
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPTIMIZER CHOICE MATTERS FOR THE EMERGENCE
OF NEURAL COLLAPSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Collapse (NC) refers to the emergence of highly symmetric geometric
structures in the representations of deep neural networks during the terminal phase
of training. Despite its prevalence, the theoretical understanding of NC remains
limited. Existing analyses largely ignore the role of the optimizer, thereby suggest-
ing that NC is universal across optimization methods. In this work, we challenge
this assumption and demonstrate that the choice of optimizer plays a critical role in
the emergence of NC. The phenomenon is typically quantified through NC metrics,
which, however, are difficult to track and analyze theoretically. To overcome this
limitation, we introduce a novel diagnostic metric, NC0, whose convergence to
zero is a necessary condition for NC. Using NC0, we provide theoretical evidence
that NC cannot emerge under decoupled weight decay, as implemented in AdamW.
Concretely, we prove that SGD, SignGD with coupled weight decay (a special case
of Adam), and SignGD with decoupled weight decay (a special case of AdamW) ex-
hibit qualitatively different NC0 dynamics. Finally, we conduct extensive empirical
experiments consisting of 3,900 training runs across various datasets, architectures,
optimizers, and hyperparameters, confirming our theoretical results. This work
provides the first theoretical explanation for optimizer-dependent emergence of
NC and highlights the overlooked role of weight-decay coupling in shaping the
implicit biases of optimizers.

1 INTRODUCTION

Neural networks have driven many of the recent breakthroughs in artificial intelligence, yet the
mechanisms underlying their success remain only partially understood. A key empirical clue is
neural collapse (NC) – first documented by Papyan et al. (2020) – in which the last-layer feature
vectors and classifier weights self-organise into a highly symmetric configuration during the terminal
phase of training (TPT). While the reasons for the emergence of NC are still not fully understood, its
impact on the behavior of a model is evident. For instance, Liu et al. (2023) induce NC to improve
generalization in class-imbalanced training and Galanti et al. (2021) show that the emergence of NC
improves transfer learning as well. Furthermore, the presence of NC has been connected to better
out-of-distribution detection (Liu & Qin, 2023).

Theoretical explanations for NC have primarily relied on simplified models and assumptions (Mixon
et al., 2022; Zhu et al., 2021) that have largely ignored the role of the optimizer, thereby suggesting
that NC is universal across optimization methods. In this work, we challenge this assumption and
demonstrate that the choice of optimizer plays a critical role in the emergence of NC. Concretely,
we show that training with AdamW (Loshchilov & Hutter, 2019) does not lead to an NC solution,
whereas training with SGD or Adam (Kingma & Ba, 2014) does. Through extensive experiments, we
trace this back to how weight decay is applied in both optimizer and identify the coupling of weight
decay as a necessity for the emergence of NC.

One major challenge in studying NC lies in the original metrics, which are difficult to track and
analyze theoretically. These metrics were designed to quantify the progressive geometric alignment
associated with NC and are expected to converge to zero in the idealized setting where NC holds as
training time approaches infinity. However, under realistic training regimes, such as finite training
epochs and learning rate decay, these metrics typically plateau at small but nonzero values. As a
result, there is no rigorous criterion for determining whether NC has truly occurred.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

This limitation motivates us to introduce a novel diagnostic metric, NC0, whose convergence to zero
is necessary (though not sufficient) for NC. Unlike previous metrics, NC0 enables a more definitive
assessment: if NC0 diverges during training, we can conclude that NC can not occur—even in
cases where other NC metrics misleadingly converge to small positive values, creating an illusion
of collapse. We discuss the peculiarity of interpreting NC metrics in practice later in Section 4.1.
Furthermore, NC0 allows us to go beyond loss landscape analysis and theoretically derive convergence
rates with which NC0 converges to zero.

Contribution In this paper, we conduct extensive experiments – spanning over 3,900 training
runs – to investigate the role of coupled weight decay in the emergence of NC. We identify coupled
weight decay as a key driver of NC in realistic settings, extending recent theoretical insights (Pan
& Cao, 2024; Jacot et al., 2024) that were limited to quasi-optimal solutions in simplified models.
In particular, we show that the form of weight decay used in adaptive optimizers such as Adam
(Kingma & Ba, 2014) and AdamW (Loshchilov & Hutter, 2019) critically affects whether NC
emerges. Strikingly, while networks trained with Adam often exhibit NC, AdamW – despite its
algorithmic similarity –fails to produce NC, with the corresponding metrics failing to converge to
zero over time (Figure 1). This subtle yet consequential distinction has been largely overlooked in
prior work.

