve (AUC) and Accuracy on a held-out test set.

The results demonstrate the robustness of our approach. Our searched architectures consistently outperform
the baselines across all settings. The advantage is most pronounced on the complex synthetic data, where
our best-performing model (using data re-uploading) achieved an AUC of 0.9827, far exceeding the Linear
baseline’s 0.6550. On the Heart dataset, our method also achieved the highest AUC (0.9349) and Accuracy.

4.2 TRAINING DYNAMICS

To validate the efficacy of our proposed data-driven entanglement search strategy, we conducted a comparative
analysis of its training dynamics against several controlled heuristic strategies. These include strategies

6
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Table 1: Benchmark results on Synthetic and Heart datasets under ideal simulation. Mean (and standard
deviation) of AUC and Accuracy are reported. Best results in each column are in bold.

Synthetic Data Heart Data

Method AUC Accuracy AUC Accuracy

Searched (ours) 0.9756 (0.0091) 0.9130 (0.0243) 0.9279 (0.0169) 0.8576 (0.0349)
Linear 0.6550 (0.0295) 0.6200 (0.0255) 0.8754 (0.0104) 0.7971 (0.0055)
Random 0.8945 (0.0801) 0.8150 (0.1011) 0.9275 (0.0199) 0.8557 (0.0415)

ATP Encoding
+ Linear 0.6430 (0.0452) 0.6020 (0.0370) 0.8857 (0.0075) 0.8127 (0.0212)
+ Searched (ours) 0.9759 (0.0094) 0.9130 (0.0243) 0.9267 (0.0181) 0.8572 (0.0374)

Data Re-uploading
+ Linear 0.8874 (0.0056) 0.8150 (0.0110) 0.8866 (0.0125) 0.7980 (0.0231)
+ Searched (ours) 0.9827 (0.0078) 0.9250 (0.0225) 0.9349 (0.0102) 0.8673 (0.0138)

that solely prioritize low HSD, high correlation and a baseline model with a fixed, non-data-driven linear
entanglement structure. The results of training dynamics were depicted in Figrue 1.

(a) Class separability in the quantum
feature space, measured by the Silhou-
ette Score.

(b) The magnitude of the quantum
gradient norm, indicating the model’s
trainability.

(c) The trace of the Quantum Fisher
Information (Tr(QFI)), a measure of
the total learning capacity.

Figure 1: Comparison of training dynamics for different entanglement strategies. The shaded region
highlights the initial training phase (epochs 0-5).

This experiment was conducted on an 8-qubit simulated dataset. The Low-HSD and High-HSD and correlation
strategies entangled the seven pairs with the lowest and highest HSD (or correlation) values, respectively. For
the Searched method, the entanglement counts were optimized to 4 which indicates fewer CNOT gate than
each comparison.

The empirical results demonstrate that our proposed Searched strategy, along with the Low-HSD and High-
Corr heuristics, achieves substantially better convergence, as evidenced by a higher class separability Figure 1a.
Notably, this superior performance presents a clear contrast to the total learning capacity measured by Tr(QFI)
Figure 1c, where these methods are not dominant. Instead, as detailed in Figure 1b the success is explained
by more direct measures of trainability.

It supports our central hypothesis, theoretically detailed in Appendix D.1 that the alignment of the QFI with
the optimization direction—captured by the Task-Aligned QFI and reflected in a robust Quantum Gradient
Norm—is a more critical contributor to QNN performance than the total expressibility. We further discuss
about Task-Aligned QFI in Appendix. I.
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In essence, our data-driven search discovers a balanced architecture that harnesses the high class-separability
promoted by data-feature correlations while retaining the efficient optimization landscape characteristic of
low-HSD pairings, a mechanism mathematically formalized in Appendix E. Our proposed method exhibits
rapidly increase in trajectory, especially during the initial training phase (epochs 0–5), where determine the
overall learning direction.

4.3 ABLATION STUDY

To verify that both the intrinsic dependency (IQ) and the Hilbert-Schmidt Distance (HSD) components are
essential to our utility function, we conducted an ablation study. We performed the entire bi-level search
using two ablated utility functions: one guided solely by the HSD term (HSD Only) and another solely by the
dependency term (IQ). We compare the performance of architectures found by these ablated searches against
our Full Method on the synthetic dataset, with results summarized in Table 2.

Table 2: Ablation study results on the Synthetic dataset. The performance of the full utility function is
compared against versions using only the correlation term (IQ Only) or only the HSD term (HSD Only).
The columns on the right show the change (∆) relative to the Full Method. The best overall performance is
highlighted in bold.

Utility Function Encoding Strategy AUC Accuracy AUC (∆) Acc (∆)

Full Method (IQ + HSD)
Searched (Simple Angle) 0.9384 (0.0115) 0.8722 (0.0249) - -
ATP + Searched 0.9365 (0.0122) 0.8664 (0.0235) - -
Re-uploading + Searched 0.9361 (0.0101) 0.8693 (0.0226) - -

HSD Only (w/o IQ)
Searched (Simple Angle) 0.9372 (0.0119) 0.8625 (0.0302) ↓0.0012 ↓0.0097
ATP + Searched 0.9344 (0.0119) 0.8605 (0.0288) ↓0.0021 ↓0.0059
Re-uploading + Searched 0.9410 (0.0101) 0.8741 (0.0290) ↑0.0049 ↑0.0048

IQ Only (w/o HSD)
Searched (Simple Angle) 0.9223 (0.0177) 0.8322 (0.0231) ↓0.0161 ↓0.0400
ATP + Searched 0.9167 (0.0173) 0.8410 (0.0243) ↓0.0198 ↓0.0254
Re-uploading + Searched 0.9160 (0.0156) 0.8349 (0.0215) ↓0.0201 ↓0.0344

The IQ Only search consistently yields the lowest performance, confirming that maximizing correlation alone
is an insufficient strategy. The HSD Only search is highly effective, achieving the single best result (AUC of
0.9410) when paired with data re-uploading. This underscores the critical role of the low-HSD criterion in
establishing a trainable foundation for the model, as theorized in Appendix E.

