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Abstract

Automatic semantic segmentation of magnetic resonance imaging (MRI) images using deep
neural networks greatly assists in evaluating and planning treatments for various clinical
applications. However, training these models is conditioned on the availability of abundant
annotated data to implement the end-to-end supervised learning procedure. Even if we
annotate enough data, MRI images display considerable variability due to factors such as
differences in patients, MRI scanners, and imaging protocols. This variability necessitates
retraining neural networks for each specific application domain, which, in turn, requires
manual annotation by expert radiologists for all new domains. To relax the need for persis-
tent data annotation, we develop a method for unsupervised federated domain adaptation
using multiple annotated source domains. Our approach enables the transfer of knowledge
from several annotated source domains to adapt a model for effective use in an unannotated
target domain. Initially, we ensure that the target domain data shares similar representa-
tions with each source domain in a latent embedding space, modeled as the output of a deep
encoder, by minimizing the pair-wise distances of the distributions for the target domain
and the source domains. We then employ an ensemble approach to leverage the knowledge
obtained from all domains. We provide theoretical analysis and perform experiments on the
MICCAI 2016 multi-site dataset to demonstrate our method is effective.

1 Introduction

Semantic segmentation of MRI images can help to detect anatomical structures or regions of interest in these
images to simplify the interpretation of these images. High-quality segmented images are extremely useful
in applications such as disease detection and monitoring Hatamizadeh et al. (2021); Karayegen & Aksahin
(2021), surgical Guidance Jolesz et al. (2001); Wei et al. (2022), treatment response assessment Kickingereder
et al. (2019), and AI-aided diagnosis Arsalan et al. (2019). UNet-based convolutional neural networks (CNNs)
have shown to be effective for automatic semantic segmentation of MRI images Pravitasari et al. (2020);
Maji et al. (2022), but their adoption in clinical settings has been quite limited. A major reason for this
limitation is that training deep neural networks requires large annotated datasets. Annotating MRI data
reliably requires the expertise of trained radiologists and physicians which makes it a challenging process.
Moreover, using crowdsourcing annotation platforms would be inapplicable because medical data is normally
distributed in different institutions and due to the lack of specialized knowledge by an average person.

Even if we prepare a suitable annotated datasets and successfully train a segmentation model, it may not
generalize well in practice. The reason is that MRI images are known to be significantly variable due to
differences in patients, MRI scanners, and imaging protocols Kruggel et al. (2010); Ackaouy et al. (2020).
These variances introduce domain shift during testing Sankaranarayanan et al. (2018b) which leads to model
performance degradation Xu et al. (2019). Annotating data persistently and then retraining the model from
scratch may address this challenge but is an inefficient solution. Unsupervised Domain Adaptation (UDA) is
a framework that has been developed to tackle the issue of domain shift without requiring data annotation.
The goal in UDA is to enable the generalization of a model which is trained on a source domain with
annotated data to a target domain with only unannotated data Biasetton et al. (2019); Zou et al. (2018).
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A major approach to address UDA is to map data points from a source and a target domain into a shared
latent embedding space at which the two distributions are aligned. Since domain-shift would not exist in
such a latent feature space, a segmentation model which is trained solely using the source domain data and
receives latent features at its input, would generalize on the target domain data. The major approach to
implement this idea is to model the data mapping function using a deep neural encoder network, where its
output-space models the shared latent space. The encoder is trained such that it aligns the source and the
target distributions at its output. This process can be achieved using adversarial learning (Javanmardi &
Tasdizen (2018); Cui et al. (2021); Sun et al. (2022)) or direct probability matching (Bhushan Damodaran
et al. (2018); Ackaouy et al. (2020); Al Chanti & Mateus (2021)). In the former approach, the distributions
are matched indirectly through competing generator and discriminator networks to learn a domain-agnostic
embedding at the output of the generator. In the latter approach, a probability metric is selected and
minimized to align the distributions directly in the latent embedding embedding space.

Most UDA methods utilize a single source domain for knowledge transfer. However, we may have access to
several source domains. Specifically, medical data is usually distributed in different institutions and often
we can find several source domains. For this reason, classic UDA has been extended to multi-source UDA
(MSUDA), where the goal is to benefit from multiple distinct sources of knowledge Zhao et al. (2019); Tasar
et al. (2020); Gong et al. (2021); He et al. (2021). The possibility of leveraging collective information from
multiple annotated source domains can enhance model generalization compared to single-source UDA. Unlike
single-source UDA, MSUDA algorithms need to consider the differences in data distribution between pairs
of source domains in addition to the disparities between a single source domain and the target domain.

A naive approach to address MSUDA is to assume that the annotated source datasets can be transferred
to a central server and then processed similar to single-source UDA. However, this assumption overlooks
potential common constraints in medical domain problems such as privacy and security regulations. These
regulations often prevent sharing data across the source domains. To overcome these challenges, we propose
an alternative two-step MSUDA algorithm. In the first step, we train a model between each source and the
target domain by solving a single-source UDA problem. We rely on direct probability metric minimization
for this purpose. During the testing time on the target domain, we use these models individually to segment
an image and then aggregate the resulting segmented images according to the confidence we have in each
model in a pixel-wise manner. As a result, we maintain the privacy constraints between the source domains
and improve upon single-source UDA algorithms. We offer a theoretical justification for our method by
demonstrating that our algorithm minimizes an upper-bound of the target error. In addition, we provide
experimental results on the MICCAI 2016 multi-site dataset to showcase the effectiveness of our approach.

