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ABSTRACT

Uncertainty quantification is crucial for building reliable and trustable machine
learning systems. We propose to estimate uncertainty in recurrent neural networks
(RNNs) via stochastic discrete state transitions over recurrent timesteps. The un-
certainty of the model can be quantified by running a prediction several times,
each time sampling from the recurrent state transition distribution, leading to po-
tentially different results if the model is uncertain. Alongside uncertainty quantifi-
cation, our proposed method offers several advantages in different settings. The
proposed method can (1) learn deterministic and probabilistic automata from data,
(2) learn well-calibrated models on real-world classification tasks, (3) improve
the performance of out-of-distribution detection, and (4) control the exploration-
exploitation trade-off in reinforcement learning. An implementation is available.1

1 INTRODUCTION

Machine learning models are well-calibrated if the probability associated with the predicted class
reflects its correctness likelihood relative to the ground truth. The output probabilities of modern
neural networks are often poorly calibrated (Guo et al., 2017). For instance, typical neural networks
with a softmax activation tend to assign high probabilities to out-of-distribution samples (Gal &
Ghahramani, 2016b). Providing uncertainty estimates is important for model interpretability as it
allows users to assess the extent to which they can trust a given prediction (Jiang et al., 2018).
Moreover, well-calibrated output probabilities are crucial in several use cases. For instance, when
monitoring medical time-series data (see Figure 1(a)), hospital staff should also be alerted when
there is a low-confidence prediction concerning a patient’s health status.

Bayesian neural networks (BNNs), which place a prior distribution on the model’s parameters, are
a popular approach to modeling uncertainty. BNNs often require more parameters, approximate
inference, and depend crucially on the choice of prior (Gal, 2016; Lakshminarayanan et al., 2017).
Applying dropout both during training and inference can be interpreted as a BNN and provides
a more efficient method for uncertainty quantification (Gal & Ghahramani, 2016b). The dropout
probability, however, needs to be tuned and, therefore, leads to a trade-off between predictive error
and calibration error.

Sidestepping the challenges of Bayesian NNs, we propose an orthogonal approach to quantify the
uncertainty in recurrent neural networks (RNNs). At each time step, based on the current hidden
(and cell) state, the model computes a probability distribution over a finite set of states. The next
state of the RNN is then drawn from this distribution. We use the Gumbel softmax trick (Gumbel,
1954; Kendall & Gal, 2017; Jang et al., 2017) to perform Monte-Carlo gradient estimation. Inspired
by the effectiveness of temperature scaling (Guo et al., 2017) which is usually applied to trained
models, we learn the temperature τ of the Gumbel softmax distribution during training to control
the concentration of the state transition distribution. Learning τ as a parameter can be seen as
entropy regularization (Szegedy et al., 2016; Pereyra et al., 2017; Jang et al., 2017). The resulting
model, which we name ST-τ , defines for every input sequence a probability distribution over state-
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Figure 1: (a) Prediction uncertainty of ST-τ , our proposed method, for an ECG time-series based
on 10 runs. To the left of the red line ST-τ classifies a heart beat as normal. To the right of the
red line, ST-τ makes wrong predictions. Due to its drop in certainty, however, it can alert medical
personnel. (b) Given a sentence with negative sentiment, ST-τ reads the sentence word by word.
The y-axis presents the model’s confidence of the sentence having a negative sentiment. After the
first few words, the model leans towards a negative sentiment, but is uncertain about its prediction.
After the word “mess,” its uncertainty drops and it predicts the sentiment as negative.

transition paths similar to a probabilistic state machine. To estimate the model’s uncertainty for a
prediction, ST-τ is run multiple times to compute mean and variance of the prediction probabilities.

We explore the behavior of ST-τ in a variety of tasks and settings. First, we show that ST-τ can learn
deterministic and probabilistic automata from data. Second, we demonstrate on real-world classi-
fication tasks that ST-τ learns well calibrated models. Third, we show that ST-τ is competitive in
out-of-distribution detection tasks. Fourth, in a reinforcement learning task, we find that ST-τ is able
to trade off exploration and exploitation behavior better than existing methods. Especially the out-
of-distribution detection and reinforcement learning tasks are not amenable to post-hoc calibration
approaches (Guo et al., 2017) and, therefore, require a method such as ours that is able to calibrate
the probabilities during training.

2 UNCERTAINTY IN RECURRENT NEURAL NETWORKS

2.1 BACKGROUND

An RNN is a function f defined through a neural network with parameters w that is applied over time
steps: at time step t, it reuses the hidden state ht−1 of the previous time step and the current input xt
to compute a new state ht, f : (ht−1,xt)→ ht. Some RNN variants such as LSTMs have memory
cells ct and apply the function f : (ht−1, ct−1,xt) → ht at each step. A vanilla RNN maps two
identical input sequences to the same state and it is therefore not possible to measure uncertainty of
a prediction by running inference multiple times. Furthermore, it is known that passing ht through a
softmax transformation leads to overconfident predictions on out-of-distribution samples and poorly
calibrated probabilities (Guo et al., 2017). In a Bayesian RNN the weight matrices w are drawn
from a distribution and, therefore, the output is an average of an infinite number of models. Unlike
vanilla RNNs, Bayesian RNNs are stochastic and it is possible to compute average and variance for a
prediction. Using a prior to integrate out the parameters during training also leads to a regularization
effect. However, there are two major and often debated challenges of BNNs: the right choice of prior
and the efficient approximation of the posterior.

With this paper, we side-step these challenges and model the uncertainty of an RNN through proba-
bilistic state transitions between a finite number of k learnable states s1, ..., sk. Given a state ht, we
compute a probability distribution over the learnable states. Hence, for the same state and input, the
RNN might move to different states in different runs. Instead of integrating over possible weights, as
in the case of BNNs, we sum over all possible state sequences and weigh the classification probabil-
ities by the probabilities of these sequences. Figure 2 illustrates the proposed approach and contrasts
it with vanilla and Bayesian RNNs. The proposed method combines two building blocks. The first
is state-regularization (Wang & Niepert, 2019) as a way to compute a probability distribution over a
finite set of states in an RNN. State-regularization, however, is deterministic and therefore we utilize
the second building block, the Gumbel softmax trick (Gumbel, 1954; Maddison et al., 2017; Jang
et al., 2017) to sample from a categorical distribution. Combining the two blocks allows us to create
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Figure 2: Illustration of several ways to model uncertainty in recurrent models. Left, top: In
standard recurrent models the sequence of hidden states is identical for any two runs on the same
input. Uncertainty is typically modeled with a softmax distribution over the classes (here: accept
and reject). Left, bottom: Bayesian NNs make the assumption that the weights are drawn from a
distribution. Uncertainty is estimated through model averaging. Right: The proposed class of RNNs
assumes that there is a finite number of states between which the RNN transitions. Uncertainty for
an input sequence is modeled through a probability distribution over possible state-transition paths.

a stochastic state RNN which can model uncertainty. Before we formulate our method, we first
introduce the necessary two building blocks.