For the remaining two encoding strategies, however, our Full Method achieved superior results. This suggests
that while a pure HSD-driven search can discover highly expressive architectures, the Re-uploading strategy’s
reliance on deeper circuits can be a significant vulnerability in the presence of noise. This trade-off is
explicitly demonstrated and discussed in the subsequent noise simulation experiments (Sec. 4.4).

4.4 NOISE INJECTION EXPERIMENT

We provide the noise simulation results with simulation dataset under 4-qubits and 7-qubits. The hardware-
aware cost (Chardware) is calculated using the topology and calibrated gate fidelities from ibmq Strasbourg.
To test for robustness, noisy simulations are performed using a noise model constructed from the pennylane
qubit.mixed simulator. We simulated only 2-qubit gates error to eliminate other gate noise or read out
error affect and purely the entanglement based error.

Table 3 highlights the superior performance and noise robustness of our Searched method. The identical
performance between our Searched and ATP + Searched methods is due to the low-dimensional nature of the
datasets used; the ATP pre-processing step did not identify any features to prune, resulting in the subsequent
search being performed on the same feature set for both configurations. Notably, the Data Re-uploading

8
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Table 3: Benchmark results on Synthetic datasets (4 and 7 qubits) under 2-qubit noisy simulator. Mean (and
standard deviation) of AUC and Accuracy are reported. Best results in each column are in bold.

4-qubits Synthetic Data 7-qubits Synthetic Data

Method AUC Accuracy AUC Accuracy

Searched (ours) 0.9615 (0.0093) 0.8880 (0.0173) 0.9789 (0.0041) 0.9220 (0.0077)
Linear 0.9162 (0.0125) 0.8310 (0.0119) 0.8145 (0.0211) 0.7260 (0.0293)

ATP Encoding
+ Linear 0.9162 (0.0125) 0.8310 (0.0119) 0.8145 (0.0211) 0.7260 (0.0293)
+ Searched (ours) 0.9615 (0.0093) 0.8880 (0.0173) 0.9789 (0.0041) 0.9220 (0.0077)

Data Re-uploading
+ Linear 0.8959 (0.0051) 0.7960 (0.0118) 0.8490 (0.0188) 0.7730 (0.0151)
+ Searched (ours) 0.9585 (0.0086) 0.8880 (0.0209) 0.9188 (0.0048) 0.8250 (0.0089)

strategy, which superior in ideal simulations, showed degraded performance. This is an expected outcome
in a noisy environment, as its high expressivity is achieved through deeper circuits with more error-prone
two-qubit gates.

This suggests that for near-term devices, raw expressive power must be carefully balanced against noise
resilience. The clear superiority of our Searched method in the noisy simulation validates our dual-criteria
approach, proving it is essential for discovering architectures that are both effective in theory and robust in
practice.

5 CONCLUSION

In this work, we introduced and validated a data-driven strategy for co-designing QNN entanglement structures
to be both powerful and practical for near-term hardware. Furthermore, it possesses the strength of being
extensively applicable to various encoding schemes, ATP or Data Re-uploading, as shown in Section 4.1.
Our method is centered on a multi-objective utility function that navigates the complex trade-offs inherent
in variational algorithm design. This function synergistically combines performance-oriented terms—a
quantum correlation measure (IQ) for informational potency and a low-HSD criterion acting as a crucial
geometric regularizer to ensure global trainability—with pragmatic, hardware-aware constraints. These
constraints, incorporated as Lagrangian penalties, explicitly penalize entanglement topologies that incur
high hardware costs (e.g., large SWAP gate overheads or connections with high two-qubit error rates) and
those that violate pre-defined circuit depth limits. Our theoretical and experimental results confirm that
this integrated approach discovers fundamentally trainable and efficient entanglement structures, leading to
superior outcomes characterized by high, stable gradient norms and the sculpting of a compact, task-aligned
optimization landscape.

Looking forward, several avenues remain for future investigation. While direct validation on quantum
hardware is a crucial next step, our framework’s inherent consideration of hardware costs—supported by
simulations including two-qubit gate errors (see Sec. 4.4)—suggests it is well-suited for robust performance
on near-term devices. Future work should also address the scalability of the pre-processing step. The
computational cost of calculating HSD and IQ for very large datasets necessitates the exploration of more
efficient optimization methods and effective approximation schemes. Furthermore, deploying this strategy on
real devices will require moving beyond direct state vector access. Developing methods to estimate these
geometric and informational metrics from measurement outcomes, for instance through state tomography or
approximations from Bloch vectors, presents a vital and practical avenue for future research.
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A APPENDIX A. STATE PURIFICATION PROCESS

This appendix details the mathematical procedure for the state purification (more formally, principal-
eigenvector projection) used throughout this paper. This step is crucial for distilling a clear structural
signal from the ensemble-averaged density matrices, which are inherently mixed states.

