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ABSTRACT

We present a bi-encoder framework for named entity recognition (NER), which
applies contrastive learning to map candidate text spans and entity types into the
same vector representation space. Prior work predominantly approaches NER as
sequence labeling or span classification. We instead frame NER as a represen-
tation learning problem that maximizes the similarity between the vector repre-
sentations of an entity mention and its type. This makes it easy to handle nested
and flat NER alike, and can better leverage noisy self-supervision signals. A ma-
jor challenge to this bi-encoder formulation for NER lies in separating non-entity
spans from entity mentions. Instead of explicitly labeling all non-entity spans as
the same class Outside (O) as in most prior methods, we introduce a novel dy-
namic thresholding loss, learned in conjunction with the standard contrastive loss.
Experiments show that our method performs well in both supervised and distantly
supervised settings, for nested and flat NER alike, establishing new state of the
art across standard datasets in the general domain (e.g., ACE2004, ACE2005,
CoNLL2003) and high-value verticals such as biomedicine (e.g., GENIA, NCBI,
BC5CDR, JNLPBA). We release the code at github.com/microsoft/binder.

1 INTRODUCTION

Named entity recognition (NER) is the task of identifying text spans associated with named entities
and classifying them into a predefined set of entity types such as person, location, etc. As a fun-
damental component in information extraction systems (Nadeau & Sekine, 2007), NER has been
shown to be of benefit to various downstream tasks such as relation extraction (Mintz et al., 2009),
coreference resolution (Chang et al., 2013), and fine-grained opinion mining (Choi et al., 2006).

Inspired by recent success in open-domain question answering (Karpukhin et al., 2020) and entity
linking (Wu et al., 2020; Zhang et al., 2021a), we propose an efficient BI-encoder for NameD Entity
Recognition (BINDER). Our model employs two encoders to separately map text and entity types
into the same vector space, and it is able to reuse the vector representations of text for different entity
types (or vice versa), resulting in a faster training and inference speed. Based on the bi-encoder
representations, we propose a unified contrastive learning framework for NER, which enables us
to overcome the limitations of popular NER formulations (shown in Figure 1), such as difficulty in
handling nested NER with sequence labeling (Chiu & Nichols, 2016; Ma & Hovy, 2016), complex
learning and inference for span-based classification (Yu et al., 2020; Fu et al., 2021), and challenges
in learning with noisy supervision (Straková et al., 2019; Yan et al., 2021).1 Through contrastive
learning, we encourage the representation of entity types to be similar with the corresponding entity
spans, and to be dissimilar with that of other text spans. Additionally, existing work labels all non-
entity tokens or spans as the same class Outside (O), which can introduce false negatives when
the training data is partially annotated (Das et al., 2022; Aly et al., 2021). We instead introduce a
novel dynamic thresholding loss in contrastive learning, which learns candidate-specific dynamic
thresholds to distinguish entity spans from non-entity ones.

To the best of our knowledge, we are the first to optimize bi-encoder for NER via contrastive learn-
ing. We conduct extensive experiments to evaluate our method in both supervised and distantly

1Das et al. (2022) applies contrastive learning for NER in a few-shot setting. In this paper, we focus on
supervised NER and distantly supervised NER.
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Figure 1: Left: The architecture of BINDER. The entity type and text encoder are isomorphic
and fully decoupled Transformer models. In the vector space, the anchor point ( ) represents the
special token [CLS] from the entity type encoder. Through contrastive learning, we maximize the
similarity between the anchor and the positive token ( Jim), and minimize the similarity between
the anchor and negative tokens. The dotted gray circle (delimited by the similarity between the
anchor and [CLS] from the text encoder) represents a threshold that separates entity tokens from
non-entity tokens. To reduce clutter, data points that represent possible spans from the input text are
not shown. Right: We compare BINDER with existing solutions for NER on three dimensions: 1)
whether it can be applied to nested NER without special handling; 2) whether it can be trained using
noisy supervision without special handling; 3) whether it has a fast training and inference speed.

supervised settings. Experiments demonstrate that our method achieves the state of the art on a
wide range of NER datasets, covering both general and biomedical domains. In supervised NER,
compared to the previous best results, our method obtains a 2.4%-2.9% absolute improvement in F1
on standard nested NER datasets such as ACE2004 and ACE2005, and a 1.2%-1.9% absolute im-
provement on standard flat NER datasets such as BC5-chem, BC5-disease, and NCBI. In distantly
supervised NER, our method obtains a 1.5% absolute improvement in F1 on the BC5CDR dataset.
We further study the impact of various choices of components in our method, and conduct break-
down analysis at entity type level and token level, which reveals potential growth opportunities.

2 METHOD

In this section, we present the design of BINDER, a novel architecture for NER tasks. As our
model is built upon a bi-encoder framework, we first provide the necessary background for encoding
both entity types and text using the Transformer-based (Vaswani et al., 2017) bi-encoder. Then,
we discuss our ways of deriving entity type and individual mention span representations using the
embedding output from the bi-encoder. Based on that, we introduce two types of contrastive learning
objectives for NER using the token and span-level similarity respectively.