Deterministic State-Regularized RNNs. State regularization (Wang & Niepert, 2019) extends
RNNs by dividing the computation of the hidden state ht into two components. The first compo-
nent is an intermediate vector ut ∈ Rd computed in the same manner as the standard recurrent
component, ut = f (ht−1, ct−1,xt). The second component models probabilistic state transitions
between a finite set of k learnable states s1, . . . , sk, where si ∈ Rd, i ∈ [1, k] and which can also
be written as a matrix St ∈ Rd×k. St is randomly initialized and learnt during backpropagation
like any other network weight. At time step t, given an ut, the transition over next possible states
is computed by: θt = ϕ(St,ut), where θt = {θt,1, ..., θt,k} and ϕ is some pre-defined function.
In Wang & Niepert (2019), ϕ was a matrix-vector product followed by a SOFTMAX function that
ensures

∑k
i=1 θt,i = 1. The hidden state ht is then computed by

ht = g(θt) · S>t , ht ∈ Rd, (1)

where g(·) is another function, e.g. to compute the average. Because Equation (1) is deterministic,
it cannot capture and estimate epistemic uncertainty.

Monte-Carlo Estimator with Gumbel Trick. The Gumbel softmax trick is an instance of a path-
wise Monte-Carlo gradient estimator (Gumbel, 1954; Maddison et al., 2017; Jang et al., 2017).
With the Gumbel trick, it is possible to draw samples z from a categorical distribution given by
paramaters θ, that is, z = ONE HOT

(
arg maxi[γi + log θi]

)
, i ∈ [1 . . . k], where k is the number

of categories and γi are i.i.d. samples from the GUMBEL(0, 1), that is, γ = − log(− log(u)), u ∼
UNIFORM(0, 1). Because the arg max operator breaks end-to-end differentiability, the categorical
distribution z can be approximated using the differentiable softmax function (Jang et al., 2017;
Maddison et al., 2017). This enables us to draw a k-dimensional sample vector α ∈ ∆k−1, where
∆k−1 is the (k − 1)-dimensional probability simplex.

2.2 STOCHASTIC FINITE-STATE RNNS (ST-τ )

Our goal is to make state transitions stochastic and uitilize them to measure uncertainty: given
an input sequence, the uncertainty is modeled via the probability distribution over possible state-
transition paths (see right half of Figure 2). We can achieve this by setting ϕ to be a matrix-vector
product and using θt to sample from a Gumbel softmax distribution with temperature parameter τ .
Applying Monte Carlo estimation, at each time step t, we sample a distribution over state transition
probabilities αt from the Gumbel softmax distribution with current parameter τ , where each state
transition has the probability

αt,i =
exp((log(θt,i) + γi)/τ)∑k
j=1 exp((log(θt,j) + γj)/τ)

, i ∈ [1 . . . k]. (2)

The resulting αt = {αt,1, ..., αt,k} can be seen as a probability distribution that judges how
important each learnable state st is. The new hidden state ht can now be formed either as
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Figure 3: One step of ST-τ (for batch size b = 1). First, previous hidden state ht−1, previous cell
state ct−1 (if given) and input xt, are passed into an RNN cell (e.g. LSTM). The RNN cell returns
an updated hidden state ut and cell state ct. Second, ut is further processed by using the learnable
states matrix St in the state transition step (Right) and returns a new hidden state ht.

an average, ht =
∑k
i=1 αt,isi (the “soft” Gumbel estimator), or as a one-hot vector, ht =

ONE HOT
(

arg maxi[log(θt,i) + γi]
)
. For the latter, gradients can be estimated using the straight-

through estimator. Empirically, we found the average to work better. By sampling from the Gumbel
softmax distribution at each time step, the model is stochastic and it is possible to measure variance
across predictions and, therefore, to estimate epistemic uncertainty. For more theoretical details we
refer the reader to Appendix 2.3.

The parameter τ of the Gumbel softmax distribution is learned during training (Jang et al., 2017).
This allows us to directly adapt probabilistic RNNs to the inherent uncertainty of the data. In-
tuitively, the parameter τ influences the concentration of the categorical distribution, that is, the
larger τ the more uniform the distribution. Since we influence the state transition uncertainty with
the learned temperature τ , we refer to our model as ST-τ . We provide an ablation experiment of
learning τ versus keeping it fixed in Appendix E.

Figure 3 illustrates the proposed model. Given the previous hidden state of an RNN, first an interme-
diate hidden state ut is computed using a standard RNN cell. Next, the intermediate representation
ut is multiplied with k learnable states arranged as a matrix St, resulting in θt. Based on θt, sam-
ples are drawn from a Gumbel softmax distribution with learnable temperature parameter τ . The
sampled probability distribution represents the certainty the model has in moving to the other states.
Running the model on the same input several times (drawing Monte-Carlo samples) allows us to
estimate the uncertainty of the ST-τ model.

2.3 ALEATORIC AND EPISTEMIC UNCERTAINTY

Let Y be a set of class labels and D be a set of training samples. For a classification problem and a
given ST-τ model with states {s1, ..., sk}, we can write for every y ∈ Y

p(y | x = 〈x1, ...,xn〉) =
∑

〈h1,...,hn〉∈Ψ

p(〈h1, ...,hn〉 | x) q (y | hn) (3)

where hi ∈ {s1, ..., sk} and the sum is over all possible paths (state sequences) Ψ of length n. More-
over, p(〈h1, ...,hn〉 | x) is the probability of path ψ = 〈h1, ...,hn〉 ∈ Ψ given input sequence x and
q (y | hn) is the probability of class y given that we are in state hn. Instead of integrating over possi-
ble weights, as in the case of BNNs, with ST-τ we integrate (sum) over all possible paths and weigh
the class probabilities by the path probabilities. The above model implicitly defines a probabilistic
ensemble of several deterministic models, each represented by a particular path. As mentioned in
a recent paper about aleatoric and epistemic uncertainty in ML (Hüllermeier & Waegeman, 2019):
“the variance of the predictions produced by an ensemble is a good indicator of the (epistemic)
uncertainty in a prediction.”

Let us now make this intuition more concrete using recently proposed measures of aleatoric and
epistemic uncertainty (Depeweg et al., 2018); further discussed in (Hüllermeier & Waegeman,
2019). In Equation (19) of (Hüllermeier & Waegeman, 2019) the total uncertainty is defined as the
entropy of the predictive posterior distribution

H [p(y | x)] = −
∑
y∈Y

p(y | x) log2 p(y|x).

The above term includes both aleatoric and epistemic uncertainty (Depeweg et al., 2018;
Hüllermeier & Waegeman, 2019). Now, in the context of Bayesian NNs, where we have a dis-
tribution over the weights of a neural network, the expectation of the entropies wrt said distribution
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Figure 4: Two different probabilistic finite-state RNNs.

is the aleatoric uncertainty (Equation 20 in Hüllermeier & Waegeman (2019)):

Ep(w|D)H [p(y | w,x)] = −
∫
p(w | D)

∑
y∈Y

p(y | w,x) log2 p(y | w,x)

 dw.

Fixing the parameter weights to particular values eliminates the epistemic uncertainty. Finally, the
epistemic uncertainty is obtained as the difference of the total and aleatoric uncertainty (Equation
21 in Hüllermeier & Waegeman (2019)):

ue(x) := H [p(y | x)]−Ep(w|D)H [p(y | w,x)] .