A.1 MOTIVATION: FROM MIXED STATES TO REPRESENTATIVE PURE STATES

The ensemble-averaging process described in Section 3.2 produces a density matrix, ρ̄, that represents the
average quantum state for a given feature over the entire dataset D. This averaging introduces classical statis-
tical uncertainty, resulting in a mixed state. While this mixed state accurately reflects the overall distribution,
our goal is to analyze the single, dominant geometric structure of the feature’s quantum representation.

To achieve this, we project the mixed state ρ̄ onto its "closest" pure state, ρ̃. This procedure effectively filters
out the statistical "blur" from the classical averaging, allowing us to analyze the underlying quantum structure
more directly. This projection is achieved by identifying the principal eigenvector of the averaged density
matrix.

A.2 MATHEMATICAL PROCEDURE

The projection from a mixed state ρ̄ to its representative pure state ρ̃ follows a standard procedure from linear
algebra and quantum information theory.
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Step 1: Spectral Decomposition. Any density matrix ρ̄ is a Hermitian, positive semi-definite matrix.
According to the spectral theorem, it can be decomposed into its eigenvalues and eigenvectors:

ρ̄ =

d∑
k=1

λk|ϕk⟩⟨ϕk| (8)

where d is the dimension of the Hilbert space, {λk} are the real, non-negative eigenvalues, and {|ϕk⟩} form
an orthonormal set of eigenvectors. Since Tr(ρ̄) = 1, the eigenvalues sum to one,

∑
k λk = 1, and can be

interpreted as the statistical weights of the pure state components |ϕk⟩⟨ϕk| in the mixture.

Step 2: Identifying the Principal Eigenvector. The dominant component in this mixture is the one
corresponding to the largest eigenvalue. We define the largest eigenvalue as λ0 = maxk{λk} and its
corresponding eigenvector, |ϕ0⟩, as the principal eigenvector. This vector represents the most probable pure
state within the statistical ensemble described by ρ̄.

Step 3: Projection. The final purified state, ρ̃, is defined as the projection onto this principal eigenvector:
ρ̃ = |ϕ0⟩⟨ϕ0| (9)

This resulting pure state ρ̃ is the one that is closest to the original mixed state ρ̄ as measured by fidelity,
maximizing the quantity Tr(σρ̄) over all pure states σ.

A.3 APPLICATION IN OUR FRAMEWORK

In our work, this projection is applied to both the single-qubit and two-qubit ensemble-averaged density
matrices:

ρ̄i
Projection−−−−−→ ρ̃i (10)

ρ̄ij
Projection−−−−−→ ρ̃ij (11)

The resulting purified states, ρ̃i and ρ̃ij , are then used to calculate our data-driven metrics, such as the
Quantum Correlation Metric IQ. This ensures that our metrics are comparing the core structural properties of
the feature representations rather than the statistical noise from the averaging process.

B APPENDIX B. PROOF THAT IQ QUANTIFIES QUBIT–QUBIT CORRELATION

Let ρ̄i ∈ C2×2 and ρ̄ij ∈ C4×4 denote the empirical one- and two-qubit averaged density matrices, respec-
tively, obtained from the feature encoding map. Define their pure projections

ρ̃i := Πpure(ρ̄i), ρ̃j := Πpure(ρ̄j), ρ̃ij := Πpure(ρ̄ij),

where Πpure denotes the projection onto the nearest pure state. We then introduce the correlation score

IQ(i, j) := ∥ρ̃ij − ρ̃i ⊗ ρ̃j∥HS =

√
Tr
[
(ρ̃ij − ρ̃i ⊗ ρ̃j)2

]
.

Theorem 1. IQ vanishes if and only if the two-qubit projected state factorizes as ρ̃ij = ρ̃i ⊗ ρ̃j . Hence, Sij

is a faithful measure of correlation between qubits i and j.

Proof. (If ). Suppose the data distribution is independent so that p(xi, xj) = p(xi)p(xj). With a local
(non-entangling) encoding map,

ρ̄ij =
1

n

∑
s

ρ
(s)
i ⊗ ρ

(s)
j = ρ̄i ⊗ ρ̄j .
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Since Πpure acts locally on product states, we have

ρ̃ij = Πpure(ρ̄ij) = Πpure(ρ̄i)⊗Πpure(ρ̄j) = ρ̃i ⊗ ρ̃j .

Thus IQ(i, j) = 0.

(Only if ). Conversely, IQ = 0 implies that ∥ρ̃ij−ρ̃i⊗ρ̃j∥HS = 0, which holds only if ρ̃ij = ρ̃i⊗ρ̃j . Therefore
the projected state factorizes, meaning no correlation is present in the pure-projected representation.

For pure states, IQ(i, j) reduces to a fidelity-based form:

[IQ(i, j)]2 = 2 (1− F ), F := Tr(ρ̃ij ρ̃i ⊗ ρ̃j) ∈ [0, 1].

Proof. Both ρ̃ij and ρ̃i ⊗ ρ̃j are pure, so Tr(·2) = 1. Expanding,

[IQ(i, j)]2 = Tr(ρ̃2ij) + Tr
(
(ρ̃i ⊗ ρ̃j)2

)
− 2Tr(ρ̃ij ρ̃i ⊗ ρ̃j) .

Thus [IQ(i, j)]2 = 2− 2F .

Interpretation.

• IQ(i, j) = 0 iff ρ̃ij factorizes (no correlation).

