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ABSTRACT

Text-guided image editing with generative models has recently achieved remark-
able progress, yet the underlying dynamics of latent space manipulations remain
insufficiently explored. In this work, we propose a perspective that models the la-
tent space of generative models as a high-dimensional Gaussian fluid. Specifically,
each latent dimension is regarded as a directional axis of the fluid, and the move-
ment of data points within this space is governed by three interacting forces: a
driving force that enforces semantic editing objectives, a resistance force that pre-
serves data consistency, and a central constraint that maintains generation quality.
We formalize this process through the Navier–Stokes equations, enabling a princi-
pled formulation of latent space dynamics as fluid motion under Gaussian density
fields. This fluid-inspired framework provides a unified view for balancing editing
directionality, structural coherence, and fidelity. We instantiate our approach on
StyleGAN2 for text-guided image editing tasks, where preliminary experiments
demonstrate its effectiveness in producing semantically accurate, high-quality, and
consistent edits compared to conventional latent manipulation methods. Our re-
sults suggest that fluid dynamics offers a powerful new paradigm for understand-
ing and guiding latent space transformations in generative models.

1 INTRODUCTION

Text-guided image editing has emerged as a prominent research direction in generative modeling,
enabling diverse and fine-grained image manipulations with natural language as high-level semantic
conditions. Early approaches combined text embeddings with the StyleGAN style space, either by
directly optimizing latent vectors or by learning fixed text-to-direction mappings (Patashnik et al.,
2021). While demonstrating the strong capability of text–image alignment in latent manipulation,
these methods often rely on per-sample optimization or simple global/linear mappings, making it
difficult to jointly ensure semantic precision, consistency, and image fidelity. In parallel, TediGAN
(Xia et al., 2021) introduced pipelines based on vision–language similarity learning and instance-
level optimization, achieving compelling high-resolution face generation and manipulation. How-
ever, such methods typically require additional fine-tuning during inference to preserve identity and
structural consistency.

Meanwhile, structured analysis of generative model latent spaces, such as InterFaceGAN (Shen
et al., 2020) and GANSpace (Härkönen et al., 2020), revealed interpretable subspaces or principal
directions that control attributes like age, expression, and illumination. These geometry-based or
statistics-based approaches provided valuable insights for controllable editing, yet they generally
treat edits as static, linear, or low-order transformations, leading to overly simplified or stereotyped
editing outcomes.

More recent research has explored structured or semantically aligned editing spaces (Lyu et al.,
2023a;b) , which construct “delta” feature spaces to connect image-level differences in CLIP space
with latent editing directions, enabling more robust training-free or zero-shot generalization. Like-
wise, CLIP-based inversion and regularization methods (Baykal et al., 2023; Pernuš et al., 2025),
integrate text guidance directly into the inversion stage to improve stability and accuracy in multi-
attribute editing. Despite these advances in aligning text and image semantics, a fundamental chal-
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lenge remains: how to systematically balance the driving force of semantic editing with the con-
straints that preserve generation consistency and quality during latent manipulation.

In this paper, we introduce a physics-inspired perspective: modeling the latent space of generative
models as a high-dimensional Gaussian fluid, and characterizing latent vector evolution during edit-
ing through fluid dynamics governed by the Navier–Stokes equations. Within this framework, the
movement of latent points is not only driven by text-guided semantic forces but is also constrained by
resistances that maintain representational consistency and by a centralizing force imposed by Gaus-
sian density, naturally balancing semantic progression with fidelity at the dynamical level. This
fluid-dynamical formulation not only offers a new theoretical perspective for interpreting existing
direction-based editing methods, but also directly yields more interpretable optimization update
rules—rather than simple interpolation—for text-guided editing in latent space. Finally, we conduct
comparative on several face datasets, showing that our method achieves competitive performance in
text–image alignment, identity/structure preservation, and generation quality.