Now, let us return to finite-state probabilistic RNNs. Here, the aleatoric uncertainty is the expecta-
tion of the entropies with respect to the distribution over the possible paths Ψ:

Ep(ψ|x)H [p(y | ψ,x)] = −
∑
ψ∈Ψ

p(ψ | x)

∑
y∈Y

p(y | ψ,x) log2 p(y | ψ,x)

 ,

where p(y | ψ,x) is the probability of class y conditioned on x and a particular path ψ. The
epistemic uncertainty for probabilistic finite-state RNNs can then be computed by

ue(x) := H [p(y | x)]−Ep(ψ|x)H [p(y | ψ,x)] .

Probabilistic finite-state RNNs capture epistemic uncertainty when the equation above is non-zero.
As an example let us take a look at the two ST-τ models given in Figure 4. Here, we have for
input x two class labels y1 and y2, three states (si, i ∈ {0, 1, 2}), and two paths. In both cases,
we have that H [p(y | x)] = − (0.3 log2 0.3 + 0.7 log2 0.7) ≈ 0.8813. Looking at the term for
the aleatoric uncertainty, for the ST-τ depicted on the left side we have Ep(ψ|x)H [p(y | ψ,x)] =
− (0.3 log2 0.3 + 0.7 log2 0.7) ≈ 0.8813. In contrast, for the ST-τ depicted on the right side we have
Ep(ψ|x)H [p(y | ψ,x)] ≈ 0.7345. Consequently, the left side ST-τ has an epistemic uncertainty of
ue(x) = 0 but the right side ST-τ exhibits an epistemic uncertainty of ue(x) = 0.1468.

This example illustrates three main observations. First, we can represent epistemic uncertainty
through distributions over possible paths. Second, the more spiky the transition distributions, the
more deterministic the behavior of the ST-τ model, and the more confident it becomes with its pre-
diction by shrinking the reducible source of uncertainty (epistemic uncertainty). Third, both models
are equally calibrated as their predictive probabilities are, in expectation, identical for the same
inputs. Hence, ST-τ is not merely calibrating predictive probabilities but also captures epistemic
uncertainty. Finally, we want to stress the connection between the parameter τ (the temperature)
and the degree of (epistemic) uncertainty of the model. For small τ the ST-τ model behavior is more
deterministic and, therefore, has a lower degree of epistemic uncertainty. For instance, the ST-τ on
the left in Figure 4 has 0 epistemic uncertainty because all transition probabilities are deterministic.
Empirically, we find that the temperature and, therefore, the epistemic uncertainty often reduces
during training, leaving the irreducible uncertainty (aleatoric) to be the main source of uncertainty.

3 RELATED WORK

Uncertainty. Uncertainty quantification for safety-critical applications (Krzywinski & Altman,
2013) has been explored for deep neural nets in the context of Bayesian learning (Blundell et al.,
2015; Gal & Ghahramani, 2016b; Kendall & Gal, 2017; Kwon et al., 2018). Bayes by Back-
prop (BBB) (Blundell et al., 2015) is a variational inference scheme for learning a distribution
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over weights w in neural networks and assumes that the weights are distributed normally, that is,
wi ∼ N (µ, σ2). The principles of bayesian neural networks (BNNs) have been applied to RNNs and
shown to result in superior performance compared to vanilla RNNs in natural language processing
(NLP) tasks (Fortunato et al., 2017). However, BNNs come with a high computational cost because
we need to learn µ and σ for each weight in the network, effectively doubling the number of param-
eters. Furthermore, the prior might not be optimal and approximate inference could lead inaccurate
estimates (Kuleshov et al., 2018). Dropout (Hinton et al., 2012; Srivastava et al., 2014) can be seen
as a variational approximation of a Gaussian Process (Gal & Ghahramani, 2016b;a). By leaving
dropout activated at prediction time, it can be used to measure uncertainty. However, the dropout
probability needs to be tuned which leads to a trade-off between predictive error and calibration er-
ror (see Figure 10 in the Appendix for an empirical example). Deep ensembles (Lakshminarayanan
et al., 2017) offer a non-Bayesian approach to measure uncertainty by training multiple separate net-
works and ensembling them. Similar to BNNs, however, deep ensembles require more resources as
several different RNNs need to be trained. We show that ST-τ is competitive to deep ensembles with-
out the resource overhead. Recent work (Hwang et al., 2020) describes a sample-free uncertainty
estimation for Gated Recurrent Units (SP-GRU) (Chung et al., 2014), which estimates uncertainty
by performing forward propagation in a series of deterministic linear and nonlinear transformations
with exponential family distributions. ST-τ estimates uncertainties through the stochastic transitions
between two consecutive recurrent states.

Calibration. Platt scaling (Platt et al., 1999) is a calibration method for binary classification settings
and has been extend to multi-class problems (Zadrozny & Elkan, 2002) and the structured prediction
settings (Kuleshov & Liang, 2015). (Guo et al., 2017) extended the method to calibrate modern deep
neural networks, particularly networks with a large number of layers. In their setup, a temperature
parameter for the final softmax layer is adjusted only after training. In contrast, our method learns
the temperature and, therefore, the two processes are not decoupled. In some tasks such as time-
series prediction or RL it is crucial to calibrate during training and not post-hoc.

Deterministic & Probabilistic Automata Extraction. Deterministic Finite Automata (DFA) have
been used to make the behavior of RNNs more transparent. DFAs can be extracted from RNNs
after an RNN is trained by applying clustering algorithms like k-means to the extracted hidden
states (Wang et al., 2018) or by applying the exact learning algorithm L∗ (Weiss et al., 2018). Post-
hoc extraction, however, might not recover faithful DFAs. Instead, (Wang & Niepert, 2019) pro-
posed state-regularized RNNs where the finite set of states is learned alongside the RNN by using
probabilistic state transitions. Building on this, we use the Gumbel softmax trick to model stochastic
state transitions, allowing us to learn probabilistic automata (PAs) (Rabin, 1963) from data.

Hidden Markov Models (HMMs) & State-Space Models (SSMs) & RNNs. HMMs are
transducer-style probabilistic automata, simpler and more transparent models than RNNs. (Bridle,
1990) explored how a HMM can be interpreted as an RNNs by using full likelihood scoring for each
word model. (Krakovna & Doshi-Velez, 2016) studied various combinations of HMMs and RNNs to
increase the interpretability of RNNs. There have also been ideas on incorporating RNNs to HMMs
to capture complex dynamics (Dai et al., 2017; Doerr et al., 2018). Another relative group of work
is SSMs, e.g., rSLDS (Linderman et al., 2017), Kalman VAE (Fraccaro et al., 2017), PlaNet (Hafner
et al., 2019) and RKN (Becker et al., 2019). They can be extended and viewed as another way to
inject stochasticity to RNN-based architectures. In contrast, ST-τ models stochastic finite-state tran-
sition mechanisms end-to-end in conjunction with modern gradient estimators to directly quantify
and calibrate uncertainty and the underlying probabilistic system. This enables ST-τ to approximate
and extract the probabilistic dynamics in RNNs.