2.1 BI-ENCODER FOR NER

The overall architecture of BINDER is shown in Figure 1. Our model is built upon a bi-encoder
architecture which has been mostly explored for dense retrieval (Karpukhin et al., 2020). Following
the recent work, our bi-encoder also consists of two isomorphic and fully decoupled Transformer
models (Vaswani et al., 2017), i.e. an entity type encoder and a text encoder. For NER tasks, we
consider two types of inputs, entity type descriptions and text to detect named entities. At the
high level, the entity type encoder produces type representations for each entity of interests (e.g.
person in Figure 1) and the text encoder outputs representations for each input token in the given
text where named entities are potentially mentioned (e.g. Jim in Figure 1). Then, we enumerate all
span candidates based on corresponding token representations and match them with each entity type
in the vector space. As shown in Figure 1, we maximize the similarity between the entity type and
the positive spans, and minimize the similarity of negative spans.
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We first formally discuss encoding both inputs using a pretrained Transformer model, BERT (De-
vlin et al., 2019).2 Specifically, we use x1, . . . , xN to denote an input sequence of length N .
When using BERT, there is a prepended token [CLS] and an appended token [SEP]for all in-
put sequences, i.e. [CLS], x1, . . . , xN[SEP]. Then the output is a sequence of hidden states
h[CLS],h1, . . . ,hN ,h[SEP] ∈ Rd from the last BERT layer for each input token, where d is the hid-
den dimension. Note that as [CLS]is always in the beginning, h0 and h[CLS] are interchangeable
here. Based on this, we then discuss the way of computing entity type and text token embeddings,
which are the basic building blocks for deriving our NER constrative learning objectives later.

Entity Type Embeddings The goal of entity type encoder is to produce entity type embeddings
that serve as anchors in the vector space for contrastive learning. In this work, we focus on a
predefined set of entity types E = {E1, . . . , EK}, where each entity type has one or multiple natural
language descriptions. The natural language description can be formal textual definitions based on
the dataset annotation guideline or Wikipedia, and prototypical instances where a target type of
named entities are mentioned. For simplicity, the discussion proceeds with one description per type
and we use Ek to denote a sequence of tokens for the k-th entity type description. For a given entity
type Ek, we use BERT as the entity type encoder (BERTE) and add an additional linear projection
to compute corresponding entity type embeddings in the following way:

hEk
[CLS] = BERTE(Ek), (1)

ek = LinearE(hEk
[CLS]), (2)

where Linear is a learnable linear layer and ek ∈ Rd is the vector representation for Ek.

Text Token Embeddings Instead of using [CLS]embeddings as done in the recent bi-encoder
work for entity retrieval (Wu et al., 2020), we consider using text token embeddings as the basic
unit for computing similarity with entity span embeddings. As there are multiple potential named
entities not known as a prior in the input, naively using special markers (Wu et al., 2020) incurs huge
computation overhead for NER. Similar to the entity type embeddings, we again use BERT as the
text encoder (BERTT ) and simply use the final hidden states as the basic text token representations3,

hT
1 , . . . ,h

T
N = BERTT (x1, . . . , xN ). (3)

2.2 CONTRASTIVE LEARNING FOR NER

Based on the entity type embeddings and text token embeddings discussed above, we then introduce
two different contrastive learning objectives for NER in this part. Here, we assume a span (i, j) is a
contiguous sequence of tokens in the input text with a start token in position i and an end token in
position j. Throughout this work, we use the similarity function, sim(·, ·) = cos(·,·)

τ , where τ is a
scalar parameter.

As shown in Figure 1, the overall goal of NER constrastive learning is to push the entity mention
span representations close to their corresponding entity type embeddings (positive) and far away
from irrelevant types (negative) in vector space, e.g. Person closer to Jim but away from Acme.
To achieve that, we propose a multi-objective formulation consisting of two objectives based on
span and token embedding spaces respectively.

Span-based Objective We derive the vector representation for span (i, j) as below:

si,j = LinearS(hT
i ⊕ hT

j ⊕D(j − i)), (4)

where hT
i ,h

T
j are text token embeddings (Equation 3), si,j ∈ Rd, LinearS is a learnable linear

layer, ⊕ indicates the vector concatenation, D(j − i) ∈ Rm is the (j − i)-th row of a learnable span
width embedding matrix D ∈ RN×m. Based on this, the span-based infoNCE (Oord et al., 2018)
can be defined as

ℓspan = − log
exp(sim(si,j , ek))∑

s′∈S−
k ∪si,j exp(sim(s′,ek))

, (5)

2Although different BERT variants are considered later in experiments, they all follow the same way of
encoding discussed here.

3Here, we leave out special tokens for simplicity.
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where the span (i, j) belongs to entity type Ek, S−
k is the set of negative spans that are all possible

spans from the input text, excluding entity spans from Ek, and ek is the entity type embedding.

Position-based Objective One limitation of the span-based objective is that it penalizes all neg-
ative spans in the same way, even if they are partially correct spans, e.g., spans that have the same
start or end token with the gold entity span. Intuitively, it is more desirable to predict partially
correct spans than completely wrong spans. Therefore, we propose additional position-based con-
trastive learning objectives. Specifically, we compute two additional entity type embeddings for Ek

by using additional linear layers, eB
k = LinearE

B(h
Ek
[CLS]), e

Q
k = LinearE

Q(h
Ek
[CLS]), where eB

k , e
Q
k

are the type embeddings for the start and end positions respectively, hEk
[CLS] is from the entity type

encoder (Equation 1). Accordingly, we can use two addtional linear layers to compute the corre-
sponding token embeddings for the start and end tokens respectively, un = LinearT

B(h
T
n ),vn =

LinearT
Q(h

T
n ), where hT

n is the text token embeddings (Equation 3). Using ekB, e
k
Q as anchors, we

then define two position-based objectives via contrastive learning:

ℓstart = − log
exp(sim(ui, e

B
k))∑

u′∈U−
k ∪ui

exp(sim(u′, eB
k))

(6)

ℓend = − log
exp(sim(vj , e

Q
k ))∑

v′∈V−
k ∪vj

exp(sim(v′, eQ
k ))

, (7)

where U−
k ,V−

k are two sets of positions in the input text that do not belong to the start/end of any
span of entity type k. Compared with Equation 5, the main difference of position-based objectives
comes from the corresponding negative sets where start and end positions are independent of each
other. In other words, the position-based objectives can potentially help the model to make better
start and end position predictions.