• IQ(i, j) > 0 iff there exists correlation, either classical (separable but not product) or quantum
(entanglement).

• IQ(i, j) ranges between 0 and
√
2, attaining the maximum when the two states are orthogonal.

• In the Bloch representation, if the marginals match, [IQ(i, j)]2 = 1
4∥T̃ − ˜⃗r ˜⃗sT ∥2F , i.e. it measures

the deviation of the correlation tensor from its factorized form.

Remark. Since Hilbert–Schmidt norm and fidelity are unitarily invariant, IQ(i, j) is invariant under local
basis changes (e.g. RX vs. RY encoding). If a nonlocal entangler (e.g. CZ) is inserted, IQ(i, j) captures the
induced correlations as well, which can increase its value even when the underlying features are independent.

C APPENDIX C. CHOICE OF DISTANCE METRIC: HSD VS. TRACE DISTANCE VS.
FIDELITY (AND CPTP MONOTONICITY)

CPTP monotonicity. A distance (or divergence) D is called CPTP-monotone if it does not increase under
any completely positive trace-preserving (CPTP) map Φ, i.e.,

D
(
Φ(ρ),Φ(σ)

)
≤ D(ρ, σ) for all states ρ, σ and channels Φ. (12)

The trace distance Dtr(ρ, σ) = 1
2∥ρ − σ∥1 is contractive under CPTP maps, and the Uhlmann fidelity

F (ρ, σ) =
∥∥√ρ√σ∥∥2

1
is monotonically non-decreasing under CPTP maps; accordingly, fidelity-induced

metrics such as the Bures distance are CPTP-contractive. By contrast, the Hilbert–Schmidt distance
DHS(ρ, σ) = ∥ρ − σ∥2 is not CPTP-monotone in general, which limits its direct use as an operational
distinguishability measure for arbitrary channels.
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Why HSD can still be appropriate here. Despite the above caveat, HSD retains attractive properties for
our application. It is defined via a simple norm and admits efficient estimation on quantum hardware using
SWAP-test circuits that provide overlaps and purities, enabling

D2
HS(ρ, σ) = Tr(ρ2) + Tr(σ2)− 2Tr(ρσ),

which explains its widespread use as a QNN cost Lloyd et al. (2020); Coles et al. (2019). On the other hand,
Ozawa (2000) highlighted limitations of HS-based quantities for entanglement quantification—particularly
for mixed, high-rank states—since non-contractivity can obscure physical meaning. In contrast, Coles et al.
(2019) argued that for low-rank states (i.e., few non-zero eigenvalues relative to Hilbert-space dimension,
close to pure) HSD can be tightly related to operational measures such as trace distance via rank-dependent
bounds.

Low-rank regime in our pipeline. In our framework (Sec. 3.2), state distances are evaluated immediately
after a simple base encoding without entanglement, and we then form a rank-1 representative by the principal-
eigenvector projection1. Although the ensemble average ρ̄ can be high-rank, our metrics are computed on
the rank-1 representatives ρ̃. This places us in the low-rank regime where HSD’s relationship to operational
distances is tighter, mitigating the main theoretical concern for HSD in general mixed-state settings Coles
et al. (2019).

Practical choice and safeguards. We therefore adopt HSD for its computational simplicity and near-term
estimability, while acknowledging its lack of CPTP monotonicity in general. To safeguard trainability and
relevance, we (i) optimize correlation contributions in the data-utility term ( equation 16) to avoid pathological
regimes, and (ii) incorporate a short-horizon, task-aligned validation signal in the outer objective ( equation 1).
This combination balances practicality with the theoretical caution raised in Ozawa (2000), leveraging the
low-rank setting where HS-based distances admit stronger connections to operational measures Coles et al.
(2019).

D APPENDIX D. THEORETICAL JUSTIFICATION FOR THE DATA-DRIVEN UTILITY
FUNCTION

In this appendix, we provide the theoretical underpinnings for the data-driven utility function, Udata. We
connect our metrics to the fundamental concepts of Quantum Fisher Information (QFI), the geometry of the
Bloch sphere, and the geometry of the quantum data manifold.

D.1 TRAINABILITY, GRADIENTS, AND THE ROLE OF THE BLOCH SPHERE EQUATOR

The trainability of a QNN is critically dependent on the magnitude of the gradients of the loss function. For a
parameter θj , this gradient is ∂L

∂θj
= ∂L

∂⟨Zk⟩
∂⟨Zk⟩
∂θj

. The quantum gradient term, ∂⟨Zk⟩
∂θj

, is bounded by the QFI
and dictates the potential for efficient learning.

Consider a rotational gate RY (θj) acting on a state |ψin⟩. The gradient of the expectation value ⟨Zj⟩out with
respect to θj is:

∂⟨Zj⟩out

∂θj
= −⟨Zj⟩in sin(θj) + ⟨Xj⟩in cos(θj) (13)

The magnitude of this gradient is maximized when the initial state |ψin⟩ has a small ⟨Zj⟩in component and a
large transversal component (e.g., ⟨Xj⟩in). This corresponds to states residing near the **equator** of the

1We use “principal-eigenvector projection” (loosely called “purification” in this paper) to denote ρ̄ 7→ ρ̃ := |ϕ0⟩⟨ϕ0|
with |ϕ0⟩ the top-eigenvector of ρ̄. This is the closest pure state to ρ̄ in fidelity.
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Bloch sphere. An optimizer does not explicitly seek the equator, but the path of steepest descent is found in
this region of high sensitivity. Therefore, preparing states that can be easily maneuvered towards the equator
is a principled strategy for enhancing trainability.