4 EXPERIMENTS

The experiments are grouped into five categories. First, we show that it is possible to use ST-τ to
learn deterministic and probabilistic automata from language data (Sec. 4.1). This demonstrates
that ST-τ can capture and recover the stochastic behavior of both deterministic and stochastic lan-
guages. Second, we demonstrate on classification tasks (Sec. 4.2) that ST-τ performs better than
or similar to existing baselines both in terms of predictive quality and model calibration. Third, we
compare ST-τ with existing baselines using out-of-distribution detection tasks (Sec. 4.3). Fourth,
we conduct reinforcement learning experiments where we show that the learned parameter τ can
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Figure 5: (a)+(c): ground truth probabilistic automata (PAs) used for generating training samples.
(b)+(d) the PAs extracted from ST-τ .The single and double circles represent reject and accept states
respectively. The PA (d) resulted from a minimization of the actual extracted PA.

calibrate the exploration-exploitation trade-off during learning (Appendix D), leading to a lower
sample complexity. Fifth, we report results on a regression task (Appendix C).

Models. We compare the proposed ST-τ method to four existing models. First, a vanilla LSTM
(LSTM). Second, a Bayesian RNN (BBB) (Blundell et al., 2015; Fortunato et al., 2017), where
each network weight wi is sampled from a Gaussian distribution N (µ, σ2), wi = µ + σ · ε, with
σ = log(1 + exp(ρ)) and ε ∼ N (0, 1). To estimate model uncertainty, we keep the same sampling
strategy as employed during training (rather than using wi = µ). Third, a RNN that employs
Variational Dropout (VD) (Gal & Ghahramani, 2016a). In variational dropout, the same dropout
mask is applied at all time steps for one input. To use this method to measure uncertainty, we
keep the same dropout probability at prediction time (Gal & Ghahramani, 2016a). Fourth, a deep
ensemble of a LSTM base model (Lakshminarayanan et al., 2017). For ST-τ we compute the new
hidden state using the soft version of the Gumbel softmax estimator (Jang et al., 2017). All models
contain only a single LSTM layer, are implemented in Tensorflow (Abadi et al., 2015), and use the
ADAM (Kingma & Ba, 2015) optimizer with initial learning rate 0.001.

4.1 DETERMINISTIC & PROBABILISTIC AUTOMATA EXTRACTION

We aim to investigate the extent to which ST-τ can learn deterministic and probabilistic automata
from sequences generated by regular and stochastic languages. Since the underlying languages are
known and the data is generated using these languages, we can exactly assess whether ST-τ can
recover these languages. We refer the reader to the appendix A for a definition of deterministic finite
automata (DFA) and probabilistic automata (PA). The set of languages recognized by DFAs and PAs
are referred to as, respectively, regular and stochastic languages. For the extraction experiments we
use the GRU cell as it does not have a cell state. This allows us to read the Markovian transition
probabilities for each state-input symbol pair directly from the trained ST-τ .

Regular Languages. We conduct experiments on the regular language defined by Tomita grammar
3. This language consists of any string without an odd number of consecutive 0’s after an odd
number of consecutive l’s (Tomita, 1982). Initializing τ = 1, we train ST-τ (with k = 10 states)
to learn a ST-τ model to represent this grammar and then extract DFAs (see Appendix A.4 for the
extraction algorithm). In principle, k ≥ # of classes, the model learns to select a finite set of
(meaningful) states to represent a language, as shown in Appendix Figure 8. ST-τ is able to learn
that the underlying language is deterministic, learning the temperature parameter τ accordingly and
the extraction produces the correct underlying DFA. The details are discussed in the appendix.

Stochastic Languages We explore whether it is possible to recover a PA from a ST-τ model trained
on the data generated by a given PA. While probabilistic deterministic finite automata (PDFAs) have
been extracted previously (Weiss et al., 2019), to the best of our knowledge, this is the first work to
directly learn a PA, which is more expressive than a PDFA (Denis & Esposito, 2004), by extraction
from a trained RNN. We generate training data for two stochastic languages defined by the PAs
shown in Figure 5 (a) and (c). Using this data, we train a ST-τ with a GRU with k = 4 states and
we directly use the Gumbel softmax distribution to approximate the probability transitions of the
underlying PA (see Appendix A.5 for more details and the extraction algorithm). Figures 5 (b, d)
depict the extracted PAs. For both stochastic languages the extracted PAs indicate that ST-τ is able
to learn the probabilistic dynamics of the ground-truth PAs.
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Dataset BIH IMDB
Metrics PE ECE MCE PE ECE MCE
LSTM 1.40 0.78 35.51 10.42 3.64 11.24
Ensembles 1.51±1e−3 0.72±0.10 31.49±8.52 10.56±3e−3 3.45±1.47 12.16±5.68
BBB 4.69±2e−3 0.54±0.11 12.44±7.65 10.84±2e−4 2.10±0.02 6.15±0.25
VD 1.51±3e−4 0.80±0.03 24.71±16.70 10.56±6e−4 3.41±0.07 14.08±0.87
ST-τ k = 5/2 2.12±5e−4 0.45±0.03 23.11±12.76 10.95±5e−4 0.89±0.05 3.70±0.63
ST-τ k = 10 2.11±5e−4 0.40±0.05 21.73±16.15 11.16±7e−4 3.38±0.05 9.09±0.74

Table 1: Predictive Error (PE) and calibration errors (ECE, MCE) for the datasets BIH and IMDB
(lower is better for all metrics). ST-τ offers the best and reliable trade-off between predictive error
and calibration errors. Furthermore, it does not require more parameters as BBB (double) or Deep
Ensemble (order of magnitude more) nor does a hyperparameter has to be tuned as in VD. Stochastic
predictions are averaged across 10 independent runs and their variance is reported. Best and second
best results are marked in bold and underlined (PE: bold models are significantly different at level
p ≤ 0.005). An ablation experiment with post-hoc temperature scaling is in Appendix B.3.1.
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Figure 6: Calibration plots (for one run) on the BIH dataset (corresponding to the left half of Table
1) using N = 10 bins. ST-τ (k = 2) is closest to the diagonal line, that is, perfect calibration.

4.2 MODEL CALIBRATION

We evaluate ST-τ ’s prediction and calibration quality on two classification tasks. The first task is
heartbeat classification with 5 classes where we use the MIT-BIH arrhythmia dataset (Goldberger
et al., 2000; Moody & Mark, 2001). It consists of 48 half-hour excerpts of electrocardiogram (ECG)
recordings. To preprocess the recordings we follow Kachuee et al. (2018) (Part III.A). The second
task is sentiment analysis where natural language text is given as input and the problem is binary
sentiment classification. We use the IMDB dataset (Maas et al., 2011), which contains reviews of
movies that are to be classified as being positive or negative. For further dataset and hyperparameter
details, please see Appendix B.2.