Thresholding for Non-Entity Cases Although the contrastive learning objectives defined above
can effectively push the positive spans close to their corresponding entity type in vector space, it
might be problematic for our model at test time to decide how close a span should be before it can
be predicted as positive. In other words, the model is not able to separate entity spans from non-
entity spans properly. To address this issue, we use the similarity between the special token [CLS]
and the entity type as a dynamic threshold (as shown in Figure 1). Intuitively, the representation of
[CLS] reads the entire input text and summarizes the contextual information, which could make it
a good choice to estimate the threshold to separate entity spans from non-entity spans. We compare
it with several other thresholding choices in §4.

To learn thresholding, we extend the original contrastive learning objectives with extra adaptive
learning objectives for non-entity cases. Specifically, for the start loss (Equation 6), the augmented
start loss ℓ+start is defined as

ℓ+start = βℓstart − (1− β) log
exp(sim(u[CLS], e

B
k))∑

u′∈U−
k exp(sim(u′,eB

k))

. (8)

An augmented end loss ℓ+end can be defined in a similar fashion. For the span loss (Equation 5), we
use the span embedding s0,0 for deriving the augmented span loss ℓ+span

ℓ+span = βℓspan − (1− β) log
exp(sim(s0,0, ek))∑
s′∈S−

k exp(sim(s′,ek))

. (9)

Note that we use a single scalar hyperparameter β for balancing the adaptive thresholding learning
and original contrastive learning for all three cases.

Training Finally, we consider a multi-task contrastive formulation by combing three augmented
contrastive learning discussed above, leading to our overall training objective

L = αℓ+start + γℓ+end + λℓ+span, (10)

where α, γ, λ are all scalar hyperparameters.
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Inference Strategy During inference, we enumerate all possible spans that are less than the
length of L and compute three similarity scores based on the start/end/span cases for each entity
type. We consider two prediction strategies, joint position-span and span-only predictions. In
the joint position-span case, for entity type Ek, we prune out spans (i, j) that have either start
or end similar scores lower than the learned threshold, i.e. sim(ui, e

B
k) < sim(u[CLS], e

B
k) or

sim(vj , e
Q
k ) < sim(v[CLS], e

Q
k ). Then, only those spans with span similarity scores higher than the

span threshold are predicted as positive ones i.e. sim(si,j , ek) > sim(s0,0, ek). For the span-only
strategy, we just rely on the span similarity score and keep all qualified spans as final predictions.
As shown later in our experiments (§4), we find the span-only inference is more effective, because
the joint inference is more likely to be affected by annotation artifacts. The full inference algorithm
is summarized in Appendix A.5.

3 EXPERIMENTS

We evaluate our method in both supervised and distantly supervised settings. The implementation
details of our method are described in Appendix A.4

Evaluation Metrics We follow the standard evaluation protocol and use micro F1: a predicted
entity span is considered correct if its span boundaries and the predicted entity type are both correct.

Datasets In the supervised setting, we evaluate our method on both nested and flat NER. For
nested NER, we consider ACE2004, ACE2005, and GENIA (Kim et al., 2003). ACE2004 and
ACE2005 are collected from general domains (e.g., news and web). We follow Luan et al. (2018)
to split ACE2004 into 5 folds, and ACE2005 into train, development and test sets. GENIA is
from the biomedical domain. We use its v3.0.2 corpus and follow Finkel & Manning (2009) and
Lu & Roth (2015) to split it into 80%/10%/10% train/dev/test splits. For flat NER, we consider
CoNLL2003 (Tjong Kim Sang & De Meulder, 2003) as well as five biomedical NER datasets from
the BLURB benchmark (Gu et al., 2021): BC5-chem/disease (Li et al., 2016), NCBI (Doğan et al.,
2014), BC2GM (Smith et al., 2008), and JNLPBA (Collier & Kim, 2004). Preprocessing and splits
follow Gu et al. (2021). Appendix A.6 reports the dataset statistics.

In the distantly supervised setting, we consider BC5CDR (Li et al., 2016). It consists of 1,500
articles annotated with 15,935 chemical and 12,852 disease mentions. We use the standard train,
development, and test splits. In the train and development sets, we discard all human annotations
and only keep the unlabeled articles. Their distant labels are generated using exact string matching
against a dictionary released by Shang et al. (2018).4 On the training set, the distant labels have high
precision (97.99% for chemicals, and 98.34% for diseases), but low recall (63.14% for chemicals,
and 46.73% for diseases).

Supervised NER Results Table 1 presents the comparison of our method with all previous meth-
ods evaluated on three nested NER datasets, ACE2004, ACE2005, and GENIA. We report precision,
recall, and F1. As is shown, our method achieves the state of the art performance on all three datasets.
On ACE2004 and ACE2005, it outperforms all previous methods with 89.7% and 90.0% F1. Par-
ticularly, in comparison with the previous best method (Tan et al., 2021), our method significantly
improves F1 by the absolute points of +2.4% and +2.9% respectively. On GENIA, our method ad-
vances the previous state of the art (Yu et al., 2020) by +0.3% F1. Note that the previous methods
are built on top of different encoders, e.g., LSTM, BERT-large, BART-large, and T5-base. We also
report our method using a BERT-base encoder, which even outperforms the previous methods that
use a larger encoder of BERT-large (Tan et al., 2021) or BART-large (Yan et al., 2021). Overall, our
method has substantial gains over the previous methods. Due to the space limit, we report the result
on CoNLL03 and compare with prompt-based NER and span-based NER in Appendix A.1 and A.2.