2 Related work

Semantic Segmentation of MRI Data Semantic segmentation of MRI images helps to increase the
clarity and interpretability of these image Işın et al. (2016). While this task is often performed manually
by radiologists in clinical settings, manual annotations is prone to inter-reader variations, expensive, and
time-consuming. To address these limitations, classical machine learning algorithms have been used to
automate segmenting MRI scans Levinski et al. (2009); Liu & Guo (2015); Carreira et al. (2012); Sourin
et al. (2010). However, these algorithms rely on hand-crafted features which require expertise in engineering
and medicine, and careful creation of imaging features given a specific problem of interest. Additionally,
anatomical variations, variations in MRI acquisition settings and scanners, imperfections in image acquisition,
and variations in pathology appearance serve as obstacles for their generalization in clinical settings.

Deep learning models have the capacity to relax the need for feature engineering. Specifically, architectures
based on convolutional neural networks (CNNs) have been found quite effective in medical semantic seg-
mentation Long et al. (2015a); Ronneberger et al. (2015a); Du et al. (2020). Fully Convolutional Networks
(FCNs) Du et al. (2020) extend the vanilla CNN architecture to an end-to-end model for pixel-wise prediction
which is more suitable for semantic segmentation. FCNs have an encoder-decoder structure, where the core
idea is to replace fully connected layers of a CNN with up-sampling layers that map back the features that
are extracted by the convolutional layers to the original input space dimension. This way, the model can be
trained to predict the semantic masks directly at its output. As an extension to FCNs, U-Nets Ronneberger
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et al. (2015a) are the dominant architecture for medical semantic segmentation tasks. U-Nets are similar to
FCNs, but skip connections between the encoder and decoder layers are used to preserve spatial information
at all abstraction levels. For this reason, the number of down-sampling and up-sampling layers are equal
in a U-Net to make adding skip connections between pairs of layers that have the same hierarchy possible.
Similar to CNNs, skip connections help propagating the spatial information is in deeper layers of U-Nets
which helps to have accurate segmentation results through using features with different abstraction levels.
The downside of U-Nets is the necessity of having large annotated datasets to train them.

Single-Source UDA are developed to relax the need for persistent data annotation and improve model
generalization using solely unannotated data. These methods utilize only one source domain with annotated
data to adapt a model to generalize on the unannotated target domain. The notion of domain is subjective
and can be even defined for the same problem if a condition is changed during the model testing phase. UDA
methods have been used extensively on the two areas of image classification Goodfellow et al. (2014); Hoffman
et al. (2018); Dhouib et al. (2020); Luc et al. (2016); Tzeng et al. (2017); Sankaranarayanan et al. (2018a);
Long et al. (2015b; 2017); Morerio et al. (2018) and image segmentation Javanmardi & Tasdizen (2018);
Cui et al. (2021); Sun et al. (2022); Bhushan Damodaran et al. (2018); Ackaouy et al. (2020); Al Chanti &
Mateus (2021). The classic workflow in UDA is to train a deep neural network on both the annotated source
domain and the unannotated target domain such that the end-to-end learning is supervised by the source
domain data and domain alignment is realized in a network hidden layer as a latent embedding space using
data from both domains. As a result, the network would generalize on the target domain.

The alignment of the distributions for UDA is often achieved by utilizing generative adversarial networks
Goodfellow et al. (2014); Hoffman et al. (2018); Dhouib et al. (2020); Javanmardi & Tasdizen (2018); Cui et al.
(2021); Sun et al. (2022) or probability metric minimization Long et al. (2015b; 2017); Morerio et al. (2018);
Bhushan Damodaran et al. (2018); Ackaouy et al. (2020); Al Chanti & Mateus (2021). Adversarial learning
aligns two distributions indirectly at the output of the generative subnetwork. For metric minimization, we
minimize a suitable probability metric between the embeddings of the source and target domains Long et al.
(2015b; 2017); Morerio et al. (2018); Bhushan Damodaran et al. (2018); Ackaouy et al. (2020); Al Chanti &
Mateus (2021); Rostami et al. (2020) and minimize it at the output of a shared encoder for direct distribution
alignment. The upside of this approach is that it requires less hyperparameter tuning. However, single-
Source UDA algorithms do not leverage inter-domain statistics when multiple source domains are present.
Therefore, extending single-source UDA algorithms to a multi-source federated setting is a non-trivial task
that requires careful consideration to mitigate the negative effect of distribution mismatches between several
source domains.

Multi-Source UDA is an extension to single-source UDA to benefit from multiple source domains to
enhance the model generalization on a single target domain Xu et al. (2018); Zhao et al. (2019); Tasar et al.
(2020); Gong et al. (2021). MSUDA is a more challenging problem due to variances across the source domains.
Xu et al. 2018 extended adversarial learning to MSUDA by first reducing the difference between source
and target domains using multi-way adversarial learning and then integrating the corresponding category
classifiers. Zhao et al. Zhao et al. (2019) extend this idea by introducing dynamic semantic consistency in
addition to using the pixel-level cycle-consistently towards the target domain. StandardGAN Tasar et al.
(2020) relies on adversarial learning but it standardizes data for each source and target domains so that all
domains share similar distributions to reduce the adverse effect of variances. Peng et al. 2019 align inter-
domain statistics of source domains in an embedding space to mitigate the effect of domain shift between
the source domains. Guo et al. 2018 adopt a meta-learning approach to combine domain-specific predictions,
while Venkat et al. Venkat et al. (2020) use pseudo-labels to improve domain alignment. Note that having
more source data in the MUDA setting does not necessarily lead to improved performance compared to
single-source UDA because negative transfer, where adaptation from one domain hinders performance in
another, can degrade the performance compared to using single-source UDA. Li et al. 2018 leverage domain
similarity to avoid negative transfer by utilizing model statistics in a shared embedding space. Zhu et al. 2019
align deep networks at different abstraction levels to achieve domain alignment. Wen et al. 2020 introduce a
discriminator to exclude data samples with a negative impact on generalization. Zhao et al. 2020 align target
features with source-trained features using optimal transport and combine source domains proportionally
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based on the optimal transport distance. mDALUA Gong et al. (2021) address the effect of negative transfer
using domain attention, uncertainty maximization, and attention-guided adversarial alignment.