In summary, we make the following contributions:

1. Across a wide range of experiments, we find that coupled weight decay is a necessary
condition for NC to emerge in adaptive optimizers, such as Adam and Signum.

2. Furthermore, we show the accelerating effect of momentum on NC when trained with SGD,
being the first result concerning momentum in the context of NC. We show that this goes
beyond the fact that momentum accelerates convergence.

3. We support our empirical findings with the following theoretical statements on the new NC0
metric:

• with SGD (with both coupled or decoupled weight decay), NC0 converges to zero at an
exponential rate proportional to the weight decay;

• with sign gradient descent (SignGD) with decoupled weight decay, a special case of
AdamW, NC0 converges to some positive constant;

• with SignGD with coupled weight decay, a special case of Adam, NC0 exhibits a
non-monotonic trajectory, increasing before eventually decreasing. Using learning rate
decreasing to zero, we show that NC0 also vanishes.

Organization This paper is organized as follows. In Section 2, we recapitulate the four properties
to characterize NC and introduce a novel NC property NC0. In Section 3 we present our main
experimental results with theoretical support. Finally, Section 4 provides insights and discussions on
the implications of our results.

0 10 5 10 4 10 3 10 2 10 1 100 101

Weight decay

10 1

100

101

NC
0

optimizer
AdamW
Adam

0 10 5 10 4 10 3 10 2 10 1 100 101

Weight decay

0.2

0.4

0.6

0.8

1.0

NC
3

optimizer
AdamW
Adam

Figure 1: NC0 (left) and NC3 (right) met-
rics at the end of training. Lower values in-
dicate stronger NC. AdamW shows consis-
tently higher metrics than Adam. Averages
computed over runs with varying learning
rates and momentum; shaded regions show
±1 standard deviation. X-axis is log-scaled.
Note that there are no values for Adam for
WD larger than 0.05 as the model did not
train due to over regularization.

Notation We use [K] = {1, 2, . . . ,K} to denote the index set for any integer K ∈ N. For a
matrix W, we let Vec(W) denote the vectorization of W obtained by stacking its columns. The
Frobenius inner product between two matrices W,W′ is denoted by ⟨W,W′⟩ = Tr(W⊤W′).
With slight abuse of notation, we write ∥W∥ = ∥W∥F for the Frobenius norm when W is a matrix,
and ∥v∥ = ∥v∥2 for the Euclidean norm when v is a vector. In other words, ∥W∥ = ∥Vec(W)∥.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

We denote by I the identity matrix, by 1 the all-ones column vector, and by J the all-ones matrix, i.e.,
J = 11⊤.

2 NEURAL COLLAPSE

Neural collapse (NC), observed during the terminal phase of training (TPT) in deep neural networks
(DNN), manifests itself through several geometric properties involving the last-layer features and
weights in the K-class classification task:

min
W,θ

N∑
n=1

ℓ(Whθ(xn), yn) +
λ

2
∥W∥2 + λ

2
∥Vec(θ)∥2 (1)

where (xn, yn)
N
n=1 ⊂ RD × [K] is the training set, W ∈ RK×P is the last-layer weights, hθ(xn) ∈

RP is the last-layer feature as the output of some backbone parameterized by θ, ℓ : RK × [K] →
[0,∞) is the loss function, and λ > 0 is the L2-regularization constant.

These properties, formalized by their corresponding metrics in the original paper Papyan et al. (2020),
are:

1. NC1 - Variability Collapse: Features collapse to their respective class means, indicating
that within-class variability vanishes.

2. NC2 - Convergence of Centered Class Means to Simplex ETF: Centered Class means
converge to a simplex equiangular tight frame (ETF).

3. NC3 - Convergence to Self-Duality: Rows of the last-layer weight W ∈ RK×P align with
the columns of the class means, creating a dual relationship between weights and features.

4. NC4 - Simplification to Nearest-Class-Center: The classifier’s decision boundaries are
simplified to those of a nearest-class-mean (NCC) classifier.

A solution satisfying all of these properties is referred to as a NC solution. In addition to these
prior NC properties, we introduce another novel NC property NC0, whose convergence to zero is a
necessary condition (though not sufficient) for NC.

NC0 - Zero Row Sum of Last-Layer Weight: The row sum of the last-layer weight W in the model
converges to zero.

The first observation is that NC0 is a necessary condition for NC2 and NC3:
Proposition 2.1. NC2 and NC3 implies NC0.