We compute the output of each model 10 times and report mean and variance. For the deep ensem-
ble, we train 10 distinct LSTM models. For VD, we tuned the best dropout rate in {0.05, 0.1, 0.15}
and for BBB we tuned µ = {0, 0.01} and ρ = {−1,−2,−3,−4}, choosing the best setup by low-
est predictive error achieved on validation data. For ST-τ , we evaluate both, setting the number
of states to the number of output classes (k = 5/2, BIH and IMDB, respectively) and to a fixed
value k = 10. We initialize with τ = 1 and use a dense layer before the softmax classification.
For more details see Appendix, Table 4. With a perfectly calibrated model, the probability of the
output equals the confidence of the model. However, many neural networks do not behave this way
Guo et al. (2017). To assess the extent to which a model is calibrated, we use reliability diagrams
as well as Expected Calibration Error (ECE) and Maximum Calibration Error (MCE). Please see
Appendix B.1 for details. For VD, the best dropout probability on the validation set is 0.05. Lower
is better for all metrics. For PE, all models are marked bold if there is no significant difference at
level p ≤ 0.005 to the best model.

Results. The results are summarized in Table 1. For the BIH dataset, the vanilla LSTM achieves
the smallest PE with a significant difference to all other models at p ≤ 0.005 using an approximate
randomization test (Noreen, 1989). It cannot, however, measure uncertainty and suffers from higher
ECE and MCE. Similarly, VD exhibits a large MCE. The situation is reversed for BBB were we
find a vastly higher PE, but lower MCE. In contrast, ST-τ achieves overall good results: PE is only
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Datasets IMDB(In)/Customer(Out) IMDB(In)/Movie(Out)
Method Accuracy O-AUPR O-AUROC Accuracy O-AUPR O-AUROC
LSTM (max. prob.) 87.9 72.5 77.3 88.1 66.7 71.6
VD 0.8 88.5 74.8 80.6 87.5 69.3 74.7
BBB ρ = −3 87.6 67.4 72.0 87.6 67.1 71.9
ST-τ k = 10 88.3 80.1 84.5 88.1 75.1 81.0
VD 0.8 88.5 67.8 76.5 87.5 63.8 71.8
BBB ρ = −3 87.6 76.0 75.4 87.6 76.8 75.6
ST-τ k = 100 86.5 78.9 82.8 85.9 74.0 78.7
ST-τ k = 10 88.3 65.0 76.5 88.1 64.1 75.1
Ensembles (max.prob.) 88.6 78.9 84.4 88.3 74.5 79.6
Ensembles (variance) 88.6 79.7 84.0 88.3 75.8 79.9

Table 2: Results (averaging on 10 runs for VD, BBB, ST-τ . Ensembles are based on 10 mod-
els) of the out-of-distribution (OOD) detection with max-probability based (top), variance of max-
probability based (middle) and ensembles (bottom). ST-τ exhibits very competitive performance.

slightly higher than the best model (LSTM) while achieving the lowest ECE and the second low-
est MCE. The calibration plots of Figure 6 show that ST-τ is well-calibrated in comparison to the
other models. For the IMDB dataset, ST-τ has a slightly higher PE than the best models, but has
the lowest ECE and MCE offering a good trade-off. The calibration plots of IMDB can be found in
the Appendix, Figure 9. In addition to achieving consistently competitive results across all metrics,
ST-τ has further advantages compared to the other methods. The deep ensemble doubles the number
of parameters by the number of model copies used. BBB requires the doubling of parameters and a
carefully chosen prior, where ST-τ does only require a slight increase in number of parameters com-
pared to a vanilla LSTM. VD requires the tuning of the hyperparameter for the dropout probability,
which leads to a trade-off between predictive and calibration errors (see Appendix B.3.2).

4.3 OUT-OF-DISTRIBUTION DETECTION

We explore the ability of ST-τ to estimate uncertainty by making it detect out-of-distribution (OOD)
samples following prior work (Hendrycks & Gimpel, 2017). The in-distribution dataset is IMDB
and we use two OOD datasets: the Customer Review test dataset (Hu & Liu, 2004) and the Movie
review test dataset (Pang et al., 2002), which consist of, respectively, 500 and 1,000 samples. As in
Hendrycks & Gimpel (2017), we use the evaluation metrics AUROC and AUPR. Additionally, we
report the accuracy on in-distribution samples. For VD we select the dropout rate from the values
{0.05, 0.1, 0.2} and for BBB we select the best µ = {0, 0.01} and ρ = {−1,−2,−3,−4}, based
on best AUROC and AUPR. For ST-τ we used c = 10 and c = 100. Beside using the maximum
probability of the softmax (MP) as baseline (Hendrycks & Gimpel, 2017), we also consider the
variance of the maximum probability (Var-MP) across 10 runs. The number of in-domain samples is
set to be the same as the number of out-of-domain samples from IMDB (Maas et al., 2011). Hence,
a random baseline should achieve 50% AUROC and AUPR.

Results. Table 2 lists the results. ST-τ and deep ensembles are the best methods in terms of OOD
detection and achieve better results for both MP and Var-MP. The MP results for ST-τ are among
the best showing that the proposed method is able to estimate out-of-distribution uncertainty. We
consider these results encouraging especially considering that we only tuned the number of learnable
finite states c in ST-τ . Interestingly, a larger number of states improves the variance-based out-of-
distribution detection of ST-τ . In summary, ST-τ is highly competitive in the OOD task.

5 DISCUSSION AND CONCLUSION

We proposed ST-τ , a novel method to model uncertainty in recurrent neural networks. ST-τ achieves
competitive results relative to other strong baselines (VD, BBB, Deep Ensembles), while circum-
venting some of their disadvantages, e.g., extensive hyperparameters tuning and doubled number of
parameters. ST-τ provides a novel mechanism to capture the uncertainty from (sequential) data over
time steps. The key characteristic which distinguishes ST-τ from baseline methods is its ability to
model discrete and stochastic state transitions using modern gradient estimators at each time step.
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A DETERMINISTIC & PROBABILISTIC AUTOMATA EXTRACTION

For the ST-τ models we use an embedding layer and an LSTM layer (both with 100 hidden units)
and a dense layer which accepts the last hidden state output and has two output neurons (accept,
reject). The training objective aims to minimize a cross-entropy loss for a binary classification
problem (accept or reject).

A.1 DEFINITION OF DETERMINISTIC FINITE AUTOMATA

A Deterministic Finite Automata (DFA) is a 5-tuple (Q,Σ, δ, q0, F ) consisting of a finite set of states
Q; a finite set of input tokens Σ (called the input alphabet); a transition function δ : Q× Σ→ Q; a
start state q0; and a set of accept states F ⊆ Q. Given a DFA and an input, it is possible to follow
how an accept or reject state is reached. DFAs can be extracted from RNNs in order to offer insights
into the workings of the RNN, making it more interpretable. SR-RNNs (Wang & Niepert, 2019)
extract DFAs from RNNs by counting the number of transitions that have occurred between a state
and its subsequent states, given a certain input (Schellhammer et al., 1998). However, this extraction
method is deterministic and cannot give any uncertainty estimates for the extracted DFA. By adding
stochasticity using the Gumbel softmax distribution, we can additionally offer uncertainty measures
for the state transitions.