D.2 GEOMETRIC INTERPRETATION OF THE ENTANGLEMENT STRATEGY

We can interpret our data-driven strategy from the perspective of Quantum Information Geometry. The
quantum encoding maps our classical data onto a data manifoldM within the Hilbert space. The data-data
entanglement layer, UM , acts as a geometric transformation, or a “sculpting” process, that reshapes this
manifold into a new one,M′ = {UM |ψ(x)⟩}.

Role of Low HSD. As established in Proposition: Conditional benefit for low-HSD pairs (see main text),
selecting pairs with low HSD is equivalent to identifying dimensions of the data manifold that are already
“aligned”. Applying an entangling gate UM to these pairs acts as a coordinated shear or twist on the
manifold. This transformation “prepares” the manifoldM′ such that a larger portion of it now lies in the
high-sensitivity region (the equator, per Appendix D.1) for the subsequent ansatz.

Role of High IQ. The total correlation metric IQ(i, j) = DHS(ρ̃ij , ρ̃i ⊗ ρ̃j)
2 measures the inherent

geometric “deformation” of the data manifold in the (i, j) subspace away from a simple product-state
geometry. By choosing to entangle pairs with high IQ, we apply our sculpting tool (UM ) to regions of the
manifold that are already rich in correlational structure, allowing the entanglement to amplify these existing
non-trivial geometric features.

In summary, our data-driven structure search is a method for learning an optimal unitary transformation
UM∗ that performs geometric engineering on the quantum data manifold. The criteria of low HSD and
high IQ are principled guides for warping the manifold into a shape that is both more class-separable and
geometrically poised for efficient optimization by the subsequent variational ansatz. Note. While higher
correlation can make UM more potent, Appendix F shows that overly large correlation may suppress attainable
parameter–QFI for common post-entangler generators. This motivates a tempered use of correlation in our
utility.

E APPENDIX E. LOW-HSD ENTANGLEMENT AND TRAINABILITY

We detailed the role of Hilbert–Schmidt distance (HSD) in enhancing the trainability of a QNN. We correct
conjugation rules and refine the interpretation: the low-HSD criterion serves as a geometric regularizer that
controls gradient Lipschitzness and mitigates barren plateau onset.

SETUP, ASSUMPTIONS, AND NOTATION

We consider a data-encoding circuit followed by an entangler UM and a parameterized local rotation. Let ρ
denote the pre-entanglement state and ⟨·⟩ = (· ρ).

QFI convention. For a pure input state and a unitary family with Hermitian generator G, we use FQ =
4Var(G). For mixed inputs this becomes an upper bound, FQ ≤ 4Var(G); our lemmas below are equalities
for pure inputs and read as upper bounds otherwise.

Assumptions (E1–E4).

(E1) Single-axis expectation model. For qubit q there exist (rq, ϕq) with 0 ≤ rq ≤ 1 such that
⟨Xq⟩ = rq sinϕq and ⟨Zq⟩ = rq cosϕq (after a fixed local basis choice).

16



752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

(E2) Bounded-locality cost. The measured observable is a k-local operator with k = O(1).

(E3) Moderate depth / light-cone locality. The parameter generator H has O(1) light-cone.

(E4) Weak inter-qubit factorization at initialization. ⟨Ai ⊗Bj⟩ ≈ ⟨Ai⟩ ⟨Bj⟩ for Pauli A,B on i ̸= j
(small covariances).

Heisenberg conjugation for CXij (control i, target j).

CX†
ijXi CXij = XiXj , CX†

ijZi CXij = Zi, (14)

CX†
ijXj CXij = Xj , CX†

ijZj CXij = ZiZj . (15)

(The analogous table for CZij is Xi 7→XiZj , Yi 7→YiZj , Zi 7→Zi and symmetrically for j.)

STEP 1: QFI GAIN FOR A PARAMETER ON THE CONTROL QUBIT

Let a post-entangler rotation on the control i be generated by Xi; its effective generator on the pre-entangled
state is G′

i = U†
MXiUM = XiXj . For pure inputs, FQ = 4 (G); for mixed inputs the following equalities

become upper bounds.

Lemma 1 (QFI after CX for control-X).

F
(θX

i )
Q,after = 4 (XiXj) = 4

(
1− ⟨XiXj⟩2

)
.

Lemma 2 (QFI before CX for the same parameter).

F
(θX

i )
Q,before = 4 (Xi) = 4

(
1− ⟨Xi⟩2

)
= 4
(
1− r2i sin2 ϕi

)
.

Theorem 2 (Closed-form QFI gain for control-X under (E1)–(E4)).

∆F
(i,X)
Q := F

(θX
i )

Q,after − F
(θX

i )
Q,before ≈ 4 r2i sin

2ϕi
(
1− r2j sin2ϕj

)
,

which reduces to 4 sin2ϕi cos
2ϕj when ri = rj = 1.

Proof. Using (E4) with ⟨XiXj⟩ ≈ ⟨Xi⟩⟨Xj⟩ = rirj sinϕi sinϕj and the lemmas:
4
(
1− r2i r2j sin2 ϕi sin2 ϕj

)
− 4
(
1− r2i sin2 ϕi

)
= 4r2i sin

2 ϕi
(
1− r2j sin2 ϕj

)
.

Target-X parameter under CX Because U†
MXjUM = Xj , the QFI gain for a target-X parameter is

∆FQ = 0 (the QFI itself need not be zero).