Proof. For each class k ∈ [K], we define the class mean µk = 1
|{n:yn=k}|

∑
n:yn=k hθ(xn) ∈ RP

and the centered class mean µ̄k = µk − 1
N

∑N
n=1 hθ(xn). We concatenate them into a matrix

M = (µ̄k)
K
k=1 ∈ RP×K with M1 = 0, since we centered the class means. By NC2, M converge

to a simplex ETF in the ambient space RP , meaning M/∥M∥F → QM∗ where M∗ ∈ RK×K is a
unit matrix with columns forming a K-simplex EFT in RK and Q ∈ RP×K is the isometric injection
map into the ambient space. Since M1 = 0 and Q is injective, the unit matrix M∗ has to be in
the form: M∗ def.

= P 1√
K−1

(
I− 1

KJ
)

for some orthogonal matrix P. But it can be absorbed into
Q as the matrix QP is still an isometric injection. Hence, without loss of generality, we assume
M∗ def.

= 1√
K−1

(
I− 1

KJ
)

and hence

M⊤M/∥M⊤M∥2F → (QM∗)⊤QM∗ = (M∗)2 = M∗.

On the other hand, NC3 states that M/∥M∥ − W⊤/∥W∥ → 0 as t → ∞. Hence we have
WW⊤

∥W∥2
F
−M∗ → 0 as t → ∞. Now note that 1⊤M∗1 = 0, hence ∥W⊤1∥2 = 1⊤WW⊤1 → 0.

Note that the last line holds if and only if NC0 holds.

NC0 offers two key advantages. First, it serves as a diagnostic tool: if NC0 does not converge, then
at least one of NC2 or NC3 must fail, providing a clear signal that neural collapse cannot occur.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Second, NC0 is more mathematically tractable than the original NC metrics, whose dynamics are
difficult to analyze and remain underexplored. As we demonstrate in Section 3, NC0’s evolution
during training can be reliably tracked and used to explain empirical trends observed across different
optimizers. In addition, our extensive experiments also show that NC0 is correlating well with prior
NC metrics, particularly for small learning rates (see Figure 2). For a more detailed explanation and
formal definitions of NC properties and their metrics, we refer the reader to Section B.

10 2 102

NC0

0

1

NC
3

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 2: NC0 weakly correlates with NC3 across different optimizers and learning rates. Details on
the regression fit can be found in Appendix D.3

3 MAIN RESULT

3.1 EXPERIMENTAL SETUP

We conducted extensive experiments training a ResNet9 and VGG9 using various optimizers, includ-
ing Adam, AdamW, SGD, SGD with decoupled weight decay (SGDW), Signum (Bernstein et al.,
2018), and Signum with decoupled weight decay (SignumW) trained on MNIST, FashionMNIST and
Cifar10. Every optimizer is trained with three different learning rates (LR), six different values of
momentum, and six different values of weight decay to also control the effect of hyperparameters on
the emergence of NC. This resulted in a total of 2× 3× 6× 108 = 3, 888 training runs. Note that
we only keep runs with reasonably high training accuracy. Too large weight decay over regularize
the model and the model does not train anymore. Thus, the number of valid training runs is actually
smaller than 3,888. All networks were trained for 200 epochs using a batch size of 128, with the
learning rate being decayed by a factor of 10 after one-third and two-thirds of the training duration,
as described in the original work by Papyan et al. (2020). In addition, we conducted ablation studies
to control for the number of training epochs and to verify that the results also hold for unconstrained
feature models (UFM)1, leading to a total of over 3,900+ training runs. Further details and all
experimental results can be found in Appendix D. Ablation studies on the effect of training epochs
can be found in Appendix D.4.1

Table 1: Final NC metrics for the same setting as in Figure 5, following the setup of Papyan
et al. (2020). Lower values (↓) indicate stronger neural collapse. Values in parentheses represent
percentages relative to the metric at initialization.

Optimizer NC0↓ NC1↓ NC2↓ NC3↓
SGD 2.14e-04 (< −99.5%) 0.05 (−99.3%) 0.29 (−63.0%) 0.35 (−75.1%)
SGDW 0.55 (−68.9%) 0.26 (−96.3%) 0.46 (−42.4%) 0.80 (−43.5%)
Adam 0.34 (−80.6%) 0.04 (−99.5%) 0.29 (−63.9%) 0.29 (−79.5%)
AdamW 5.33 (≫ 100%) 0.20 (−97.2%) 0.54 (−32.4%) 0.78 (−45.2%)
Signum 0.78 (−55.3%) 0.13 (−98.1%) 0.50 (−36.8%) 0.58 (−59.0%)
SignumW 3185.69 (≫ 100%) 0.30 (−95.7%) 1.15 (+44.2%) 1.40 (−1.2%)

3.2 WEIGHT DECAY IS ESSENTIAL AND MOMENTUM ACCELERATES NC

Our experiments show that weight decay is necessary to reduce the NC metric across all optimizers
and hyperparameter settings, as shown in Figure 3 for Signum and SGD, and earlier in Figure 1
for Adam and AdamW as well as in our ablation studies in Appendix D.4.1 and Appendix D.4.6.