2 RELATED WORK

2.1 TEXT-GUIDED IMAGE EDITING

Early GAN-based approaches mainly combined CLIP similarity with latent-space manipulations to
achieve intuitive text-conditional edits. For example, StyleCLIP (Patashnik et al., 2021) proposed
latent optimization, latent mappers, and global direction techniques to drive StyleGAN editing under
text supervision . Extensions of this paradigm further explored domain adaptation and cross-domain
transfer using a single pretrained generator: StyleGAN-NADA (Gal et al., 2022) adapted StyleGAN
to novel text concepts without paired data , while TediGAN (Xia et al., 2021) introduced multimodal
encoders to enable unified text-driven generation and editing, supporting diverse face manipulations.
With the advent of diffusion models, a large body of recent work has shifted to leveraging diffusion
priors for text-guided editing, typically relying on conditional modeling or inversion. Imagic (Kawar
et al., 2023) demonstrated that combining text conditioning with diffusion model inversion and fine-
tuning allows for complex, high-fidelity edits of real images. InstructPix2Pix Brooks et al. (2023)
trained a diffusion-based editor on text instruction pairs, achieving strong generalization to natural
language instructions. Blended Latent Diffusion Avrahami et al. (2023) and its variants developed
controllable local/region editing pipelines in latent diffusion space, enabling high-quality interactive
edits. Recently, many CLIP- or difference-feature-based methods have emphasized robustness and
zero-shot generalization. DeltaEdit (Lyu et al., 2023a) constructed “delta” representations in CLIP
feature space to map semantic differences into latent editing directions, supporting flexible text ed-
its without retraining. CLIPInverter (Baykal et al., 2023) incorporated lightweight text-conditioned
adapters into GAN inversion pipelines, stabilizing multi-attribute editing for real images. Mean-
while, null-text inversion (Mokady et al., 2023) and other diffusion inversion methods (Wallace
et al., 2023; Wang et al., 2024) provided more precise inversion procedures, making text-driven ed-
its of real images more faithful. Locate-and-Forget (Li et al., 2024) improved concept localization
and target masking, further enhancing fine-grained text editing accuracy. Despite these advances,
most methods still treat editing either as (i) per-sample optimization or (ii) simple linear or global
direction updates. As a result, they often face trade-offs between preserving identity/structure and
achieving significant semantic changes, sometimes leading to structural distortions or artifacts.

2.2 LATENT SPACE INTERPRETATION AND STRUCTURED MODELING

Understanding the structure of GAN latent spaces has been fundamental for controllable editing.
Methods such as InterFaceGAN (Shen et al., 2020) and GANSpace (Härkönen et al., 2020) revealed
interpretable directions within latent space, often corresponding to linear subspaces or principal
component operations, which enable predictable modifications of attributes such as age, expression,
and lighting. Building on these insights, later studies sought to identify more semantically aligned
directions (either supervised or unsupervised) and to learn mappings from conditioning signals (e.g.,
text, attributes) to these directions (Abdal et al., 2021; Shen & Zhou, 2021; Hu et al., 2022). While
geometry- and PCA-based analyses provide interpretable control, they typically model editing as
static, low-order transformations, and thus cannot capture how latent codes should dynamically
evolve under multiple simultaneous constraints.
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2.3 PHYSICS- AND DYNAMICS-INSPIRED GENERATIVE MODELING

Another research line models generation as a dynamical transport process between distributions.
Diffusion models (Ho et al., 2020) and score-based generative models (Song et al., 2020) formu-
late data synthesis as time-reversed stochastic dynamics driven by learned score functions, which
have become the backbone of state-of-the-art text-to-image generation and editing. Flow Matching
Lipman et al. (2022) and Rectified Flow (Esser et al., 2024) propose continuous deterministic or rec-
tified transport formulations, often implemented as neural ODEs or continuous normalizing flows,
which train to match distributional transport paths and provide faster sampling trajectories as well
as vector-field interpretations. These continuous formulations highlight the benefits of learning and
manipulating vector fields in sample or latent spaces, aligning with our view of latent-space editing
as a controlled trajectory.

3 METHOD

In this paper, we introduce a physics-inspired framework that models the latent space of generative
models as a high-dimensional Gaussian fluid and characterizes the evolution of latent vectors during
editing through fluid dynamics governed by the Navier–Stokes equations. Within this formulation,
the motion of latent points is driven not only by text-guided semantic forces but also constrained by
resistance mechanisms that preserve representational consistency and a centralizing force induced
by Gaussian density. This inherently balances semantic progression with structural and perceptual
fidelity at a dynamical level. Beyond offering a unified theoretical perspective that interprets ex-
isting direction-based editing approaches, our fluid-dynamical model leads to more interpretable
and principled optimization rules—going beyond simple interpolation—for text-guided latent space
manipulation.