3 Problem Formulation

Our focus in this work is to train a segmentation model for a target domain with the data distribution T ,
where only unannotated images are accessible, i.e., we observe unannotated samples DT = {xt

1, . . . , xt
nt}

from the target domain distribution T . Each data point x ∈ RW ×H×C in the input space is an W ×H × C
MRI image, where W, H, and C denote the width, height, and the number of channels for the image. The
goal is to segment an input image into semantic classes which are clinically meaningful, e.g., different organs
in a frame. Since training a segmentation model with unannotated images is an ill-posed problem, we
consider that we also have access to N distinct domains with the data distributions S1,S2 . . .SN , where
annotated segmented images are accessible in each domain, i.e., we have access to the annotated samples
DS

k = {(xs
k,1, ys

k,1), . . . , (xs
k,ns

k
, ys

k,ns
k
)}, where xs

k ∼ Sk and ∀i, j : Si ̸= Sj , Si ̸= T . Each point y in
the output space is a semantic mask with the same size of the input MRI images, prepared by a medical
professional. We consider a segmentation model fθ(·) : RW ×H×C → R|Y| with learnable parameters θ, e.g.,
3D U-Net Ahmad et al. (2021), that should be trained to map the input image into a semantic mask, where
|Y| is the number of shared semantic classes across the domains, determined by clinicians according to a
specific problem. It is crucial to note that the semantic classes are the same classes across all the domains.

To train a generalizable segmentation model with a single source domain, we can rely on the common
approach of UDA, where we adapt a source-trained model to generalize better on the target domain. To this
end, we can first train the segmentation model for the single source domain. This is a straightforward task
which can be performed using empirical risk minimization (ERM) on the corresponding annotated dataset:

θk = arg min
θ
LSL(fθ,DS

k ) = arg min
θ

1
ns

k

ns
k∑

i=1
Lce(fθ(xs

k,i), yk,i), (1)

where Lce denotes the cross-entropy loss. Because the target and source domains share the same semantic
classes, the source-trained model can be directly used on the target. However, its performance will degrade on
the target domain because of the distributional differences between the source domains and the target domain,
i.e., because Sk ̸= T . The goal in single-source UDA is to leverage the target domain unannotated dataset
and the source-trained model and adapt the model to have an enhanced generalization on the target domain.
The common strategy for this purpose is to map the data points from the source and the target domains
into a shared embedding space in which distributional differences are minimized. To model this process, we
consider that the base model fθ can be decomposed into an encoder subnetwork gu(·) : RW ×H×C → RdZ and
a classifier subnetwork hv(·) : RdZ → R|Y| with learnable parameters u and v, where f(·) = (h ◦ g)(·) and
θ = (u, v). In this formulation, the output-space of the encoder subnetwork models a latent embedding space
with dimension dZ . In a single-source UDA setting, we select a distributional discrepancy metric D(·, ·) to
define a cross-domain loss function and train the encoder by minimizing the selected metric. As a result,
the distributions of both domains become similar in the latent space and hence the source-trained classifier
subnetwork hk(·) will generalize on the target domain T . Many UDA methods have been developed using
this approach and we base our method for multi-source UDA on this solution for each of the source domains.

To address a multi-source UDA setting, a naive solution is to gather data from all source domains centrally
and create a single global source dataset, and then use single-source UDA. However, this approach is not
practical in medical domains due to strict regulations and concerns about data privacy and security which
prevent sharing data across different source domains. Even if data sharing were permitted, another major
challenge arises from the significant differences in data distributions and characteristics among source do-
mains. These differences can lead to negative knowledge transfer across the domains Wang et al. (2019).
Negative knowledge transfer can occur because information from some source domains might be irrelevant
or even harmful to the performance on the target domain. Additionally, the data from different source
domains could interfere with each other, further complicating the learning process. These issues create a
situation where finding a common representation that works effectively for all the source domains becomes
challenging. To address these challenges, our approach of choice is ensemble learning. Ensemble learning
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involves combining multiple models or learners to improve overall collective performance. In the context of
multi-source UDA, the idea is to develop individual single-source UDA models using each source domain
and then leverage the strengths of these models and combines their predictions to make a final prediction.

4 Proposed Multi-Source UDA Algorithm

Figure 1: Block-diagram of the proposed multi-UDA approach: (a) we train source-specific models for each
source domain based on ERM. (b) we perform single-source UDA for adapting each source-trained model
via distributional alignment in the shared embedding space (c) we aggregate the individual source-trained
model predictions to make the final prediction on the target domain predictions according to their reliability.