1see Appendix C.5 for an introduction to UFM.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

While the experiments cannot fully exclude the possibility that NC can be achieved eventually in the
asymptotic limit without weight decay, we argue that WD is essential to observe the emergence of
NC in practical finite-length training settings on realistic models2.

0 10 5 10 4 10 3 10 2 10 1

Weight decay

100

101

102

103

104

NC
0 optimizer

SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.4

0.6

0.8

1.0

1.2

1.4

NC
3

optimizer
SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

10 5

10 4

10 3

10 2

10 1

100

NC
0

SGDW
SGD

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.2

0.4

0.6

0.8

1.0

NC
3

optimizer
SGDW
SGD

Figure 3: NC0 and NC3 metrics at the end of training for a ResNet9 trained on FashionMNIST
for Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one
standard deviation across all trainings run with corresponding optimizer. Note that there are fewer
values for Signum and SGD as the model did not train due to over regularization for too large WD.

From the figures, we can conclude that larger weight decay leads to a stronger decrease of NC metrics.
In particular, we show that adaptive optimizers with decoupled weight decay have much larger NC
metrics, which are strictly away from zero, showing no sign of NC. In addition, we show empirically
that momentum amplifies the effect of weight decay on the decrease of NC metrics in SGD, as shown
in the heatmap in Figure 4. This implies that one achieves a decrease in the NC metrics both by
increasing weight decay for fixed momentum or by increasing momentum for fixed non-zero weight
decay. The effect of momentum on the NC metrics becomes larger for larger values of weight decay.
We remark that this goes beyond the acceleration of convergence of the train loss, as we show in an
ablation study in Appendix D.4.5.

0.
0

2.
5e

-0
5

5e
-0

5

0.
00

01

0.
00

05

0.
00

1

0.
00

25

0.
00

5

weight_decay

0.
0

0.
5

0.
7

0.
9

0.
95

0.
97

0.
98

m
om

en
tu

m

1.75 1.75 1.75 1.75 1.72 1.69 1.61 1.48

1.75 1.75 1.75 1.74 1.69 1.64 1.48 1.24

1.75 1.75 1.74 1.73 1.66 1.56 1.32 0.99

1.75 1.74 1.72 1.69 1.48 1.24 0.74 0.31

1.75 1.72 1.69 1.64 1.24 0.88 0.31 0.06

1.75 1.70 1.66 1.56 0.99 0.56 0.10 0.01

1.75 1.68 1.61 1.48 0.74 0.31 0.02 0.00

NC0, LR=0.001

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.
0

2.
5e

-0
5

5e
-0

5

0.
00

01

0.
00

05

0.
00

1

0.
00

25

0.
00

5

weight_decay

0.
0

0.
5

0.
7

0.
9

0.
95

0.
97

0.
98

m
om

en
tu

m

0.62 0.62 0.62 0.62 0.62 0.61 0.60 0.58

0.59 0.60 0.59 0.59 0.59 0.58 0.55 0.51

0.58 0.58 0.58 0.58 0.57 0.56 0.51 0.42

0.56 0.56 0.56 0.55 0.52 0.47 0.33 0.22

0.57 0.56 0.55 0.55 0.47 0.37 0.22 0.15

0.56 0.55 0.54 0.53 0.40 0.27 0.16 0.14

0.56 0.55 0.55 0.52 0.32 0.21 0.15 0.13

NC2, LR=0.001

0.2

0.3

0.4

0.5

0.6
0.

0

2.
5e

-0
5

5e
-0

5

0.
00

01

0.
00

05

0.
00

1

0.
00

25

0.
00

5

weight_decay

0.
0

0.
5

0.
7

0.
9

0.
95

0.
97

0.
98

m
om

en
tu

m

0.72 0.72 0.72 0.72 0.72 0.71 0.70 0.67

0.70 0.70 0.70 0.69 0.69 0.68 0.65 0.60

0.68 0.68 0.68 0.68 0.67 0.65 0.60 0.52

0.65 0.65 0.65 0.64 0.61 0.57 0.43 0.30

0.63 0.63 0.63 0.62 0.55 0.46 0.30 0.19

0.62 0.61 0.60 0.59 0.48 0.37 0.20 0.17

0.62 0.62 0.61 0.58 0.42 0.31 0.16 0.16

NC3, LR=0.001

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4: Heatmap of NC0, NC2 and NC3 for varying values of momentum and weight decay on
ResNet9 trained on FashionMNIST with SGD.