3.1 LATENT SPACE STATISTICAL ANALYSIS

To introduce a physics-inspired modeling perspective, we first investigate the statistical properties
of the latent space. We randomly sample 200,000 latent codes from the mapping network of Style-
GAN2 and project them into the extended latent space W using the pretrained generator.

Previous studies (Härkönen et al., 2020; Shen et al., 2020; Shen & Zhou, 2021) have demonstrated
that certain directions in the latent space are closely associated with semantic attributes of images,
such as age, pose, expression, or illumination. The principal components extracted through Principal
Component Analysis (PCA) not only exhibit strong correlations with such semantic factors but also
possess geometric orthogonality, naturally satisfying the conditions for forming a basis of the space.
This ensures that any latent vector can be uniquely decomposed in this basis, thereby providing a
solid theoretical foundation for modeling the latent space as a multidimensional fluid composed of
independent variables.

We perform PCA on all samples to obtain a set of mutually orthogonal principal component direc-
tions {ui}di=1. We then project the samples onto each principal component direction:

zi = w · ui, i = 1, 2, . . . , d (1)

We then conduct Kolmogorov–Smirnov and Shapiro–Wilk normality tests on these projections. The
results show that most projections closely follow a Gaussian distribution:

zi ∼ N (0, σ2
i ), i = 1, 2, . . . , d (2)

This result indicates that, under the PCA basis, the latent space can be approximated as a set of
independent Gaussian variables.

3.2 SEMANTIC TARGET ESTIMATION VIA PRINCIPAL COMPONENT COEFFICIENTS

Building on the statistical decomposition of the latent space, we model the editing dynamics along
the orthogonal axes defined by principal components. Instead of treating semantic directions as
entangled or learned in an implicit embedding space, we directly estimate coefficients corresponding
to each principal component (PC). These coefficients naturally serve as the “semantic target” that
govern the transformation of a latent code.
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Formally, given a latent code w and a set of principal component vectors {ui}di=1, we predict a
coefficient vector α = [α1, α2, . . . , αd]. The edited latent code is then expressed as

w′ = w +

d∑
i=1

αiui (3)

where αi directly determines the magnitude of displacement along its corresponding semantic direc-
tion ui. This design offers more controllable and interpretable editing, since forces along different
PCs can be independently adjusted or constrained to achieve desired editing effects.

3.3 FLUID DYNAMICS-INSPIRED OPTIMIZATION

In the previous sections, we characterized the magnitude of the editing driving force through the
variation coefficients of principal component directions. However, merely relying on linear weight-
ing to balance semantic driving force and consistency resistance often fails to adapt adequately to
the dynamic requirements of different editing tasks. Most existing editing trade-off schemes are
essentially linear, where editing directions are combined with hyperparameters or fixed ratios. This
approach is equivalent to linearly interpolating between the original and target distributions. Con-
sequently, interpolated samples may simultaneously deviate from the high-density regions of both
distributions, leading to degraded generation quality.

To address this limitation, we propose to model the latent space as a multivariate fluid and optimize
editing trajectories under the framework of fluid dynamics. Our idea originates from the observation
that in continuous fluid systems, the velocity field can be naturally described by the Navier–Stokes
equation (Tao, 2016), given the external forces and fluid properties such as density and viscosity.
This formulation inherently provides a principled way to integrate external semantic forces with
central constraints arising from data density. In particular, it allows the editing trajectory to dy-
namically balance semantic alignment, consistency preservation, and generation quality, rather than
relying on rigid linear weighting schemes.

Simplification Given the Gaussian-like property of latent projections along principal components,
we interpret the entire latent space as a multidimensional Gaussian fluid, where each principal di-
rection corresponds to an independent Gaussian density. This perspective allows us to borrow tools
from fluid dynamics to model latent code transformations as trajectories within such a fluid.