A.2 EXTRACTING AUTOMATA FOR REGULAR LANGUAGES

With this experiment, we want to explore two features of ST-τ . First, we want to understand how
τ changes as training progresses (see Figure 7 (a)). At the beginning of training, τ first increases,
allowing the model to explore the state transitions and select the states which will represent the cor-
responding grammar (in our example, the model selects 5 out of 10 states to represent Tomita 3, see
Figure 7 (b, c)). Later, τ decreases and the transition uncertainty is calibrated to have tighter bounds,
becoming more deterministic). Second, we want to see if ST-τ can model the uncertainty in transi-
tions and adaptively learn to calibrate the state transition distributions. For this, we extract DFAs at
two different iterations (see Figure 7 (b, c)). After 50k iterations, a correct DFA can be extracted.
However, the transitions are not well calibrated. The ideal transition should be deterministic and
have transition probability close to 1. For example, at state 7, for input “1”, only 53% of the time
the model transitions to the correct state 9. In contrast, after 250k iterations, the transitions are well
calibrated and all transition are almost deterministic. At the same time, τ has lowered, indicating
that the model has become more certain.

A.3 DEFINITION OF PROBABILISTIC AUTOMATA

The stochasticity in ST-τ also allows us to extract Probabilistic Automata (PA) (Rabin, 1963) which
have a stronger representational power than DFAs. A PA is defined as a tuple (Q,Σ, δ, q0, F ) con-
sisting of a finite set of statesQ; a finite set of input tokens Σ; a transition function δ : Q×Σ→ P ,
where P is the transition probability for a particular state, and P(Q) denotes the power set of Q; a
start state q0 and a set of accept states F ⊆ Q.

A.4 EXTRACTING DFAS WITH UNCERTAINTY INFORMATION

Let p(sj |si, xt), i, j ∈ {1, ..., k}, xt ∈ Σ be the probability of the transition to state sj , given
current state si and current input symbol xt at a given time step t. We query each training sample to
model and record the transition probability for each input symbol. The DFA extraction algorithms
in (Schellhammer et al., 1998; Wang et al., 2018) are based on the count of transitions. In contrast,
our extraction algorithm utilizes the transition probability, as described in Algorithm 1.

A.5 EXTRACTING PROBABILISTIC AUTOMATA

We first define two probabilistic automata as shown in Figure 5(a)(c) to generate samples from it2.
We generated 10,170 samples for stochastic language 1 (abbreviated SL-1) with PA-1 (Figure 5(a))

2We generate samples without combining identical samples. For instance, consider a sequence drawn from
PA-2 which has probability 0.7 to be rejected and probability 0.3 to be accepted. In this case, we generate 10
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Figure 7: (a) As training progresses the learned temperature τ decreases. This indicates that the
model has reduced its epistemic uncertainty. (b, c) The extracted DFAs at different iterations on
the Tomita grammar 3 with input symbol and, in square brackets, the transition probability and
uncertainty, quantified by the variance. At the earlier stage in training (b), the probabilities are still
far away from being deterministic, which is also indicated by the higher value of τ and the non-
zero variance. Later (c), the transition probabilities are close to being deterministic, the temperature
has lowered and there is no more epistemic uncertainty. States 1-3, 8, 10 are missing as the model
choose not to use these states.

and sample length l ∈ [1, 9]. For SL-2 with PA-2, we generated 20,460 samples with sample length
l ∈ [1, 10]. The learning procedure is described in Algorithm 2. We use the Gumbel softmax
distribution in ST-τ to approximate the probability distribution of next state p(sj |si, xt). To achieve
this goal, we set the number of states k to an even number and force the first half of the state to
“reject” state and the second half of states to be “accept”. This allows us to ensure that the model
models both “reject” and “accept” with the same number of states.

In the main part of the paper we report results when setting ST-τ to have k = 4 states for SL=2.
Here, we additionally present the results for k = 6 in Figure 8, which yields comparable results,
showing that ST-τ is not overly sensitive to the number of states. Is is however, helpful to have the
same number of accept and reject states.

training samples with the sequence, 7 of which are labeled “0” (reject) and 3 of which are labeled “1” (accept)
in expectation.
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Algorithm 1 Extracting DFAs with Uncertainty Information

Input: modelM, dataset D, alphabet Σ, start token x0

Output: transition function δ
1: Initialize an empty dictionary Z[sj |si, xt] = Ø
2: Compute the probability distribution over k states when input x0:
p1:k =M(x0), sj = arg maxi∈{1,...,k}[p1:k]

3: Set si = sj , Update Z[sj |x0] = {pj}
4: for x = (x1, x2, ..., xT ) ∈ D do
5: for t ∈ [1, ..., T ] do
6: p1:k =M(si, xt), sj = arg maxi∈{1,...,k}[p1:k],
7: Set si = sj , Update Z[sj |si, xt]:
8: Z[sj |si, xt] = Z[sj |si, xt] ∪ {pj},
9: end for

10: end for
11: Compute transition function δ, transition probability mean pu and variance pvar:
12: for i, j ∈ {1, ..., k} and xt ∈ Σ do
13: pu = mean(Z[(sj |si, xt)])
14: pvar = var(Z[(sj |si, xt)])
15: δ(sj |si, xt) = arg maxj∈{1,...,k} pu
16: end for

Algorithm 2 Extracting PAs with ST-τ

Input: dataset D
Output: network loss L

for x,y ∈ D do
initialize h0 with the 1st state s1, s1 ∈ S={s1:k}
h0 = s1, ŷ = 0
for xt ∈ x, t ∈ [1, ..., T ] do
zt = sigma(Wzxt + Uzht−1)
rt = sigma(Wrxt + Urht−1)
gt = tahn(Wgxt + Ught−1)
ut = zt � ht−1 + (1− zt)� gt
pt = Su>t
p̂t ∼GUMBEL(pt, τ)

ht = p̂t
>S

ŷ = p̂t
end for
if y = 0 then

y = [0, 0, ..0,︸ ︷︷ ︸
k/2

1, 1, ..1︸ ︷︷ ︸
k/2

]

else
y = [1, 1, ..1,︸ ︷︷ ︸

k/2

0, 0, ..0︸ ︷︷ ︸
k/2

]

end if
Compute cross-entropy loss:
L =CROSS-ENTROPY(y, ŷ)

end for
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Figure 8: True PA (a) used for generating training samples and the respective extracted PAs (b, c)
from the trained ST-τ models with k = 6 states. We merged reject and accept nodes in (b) to retain
one reject (start state 1 is not merged) and accept node in (c). For a given state and input symbol, the
probability of accept and reject for (a) and (c) are nearly equivalent. For example, at state sA in (a),
input “0”, p(accept|sA, “0”) = 0.3 ≈ 0.29 = p(accept|s1, “0”) and p(accept|sA, “0”) = 0.7 ≈
0.71 = 0.5 + 0.21 = p(accept|s1, “0”).
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B MODEL CALIBRATION

We address the problem of supervised multi-class sequence classification with recurrent neural
networks. We follow the definitions and evaluation metrics as in (Guo et al., 2017). Given in-
put X ∈ X and ground-truth label Y ∈ Y , a probabilistic classifier m(X) = (Ŷ , P̂ ). The
Ŷ = {ŷ1, ..., ŷk}, P̂ = {p̂1, ..., p̂k} present the predicted class label and confidence (the probability
of correctness) over k classes and

∑k
i=1 p̂i = 1.