The experimental results are complemented by Theorem 3.1 and Theorem 3.2 showing that NC0
converges to 0 with an exponential rate trained with SGD, which is proportional to momentum and
weight decay, highlighting that NC cannot be achieved without weight decay and that momentum
accelerates the convergence of NC metrics.

Theorem 3.1 (SGD with decoupled weight decay promotes NC0). Assume a model of the form
f(W, θ, x) = Whθ(x) is trained using cross-entropy loss with stochastic gradient descent (SGD)
and momentum β ∈ [0, 1), weight decay λ ∈ [0, 1), and learning rate η > 0 on all parameters θ,W.
For instance, the last-layer weights W are updated according to:

Vt+1 = βVt +∇WtLCE,

Wt+1 = (1− ηλ)Wt − ηVt+1.

If 0 < ηλ < 2, then the NC0 metric αt :=
1
K ∥W⊤

t 1∥22 decays exponentially to zero in t.
2We note that Ji et al. (2021) show both theoretically and empirically the emergence of NC on the uncon-

strained layer-peeled model (ULPM) objective under gradient flow without weight decay.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Proof. The key observation is that the row sum of the loss gradient ∇LCE(Wt)
⊤1K is zero, which

largely simplifies the NC0 metric to only be dependent on the weight decay λ and momentum β. For
the details of the proof, please refer to Subsection E in the Appendix.

Theorem 3.2 (SGD with coupled weight decay promotes NC0). Assume a model of the form
f(W, θ, x) = Whθ(x) is trained using cross-entropy loss with stochastic gradient descent (SGD)
and momentum β ∈ [0, 1), weight decay λ ∈ [0, 1), and learning rate η > 0 on all parameters θ,W.
For instance, the last-layer weights W are updated according to:

Vt+1 = βVt +∇WtLCE + λWt,

Wt+1 = Wt − ηVt+1.

If 0 < ηλ < 2(1 + β), then the NC0 metric αt :=
1
K ∥W⊤

t 1∥22 decays exponentially to zero in t.

Proof. Similar to the proof of Theorem 3.1 For the details of the proof, please refer to Subsection E
in the Appendix.

3.3 WEIGHT DECAY COUPLING MATTERS

While weight decay has been theoretically shown to be essential for NC in prior works (Pan & Cao,
2024; Jacot et al., 2024), these works ignore how weight decay is applied by treating L2-regularization
of the gradient and applying weight decay directly on parameters as equivalent. However, we note that
this equivalency only holds for vanilla SGD and not for adaptive optimizers, such as Adam or AdamW,
nor when momentum is applied. In particular, our experiments reveal that NC does not emerge under
SignumW and AdamW under realistic settings. This highlights the crucial role of coupled weight
decay – that is L2-regularization applied directly within the gradient update – as a requirement for
NC. This subtle yet important distinction has been largely overlooked in prior literature.

0 100 200
epoch

10 2

100

102

NC
0

0 100 200
epoch

10 1

100

101

NC
1

0 100 200
epoch

0.5

1.0

NC
2

0 100 200
epoch

0.5

1.0

NC
3

SGD SGDW AdamW Adam Signum SignumW

Figure 5: NC metrics throughout training on a ResNet9 trained on FashionMNIST.

Importantly, tracking the evolution of the NC metrics (Figure 5) and the singular values of centered
class means M and the last-layer weight W (Figure 6) throughout training (here shown for a ResNet9
trained on FashionMNIST), one can see that using adaptive optimizers with decoupled weight decay
leads to fundamentally different dynamics of the NC metrics and singular values despite all models
reaching TPT, where training error is (almost) zero.