As illustrated in Figure 1, we follow a two-stage procedure to address multi-source UDA with MRI data.
We first solve N single-source UDA problems, each for one of the source domains. We then benefit from
an ensemble of these distinct models. To align the target distribution with a source domain distribution,
we use the Sliced Wasserstein Distance (SWD ) because it a suitable metric for deep learning optimization.
Because SWD has the nice property of having non-vanishing gradients Rabin et al. (2011). Moreover, SWD
can be computed using a closed-form solution from the empirical samples of two distributions:

W2(g(T ), g(Sk)) = 1
L

L∑
l=1

|⟨g(xt
il

), ϕl⟩ − ⟨g(xt
k,il

, ϕl⟩|2 (2)

where ϕl denotes a 1D projection direction and il, jl denote indices that correspond to the sorted projections.

We then solve the following optimization problem to adapt the model obtained from solving Eq. (1):

min
θ
LSL(fθ,DS

k ) + W2(gu(DS
k ), uu(DT )) (3)

where γ is a regularization parameter. The first term enforces the embedding space to remain discriminative
and the second term aligns the two distribution in the embedding space.

After completing the adaptation process for each source domain, each model can generate a distinct mask
on the target domain images. The key question in multi-source UDA is to obtain a solution that is better
than these single-source UDA solutions. We obtain the final model predictions for the target domain by
combining the probabilistic predictions from all N adapted models. We combine the model predictions in
a pixel-wise manner

∑n
i=1 wifθi

using mixing weights w = (w1, w2, . . . , wn), where 0 ≥ wi ≥ 1 and fθi

represents the adapted model corresponding to the ith source domain. This aggregation process allows for
benefiting from the source models without sharing data across the source domains. Choosing the appropriate
weight values is the key remaining challenge. We need to assign the weights such that the models that do not
generalize well could not adversely impact the quality of the aggregated segmentation mask. To address this
concern, we employ the concept of prediction confidence of the source model on the target domain as a proxy
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for the model generalization capability. To this end, we evaluate how confident the source model is when
making predictions on the target domain and consider the measured confidence in the aggregation process.
Intuitively, we reduce the contribution of less certain predictions. The rationale behind using prediction
confidence as a basis for weight assignment is supported by empirical evidence, which we have presented in
Section 6. We set a confidence threshold denoted as λ, tuned empirically, and compute the weight as follows:

w̃k ∼
nt∑

i=1

1(max f̃θk (xt
i) > λ), wk = w̃k/

∑
w̃k, (4)

where f̃(·) denotes the model output just prior to the final SoftMax layer. This output can be considered a
probability distribution which measures certainty well. If the prediction confidence of the kth model exceeds
λ, we assign wk to be a non-zero value to incorporate the predictions from that model into the final prediction
process. However, if the prediction confidence falls below the threshold, we assign wk to be zero.

Algorithm 1 Federated Multi-Source Unsupervised
Domain Adaptation

1: procedure Train(Si, T )
2: Train a 3D-UNet model
3: Learn fθi

and Mi by minimizing loss on Si

4: Tune fθi
on target domain T

5: Initialize wi with DICE(Mi)
6: return fθi , Mi, wi

7: procedure Ensemble(x, T , fθi , wi)
8: For target domain T , compute: M(x) ←

arg maxi wip(Mi(x)|x, fθi
)

9: Optimize wi to maximize DICE(M) on T

10: M ←
∑N

i=1
wiMi∑N

i=1
wi

return M

11: procedure MSUDA(S, T , x)
12: for each source domain Si in S do
13: fθi , Mi, wi ← Train(Si, T )
14: return Ensemble(x, T , fθi

, wi)

Note that we maintain data privacy during the ini-
tial stages of pretraining and adaptation by ensuring
that data samples are not shared between any two
source domains. When we aggregate the predictions
of the resulting models, we do not need the source
data at all. As a result, our approach is applicable
to medical domains when the source datasets are
distributed across multiple entities. Our approach
also allows for benefiting from new source domains
as new domains become available without requiring
retraining the models from scratch. To this end, we
only need to solve new single-source UDA problems.
We then update the normalized mixing weights us-
ing Equation 4 to benefit from the new domain to
continually enhance the segmentation accuracy. The
update process is efficient and incurs negligible run-
time compared to the actual model training. Hence,
we offers a federated learning solution. Our pro-
posed approach is named “Federated Multi-Source
UDA” (FMUDA), presented in Algorithm 1.

5 Theoretical analysis

We present an analysis to demonstrate that our proposed algorithm effectively minimizes an upper bound
for the error in the target domain. We adopt the framework developed by Redko & Sebban (2017) for
the single-source UDA problem. In this analysis, we consider a hypothesis space denoted as H, defined in
the embedding space, which encompasses all classifier subnetworks. Each domain-specific model’s learned
representation is represented by hk(·), where k denotes the specific domain. Additionally, we let eD(·),
where D ∈ {S1,S2, . . . ,Sn, T }, to represent the true expected error returned by a model h(·) ∈ H on the
domain D. Additionally, let µ̂Sk = 1

ns
k

∑ns
k

i=1 f(g(xs
k,i)) and µ̂T = 1

nt

∑nt

i=1 f(g(xt
i)) denote the empirical

distributions constructed using the samples from the source domain and the target domain in the latent
space, respectively. Based on this framework, we establish the following theorem for our method.