STEP 2: LOCAL ∆FQ VS. GLOBAL TRAINABILITY

Theorem 2 suggests that ∆FQ is maximized when the control is near the equator and the target near a
pole—i.e., a high-HSD pairing on the data manifold. While this locally boosts one parameter’s Fisher infor-
mation, repeatedly favoring such pairings across layers tends to induce increasingly nonlocal entanglement
graphs with larger effective light-cones, which correlates with barren plateau behavior in deep or effectively
global circuits McClean et al. (2018); Cerezo et al. (2021).
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STEP 3: LOW-HSD AS A GEOMETRIC REGULARIZER (LIPSCHITZ GRADIENT BOUND)

Let f(θ;x) =
(
OUθ ρ(x)U

†
θ

)
be a k-local cost with k = O(1) and g(θ;x) = ∂θf(θ;x) its gradient for

a parameter with generator H . Define Õθ = U†
θOUθ and H̃ = U†

θHUθ. For two inputs x, x′, write the
Hilbert–Schmidt distance DHS(ρ(x), ρ(x

′)) := ∥ρ(x)− ρ(x′)∥2.
Proposition 1 (HSD–Lipschitz gradient (sample-to-sample)). For any two inputs x, x′ and any parameter
obeying (E2)–(E3),∣∣g(θ;x)− g(θ;x′)∣∣ = ∣∣(i[H̃, Õθ] [ρ(x)− ρ(x′)]

)∣∣ ≤ ∥[H̃, Õθ]∥2DHS

(
ρ(x), ρ(x′)

)
,

where locality bounds ∥[H̃, Õθ]∥2 ≤ C for a constant C independent of n.
Corollary 1 (Neighborhood entanglement preserves favorable scaling). Suppose UM only entangles qubit
pairs (i, j) whose local reduced states remain HSD-close across the dataset, and the entanglement graph has
maximum degree ∆ = O(1). Then the dataset gradient field is L-Lipschitz (with L = O(∆) times the typical
local HSD scale), which helps preserve the known non-barren-plateau scaling for local costs and shallow
effective depth Cerezo et al. (2021); Pesah et al. (2021).

Interpretation. Low-HSD restricts sample-to-sample DHS within entangled neighborhoods, which (by
Prop. 1) controls the Lipschitz constant of the gradient field. This trades potentially smaller local ∆FQ for
global optimization stability—precisely the regularization effect observed empirically.

STEP 4: A PRINCIPLED TRADE-OFF IN A UTILITY

We combine an informativeness term and a smoothness term:
Udata(E) =

∑
(i,j)∈E

IQ(i, j)︸ ︷︷ ︸
correlation/utility

− λ
∑

(i,j)∈E

DHS

(
ρi, ρj

)︸ ︷︷ ︸
geometric regularizer

− µ |E|︸︷︷︸
gate budget

, (16)

with λ, µ > 0. The first term prefers pairs where entanglement is potent; the second enforces manifold-
locality (trainability); the third caps gate count or uses hardware-weighted cost. Greedy addition in decreasing
IQ − λDHS naturally stops at the marginal-gain knee.

E.1 SUMMARY

For CX, the gain ∆FQ ≈ 4r2i sin
2 ϕi (1− r2j sin2 ϕj) is maximized by high-HSD pairing, but such pairing,

when repeated, tends to nonlocal entanglement and barren plateau risks. Low-HSD acts as a geometric
regularizer: it keeps the gradient field Lipschitz (Prop. 1) and preserves favorable scaling (Cor. 1), matching
the empirical superiority of low-HSD / high-correlation search strategies.

F APPENDIX F. WHEN “TOO-HIGH” CORRELATION SUPPRESSES QFI

We formalize the intuition that overly large correlation (as measured by IQ) can reduce trainability proxies
such as parameter–QFI for common entanglers.

Setup. Let the pure-projected two-qubit state be ρ̃ij with Bloch marginals r =
(
rx, ry, rz

)
and s =(

sx, sy, sz
)
, and correlation tensor T ∈ R3×3 with Tab = Tr(ρ̃ij σa⊗σb). Define the deviation from a

product,
D := T − rs⊤ ∈ R3×3.

In the projected (rank-1) setting, IQ controls the Frobenius norm of D via the Pauli expansion:

IQ(i, j) = 1
4 ∥D∥

2
F . (17)
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F.1 EXISTENCE BOUND (WORST-CASE ALIGNMENT)

Let M := maxa,b |Dab|. By Cauchy–Schwarz, M2 ≥ 1
9

∑
a,bD

2
ab =

1
9∥D∥

2
F , hence

M ≥ 1

3
∥D∥F =

2

3

√
IQ . (18)

Consider a controlled-phase entangler and a single-qubit parameter on i whose post-entangler generator is
G = σ

(i)
a σ

(j)
b (e.g., CZ gives X 7→XZ). For a pure input, FQ = 4Var(G) = 4 (1 − ⟨σa⊗σb⟩2). Writing

Tab = Dab + rasb, we obtain the upper bound

FQ ≤ 4
(
1−

(
|Dab| − |rasb|

)2)
. (19)

If the encoding is equator-centered for axis a or b (so that |rasb| ≤ ε), choose (a, b) attaining M ; then by
equation 18–equation 19

FQ ≤ 4
(
1−

(
2
3

√
IQ − ε

)2)
, (20)

exhibiting a decrease in the attainable QFI as IQ grows. Thus there exist local axis choices (or equivalent
pre-rotations) under which high IQ suppresses QFI.