We begin from the Navier–Stokes equation, which governs the motion of particles in a fluid:

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ µ∇2v + f (4)

where ρ is the fluid density, v is the velocity field, p is the pressure, µ is the dynamic viscosity, and
f represents external forces acting on the fluid.

Since we are interested in semantic editing dynamics rather than full turbulence modeling, we im-
pose the following assumption: we assume constant velocity within each editing step, thereby ne-
glecting acceleration, inertia, and viscous drag terms. As a result of our simplification,the particle
motion reduces to a balance between density-gradient forces and external semantic forces:

v =
−∇Φ(x) + Fext

η
(5)

where η is a learnable viscosity parameter, Φ(x) denotes the density-gradient force, and Fext repre-
sents the external force.

Density-gradient force (Central Constraint) Since we assume that the latent follows a Gaussian
distribution along each principal component, i.e.

xi ∼ N (µ, σ2
i ) (6)

The density at point x is given by

ρ(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
(7)
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We define the central constraint as the gradient of negative log-density:

∇Φ(x) = ∇(− log ρ(x)) =
(x− µ)

σ2
(8)

This force naturally drives latent codes back toward the Gaussian center, ensuring stability and
preventing unrealistic drifts.

External Forces (Semantic Drive and Consistency Resistance) In addition to the center con-
straint, editing requires external forces that balance semantic alignment with fidelity preservation.
We decompose the external force into two components: a semantic driving force that pushes the
latent code toward the target direction, and a resistance force that preserves consistency with the
original image.

Semantic driving force force pushes the latent code toward the target semantic direction specified
by the target. Formally, it is expressed as

Fsem = ∇(− log ρtarget(x)) (9)

where ρtarget(x) measures the semantic consistency between the current latent code and the target.
This term ensures that the editing trajectory converges toward the desired semantics.

To avoid excessive deviation that could harm identity or structure, we introduce a force that encour-
ages proximity to the original latent:

Fcon = −∇(− log ρorig(x)) (10)

where ρorig(x) measures the similarity between the current latent and the original latent. This term
acts as a resistance, preventing over-editing.

The overall external force is then given by:

Fext = Fsem + Fcon (11)

Learnable Viscosity and Integration The damping factor η is predicted by a neural network con-
ditioned on both the latent code and the text prompt, enabling adaptive control of editing dynamics.

The resulting velocity is then:

v =
−∇Φ(x) + Fsem + Fcon

η
(12)

Finally, the updated latent code after one editing step is obtained by time integration within the
normalized interval [0, 1]:

x∗ = x+

∫ 1

0

v(t)dt (13)

This formulation ensures that editing outcomes reflect a balanced trade-off among semantic fidelity,
consistency, and image realism.

3.4 LOSS FUNCTIONS

We use CLIP to encode text conditions, and define the training loss as the weighted sum of CLIP
text–image similarity loss, LPIPS perceptual loss, and ArcFace identity loss. The weights of all
three components are set to 1.0. Our training procedure consists of two stages, corresponding to the
principal component coefficient prediction in Section. 3.2 and the latent fluid dynamics optimization
in Section. 3.3. Accordingly, we design two groups of loss functions tailored for each stage.

Stage 1: Principal Component Coefficient Prediction. The goal of this stage is to predict the
coefficients α along the principal component axes while ensuring semantic consistency and high-
fidelity reconstruction. The loss function integrates the following components: 1) Reconstruction
Loss. We adopt an L1 loss to enforce pixel-level consistency between the reconstructed and input
images. To further enhance perceptual quality and identity preservation, we incorporate the LPIPS
perceptual loss (Zhang et al., 2018) and the ArcFace identity loss (Deng et al., 2019). 2) Semantic
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Alignment Loss. We leverage CLIP image–text similarity (Radford et al., 2021) to ensure that the
generated edits conform to the target text prompts. 3) Coefficient Regularization. An L2 regulariza-
tion on the predicted coefficients α prevents over-editing and ensures stable and interpretable editing
directions.