0 50 100 150 200
Epoch

0

5

10

15

Si
ng

ul
ar

 v
al

ue
s o

f W

0 50 100 150 200
Epoch

0

10

20

30

40

Si
ng

ul
ar

 v
al

ue
s o

f M

SGD SGDW AdamW Adam Signum

Figure 6: Singular values of last-layer weights W (left) and centered class means M (right) through-
out training. The dotted line corresponds to the smallest singular value and the full line corresponds
to the average singular value, excluding the smallest singular value. Singular values for SignumW
are out-of-range and are shown in Figure 28 in the appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Specifically, Figure 6 shows that the smallest singular value of W increases during training with
AdamW and SignumW, indicating failure to satisfy NC3. Additionally, NC0 and the nonzero singular
values of M grow throughout training and exhibit high variance, suggesting that NC2 is also less
well-fulfilled in these settings.

In Figure 5, we further observe that SGD and Adam achieve the lowest NC metric values, while
AdamW, SignumW, and SGDW saturate early at much higher levels. Although the NC metrics for
Signum are slightly larger than for SGD and Adam, they continue to decrease over time, suggesting
potential convergence to NC under longer training.

Finally, our experiments in Figure 1 and Figure 3 demonstrate that the NC0 and NC3 metrics of
AdamW and SignumW remain significantly larger than those of Adam and Signum, even when using
weight decay several orders of magnitudes higher. This indicates that models trained with AdamW
or SignumW are consistently farther from achieving NC. Interestingly, the NC metrics for SGD and
SGDW remain relatively close – only slightly shifted – showing that the gap between coupled and
decoupled weight decay has a more pronounced effect in adaptive optimizers than in SGD. Note that
the NC metrics for SGD and SGDW remain relatively close, consistent with our theoretical results in
Theorem 3.1 and Theorem 3.2, while the gap between coupled and decoupled weight decay has a
more pronounced effect in adaptive optimizers than in SGD. This suggests the effect is not simply
due to greater weight decay accumulation through momentum but stems from a deeper interaction
with the optimization dynamics.

3.4 INTERPOLATING ADAMW AND ADAM

To further investigate why AdamW fails to exhibit neural collapse (NC) while Adam does, we con-
ducted an ablation study by “interpolating” between the two optimizers. Specifically, we implemented
a variant that combines both coupled weight decay (as in Adam) and decoupled weight decay (as
in AdamW). For each run, we varied the strength of the coupled weight decay while adjusting the
decoupled component such that the total weight decay remained fixed at 0.0005. The momentum was
set to 0.9 across all configurations.

As shown in Figure 7, increasing the coupled component leads to a smooth improvement in NC
metrics—particularly NC0, NC2, and NC3—while the validation accuracy remains largely unaffected.
This experiment suggests that coupled weight decay is a critical factor in enabling neural collapse,
yet it is not strictly necessary for achieving strong generalization performance, as all configurations
yield similar validation accuracy. This strengthens a point raised earlier about the limitations of NC
to understand generalization Hui et al. (2022).

0 50 100 150 200
epoch

0.980

0.985

0.990

0.995

1.000

va
lid

at
io

n
ac

cu
ra

cy

coupled weight decay
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005

0 50 100 150 200
epoch

100

NC
0

0 50 100 150 200
epoch

0.2

0.4

0.6

0.8

NC
2

0 50 100 150 200
epoch

0.2

0.4

0.6

0.8

NC
3

Figure 7: Interpolating Adam and AdamW by varying the coupled and decoupled weight decay. Total
weight decay was fixed to 0.0005. Note that coupled weight decay = 0 is equivalent to AdamW and
coupled weight decay = 0.0005 is equivalent to Adam. Experiments trained on ResNet9 with MNIST.

This observation is supported by our theoretical results in Theorem 3.3 and Theorem 3.4, which show
that SignGD with decoupled weight decay fails to satisfy NC0 and therefore cannot converge to a
neural collapse solution, whereas SignGD with coupled weight decay exhibits different behaviour.
We note that SignGD corresponds to a special case of Adam and AdamW when the parameters β1,
β2, and ε are set to zero.
Theorem 3.3 (Sign GD with decoupled weight decay avoids NC0). Consider sign GD with
(decoupled) weight decay λ > 0 and step size η > 0 on the UFM loss LCE(WH, I) =∑N

n=1 LCE(Whn, en), where the feature H = M∗ is fixed to an NC solution and only the weight
W is trained:

Wt+1 = Wt − η(sign(∇WtLCE) + λWt)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 5000 10000
Step