F.2 AVERAGE-CASE BOUND (RANDOM LOCAL FRAMES)

Let R,R′ ∈ SO(3) be independent, Haar-uniform rotations corresponding to random local unitaries on i
and j. Under (r, s, T ) 7→ (Rr, R′s, RTR′⊤), we have D 7→ D′ = RDR′⊤ and Frobenius invariance
∥D′∥F = ∥D∥F . By symmetry of the 3× 3 entries,

E
[
D′

ab
2]

= 1
9 ∥D∥

2
F = 4

9 IQ for any fixed (a, b). (21)

For the post-entangler generator G = σa ⊗ σb we have FQ = 4(1 − T ′
ab

2) with T ′
ab = D′

ab + r′as
′
b. Let

δ := E[(r′as′b)2] (small for equator-centered encodings). Using Cauchy–Schwarz,

E
[
T ′
ab

2
]
= E[D′2] + E[(r′s′)2] + 2E[D′r′s′] ≥

(√
E[D′2]−

√
E[(r′s′)2]

)2
=

(√
4
9 IQ −

√
δ

)2
.

Hence

E[FQ] ≤ 4

(
1−

(√
4
9 IQ −

√
δ
)2)

≤ 4
(
1− 4

9 IQ + δ
)
, (22)

where the looser rightmost inequality follows from (a− b)2 ≥ a2 − b2. When isotropy renders the cross term
mean zero, the middle expression simplifies directly to the looser bound with equality in the first step.

Remarks. (i) The suppression in equation 20 is an existence statement: if the dominant correlation
component aligns with the generator’s axes, QFI decreases with IQ. (ii) The average-case bound equation 22
formalizes a practical trade-off: high IQ inflates typical correlators |T ′

ab|, shrinking FQ.

G APPENDIX G. BI-LEVEL OPTIMIZATION ALGORITHM

Problem setup. Given dataset D, hardware coupling graph Ghw = (V,Ehw), a target two-qubit budget B,
and per-node degree hints τ = {τi}i∈V , we seek an entanglement structure M ⊆ Ehw and circuit parameters
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θ that maximize a task objective J(M, θ) under |M | ≤ B and degM (i) ≤ τi. We optimize a proxy score J̃
in the outer loop and use a Lagrangian with multipliers λB ≥ 0 and {λdegi ≥ 0}:

L(M, θ, λ) = J(M, θ)− λB(|M | −B)−
∑
i∈V

λdegi (degM (i)− τi) .

Algorithm 1: Bi-Level Optimization for Entanglement Structure Search
Require: Dataset D, Hardware graph Ghw, Step sizes ηB , ηdeg, Outer rounds T
Ensure: Optimal entanglement structure Mbest

1: Phase 1: Data-Driven Initialization
2: Compute data utility Udata(i, j) for all edges (i, j) ∈ Ghw.
3: Compute node scores si ←

∑
j Udata(i, j) for each qubit i.

4: Compute degree hints τ = {τi} based on node scores si.
5: Set target budget B ← round( 12

∑
i τi).

6: Generate initial structure M0 via greedy matching, respecting τ and B.
7: Initialize QNN parameters θ0.
8: Initialize Lagrange multipliers λB ← 0, and λdegi ← 0 for all i.
9: Initialize best solution trackers: Mbest ←M0, Jbest ← −∞.

10: Phase 2: Bi-Level Optimization Loop
11: for t = 0, 1, . . . , T − 1 do

// — Inner Level: Full parameter training for current structure —
12: Freeze structure Mt. Train QNN parameters θ to find optimal θ∗t for Mt.
13: Evaluate the true objective value J(Mt, θ

∗
t ).

14: if J(Mt, θ
∗
t ) > Jbest then

15: Mbest ←Mt

16: Jbest ← J(Mt, θ
∗
t )

17: end if
// — Outer Level: Neighborhood search with proxy evaluation —

18: Generate a neighborhood of candidate structures N (Mt) around Mt.
19: for all M ′ ∈ N (Mt) do
20: Warm-start training from θ∗t for a few epochs to get a proxy score J̃(M ′).
21: end for
22: Select the best candidate from the neighborhood: Mt+1 ← argmaxM ′∈N (Mt) J̃(M

′).
// — Dual Update: Adjust multipliers based on constraint violations —

23: Calculate budget violation: vB ← |Mt+1| −B.
24: Calculate degree violations: vdegi ← dego pMt+1

(i)− τi for all i.
25: Update budget multiplier: λB ← max(0, λB + ηB · vB).
26: Update degree multipliers: λdegi ← max(0, λdegi + ηdeg · vdegi ) for all i.
27: if Mt+1 =Mt and all constraints are satisfied then
28: break
29: end if
30: end for
31: return Mbest

Brief explanation. The method alternates between (i) inner-level training of circuit parameters θ for a
fixed entanglement structure M , and (ii) outer-level local search over structures guided by a proxy score J̃
that is evaluated via short warm-started fine-tuning. Budget and per-node degree constraints are enforced
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softly through a Lagrangian: their multipliers (λB , λdegi ) are updated by projected subgradient ascent on
the corresponding violations and directly shape the adjusted edge weights w′

ij . This makes over-budget or
over-degree edges less attractive in subsequent outer steps. We keep track of the best structure using the full
objective J (after inner training), while using J̃ only to cheaply rank local candidates.