The overall objective for Stage 1 is formulated as:
Lstage1 = λL1LL1 + λLPIPSLLPIPS + λidLid + λCLIPLCLIP + λreg∥α∥22 (14)

Stage 2: Latent Fluid Dynamics Optimization. In the second stage, we focus on refining the
editing trajectory using the latent fluid dynamics optimization framework. The loss function in-
cludes: 1) Semantic Alignment Loss. CLIP image–text similarity is again employed to enforce
alignment with the target text conditions. 2) Latent Regularization. We introduce an L2 regular-
ization on the density discrepancy in the latent space to prevent deviations from the Gaussian prior,
ensuring that the optimization remains stable within the fluid model. 3) Fidelity Losses. Because
this optimization base on the Sec. 3.2 during training, we also include the LPIPS perceptual loss and
ArcFace identity loss to maintain high-fidelity reconstruction and identity preservation. The overall
objective for Stage 2 is given by:

Lstage2 = λCLIPLCLIP + λlatentLlatent + λLPIPSLLPIPS + λidLid (15)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct experiments on face image editing to validate the effectiveness of our proposed Gaussian
fluid-based latent trajectory optimization framework.

Datasets and pretrained models Our method is trained on the CelebAMask-HQ (Xia et al., 2021)
and evaluated on both CelebAMask-HQ and the FFHQ Karras et al. (2019). For quantitative eval-
uation, we randomly select text prompts from the CelebA dataset and perform text-guided editing
tasks. We adopt the e4e (Tov et al., 2021) encoder as the inversion module to project input images
into the latent space, and employ a pretrained StyleGAN2 (Karras et al., 2020) generator as the
backbone synthesis network.

Implementation details In practice, the fluid dynamics formulation introduced in eq. 12 requires
the viscosity parameter η to balance the contributions of semantic driving force Fsem and consis-
tency resistance Fcon. To better adapt to different editing conditions, we implement this balance as
a linear combination λsemFsem + λconFcon, where λsem and λcon are learnable weights predicted
by a neural network conditioned on both the latent code and the text prompt. This design allows the
model to dynamically adjust the emphasis on semantic alignment versus consistency preservation
based on the specific editing context.

Baselines and evaluation metrics We compare our approach with four representative text-guided
image editing methods: TediGAN (Xia et al., 2021), StyleCLIP (Patashnik et al., 2021), CLIPInvert
(Baykal et al., 2023), and DeltaEdit (Lyu et al., 2023a). These baselines cover direction-based
latent editing, inversion-based methods, and recent optimization-driven frameworks, providing a
comprehensive benchmark.

To evaluate editing quality, we adopt four metrics: 1) CLIP-I: CLIP-based similarity between edited
and source images, reflecting content preservation. 2) CLIP-T: CLIP-based similarity between
edited images and target text, measuring semantic alignment. 3) DINOScore: similarity computed
by DINOv2, serving as an additional perceptual metric. 4) AestheticsScore: aesthetic quality score
introduced by LAION, evaluating overall visual appeal.

4.2 RESULTS AND ANALYSIS

4.2.1 QUANTITATIVE RESULTS

We present quantitative comparisons on the CelebAMask-HQ and FFHQ datasets in Tables 1 and 2,
respectively. Several clear trends can be observed.
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Table 1: Quantitative comparison on CelebAMask-HQ dataset. Best results are highlighted in bold.
Method CLIP-I ↑ CLIP-T ↑ DINOScore ↑ Aesthetics ↑
TediGAN 0.633 0.343 0.780 5.096
StyleCLIP 0.806 0.197 0.736 5.352
CLIPInverter 0.729 0.279 0.619 5.157
DeltaEdit 0.781 0.216 0.697 5.324
Ours (CoeffPredictor) 0.801 0.236 0.736 5.296
Ours (LFDO) 0.827 0.222 0.766 5.342

On CelebAMask-HQ, our PCA-force variant already achieves competitive performance, with bal-
anced scores across CLIP-I, CLIP-T, DINOScore, and Aesthetics. By incorporating the proposed
LFDO, our method further improves CLIP-I from 0.801 to 0.827 and DINOScore from 0.736 to
0.766, while maintaining a strong Aesthetics score (5.342). Compared to baselines, TediGAN ex-
cels in CLIP-T (0.343) and DINOScore (0.780) but suffers from lower identity preservation (CLIP-I:
0.633). Notably, as an inference-time optimization method, TediGAN requires significant computa-
tional time per edit, limiting its practical applicability. StyleCLIP achieves high perceptual quality
(Aesthetics: 5.352) but struggles with semantic alignment (CLIP-T: 0.197). Moreover, StyleCLIP
relies on paired training data for specific edits, restricting its generalization to arbitrary text prompts.
CLIPInverter and DeltaEdit provide more balanced results but underperform our method in both se-
mantic alignment and visual similarity. These results suggest that our approach achieves a better
trade-off among fidelity, semantic accuracy, and image quality.