In essence, our analysis in the latent space aims to provide a solid theoretical foundation for the effectiveness
of our MUDA approach, demonstrating how it effectively minimizes the upper bound for the error in the
target domain. By leveraging this theoretical insight, we can gain a deeper understanding of the algorithm’s
capabilities and make more informed decisions when applying it to real-world domain adaptation tasks.
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Theorem 1. Consider Algorithm 1 for FMUDA under the explained conditions, then the following holds

eT (h) ≤
n∑

k=1

wkeSk (hk) + W2(µ̂T , µ̂Sk ) +
√(

2 log(1
ξ

)/ζ
)(√

1
Nk

+
√

1
M

)
+ eCk (h∗

k)) (5)

where Ck is the combined error loss with respect to domain k, and h∗
k is the optimal model with respect to

this loss when a shared model is trained jointly on annotated datasets from all domains simultaneously.

Proof: the complete proof is included in the Appendix.

We observe in Eq. (1) that Algorithm 1 is designed to minimize the right-hand side of Equation 5. For
each source domain, we minimize the source expected error by initially pre-training the models using ERM
on each source domain. While performing single-source UDA, the second term is minimized by reducing
the distributional gap between the source domains and the target domain in the latent space. The second
to last term depends on the number of available samples in the adaptation problem. It becomes negligible
when there are sufficient samples for training. The final term quantifies that the classes are shared across all
domains. For related domains, this term is negligible. By minimizing these terms, our algorithm efficiently
adapts the models to the target domain, leading to improved performance in the domain adaptation task.

6 Experimental Validation

Our code is available as a supplement: http//:SupressedforDoubleBlindReview. It contains hyperparam-
eter selection and the exact architecture we used.

6.1 Experimental Setup

Dataset: We use the MICCAI 2016 MS lesion segmentation challenge dataset Commowick et al. (2021)
in our experiments. This dataset contains MRI images from patients suffering from Multiple Sclerosis in
which images contain hyperintense lesions on FLAIR. The dataset incorporates images from different clinical
sites, each employing a different model of MRI scanner. This dataset has not been explored extensively in
UDA setting but each site can be naturally modeled as a domain for form a multi-source UDA setting. In
our experiments, we assume that each site has contributed images from five patients for training and ten
patients for testing. The dataset is divided into training and a testing image sets. Each patient’s data includes
high-quality segmentation maps derived from averaging manual annotations by seven independent manual
segmentation by expert radiologists. These maps present an invaluable resource for our experimentation,
offering the possibility of evaluation against gold standard used in clinical settings.

Preprocessing & Network Architecture: To maintain the integrity of our experiments, we have strictly
used the test images solely for the testing phase, ensuring they were not used into any part of the training,
validation, or adaptation processes. Following the literature on the MICCAI 2016 MS lesion segmentation
challenge, we subjected the raw MRI images to several preliminary pre-processing procedures prior to using
them as inputs for the segmentation network for enhanced performance. The procedures for each patient
included (i) denoising of MRI images using the non-local means algorithm Coupé et al. (2008), (ii) rigid
registration in relation to the FLAIR modality, performed to preserve the relative distance between every
pair of points from the patient’s anatomy to achieve correspondence, (iii) skull-stripping to remove the skull
and non-brain tissues from the MRI images that are irrelevant to the task, and (iv) bias correction to reduce
variance across the image. To accomplish these steps, we utilized Anima 1, a publicly accessible toolkit
for medical image processing developed by the Empenn research team at Inria Rennes2. We employed
a 3D-UNet architecture Isensee et al. (2018) as our segmentation model (please refer to the Appendices
for the detailed architecture visualization) which is an improved version of the original UNet architecture
Ronneberger et al. (2015b) to benefit from spatial dependencies in all directions. To ensure uniformity across
the dataset, images were resampled to share a consistent size of 128 × 128 × 128. From these images, 3D
patches of size 16× 16× 16 were extracted with a patch overlap of 50%, resulting in a total of 4,096 patches

1https://anima.irisa.fr/
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per image. Although using overlapping 3D patches contain more surrounding information for a voxel which
in turn is memory demanding, but training on patches containing lesions allowed us to reduce training time
because the inputs become smaller while simultaneously addressing the issue of class imbalance.

Evaluation: Following the literature, we used the Dice score to measure the similarity between the gener-
ated results and the provided ground truth masks. It is a full reference measured defined as 2·|X∩Y |

|X|+|Y | , where
X and Y are the segmentation masks of the predicted and ground truth images, respectively. The Dice score
ranges from 0 to 1, where a score of 1 indicates perfect overlap and 0 signifies no overlap. This metric is
particularly suitable for evaluating segmentation tasks, as it quantifies how well the segmented regions match
the ground truth, accounting for both false positives and false negative scenarios. To make our comparisons
statistically meaningful, we repeated our experiments five times and reported both the average performance.