Table 2 compares our method with all previous submissions on the BLURB benchmark. We only
report F1 due to unavailability of precision and recall of these submissions. The major difference
among these submissions are encoders. A direct comparison can be made between our method
and Gu et al. (2021) which formulates NER as a sequential labeling task and fine-tunes a standard
LSTM+CRF classifier on top of the pretrained transformer encoder. While both using PubMedBERT

4github.com/shangjingbo1226/AutoNER
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as the encoder, our method significantly outperforms Gu et al. (2021) across the board. Compared
to the previous best submissions (Kanakarajan et al., 2021; Yasunaga et al., 2022), our method also
show substantial gains on BC5-chem (+1.2%), BC5-disease (+1.9%), and NCBI (1.5%).

Table 1: Test scores on three nested NER datasets. Bold-and-underline, bold-only and
underline-only indicate the best, the second best, and the third best respectively. The different en-
coders are used: L = LSTM, Bl = BERT-large, BioB = BioBERT, BioBl = BioBERT-large, BAl =
BART-large, T5b = T5-base, Bb = BERT-base. † Original scores of Li et al. (2020) are not repro-
ducible. Like Yan et al. (2021), we report the rerun of their released code.

Encoder ACE2004 ACE2005 GENIA

P R F1 P R F1 P R F1

Lu & Roth (2015) - 70.0 56.9 62.8 66.3 59.2 62.5 74.2 66.7 70.3
Katiyar & Cardie (2018) L 73.6 71.8 72.7 70.6 70.4 70.5 77.7 71.8 74.6
Shibuya & Hovy (2020) Bl 83.7 81.9 82.8 83.0 82.4 82.7 78.1 76.5 77.3
Wang et al. (2020) Bl/BioB 86.1 86.5 86.3 84.0 85.4 84.7 79.5 78.9 79.2
Li et al. (2020)† Bl/BioB 85.8 85.8 85.8 85.0 84.1 84.6 81.2 76.4 78.7
Yu et al. (2020) Bl/BioB 87.3 86.0 86.7 85.2 85.6 85.4 81.8 79.3 80.5
Tan et al. (2021) Bl/BioB 88.5 86.1 87.3 87.5 86.6 87.1 82.3 78.7 80.4
Yan et al. (2021) BAl 87.3 86.4 86.8 83.2 86.4 84.7 78.6 79.3 78.9
Zhang et al. (2022) T5b 86.5 84.5 85.4 83.3 86.6 84.9 81.0 77.2 79.1
Wan et al. (2022) Bb 86.7 85.9 86.3 84.4 85.9 85.1 77.9 80.7 79.3

BINDER (Ours) Bb/BioB 88.3 89.1 88.7 89.1 89.8 89.5 81.5 79.6 80.5
Bl/BioBl 89.7 89.7 89.7 89.6 90.5 90.0 83.4 78.3 80.8

Table 2: Test F1 scores on five flat NER datasets from the BLURB benchmark (aka.ms/blurb). Bold
and underline indicate the best and the second best respectively. All encoders use their base version.

Encoder BC5-chem BC5-disease NCBI BC2GM JNLPBA

Lee et al. (2019) BioBERT 92.9 84.7 89.1 83.8 78.6
Gu et al. (2021) PubMedBERT 93.3 85.6 87.8 84.5 79.1
Kanakarajan et al. (2021) BioELECTRA 93.6 85.8 89.4 84.7 80.2
Yasunaga et al. (2022) LinkBERT 93.8 86.1 88.2 84.9 79.0

BINDER (Ours) PubMedBERT 95.0 88.0 90.9 84.6 80.3

Table 3: Test scores on BC5CDR. All base-
lines scores in the distantly supervised setting
are quoted from Zhou et al. (2022).

BC5CDR

P R F1

Distantly Supervised

Dict/KB Matching 86.4 51.2 64.3
AutoNER (Shang et al., 2018) 82.6 77.5 80.0
BNPU (Peng et al., 2019) 48.1 77.1 59.2
BERT-ES (Liang et al., 2020) 80.4 67.9 73.7
Conf-MPU (Zhou et al., 2022) 76.6 83.8 80.1

BINDER (Ours) 87.6 76.3 81.6

Fully Supervised

Nooralahzadeh et al. (2019) 92.1 87.9 89.9
Wang et al. (2021) - - 90.9

BINDER (Ours) 92.6 91.2 91.9

Distantly Supervised NER Results Table 3
compares test scores of our method and previous
methods on BC5CDR. It presents a clear advantage
of our method over all previous methods in the dis-
tantly supervised setting. The F1 score is advanced
by +1.5% over the previous best method (Zhou
et al., 2022), which adapts positive and unlabeled
(PU) learning to obtain a high recall yet at the loss
of precision. In contrast, our method maintains
a reasonable recall (comparable to Shang et al.,
2018; Peng et al., 2019) and substantially improves
the precision. Note that besides the dictionary
used to generate distant supervisions, Zhou et al.
(2022); Shang et al. (2018) require an additional
high-quality dictionary to estimate the noisiness of
non-entity spans. Our method does not have such
a requirement. For reference, Table 2 also includes
the supervised state of the art. Our method in the
supervised setting achieves 91.9% F1, outperform-
ing the previous SOTA Wang et al. (2021) by 1.0%.
Comparing both settings, we observe that the dis-
tantly supervised result still has an over-10-point gap with the supervised one, indicating a potential
to further reduce the false negative noise.
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4 ANALYSIS

Here we conduct extensive analyses of our method. For efficiency, all analysis in this section is done
based on the uncased BERT-base encoder.