Table 2: Quantitative comparison on FFHQ dataset. Best results are highlighted in bold.
Method CLIP-I ↑ CLIP-T ↑ DINOScore ↑ Aesthetics ↑
TediGAN 0.627 0.329 0.735 4.905
CLIPInverter 0.718 0.254 0.563 5.130
DeltaEdit 0.847 0.205 0.676 5.087
Ours (CoeffPredictor) 0.823 0.227 0.657 5.032
Ours (LFDO) 0.858 0.211 0.695 5.035

On FFHQ, a similar trend is observed. Our PCA-force variant shows robust performance, and
the fluid optimization further boosts CLIP-I (from 0.823 to 0.858) and DINOScore (from 0.657 to
0.695), surpassing all baselines. TediGAN maintains strong CLIP-T (0.329) but performs poorly
in identity and aesthetics, with the additional drawback of slow inference due to its optimization-
based nature. DeltaEdit is competitive in CLIP-I (0.847) but lags behind in semantic alignment. In
contrast, our method consistently balances semantic alignment, fidelity, and visual quality across
datasets.

These results highlight the advantage of modeling editing trajectories as fluid dynamics. Unlike
inference-optimization approaches (e.g., TediGAN) or pair-dependent methods (e.g., StyleCLIP),
our framework produces stable improvements across datasets and metrics, demonstrating both gen-
erality and robustness.

4.2.2 QUALITATIVE RESULTS

We present qualitative comparisons to further highlight the advantages of our approach. Figure.
1 showcases the editing performance of different baselines. The leftmost column shows the orig-
inal images, followed by their inverted reconstructions. Each subsequent row corresponds to one
editing method under various text prompts, with prompts placed below each column and model
names listed along the rightmost column. We observe that baseline methods often introduce un-
desired modifications unrelated to the target prompt. In contrast, our Delta Predictor effectively
mitigates such spurious changes and maintains stable compositional generation. We attribute this
to the disentanglement effect induced by linear combinations along principal component directions.
Furthermore, our fluid-dynamics optimization suppresses overly exaggerated modifications, reduces
semantic-irrelevant edits, and preserves overall visual quality.

7
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“The person is chubby, with 
bags under eyes, wearing 

wearing necklace.”

TediGAN

StyleCLIP

DeltaEdit

CLIPInverter

CoeffPredictor

Fluid Dynamics 
Optimization
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CoeffPredictor

Fluid Dynamics 
Optimization

Figure 1: Qualitative comparison of text-guided image editing. The leftmost column displays the
original images. In the generated results, the first column corresponds to the inverted reconstruc-
tions, while the subsequent columns present the edited outcomes under different text prompts. The
text prompts are provided below each column, and the method names are indicated on the right-hand
side. Our method corresponds to the last two rows. Since StyleCLIP does not support empty text,
its empty text image is ignored.

To further illustrate the benefits of fluid optimization, Figure. 2 compares the outputs of Coefficient
Predictor (top row) and its optimized version (bottom row) under the same set of prompts. While
Delta Predictor occasionally produces unintended edits—for example, generating long hair when
prompted with “straight hair,” or altering expressions when asked for “heavy makeup”—the opti-
mized results yield milder edits that remain semantically faithful, significantly reducing irrelevant
changes.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

This people has blue eyes She has red lips She has straight hair She is sad, angry She is smiling This person has heavy makeupThis people has blue eyes She has red lips She has straight hair She is sad, angry She is smiling This person has heavy makeup

Figure 2: Comparison between Coefficient Predictor (top row) and its fluid-optimized version (bot-
tom row) under the same text prompts. The optimized results exhibit more controlled and semanti-
cally faithful edits, reducing unintended modifications.