Baselines for Comparison: There are not many prior works in the literature on the problem we explored.
To provide a comprehensive evaluation of the proposed method and measure its competitiveness, we have set
up a series of comparative baselines. These baselines have been selected not only to represent standard and
popular strategies in image adaptation and prediction but also to highlight the uniqueness and advantages
of our approach. Additionally, some of these baselines serve as ablative experiments that demonstrate all
components of our algorithm are important for optimal performance. We use four baselines to compare
with our methods: (i) Source-Trained Model (SUDA): It represents the performance of the best trained
model using single-source UDA for target domain. This baselines serves as an ablative experiment because
improvements over this baseline demonstrate the effectiveness of using multi-source UDA. (ii) Popular
Voting (PV): It represents assigning the label for each pixel based on the majority votes of the individual
single-source adapted models. When the votes are equal, we assign the label randomly. Majority voting
considers all the models to be used equally. Improvements over this baseline demonstrate the effectiveness
of our ensemble technique because it is the simplest idea that comes to our mind. (iii) Averaging (AV):
Under this baseline, prediction image results from taking the average prediction of the single-source adapted
models. This method can be particularly useful when the predictions are continuous or when there’s the
same amount of uncertainty in individual model predictions. This baseline can also serve as an ablative
experiments because improvements over this baseline demonstrate that treating all source domains equally
and using uniform combination weights is not an optimal strategy (iv) SegJDOT Ackaouy et al. (2020):
to the best of our knowledge, this is the only prior comparable method in the literature that addresses
multi-source UDA for semantic segmentation of MRI images. There are other multi-source UDA techniques
but those methods are developed for classification tasks and adopting them for semantic segmentation is
not trivial. This baseline is a multi-source UDA method which uses a different strategy to fuse information
from several source domains based on re-weighting the adaptation loss for each single-source UDA problem
alignment loss function and tuning the weights for optimal multi-source performance. A benefit that our
approach offers compared to SegJDOT is that we do not need simultaneous access to all source domain data.

6.2 Comparative and Ablative Experiments

Method → 07
SUDA 0.199
PV 0.022
AV 0.103
SegJDOT 0.315
FMUDA 0.455

(a) Source 1 & Source 8

Method → 08
SUDA 0.249
PV 0.152
AV 0.068
SegJDOT 0.418
FMUDA 0.405

(b) Source 1 & Source 7

Method → 01
SUDA 0.101
PV 0.017
AV 0.029
SegJDOT 0.385
FMUDA 0.425

(c) Source 7 & Source 8

Table 1: Performance comparison (in terms of DICE metric) for multi-source UDA problems defined on the
MICCAI 2016 MS lesion segmentation challenge dataset.

Table 1 provides an overview of our comparative results. We have provided results for all the three possible
multi-source UDA problems, wherein each instance involves designating two domains as source domains
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and the third domain in the dataset as the target domain. We report the downstream performance on
the target domain for each UDA problem in Table 1. We have followed the original dataset to use “01”,
“07”, and “08” to refer to the domains (sources) in the dataset. Upon careful examination, it is evident
FMUDA stands out by delivering state-of-the-art (SOTA) performance across all the three multi-source
UDA tasks. Particularly, improvements over SUDA is significant which demonstrate the advantage of our
approach. A notable finding is also the substantial performance gap between FMUDA and PV or AV.
This discrepancy serves as compelling evidence for the effectiveness and indispensability of our ensemble
approach in ensuring superior model performance. It emphasizes that the careful integration of information
from multiple source domains, as facilitated by FMUDA, contributes significantly to overall multi-domain
UDA successful strategy. The comparison between PV and AV against SUDA reveals that multi-source
UDA is not inherently a superior method when aggregation is not executed properly. PV and AV exhibit
underperformance in comparison to SUDA, emphasizing the importance of a well-crafted aggregation strategy
in realizing the potential benefits of multi-source UDA to mitigate the effect of negative knowledge transfer.
Underperformance compared SUDA suggests that interference between source domains is a major challenge
that needs to be addressed in multi-source UDA. SegJDOT addresses this challenge and exhibits a better
performance but not as good as FMUDA. We think this superiority stems from the fact that FMUDA uses
distinct models for each source domain. In summary, our findings suggest that our FMUDA is not only a
competitive method but also compares favorably against alternative methods.

Figure 2: Segmentation masks generated for a sample MRI image when Source “01” is used as the source
domain in UDA. In each figure, the colored area shows the mask generated by each UDA model.

To offer a more intuitive comparison and provide a deeper insight about the comparative experiments, Figure
2 showcases segmentation results along with the original segmentation mask of radiologists when Source “01”
is served as the target domain and Sources “07” and “08” are used as the UDA source domains. Through
inspecting the second and the third columns, we note that the performance of the single-source UDA methods
is quite different. While source “08” leads to a decent performance, source “07” does not lead to a good
UDA performance. This observation is not surprising because UDA is effective when the source and the
target domain share distributional similarities and this example suggests that source “07” is not a good
source domain to perform segmentation in on source “01”. We can understand why the best single-source
UDA method can have a better performance. Additionally, this example demonstrates that as opposed to
intuition, using more source domains does not necessarily lead to improved UDA performance due to the
possibility of negative knowledge transfer across the domains. In situations in which the source domains are
diverse, aggregation techniques such as averaging or majority vote are not going to be very effective because
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Figure 3: Distribution matching in the embedding space: we use UMAP for visualization of data represen-
tations when Source “07” in the dataset is used as the UDA source domain and Source “01” of the dataset is
used as the UDA target domain: (Left) source domain; (Center) target domain prior to single-source model
adaptation; and (Right) target domain after single-source model adaptation

unintentionally we will give a high contribution to the source domains with low-performance when generating
the aggregated mask. Hence, it is possible that the aggregated performance is dominated by the worse single-
UDA performance. It is even possible to have a performance less than all single-source UDA models when
individual single-source UDA domain models lead to inconsistent predictions. Note that majority voting also
can fail because the majority of the models can potentially be low-confidence models. In other words, multi-
source UDA should be performed such that good source domains contribute the most when the aggregated
mask is generated. In the absence of such a strategy, the multi-source UDA performance can even lead to
a lower performance than single-source UDA. The strength of FMUDA is that, as it can be seen in Figure
2, it can aggregate the generated single-source UDA masks such that the aggregated mask would become
better than the mask generated by each of the single-source UDA models. For example, although Source
“08” model leads to a relatively good performance, it misses to segment two regions in the upper-half of
the brain image. The multi-source UDA model, can at least partially include these regions using the “07”
model. This improvement stems from using the “8” domain which is confident on those regions.