Ablation Study We compare several variants of our method and report their test scores on
ACE2005 in Table 4. We observe performance degradation in all these variants. Shared linear
layers uses the same linear layer for span and token embeddings, and the same linear layer for en-
tity type embeddings, in the hope of projecting them into the same vector space and sharing their
semantics. It leads to a slightly better precision but a drop of recall. Similar changes are observed in
Joint position-span inference, which adopts a more stringent strategy to prune out spans – only keep
spans whose start, end, and span scores are all above the thresholds. No position-based objectives
only optimizes the span-based objective, which penalizes partially corrected spans in the same way
as other spans, resulting in a marginal improvement of recall but a significant loss of precision.

Choices of Entity Type Descriptions Table 5 compares different choices of entity type descrip-
tions. Our final model uses annotation guidelines, which outperforms other choices: (1) Atomic
labels considers each entity type as an atomic label. Instead of learning an entity type encoder, we
directly learn an embedding vector for each entity type. (2) Keywords uses a keyword for each entity
type as the input to the entity type encoder, e.g., “person” for PER. (3) Prototypical instances for
each minibatch during training dynamically samples from the training data a prototypical instance
for each entity type and uses it as input to the entity type encoder. Unlike annotation guidelines,
we add special markers to indicate the start and end of an entity span and use the hidden states of
the start marker as entity type embeddings. At test time, we increase the number of prototypical
instances to three for each entity type. Larger number of prototypical instances may improve the
performance. Prototypical instances may also lead to a better performance in few-shot or zero-shot
settings. We leave them to future exploration.

Table 4: Test scores of our method and its variants
on ACE2005.

ACE2005

P R F1

Our full model 89.1 89.8 89.5
Shared linear layers 89.3 89.3 89.3
Joint position-span inference 89.4 89.2 89.3
No position-based objectives 88.7 89.9 89.3

Table 5: Test scores on ACE2005 with dif-
ferent entity type descriptions.

ACE2005

P R F1

Atomic labels 88.9 89.6 89.2
Keywords 88.7 89.8 89.2
Prototypical instances 88.7 90.1 89.4
Annotation guidelines 89.1 89.8 89.5

Thresholding Strategies Our method uses dynamic similarity thresholds to distinguish entity
spans from non-entity spans. We compare the impact of dynamic thresholds in our method with two
straightforward variants: (1) Learned global thresholds replaces dynamic thresholds with global
thresholds, one for each entity type. Specifically, we consider the global similarity thresholds as
scalar parameters (initialized as 0). During training, we replace the similarity function outputs
sim(u[CLS], e

B
k) in Equation 8 and sim(s0,0, ek) in Equation 9 with the corresponding global thresh-

olds. At test times, the global thresholds are used to separate entity spans from non-entity spans. (2)
Global thresholds tuned on dev introduces global thresholds after the training is done and tune them
on the development set. During training, instead of Equation 10, we optimize a simplified loss with-
out thresholding, αℓstart + γℓend + λℓjoint. Table 6 compares their test scores on the ACE2005
dataset. Dynamic thresholds have the best scores overall. Learned global thresholds performs better
than global thresholds tuned on the development set, indicating the necessity of learning thresh-
olds during training. Note that the global thresholds tuned on dev still outperforms all the previous
methods in Table 1, showing a clear advantage of our bi-encoder framework. In Appendix A.7, We
further visualize and discuss the distribution of similarity scores between text spans and entity types
based on different thresholding strategies.

Time Efficiency Table 7 compares the training and inference speed of our method against several
prominent methods. To ensure fair comparisons, all speed numbers are recorded based on the same
machine using their released code with the same batch size and the same maximum sequence length.
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MRC-NER (Li et al., 2020) formulates NER as a machine reading comprehension problem and
employs a cross-attention encoder. Comparing with it, our bi-encoder framework has 17x and 8x
speed on training and inference respectively. Biaffine-NER (Yu et al., 2020) formulates NER as
a dependency parsing problem and applies a biaffine classifier to classify the typed arc between an
entity span start and end. Comparing with it, our framework does not need a biaffine layer and is 1.7x
and 2.4x faster at training and inference. Without the need of conditional random fields (CRFs), our
framework is even faster than the widely used BERT-CRF framework. A drawback of BERT-CRF
is that it cannot be applied to nested NER. Here we test it on a flat NER dataset CoNLL2003 (Tjong
Kim Sang & De Meulder, 2003). All other frameworks are tested on ACE2005.

Table 6: Test scores of our method using dif-
ferent thresholding strategies on ACE2005.

ACE2005

P R F1

Dynamic thresholds 89.1 89.8 89.5
Learned global thresholds 88.2 89.0 88.6
Global thresholds tuned on dev 86.3 88.7 87.5

Table 7: Training and inference speed.

Speed (w/s)

Training Inference

MRC-NER (Li et al., 2020) 147 1,110
Biaffine-NER (Yu et al., 2020) 1,548 3,634
BERT-CRF (pytorch neural crf) 2,273 8,596

BINDER (Ours) 2,571 8,886

Table 8: Test F1 score breakdowns on ACE2005 and GENIA. Columns compare F1 scores on
different entity types. Rows compare F1 scores based on the entire entity span, or only the start or
end of entity span. S-F1 denotes the strict F1 requiring the exact boundary match. L-F1 denotes
the loose F1 allowing partial overlaps. The color signifies substantially better F1 scores than the
corresponding entity span strict F1 scores.