Finally, Figure. 3 demonstrates the versatility of our method by applying latent fluid-dynamics
optimization to CLIPInverter. Since CLIPInverter directly adds editing directions in the w-space,
these directions can be projected onto principal component axes via:

α = ∆w · U−1U−1 = UT (16)

where U is a square matrix formed by horizontally stacking the principal component vectors, α is the
coefficient vector introduced in Section. 3.2, and δw represents the editing direction in the w-space.
Since the principal component matrix is orthonormal, its inverse equals its transpose. Subsequently,
the coefficients α can be used as the semantic driving force described in our optimization framework.

She has big eyes

She has straight hair

inversion CLIPInverter CLIPInverter + Ourorigin

She has big eyes

She has straight hair

inversion CLIPInverter CLIPInverter + Ourorigin

Figure 3: Applying fluid-dynamics-based optimization to CLIPInverter. The first column is the
original image, the second column is the inversion of CLIPInverter, the third column is the edited
result of CLIPInverter, and the last column is the result of the third column after our optimization
method. Our method uses the inversion as the optimization benchmark.The optimized results better
preserve identity and reduce excessive edits.
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As shown in Figure 3, applying our fluid-dynamics-based optimization method to CLIPInverter
effectively suppresses excessive edits and better preserves identity information, demonstrating the
broad applicability of our proposed approach.

4.3 ABLATION STUDY

Due to time constraints and the current limitations of our training strategy, we were unable to conduct
a comprehensive set of ablation studies. Partial experimental details and preliminary results are
provided in the Appendix. We plan to further validate our method through more extensive ablations
in future work and will include the corresponding results in an updated version of the Appendix.

4.4 CONCLUSION AND DISCUSSION

In this paper, we explore the latent space of pretrained generative models and propose a principled
framework for text-guided image editing. Specifically, we leverage principal component directions
as an interpretable basis and design a coefficient-prediction scheme to achieve disentangled and
controllable edits. Furthermore, to address the challenges of over-editing and irrelevant semantic
changes, we introduce a latent fluid dynamics optimization method, which dynamically balances
semantic accuracy, identity preservation, and visual quality.

Although our current experiments mainly simulate degradation scenarios via linear scaling of ∆latent,
the proposed framework already demonstrates clear improvements over existing baselines. In partic-
ular, principal component modeling provides strong interpretability and controllability, while fluid-
inspired optimization offers a natural way to regularize editing trajectories. We believe that extend-
ing this framework to nonlinear degradation and more complex editing tasks will further validate its
potential. As part of our future work, we plan to refine our experimental design to include nonlinear
distortions and richer editing dynamics, providing a more rigorous evaluation of our optimization
approach.
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APPENDIX

A SUPPLEMENTARY ANALYSIS OF LATENT SPACE PROPERTIES (RELATED
TO SECTION. 3.1)

To further investigate the statistical properties of the latent space, we conducted additional exper-
iments on StyleGAN2. Specifically, we randomly sampled 200k data points from the z space of
the pretrained model and mapped them into the latent space. We then performed Principal Compo-
nent Analysis (PCA) to compute the mean, covariance, and principal component directions of the
distribution.

From the 200k data points, we randomly sampled subsets of size 100 and 500, projecting them
along each principal direction. We subsequently applied two standard normality tests: the Kol-
mogorov–Smirnov (K-S) test and the Shapiro–Wilk test.

K-S test results With 100 samples, all p-values were greater than 0.05, and the test statistic D
remained small, suggesting normality. With 500 samples, 6 dimensions showed p-values smaller
than 0.05, almost all of which correspond to the last principal components with relatively small
variance.

Shapiro–Wilk test results The W statistics were consistently close to 1. For 100 samples, 50
dimensions yielded p-values below 0.05, and for 500 samples, this number increased to 90. Again,
these violations were mainly concentrated in principal directions with low variance contribution.

In our experiments, we worked in the w+ space, where we averaged n latent codes before PCA.
This averaging step may amplify cumulative errors. Nevertheless, the vast majority of dimensions
still approximately follow a normal distribution. Based on these findings, we conclude that the
StyleGAN2 latent space can be reasonably modeled as a multivariate Gaussian distribution in the
PCA basis.