9.4×10 4

9.45×10 4

9.5×10 4

9.55×10 4

9.6×10 4

9.65×10 4

9.7×10 4

N
C
0

SGD

wd=5e-04

wd=1e-03

wd=5e-03

0 5000 10000
Step

10 3

10 2

N
C
0

Adam

wd=5e-04

wd=1e-03

wd=5e-03

0 5000 10000
Step

10 3

10 2

N
C
0

AdamW

wd=5e-04

wd=1e-03

wd=5e-03

0 5000 10000
Step

10 5

10 4

10 3

10 2

N
C
0

SignSGD

wd=5e-04

wd=1e-03

wd=5e-03

0 5000 10000
Step

10 3

10 2

N
C
0

SignSGDW

wd=5e-04

wd=1e-03

wd=5e-03

Figure 8: Training dynamic of NC0 with optimizers SGD, Adam, AdamW, Adam0 (β1 = β2 = 0),
AdamW0 (β1 = β2 = 0). For AdamW and SignSGD the inlay shows the NC0 metric more detailed
for the last 2000 steps. Note that 5 steps correspond to one training epoch.

Then the NC0 metric α = ∥W⊤
t 1K∥22 increases monotonically from zero to the limit:

lim
t→∞

αt =
(K − 2)2

λ2
.

In particular, αt does not vanish as t→ ∞.

Proof idea: The key observation is that the signed loss gradient sign(∇LCE(Wt)) in this setting is
constant in t, simplifying the following computation. See Appendix E for the full proof. □

Theorem 3.4 (Sign GD with coupled weight decay can lead to NC0). Consider sign
GD with (coupled) weight decay λ > 0 and step size η > 0 on the UFM loss
LCE(WH, I) =

∑N
n=1 LCE(Whn, en), where the feature H = M∗ is fixed to an NC solu-

tion and only the weight W is trained:

Wt+1 = Wt − η(sign(∇Wt
LCE + λWt))

We initialize W0 = 0 ∈ RK×K and define the covariance matrix Ct = WtW
⊤
t and the scalar αt =

⟨Ct, Ĵ⟩F where Ĵ = 1
K11⊤. Then there exists a learning rate decay scheme η = η(t) −−−→

t→∞
0

such that αt −−−→
t→∞

0.

Proof. See Appendix E.

The key difference between the results of Theorem 3.3 and Theorem 3.4 lies in how coupled weight
decay affects the signed gradient during training. As the weight norm ∥W∥ increases, the coupled
decay term can eventually flip the sign of the gradient, altering the trajectory of the NC0 metric αt.
Initially, αt grows at a similar rate in both cases, but their behaviors diverge once the decay term
becomes dominant.

To illustrate this effect, we conducted a small-scale experiment using a simple MLP on a separable
dataset with various optimizers. As shown in Figure 8, SignSGD displays non-monotonic dynamics
in αt, while SignSGDW exhibits steady convergence to a positive value. Similar patterns appear in
Adam and AdamW, though more smoothed due to their adaptive updates.

4 DISCUSSION AND LIMITATIONS

In this section, we discuss new insights, additional considerations and limitations from the main
results in Section 3. Additionally, we explore potential follow-up research directions that could
provide theoretical explanations or extend our experiments to broader settings.

4.1 INTERPRETING NC METRICS IN PRACTICE

While NC is defined by the convergence of all NC metrics to zero in the limit, practical experiments
never achieve exact zeros. Since NC is inherently a continuous rather than discrete phenomenon, it
becomes necessary to define what constitutes the presence of NC in practice. This important issue
has not been thoroughly addressed in the existing literature.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

A further complication is that different NC metrics operate on different scales and these scales vary
across settings of architectures and datasets. For example, in our experiments, the smallest observed
values for NC2 and NC3 are on the order of 0.1, whereas NC1 can reach values an order of magnitude
smaller.

In this work, we therefore refer to the emergence of NC in terms of relative strength. Specifically, we
use the NC metric values at initialization as a baseline for models that do not exhibit NC, and use the
smallest values achieved across all experiments as a reference point for models that do. This framing
allows us to discuss the strength of NC emergence across different optimizers and settings.

4.2 THE REDUNDANT NC4 PROPERTY

Readers may notice that we omit NC4 from the results in Section 3. This is because we observed
that NC4 is consistently satisfied whenever the training accuracy approaches 100%, regardless of
whether the other NC metrics (NC1–NC3) exhibit collapse. As shown in Figure 56, NC4 is largely
uncorrelated with the other metrics. To maintain a clearer and more focused presentation, we therefore
exclude NC4 from our main analysis.

4.3 PARTIAL NEURAL COLLAPSE

Table 2: Final NC metrics for the run with the smallest absolute NC3 metric and > 99% training
accuracy for each optimizer. Lower values (↓) indicate stronger neural collapse. Values in parentheses
represent percentages relative to the metric at initialization. Hyperparameters used for each optimizer
can be found in Table 4.