Definition of Calibration A model is perfectly calibrated if the confidence estimation equals the true
probability, that is, P(Ŷ = Y |P̂ = p) = p, p ∈ [0, 1].

B.1 EVALUATION OF CALIBRATION

Reliability Diagrams (DeGroot & Fienberg, 1983; Niculescu-Mizil & Caruana, 2005) visualise
whether a model is over- or under-confident by grouping predictions into bins according to their
prediction probability. The predictions are grouped into N interval bins (each of of size 1/N ) and
the accuracy of samples yi wrt. to the ground truth label ŷi in each bin bn is computed as:

acc(bn) =
1

|bn|

I∑
i

1(ŷi = yi), (4)

where i indexes all examples that fall into bin bn. Let p̂i be the probability for sample yi, then
average confidence is defined as

conf(bn) =
1

|bn|

I∑
i

p̂i. (5)

A model is perfectly calibrated if acc(bn) = conf(bn),∀n and in a diagram the bins would follow
the identity function. Any derivation from this represents miscalibration.

Based on the accuracy and confidence measures, two calibration error metrics have been introduced
(Naeini et al., 2015).

Expected Calibration Error (ECE). Besides the reliability diagrams, ECE is a convenient tool to
have scalar summary statistic of calibration. It computes the difference between model accuracy and
confidence as a weighted average across bins,

ECE =

N∑
n=1

|bn|
m
|acc(bn)− conf(bn)|, (6)

where m is the total number of samples.

Maximum Calibration Error (MCE) is particularly important in high-risk applications where re-
liable confidence measures are absolutely necessary. It measures the worst-case deviation between
accuracy and confidence,

MCE = maxn∈{1,...,N}|acc(bn)− conf(bn)|. (7)

For a perfectly calibrated classifier, the ideal ECE and MCE both equal to 0.

Dataset IMDB BIH
Train 23k 78k
Validation 2k 8k
Test 25k 21k
Max Length 2,956 187
# Classes 2 5
Type Language ECG

Table 3: Overview of used datasets, if applicable, numbers are rounded down.
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Figure 9: Calibration plots for the IMDB dataset (corresponding to the right half of Table 1) using
N = 10 bins. BBB, VD and ST-τ are all quite well calibrated on this data set. The first run is
displayed. Best viewed in colour.

Hyperparameters IMDB BIH
Hidden dim. 256 128
Learning rate 0.001 0.001
Batch size 8 256
Validation rate 1k 1k
Maximum validations 20 50
ST-τ # states 2 5
BBB µ 0.0 0.01
BBB ρ -3 -3
VD Prob. 0.1 0.05

Table 4: Overview of the different hyperparameters for the different datasets. Validation rate indi-
cates after how many updates validation is performed.

PE ECE MCE

B
IH

LSTM 1.40 0.30 13.02
Ensemble 1.51±1e−3 0.22±0.05 21.90±16.62.52
BBB 4.69±2e−3 0.36±0.09 10.43±7.86
VD 0.05 1.51±3e−4 0.27±0.02 23.60±18.66
ST-τ 2.12±5e−4 0.45±0.03 15.38±7.91

IM
D

B

LSTM 10.42 1.19 5.82
Ensemble 10.56±3e−3 1.26±0.56 5.87±2.40
BBB 10.84±2e−4 0.63±0.02 2.69±0.33
VD 0.1 10.56±6e−4 2.34±0.01 10.86±1.33
ST-τ 10.95±5e−4 1.00±0.04 3.84±0.70

Table 5: Same as table1 but with post-hoc temperature scaling. Among the models (Ensemble,
BBB, VD) that can estimate uncertainty, ST-τ is very competitive, i.e., the second best on both the
BIH and the IMDB datsaet. LSTM is not able to provide any uncertainty information. Predictive
Error (PE) and calibration errors (ECE, MCE) for the various RNNs on the datasets BIH and IMDB
(lower is better for all metrics). ST-τ offers the best and reliable trade-off between predictive error
and calibration errors. Furthermore, it does not require double the parameters as BBB nor does a hy-
perparameter have to be tuned as in VD. Stochastic predictions are averaged across 10 independent
runs and their variance is reported. For VD, we report the best dropout probability on the valida-
tion set. Best and the second best results are marked in bold and underlined (PE: bold models are
significantly different at level p ≤ 0.005 to non-bold models).

B.2 DATASET AND HYPERPARAMETER DETAILS

For the experiments of Section 4.2, we provide an overview of the used datasets in Table 3 and give
details on the different hyperparameters used in the experiments in Table 4. On BIH, we use the
training / test split of (Kachuee et al., 2018), however we additionally split off 10% of the training
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Figure 10: For VD we plot various dropout probabilities at prediction time and their corresponding
error rates (PE, ECE, MCE). Additionally we report the results of ST-τ . For VD, while lowering the
probability rate decreases the predictive error (PE), it at the same time increases MCE and/or ECE.
On the other hand, ST-τ combines the best of both worlds without having to tune any parameters.

data to use as a validation set. On IMDB, the original dataset consist of 25k training and 25k test
samples, we split 2k from training set as validation dataset. The word dictionary size is limited to
5,000.

B.3 ADDITIONAL EXPERIMENTS

Here we report three groups of additional or ablation experiments: (1) All baseline method and ST-
τ with directly employing post-training temperature scaling. (2) The trade-off between predictive
and calibrate performance with different dropout ratio in variational dropout (VD). (3) Additional
calibration plots for the IMDB dataset.

B.3.1 EXPERIMENTS WITH TEMPERATURE SCALING

For classification calibration experiments, the post-hoc temperature scaling can also be used to cal-
ibrate models. However, please note, post-hoc temperature scaling can not be used when we need
to calibrate a model during training stages, for example, the tasks like DFA or PA extraction, rein-
forcement learning tasks.

Table 5 reports the results with temperature scaling where temperature is tuned on valid set. Among
the models (Ensemble, BBB, VD) that can estimate uncertainty, ST-τ is very competitive, for ex-
ample, the second best on both the BIH and the IMDB datsaet. While LSTM can achieve better
predictive performance and sometimes better calibration performance, LSTM is not able to provide
any uncertainty information.

B.3.2 EXPERIMENTS WITH DIFFERENT DROPOUT RATE

To gain a better understanding of how crucial the hyperparameter of VD is, we investigate the effect
of the dropout probability during prediction with VD. We perform an experiment where we vary the
dropout probability in the range of [0.0, 0.9] with increments of 0.1. In Figures 10 (a, b) we plot the
result for BIH and IMDB, respectively, reporting PE, ECE and MCE for the various VD settings as
well as ST-τ .