For illustration, we also randomly sampled 2,000 data points and examined one particular dimen-
sion. Figure. 4 shows its Q-Q plot, with the Shapiro–Wilk p-value equal to 0.579. Figure. 5 shows
the corresponding Gaussian fit, with a K-S test p-value of 0.831. These results further support our
assumption of approximate Gaussianity in most latent dimensions.

Figure 4: Q-Q plot of one principal component direction, showing approximate normality.
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Figure 5: Histogram and Gaussian fit of the same principal component direction, with K-S test p-
value of 0.831.

B ADDITIONAL RESULTS

B.1 ADDITIONAL RESULTS ON PRINCIPAL COMPONENT COEFFICIENTS

We provide additional details and results regarding the experiments on principal component coeffi-
cients.

Experimental details Our coefficient prediction network adopts a U-Net architecture with cross-
attention. The learning rate is set to 0.001. We use a weighted loss with the following coefficients:
λclip = 3.0, λlpips = 1.0, λid = 1.0, λL1 = 1.0, and λreg = 0.05.

Effect of combining principal components In the first visualization (Fig. ??), each row corre-
sponds to editing results using a different number of principal components predicted by our coef-
ficient network. The editing prompt is displayed at the top of the figure. From top to bottom, the
rows correspond to using the top [1, 2, 5, 10, 512] principal components, respectively. Within each
row, the columns represent increasing editing coefficients [1, . . . , 10], where the editing direction is
given by scaling the linear combination of the principal components.

The results demonstrate that the ability to perform composite edits improves as more principal com-
ponents are included. For example, using only a single principal direction fails to achieve multi-
attribute edits, and using two directions is insufficient for structural transformations such as body
posture. As more components are added, the editing becomes more sensitive to the editing coeffi-
cients, indicating that multiple directions jointly contribute to controlling complex attributes. This
validates our hypothesis that while principal directions are statistically independent, a single seman-
tic attribute is often entangled across multiple directions. Thus, editing with only one direction is
more likely to introduce undesired semantic changes, whereas combining multiple components can
mitigate such side effects.

Effect of varying editing coefficients In the second visualization (Fig. 7), we analyze how dif-
ferent coefficient magnitudes affect the results. From left to right, the editing coefficients are set to
[−2.5,−2.0,−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5]. The first row shows the results of CLIP-
Inverter, while the second row presents our method.

We observe that our approach provides greater flexibility and semantic alignment across a wide
range of coefficient values. When the editing coefficients are large in magnitude, our method better
preserves attributes unrelated to the prompt, avoiding excessive or unintended changes. This high-
lights the robustness of our coefficient-based editing scheme in maintaining disentanglement while
enabling precise control over the editing strength.

B.2 ADDITIONAL RESULTS OF LATENT FLUID DYNAMICS OPTIMIZATION

Our proposed latent fluid dynamics optimization builds upon the Navier–Stokes formulation to re-
fine editing trajectories. Due to the current stage of implementation and training, we have not yet
completed comprehensive experiments for this section. Preliminary results are being actively devel-
oped, and we plan to extend this subsection with detailed visualizations and quantitative analysis in
future revisions of this work.
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Origin 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

“chubby, heavy makeup and short hair”

Origin 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

“chubby, heavy makeup and short hair”

Figure 6: Editing results using different numbers of principal components. Each row corresponds to
a different number of components, and each column represents increasing editing coefficients. The
prompt is ”A person with heavy makeup and straight hair”.

-2.5 -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5

“chubby, heavy makeup and short hair”

-2.5 -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5

“chubby, heavy makeup and short hair”

Figure 7: Editing results with varying coefficients. The first row shows CLIPInverter results, and the
second row shows our method’s results. The prompt is ”A person with heavy makeup and straight
hair”.
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DISCLOSURE OF LLM ASSISTANCE

We acknowledge that large language models (LLMs) were employed during the preparation of this
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our methods and experiments, with the goal of improving clarity and readability. All technical ideas,
formulations, experiments, and results presented in this paper are solely the work of the authors. The
use of LLMs was limited to language assistance and did not influence the scientific contributions of
this research.
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