To offer an intuitive insight about the way that our approach works, Figure 3 illustrates the affect of domain
alignment on the geometry of the data representations in the shared embedding space. In this figure, we have
reduced the dimension of data representations in the shared embedding space using UMAP tool McInnes
et al. (2018) to two for visualization purpose. In this figure, we showcase the latent embeddings of data
points for the source domain (Source “08” in the dataset) and the target domain (Source “01” in the
dataset) both before and after adaptation to study the impact of single-source UDA on the geometry of data
representations. Each point in the figure corresponds to a pixel. Through careful visual inspection, we see
that FMUDA effectively minimizes the distance between the empirical distributions of the target domain and
the source domain after adaptation, leading to learning a domain-agnostic embedding space at the output-
space of the encoder. Although the eventual mask is generated by aggregating several models, alignment
of single-source UDA distribution pairs can translate into an enhanced collective performance because each
model become more confident after performing single-source UDA. The empirical evidence reinforces the
theoretical basis of our approach because according to Eq. 5, minimizing pair-wise distributional distances
tightens the upperbound in Eq. 5. This experiment highlights the efficacy of FMUDA in facilitating domain
adaptation and improving the overall performance across diverse domains.

In addition to the exploration of multi-source UDA setting, we conducted single-domain UDA experiments
and compared our results against SegJDOT, showcasing the competitiveness of our proposed approach in this
scenario. The results of these experiments are summarized in Table 2, where we present performance results
for six distinct pairwise single-source UDA problems defined on the dataset. To ensure a fair evaluation,
we aligned the training/testing pairs with those used in SegJDOT. The observation from the results is that
our proposed approach consistently outperformed SegJDOT. Notably, when considering the average DICE
score across these tasks, our approach exhibited a remarkable ≈ 20% improvement over the SegJDOT. This
heightened performance is because SegJDOT relies on optimal transport for domain alignment, but our
approach leverages SWD for distribution alignment. The inherent characteristics of SWD contribute to the
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improved adaptability and effectiveness of our method. This experiment demonstrate a second angle of our
novelty in using SWD for solving UDA for semantic segmentation. Our proposed is a competitive method for
single-source UDA for problems involving semantic segmentation. These results indicates that our improved
performance in the case of multi-source UDA also stems from performing single-source UDA better.

Method → 07 → 08 Avg.
Pre-Adapt 0.090 0.430 0.260
SegJDOT 0.110 0.470 0.290
FMUDA 0.452 0.418 0.435

(a) Source 1

Method → 01 → 08 Avg.
Pre-Adapt 0.430 0.390 0.410
SegJDOT 0.450 0.440 0.445
FMUDA 0.484 0.442 0.463

(b) Source 7

Method → 01 → 07 Avg.
Pre-Adapt 0.350 0.070 0.210
SegJDOT 0.450 0.290 0.370
FMUDA 0.483 0.458 0.471

(c) Source 8

Table 2: Performance comparison (in terms of DICE metric) for single-source UDA tasks defined on the
MICCAI 2016 MS lesion segmentation challenge dataset.

6.3 Analytic Experiments

In Figure 4, we first study the dynamics of our adaptation strategy on the model performance under the
utilization of Source “01” as the source domain. In this figure, we have visualized the training loss and the
target domain performance versus training epochs. We observe a consistent pattern in both domains: pre-
training on the source domain consistently enhances performance in the target domains due to cross-domain
similarities. Furthermore, a notable uptick in target domain accuracies becomes evident as the adaptation
process initiates. This observation aligns well with our theoretical framework, wherein the augmentation of
target accuracy corresponds to the concurrent reduction in the distributional discrepancy loss.

(a) Target “07” (b) Target “08”

Figure 4: Effect of the pretraining and adaptation process on the target domain performance (yellow curve)
and the training loss (blue curve).

Finally, we studied the sensitivity of our performance with respect to major hyperparameters that we have.
We study the effect of the value of confidence parameter lambda on the downstream performance. This
parameters acts as a threshold to filter out noises in images from multiple site. To this end, we have
measured the model performance versus the value of λ on each target domain. Figure 5 presents the results
for this study. We observe that the value for this parameter is important and selecting it properly is very
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important. Based on the observations, we conclude λ = 0.3 is a suitable initial value for this parameter in
our experiments. We can also use the validation set to tune this parameter for an optimal performance.

(a) Source “01” (b) Source “07” (c) Source “08”

Figure 5: Mode Performance versus the value for the hyperparameter λ.

We also investigate the influence of the SWD projection hyper-parameter, denoted as L in definition of SWD
in Equation 2. While a larger value of L results in a more precise approximation of the SWD metric, it also
comes with the drawback of increased computational load to compute SWD. Our objective is to determine
whether there exists a range of L values that provides satisfactory adaptation performance and to scrutinize
the impact of this parameter. To this end, we use two UDA tasks, as illustrated in Figure 6. We present
our findings based on a range of L values L ∈ 1, 25, 50, 100, 150, 200, 250. As anticipated, tightening the
SWD approximation by increasing the number of projections results in improved performance. However,
we observe that beyond a certain threshold, approximately when L ≈ 50, the performance gains become
marginal and the algorithm becomes almost insensitive. Consequently, L = 50 is a good choice for this
particular hyper-parameter to balance the computational efficiency and adaptation performance.