H APPENDIX H. EXPERIMENTS SETTING

In this appendix, we explain more detail about our empirical experimental setting.

H.1 SETUP

Datasets. We evaluate all methods on two binary classification tasks:

• Synthetic Dataset: A non-linear, N-feature dataset with 1,000 samples, designed with complex
feature correlations to specifically test the representation learning capabilities of the feature map.
(Detailed below)

• Real-World Dataset: The UCI Heart Disease dataset with 13-features, a standard real-world
benchmark, to assess performance on a practical problem.

For each dataset, we use a standard 70/30 train-test split and apply ‘StandardScaler‘ to all features. All
reported results are the mean and standard deviation over 4 independent runs with different random seeds.

Encoding Methods. In our experiments, we benchmarked the performance of three distinct encoding
methods were utilized:

• Simple RY Encoding: A fixed, manually designed circuit used as a baseline. This architecture
encodes data using RY gates and applies entanglement via a linear chain of CNOT gates.

• Data Re-uploading Structure: Dense encoding methods that employs the data re-uploading
principle, where data encoding layers and variational layers are strategically repeated.

• Adaptive Pruned Structure: A sparse circuit architecture which is obtained by starting with a more
complex circuit and adaptively pruning gates based on a performance threshold.

Entanglement Strategies. We compare the performance of the structure discovered by our framework
(Searched) against several heuristic baselines:

• Heuristic Baselines: Linear chain structure and random selection are adopted to baselines.

• Our Method (Searched): This strategy is the output of our bi-level, multi-objective search algorithm,
which is run independently for each dataset and hardware profile.

Model and Training Details. The core model is an Hybrid QNN. The encoding layer maps the 8 input
features using single-qubit ‘RY‘ gates, followed by the selected entanglement structure. The variational
ansatz consists of two layers, each containing single-qubit ‘RX‘ and ‘RZ‘ rotations on all qubits followed by
a circular CNOT entanglement layer. For the final training of a selected architecture, all models are trained
for 30 epochs using the Adam optimizer with a learning rate of 10−2 and a batch size of 32.

Search Framework and Hyperparameters. Our bi-level search is configured as follows: the outer loop
performs a discrete search over the space of 7-edge entanglement graphs. To evaluate each candidate structure,
the inner loop conducts a proxy training for a brief 5 epochs. The final validation loss from this short training
is used as the score to guide the outer loop. The hyperparameters for the multi-objective function (α, β, wH )
are equally fixed as 1.0.

Synthetic Dataset. To rigorously evaluate our method in a controlled setting with non-trivial dependencies,
we procedurally construct a synthetic binary classification dataset. The dataset consists of nsamples = 1000
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examples and ntotal = 13 features. The generation process is hierarchical, beginning with nbase = 4
independent base features sampled from a uniform distribution:

xi ∼ U(−1, 1), for i ∈ {1, . . . , nbase}.
The remaining ntotal − nbase features are derived from this base set to introduce complex correlations. A
specified fraction of these are non-linear features, generated by applying transformations such as products
(xi · xj), trigonometric functions (sin(πxi)), and hyperbolic tangents (tanh(xi − xj)) to randomly selected
pairs of base features. The rest are linear features, formed from various weighted linear combinations of
the base features. This process creates a feature matrix X ∈ Rnsamples×ntotal with a rich, predefined correlation
structure.
Finally, the binary labels y ∈ {0, 1} are assigned based on a complex, non-linear decision boundary designed
to be challenging for models that cannot capture higher-order feature interactions. The decision score D(x)
is computed as a weighted sum of several interaction terms across all features:

D(x) = 0.7 sin(4x0x1) + 1.2(x42 − x33)
− 0.9 log(x24 + x25 + ε) · exp(x6 + x7)

+ 0.5x8x9x10 − 0.6
√
|x11x12|

where ε is a small constant for numerical stability. The final label is assigned by thresholding the score against
its median, ensuring a perfectly balanced dataset:

y = I
[
D(x) > median

(
{D(xi)}

nsamples
i=1

)]
.

I APPENDIX I. DETAILED ANALYSIS OF TRAINING DYNAMICS

Figure 2: The task-aligned QFI, which measures the portion of QFI relevant to the learning task.

This section provides a detailed interpretation of the training dynamics for the Task-Aligned Quantum Fisher
Information (QFI), as depicted in Figure 2. This metrics offer deeper insights into why our Searched strategy,
along with other heuristics, achieves superior performance compared to the baseline.
The Task-Aligned QFI is a metric we compute to measure the portion of the model’s expressive capacity that
is effectively utilized for the specific learning task. Specifically, we calculate it using the following formula:

g(θ) =
(∇θC)

TG(θ)(∇θC)

||∇θC||2

Here,∇θC is the gradient of the cost function C with respect to the parameters θ, and G(θ) is the Quantum
Fisher Information matrix. This metric quantifies the magnitude of the QFI projected along the direction
of the cost function’s gradient. A higher value implies that the model’s geometry is better aligned with the
optimization objective.
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In the plot, our Searched method demonstrates a clear advantage. After the initial epochs, it converges to
the highest and most stable Task-Aligned QFI value. This confirms that the architectures discovered by our
search algorithm are not just trainable, but are specifically optimized to direct their learning capacity towards
solving the task at hand. The other heuristics, while also achieving reasonably high values, either plateau at a
lower level (Low-HSD) or exhibit more volatility (Linear, High-Corr), indicating a less optimal alignment
between the model’s expressivity and the task.
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