ACE2005 GENIA
PER GPE ORG FAC LOC VEH WEA ALL Prot. DNA CellT. CellL. RNA ALL

S-F1span 93.4 91.2 79.7 81.0 78.7 84.8 82.1 89.5 82.9 77.6 74.5 76.3 87.9 80.5
S-F1start 93.9 91.2 80.7 81.0 79.0 84.8 82.1 89.9 86.1 80.9 74.5 80.2 88.7 83.2
S-F1end 93.9 91.2 81.9 83.1 79.0 86.8 82.1 90.3 87.6 82.6 83.7 82.8 91.0 85.8
L-F1span 94.4 91.4 83.0 83.1 79.4 87.2 82.1 90.8 91.6 87.4 84.8 87.2 91.7 89.9

Table 9: Examples of common errors among the par-
tially corrected predictions. Red indicates error spans.
Blue indicates missing spans. The number after each
span mean the span frequency in the training data.

Error Type Ent. Type Predicted ↔ Gold

Modifier
Error

VEH f-14 tomcats (0) ↔ tomcats (0)
FAC federal court (0) ↔ court (0)
VEH ship (29) ↔ cruise ship (1)
CellL. unstimulated T cells (0) ↔ T cells (553)
Prot. human GR (0) ↔ GR (88)

CellT. lymphocytes (117) ↔ human lympho-
cytes (18)

DNA E6 motif (0) ↔ synthetic E6 motif (0)

Missing
Genitive PER attendant (3) ↔ attendant’s (0)

Annotation
Error

PER Dr. Germ (0) ↔ Dr (1) / Germ (0)
Prot. Ag amino acid sequence (0) ↔ Ag (1) /

amino acid sequence (6)
CellL. EBV-transformed human B cell line

SKW6.4 (0) ↔ EBV-transformed hu-
man B cell line (0) / SKW6.4 (1)

DNA second-site LTR revertants (0) ↔
second-site LTR (0)

Performance Breakdown Table 8
shows the test F1 scores on each entity
type of ACE2005 and GENIA. We report
four types of F1 scores: S-F1span is the
strict F1 based on the exact match of entity
spans; S-F1start is the strict F1 based on the
exact match of entity start words; S-F1end
is the strict F1 based on the exact match of
entity end words; L-F1span is the loose F1
allowing the partial match of entity spans.
We notice that S-F1end is often substan-
tially better than S-F1span and S-F1start.
To explain this difference, we go through
these partially corrected predictions and
summarize the common errors in Table 9.
The most common one is the inclusion or
exclusion of modifiers. This could be due
to annotation disagreement: in ACE2005,
sometimes generic spans are preferred
(e.g., “tomcats” vs. “f-14 tomcats”), while
in some cases specific spans are preferred
(e.g., “cruise ship” vs. “ship”). This issue
is more common in the biomedical dataset
GENIA, e.g., “human GR” is considered
as wrong while “human lymphocytes” are correct, which explains the higher scores of S-F1end than
S-F1start. Missing genitives for person names are another common errors in ACE2005. We also
discover some annotation errors, where names of a single person, protein, or cell line are sometimes
broken into two less meaningful spans, e.g., “Dr. Germ” is annotated as two person mentions “Dr”
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and “Germ”, and “EBV-transformed human B cell line SKW6.4” is annotated as two separate cell
lines “EBV-transformed human B cell line” and “SKW6.4”.

5 RELATED WORK

Supervised NER Early techniques for NER are based on hidden markov models (e.g., Zhou &
Su, 2002) and conditional random fields (CRFs) (e.g., McDonald & Pereira 2005). However, due to
the inability to handle nested named entities, techniques such as cascaded CRFs (Alex et al., 2007),
adpated constituency parsing (Finkel & Manning, 2009), and hypergraphs (Lu & Roth, 2015) are
developed for nested NER. More recently, with the advance in deep learning, a myriad of new
techniques have been used in supervised NER. Depending on the way they formulate the task, these
techniques can be categorized as NER as sequence labeling (Chiu & Nichols, 2016; Ma & Hovy,
2016; Katiyar & Cardie, 2018); NER as parsing (Lample et al., 2016; Yu et al., 2020); NER as span
classification (Sohrab & Miwa, 2018; Xia et al., 2019; Ouchi et al., 2020; Fu et al., 2021); NER
as a sequence-to-sequence problem (Straková et al., 2019; Yan et al., 2021); and NER as machine
reading comprehension (Li et al., 2020; Mengge et al., 2020). Unlike previous work, we formulate
NER as a contrastive learning problem. The span-based design of our bi-encoder and contrastive
loss provides us with the flexibility to handle both nested and flat NER.

Distantly Supervised NER Distant supervision from external knowledge bases in conjunction
with unlabeled text is generated by string matching (Giannakopoulos et al., 2017) or heuristic rules
(Ren et al., 2015; Fries et al., 2017). Due to the limited coverage of external knowledge bases,
distant supervision often has a high false negative rate. To alleviate this issue, Shang et al. (2018)
design a new tagging scheme with an unknown tag specifically for false negatives; Mayhew et al.
(2019) iteratively detect false negatives and downweigh them in training; Peng et al. (2019); Zhou
et al. (2022) address overfitting to false negatives using Positive and Unlabeled (PU) learning; Zhang
et al. (2021b) identify dictionary biases via a structural causal model, and de-bias them using causal
interventions. Liu et al. (2021) introduce a calibrated confidence estimation method and integrate it
into a self-training framework. Without replying on sophisticated de-noising designs, our bi-encoder
framework can be directly used in distant supervision. Experiments in §3 show the robustness of
our contrastive learning algorithm to the noise in distantly supervised NER.