(a) Target “07” (b) Target “08”

Figure 6: Performance in target domain versus the number of projections used in computing SWD.

7 Conclusion

We developed a multi-source UDA method for segmentation of medical images, when the source domain
images are distributed. Our algorithm is a two-stage algorithm. In the first stage, we use SWD metric to
match the distributions of the source and the target domain in a shared embedding space modeled as the
output of a shared encoder. As a result, we will have one adapted model per each target-source domain pair.
In the second stage, the segmentation masks generated by these models are aggregated based on the reliability
of each model to build a final segmentation map that is more accurate than all the individually generated
single-source UDA masks. The validity of our algorithm is supported by both theoretical analysis and
experimental results on real-world medical images. Our experiments showcase the competitive performance
of our algorithm when compared to SOTA alternatives. Our algorithm also maintains data privacy across
the source domains because source domains do not share data. Future endeavors involve exploring scenarios
where the data for source domains is fully private and cannot be shared with the target domain.
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A Appendix

A.1 Optimal Transport for Domain Adaptation

Optimal Transport (OT) is a probability metric based on determining an optimal transportation of proba-
bility mass between two distributions. Given two probability distributions µ and ν over domains X and Y ,
OT is defined as:

W (µ, ν) = inf
γ∈Π(µ,ν)

∫
X×Y

d(x, y)dγ(x, y) (6)

where Π(µ, ν) represents the set of all joint distributions γ(x, y) with marginals µ and ν on X and Y ,
respectively. The transportation cost is denoted as d(·, ·), which can vary based on the specific application.
For instance, in many UDA methods, the Euclidean distance is used. However, computing the OT involves
solving a complex optimization problem and can be computationally burdensome. Alternatively, SWD
reduces the computational complexity while retaining the foundational benefits of OT.

A.2 Proof of Theorem

Our proof is built upon the following theorem, proposed for sinlge-source UDA:

Theorem 2. Theorem 2 from Redko & Sebban (2017)

Let h be the hypothesis learnt by our model, and h∗ the hypothesis that minimizes eS + eT . Under the
assumptions described in our framework, consider the existence of N source samples and M target samples,
with empirical source and target distributions µ̂S and µ̂T in Rd. Then, for any d′ > d and ζ <

√
2, there

exists a constant number N0 depending on d′ such that for any ξ > 0 and min(N, M) ≥ N0 max(ξ−(d′+2), 1)
with probability at least 1− ξ, the following holds:

eT (h) ≤eS(h) + W (µ̂T , µ̂S)+√(
2 log(1

ξ
)/ζ

)(√
1
N

+
√

1
M

)
+ eC(h∗),

(7)

, where eC = eS(h∗)+eT (h∗) is the performance of an optimal hypothesis on the present set of samples when
labeled samples from both domains are used at the same time to train a model jointly on both domains.

We adapt the result in Theorem 2 to provide an upper bound in our multi-source setting. Consider the
following two results.

Lemma 1. Let h be the hypothesis describing the multi-source model, and let hk be the hypothesis learnt for
a source domain k. If eT (h) is the error function for hypothesis h on domain T , then

eT (h) ≤
n∑

k=1
wkeT (hk) (8)

Proof. Let p(X) =
∑n

k=1 wkfk(X) with
∑

wk = 1, wk > 0 be the probabilistic estimate returned by our
model for some input X. Also, consider that y is the label associated with this input, then:
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eT (h) = E(X,y)∼T Lce(p(X), 1y) = E(X,y)∼T − log p(X)[y] = E(X,y)∼T − log(
n∑

k=1
wkfk(X)[y])

≤ E(X,y)∼T

n∑
k=1

wk(− log fk(X)[y]) Jensen’s Ineq.

=
n∑

k=1
wkE(X,y)∼T Lce(fk(x), 1y) =

n∑
k=1

wkeT (hk)

Given the above, the proof for Theorem 1 follows straightforwardly:

Proof.

eT (h) ≤
n∑

k=1
wkeT (hk) From Lemma 1

≤
n∑

k=1
wk(eSk

(hk) + W (µ̂T , µ̂Sk
) +

√(
2 log(1

ξ
)/ζ

)(√
1

Nk
+

√
1

M

)
+ eCk

(h∗
k)) by Theorem 2

A.3 The Segmentation Architecture

Figure 7 presents the architecture of the 3D U-Net that we used in our experiments.

Figure 7: 3D-UNET architecture
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A.4 Details of Setting the Optimization Method

We used ADAM because it is well-suited for problems that are large in scale and have sparse gradients. It
combines the advantages of both Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Propa-
gation (RMSProp), allowing it to handle non-stationary objectives and noisy gradients.

• Initialization: We initialized the weights to be optimized and set hyperparameters such as the
learning rate, first and second moment estimates, and smoothing terms according to common best
practices.

• Iteration: During each iteration, the optimizer computes the gradients of the Dice score with
respect to the weights, and updates the weights in a direction that is expected to increase the Dice
score.

• Adaptive Learning Rates: ADAM dynamically adjusts the learning rates during optimization,
using both momentum (moving average of the gradient) and variance scaling. This makes it robust
to changes in the landscape of the objective function.

• Termination Criteria: The optimization was terminated upon convergence, which could be de-
termined by a number of epochs or a tolerable change in the Dice score.
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