On both datasets, for VD, the point of lowest PE does not necessarily coincide with the points of
lowest MCE and/or ECE. For example on BIH, VD achieves the lowest PE when dropout is switched
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Figure 11: The test mean squared error (MSE) of different methods on predicting power consump-
tion over time steps (x axis). The results are based on averaging 3 runs. The shaded areas present
standard deviation, the first 100 samples are displayed. ST-τ and VD provide the best predictive
performance, while ST-τ exhibits tighter uncertainty bounds.

off (0.0), but then uncertainty cannot be measured. On the other hand, choosing the next lowest PE
results in a high MCE. In contrast, ST-τ directly achieves good results for all three metrics. Similarly,
on IMDB, at the point where VD has the lowest PE is also has highest MCE. In conclusion, VD
requires careful tuning which comes with choosing a trade-off between the different metrics, while
ST-τ achieves good results directly, without any tuning.

B.3.3 CALIBRATION PLOTS FOR THE IMDB DATASET

Figure 9 shows the calibration plots for IMDB. For the binary classification task BBB achieves
the best calibration performance and VD achieves the best predictive performance. It should be
noted that ST-τ achieves the best trade-off between predictive and calibration performance without
doubling parameters (for BBB) and without tuning dropout rate for (VD).

C REGRESSION

Calibration plays an important role in probabilistic forecasting. We consider a time-series forecast-
ing regression task using the individual household electric power consumption dataset.3 The goal
of the task is to predict the global active power at the current time (t) given the measurement and
other features of the previous time step. The dataset was sampled at the time step of an hour (the
original data are given in minutes), which leads to 34,588 samples. We split it 25,000/2,000/7,588
for training/validation/test. One LSTM layer with 100 hidden units is used for the baselines (LSTM,
BBB and VD) and ST-τ (the number of states is set to 10). The evaluation metric is mean squared
error (MSE) and we use the model with lowest MSE on the validation dataset at test stage.

3http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+
power+consumption The data is preprocessed by following https://www.kaggle.com/
amirrezaeian/time-series-data-analysis-using-lstm-tutorial
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Figure 12: Average cumulative reward and standard deviation (in log scale, the shade areas) over
time steps (episode) on the Cartpole task. Results are averaged over 5 randomly initialized runs. In
all cases ST-τ achieves a higher averaged cumulative reward given lower sample complexity.

β

RightLeft

Figure 13: In the cartpole task the goal is to balance the pole upright by moving the cart left or right
at each time step (β is the angle).

Figure 11 presents the performance. LSTM, VD and ST-τ perform very well at this task, achieving
MSE close to zero. BBB performs worse than the other methods. For uncertainty estimation, BBB,
VD and ST-τ are able to provide uncertainty information alongside the predictive score. BBB gives
high uncertainty, while VD and ST-τ are more confident in their prediction, with ST-τ offering the
tightest uncertainty bounds.

D REINFORCEMENT LEARNING

We explore the ability of ST-τ to learn the exploration-exploitation trade-off in reinforcement learn-
ing. To demonstrate this empirically, we evaluate ST-τ in the continuous control environment CART-
POLE (Figure 13) of OpenAI Gym (Brockman et al., 2016). The objective of the task is to train an
agent to balance a pole for 1 second (which equals 50 time steps) given environment observations
O. To keep the pole in balance, the agent has to move the pole either left or right, that is, the possible
actions are a = {LEFT, RIGHT}. If the chosen action keeps the pole in balance, the agent receives a
reward of 1 and continues; otherwise a reward of 0 is given and the run stops.

The environment can be formulated as a reinforcement learning problem (S,A, P,R) where S is a
set of states. Each state s = {x, x̂, β, β̂} ∈ S consists of x: cart position, x̂: cart velocity, β: angle
position, and β̂: angle velocity. A is the set of actions, P the state transition probability, and R the
reward. We consider two different setups. In the first setup, the CARTPOLE environment is fully
observable Markov Decision Process (MDP setup) where the agent has full access to observation O,
that is, O = {x, x̂, β, β̂} ∈ S. In the second and more difficult setup (POMDP), the environment is
partially observable, where O = {x, β} ⊂ S. For the latter, the agent cannot observe the state cart
velocity and angular velocity information. It has to learn to approximate them using its recurrent
connections, and thus needs to retain long-term history (Bakker, 2002; Gomez & Schmidhuber,
2005; Schäfer, 2008). The various RNN-based models are trained to output a distribution over
actions at each time step t, that is, π(a|st,at), where π is the set of policy. For selecting the
next action, we consider two policies: (1) sampling: at+1 ∼ π(a|st,at), and (2) greedy: at+1 =
arg maxπ(a|st,at). For all baselines, we use one LSTM layer and one dense layer with softmax to
return the distribution over actions. Each layer has 100 hidden units. For VD we tuned the dropout
rate {0.05, 0.1, 0.2} and for BBB µ = {0, 0.01, 0.05, 0.1} and ρ = {−1,−2,−3,−4}. For ST-τ we
simply set the initial temperature value to τ = 1, the number of possible states to the number of
actions (k = 2), and the next action is directly selected based on the Gumbel softmax distribution
over states.
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Figure 14: Apblation study for ST-τ with (1) different number of states (k=2, 10, 20, 50) and
(2) learning temperature τ (green) and fixed temperature τ = 1 (blue) on the Out-of-Distribution
Detection (OOD) task. The max-probability based O-AUPR and O-AUROC are reported. Top:
IMDB(In)/Customer(Out). Bottom: IMDB(In)/Movie(Out). The results are averaged over 10 runs.
Learning the temperature τ is akin to entropy regularization (Szegedy et al., 2016; Pereyra et al.,
2017; Jang et al., 2017) and adjusts the confidence (epistemic uncertainty) during training.

Results are presented in Figure 12. An important criteria for evaluating RL agents is the sample
complexity (Malik et al., 2019), that is, the amount of interactions between agent and environment
before a sufficiently good reward is obtained. For both environment setups and both policy types,
ST-τ achieves a higher averaged cumulative reward given lower sample complexity. Moving from
sampling to a greedy policy, ST-τ performance slightly drops. This is easily explained by the in-
herent sampling process due to the Gumbel softmax. Interestingly, it seems it is this sampling
process which allows ST-τ to exhibit a lower sampling complexity in the sampling setups compared
to LSTM and VD. In contrast, LSTM and VD show poor performance for the greedy policy setups
because they can no longer explore by sampling from the softmax. BBB consistently performs worse
than the other methods and we conjecture that this is due to the much larger number of parameters
of this model, leading to a worse sampling complexity. Moving from the MDP to the POMDP, the
average accumulative reward naturally drops, as the agents receive less information, but ST-τ again
exhibits the best performance for both policy types.

E ABLATION STUDY ON OUT-OF-DISTRIBUTION DETECTION

Figure 14 depicts the results of an ablation study focusing on the number of states k and whether or
not the temperature τ was learned. The results are for the two IMDB Out-of-Distribution Detection
(OOD) tasks from section 4.3 . The results indicate that a smaller number of states is sufficient to
capture the ST-τ model’s uncertainty on out-of-distribution data. Especially when the temperature
parameter is learned during training (the green, solid line), ST-τ shows the best results. Increasing
the number of states of ST-τ , gives the model more capacity to model uncertainty. For 50 states,
fixing the temperature to a constant values works better but does not reach the accuracy of ST-
τ models with fewer states and learned temperature.
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