Bi-Encoder The use of bi-encoder dates back to Bromley et al. (1993) for signature verification
and Chopra et al. (2005) for face verification. These works and their descendants (e.g., Yih et al.,
2011; Hu et al., 2014) refer to the architecture as siamese networks since two similar inputs are
encoded separately by two copies of the same network (all parameters are shared). Wsabie (Weston
et al., 2010) and StarSpace (Wu et al., 2018) subsequently employ bi-encoder to learn embeddings
for different data types. Using deep pretrained transformers as encoders, Humeau et al. (2019)
compare three different architectures, bi-encoder, poly-encoder, and cross-encoder. The bi-encoder
architecture afterwards has been use in various tasks, e.g., information retrieval (Huang et al., 2013;
Gillick et al., 2018), open-domain question answering (Karpukhin et al., 2020), and entity link-
ing (Gillick et al., 2019; Wu et al., 2020; Zhang et al., 2021a). To our best knowledge, there is no
previous work learning bi-encoder for NER.

6 CONCLUSIONS

We present a bi-encoder framework for NER using contrastive learning, which separately maps text
and entity types into the same vector space. To separate entity spans from non-entity ones, we
introduce a novel contrastive loss to jointly learn span identification and entity classification. Exper-
iments in both supervised and distantly supervised settings show the effectiveness and robustness of
our method. We conduct extensive analysis to explain the success of our method and reveal growth
opportunities. Future directions include further improving low-performing types and applications in
self-supervised zero-shot settings.
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A APPENDIX

A.1 COMPARISON WITH PROMPT-BASED LEARNING

Prompt-based learning emerges as a powerful method in few-shot NER (Cui et al., 2021; Ma et al.,
2022; Ding et al., 2021). Below, we compare BINDER with Tempalte BART (Cui et al., 2021), a
representative prompt-based learning method:

Method Difference Cui et al. (2021) follows an encoder-decoder framework. Given a text span, it
decodes and selects among all possible templates including none-entity templates. Their candidates
are templates based on a static set of entity types. In contrast, BINDER is to given an entity type
select among all possible text spans. The candidates are a dynamic set of text spans, which are
different for different input documents. The size of candidates is much larger – O(L2), where L is
the max seq length, set to 256 in our experiments.
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Loss Difference Cui et al. (2021) uses cross-entropy to maximize the likelihood of gold entity type
template against templates of other entity types. In comparison, BINDER uses contrastive learning,
given an entity type, to maximize the similarity of gold text spans against other text spans. Instead
of comparing entity types, BINDER compares all possible text spans from an input document. It
captures subtleties of each text span via contrastive learning. As shown in previous work, instance-
based contrastive learning has better generalization performance than cross-entropy loss (Khosla
et al., 2020), due to its robustness to noisy labels (Zhang & Sabuncu, 2018; Sukhbaatar et al., 2014)
and the possibility of better margins (Elsayed et al., 2018). To our best knowledge, we are the first
to demonstrate BINDER with contrastive loss (among text spans) significantly cross-entropy loss
(among entity types/templates), in both supervised settings (see Table 1 and Table 2) and distantly
supervised settings (see Table 3).

Non-entity Handling Difference Cui et al. (2021) labels all non-entity spans with non-entity tem-
plates. This can introduce false negatives when the training data is partially annotated (Das et al.,
2022; Aly et al., 2021). Our formulation allows us to avoid using an explicit non-entity class, and
instead to introduce a dynamic threshold based on the input document and the entity type, to dis-
tinguish entity spans from non-entity spans. Our experiments show a clear advantage of dynamic
thresholding over explicit non-entity labeling scheme.

Computational Efficiency The encoder-decoder framework used by Cui et al. (2021) has much
lower computational efficiency. First, it has double parameter size compared to BINDER (which is
encoder-only). Second, both its training and inference time are significantly slower than BINDER.
Because the decoding process relies on cross-attention from decoder to encoder, their method has
to decode all possible templates for each input document. The number of templates Ntemplates =
Ntext spans × Nentity types. And the overall the decoding operations are O(Ndocuments × Ntext spans ×
Nentity types). Furthermore, the decoding process has to be done in an autoregressive manner, which
even reduces the time efficiency. In comparison, BINDER employs a bi-encoder framework. It
separately encodes entity types and input documents. Encoding entity types does not rely on input
documents. At test time, it only needs to encode entity types once, and then re-use them to for NER
of different input documents. Encoding entity types is only O(Nentity types), and can be done very
efficiently in parallel on GPU.

Performance on CoNLL03 To make a direct comparison with Cui et al. (2021), we train and
evaluate BINDER on CoNLL03 (Tjong Kim Sang & De Meulder, 2003). Table 10 reports the test
results. BINDER outperforms Template BART as well as other strong baselines.

Table 10: Test scores on CoNLL03.

CoNLL03

P R F1

Yang et al. (2018) - - 90.77
Ma & Hovy (2016) - - 91.21
Gui et al. (2020) - - 92.02
Template BART (Cui et al., 2021) 91.72 93.40 92.55
BINDER 93.08 93.57 93.33

A.2 COMPARISON WITH SPAN-BASED NER

We highlight the difference between our method (BINDER) and span-based NER below:

Formulation Difference In span-based NER, it is to given a text span select among all entity
types. The candidates are a static set of entity types, the size of which is usually small (e.g., PER,
ORG, LOC, MISC). In contrast, BINDER formulates NER as given an entity type to select among all
possible text spans of an input document. The candidates are a dynamic set of text spans, which are
different for different input documents. The size of candidates is much larger – O(L2) , where L is
the max seq length, set to 256 in our experiments.
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Loss Difference Span-based NER uses cross-entropy to maximize the likelihood of gold entity type
template against templates of other entity types. In comparison, BINDER uses contrastive learning,
given an entity type, to maximize the similarity of gold text spans against other text spans. Instead
of comparing entity types, BINDER compares all possible text spans from an input document. It
captures subtleties of each text span via contrastive learning. As shown in previous work, instance-
based contrastive learning has better generalization performance than cross-entropy loss (Khosla
et al., 2020), due to its robustness to noisy labels (Zhang & Sabuncu, 2018; Sukhbaatar et al., 2014)
and the possibility of better margins (Elsayed et al., 2018). To our best knowledge, we are the first
to demonstrate BINDER with contrastive loss (among text spans) significantly cross-entropy loss
(among entity types), in both supervised settings (see Table 1 and Table 2) and distantly supervised
settings (see Table 3).

Non-entity Handling Difference Span-based NER labels all non-entity tokens or spans with the
same class Outside (O). This can introduce false negatives when the training data is partially
annotated (Das et al., 2022; Aly et al., 2021). Our formulation allows us to avoid using an explicit
non-entity class, and instead to introduce a dynamic threshold based on the input document and
the entity type, to distinguish entity spans from non-entity spans. Our experiments show a clear
advantage of dynamic thresholding over traditional explicit O labeling scheme.

A.3 IMPACT OF MAXIMUM SEQUENCE LENGTH

In our experiments, we set the maximum sequence length L to 256, meaning that the number of
candidate spans is O(L2). Speed comparison in Table 7 is made based on L = 256. We also ex-
perimented with smaller numbers of L (e.g., 64, 128), which resulted in better speed but a slight
performance degradation. Increasing L did not bring significant gain but increased memory con-
sumption. Therefore, in the experiments, we set L to 256.

A.4 IMPLEMENTATION DETAILS

We implement our models based on the HuggingFace Transformers library (Wolf et al., 2020). The
base encoders are initialized using PubMedBERT-base-uncased (Gu et al., 2021) or BioBERT (Lee
et al., 2019) for biomedical NER datasets, and BERT-base-uncased or BERT-large-uncased (Devlin
et al., 2019) for NER datasets in the general domains. The linear layer output size is 128; the width
embedding size is 128; the initial temperatures are 0.07. We train our models with the AdamW opti-
mizer (Loshchilov & Hutter, 2017) of a linear scheduler and dropout of 0.1. The entity start/end/span
contrastive loss weights are set to α = 0.2, γ = 0.2, λ = 0.6, and the same loss weights are chosen
for thresholding contrastive learning. The contrastive losses for thresholding and entity are weighted
equally in the final loss. For all experiments, we ignore sentence boundaries, and tokenize and split
text into sequences with a stride of 16. For base encoders, we train our models for 20 epochs with a
learning rate of 3e-5 and a batch size of 8 sequences with the maximum token length of N = 128.
For large encoders, we train our models for 40 epochs with a learning rate of 3e-5 and a batch size
of 16 sequences with the maximum token length of N = 256. The maximum token length for entity
spans is set to 30. We use early stop with a patience of 10 in the distantly supervised setting. Vali-
dation is done at every 50 steps of training, and we adopt the models that have the best performance
on the development set. We report the median score of multiple runs.

A.5 INFERENCE FOR BINDER

As we can see in Algorithm 1, the difference between joint position-span and span-only strate-
gies is whether line 9 is used. Also, for flat NER datasets, we further carry out a post-processing
step to remove overlapping predictions (line 19 in Algorithm 1). Here, the post-processing
(removeOverlap) is carried out in a greedy fashion where higher scored span predictions with
earlier start and end positions are preferred.
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Algorithm 1: Inference for BINDER.
Input: S = {(i, j)|i, j = 1, . . . , N, 0 ≤ j − i ≤ L} the set of spans , E = {E1, . . . , EK} the

set of entity types, joint for whether using joint position-span inference, and flat
for whether the inference is for flat NER.

M = {};
for Ek ∈ E do

4 compute start/end/span threshold scores bnull, enull, snull.
6 for (i, j) ∈ S do

compute start/end/span similarity scores b, e, s.
9 if joint is true and b < bnull or e < enull then

Continue;
end

13 if s > snull then
M = M

⋃
{(i, j, Ek)};

end
end

end
19 if flat is true then

return removeOverlap(M);
end
return M ;
Function removeOverlap(D̂):

M̂ = {};
sort D̂ by the similarity score in descending order and break the tie by ascending in start

and end positions;
for (i, j, Ek) in D̂ do

if span (i, j) has no overlap in M̂ then
M̂ = M̂ ∪ {(i, j, Ek)};

end
end
return M̂ ;

A.6 STATISTICS OF DATASETS

Table 11 reports the statistics of supervised NER datasets.

Table 11: The statistics of supervised NER datasets.

Dataset |E| # Annotations

Train Dev Test

ACE2004 7 22,735 (5-fold)
ACE2005 7 26,473 6,338 5,476
GENIA 5 46,142 4,367 5,506
BC5-chem 1 5,203 5,347 5,385
BC5-disease 1 4,182 4,244 4,424
NCBI 1 5,134 787 960
BC2GM 1 15,197 3,061 6,325
JNLPBA 1 46,750 4,551 8,662

A.7 DISTRIBUTIONS OF SIMILARITY SCORES

Figure 2 visualizes the distributions of similarity scores between different text spans and entity
types based on different thresholding strategies. Consistent with the scores in Table 6, the majority
of entity spans and non-entity spans are separable regardless of the thresholding strategy. This is
true even when no thresholds are used during training and instead we tune global thresholds on dev.
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Figure 2: The kernel density estimation of similarity scores between different text spans (entity,
non-entity, and threshold spans) and entity types (PER, ORG, GPE) on ACE2005 based on different
thresholding strategies.

We zoom in the distributions in Figure 3 and observe that the learned global thresholds tend to make
the similarities less separable between entity spans and non-entity spans.
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Figure 3: Zoom-in of the kernel density estimation of similarity scores in Figure 2, with the y-axis
density limited to (0, 0.1).
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