Optimizer NC0↓ NC1↓ NC2↓ NC3↓
SGD 1.53e-05 (< −99.5%) 0.02 (< −99.5%) 0.19 (−75.8%) 0.13 (−90.9%)
SGDW 1.54e-04 (< −99.5%) 0.01 (< −99.5%) 0.15 (−81.7%) 0.10 (−92.7%)
Adam 0.12 (< −93.2%) 0.04 (−99.5%) 0.23 (−71.6%) 0.17 (−88.2%)
AdamW 8.09 (≫100%) 0.01 (< −99.5%) 0.14 (−82.1%) 0.49 (−65.1%)

Another subtlety we observe is what we term partial neural collapse. As shown in Table 2, AdamW
can achieve minimal values for NC1 and NC2 among all optimizers, even while NC0 diverges and
NC3 is not satisfied. This indicates that NC properties may not always emerge jointly, contrary to the
original claim in Papyan et al. (2020). Understanding the theoretical conditions under which only a
subset of NC properties holds remains an intriguing open question.

4.4 LIMITATIONS OF THEORETICAL SUPPORT

Our experiments on Adam and AdamW are conducted on realistic models and datasets, whereas our
theoretical results (Theorem 3.3, Theorem 3.4) focus on a simplified setting: SignGD applied to the
unconstrained feature model. While this restricted setup already demonstrates that AdamW fails to
achieve NC, it does not fully capture the complexity of deep neural networks or adaptive optimizers
in practice. Nevertheless, we believe our proof techniques could be extended to explain why Adam
may lead to NC in more general settings. Moreover, our theoretical analysis is limited to the training
dynamics of NC0, chosen for its analytical tractability and strong empirical correlation with other
NC metrics. A full theoretical understanding of NC1–NC3 under realistic optimization dynamics
remains an open challenge, and we leave this direction for future work.

4.5 FUTURE RESEARCH

Other than the topic we have discussed in the previous subsections, our findings also open other
intriguing avenues for future research.

• Empirical studies should be expanded to include larger models, such as Vision Transformers
(ViTs) and DenseNets, as well as more diverse datasets, to assess the broader generality of
our findings. Our preliminary results on ViT are available in Appendix D.4.10, and largely
confirm our findings also extend to Transformers.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

• Due to computational constraints, our study only analyzed NC properties in the last layer.
However, previous works (Masarczyk et al., 2023; Rangamani et al., 2023) suggest that
these properties may also manifest in intermediate layers. Investigating NC behavior across
different depths could provide further insights into hierarchical feature representations.

• In addition to the optimizers (SGD, Adam, AdamW, Signum) studied in this work, novel
first-order methods such as Lion (Chen et al., 2023) and Mars (Yuan et al., 2024), and second-
order methods, such as Shampoo (Gupta et al., 2018), SOAP (Vyas et al., 2024) and Muon
(Jordan et al.) demonstrated promising improvements in convergence and generalization.
However, their effects on NC remain largely unexplored.

5 CONCLUSION

In this paper we have conducted an extensive number of experiments to elucidate the role of the
optimization algorithm in the emergence of the neural collapse (NC) phenomenon. In particular,
our experiments consistently show that coupled weight decay is necessary for achieving small NC
metrics. While the role of weight decay in the context of NC has been studied in the literature before,
this is the first paper distinguishing between coupled and decoupled weight decay. Moreover, our
theoretical results show that the resulting training dynamics differ considerably and one needs to take
this into account. These findings underscore the limitations of existing theoretical frameworks, which
have studied NC mainly under gradient flow or gradient descent, and highlight the need for further
investigation into the interplay between optimizers and NC.

REFERENCES

Mouïn Ben Ammar, Nacim Belkhir, Sebastian Popescu, Antoine Manzanera, and Gianni Franchi.
Neco: Neural collapse based out-of-distribution detection, 2024.

Tina Behnia, Ganesh Ramachandra Kini, Vala Vakilian, and Christos Thrampoulidis. On the implicit
geometry of cross-entropy parameterizations for label-imbalanced data. In Francisco Ruiz, Jennifer
Dy, and Jan-Willem van de Meent (eds.), Proceedings of The 26th International Conference on
Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research,
pp. 10815–10838. PMLR, 25–27 Apr 2023.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine
Learning, pp. 560–569. PMLR, 2018.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Symbolic discovery of optimization algo-
rithms. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances
in Neural Information Processing Systems, volume 36, pp. 49205–49233. Curran Associates, Inc.,
2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Tomer Galanti, András György, and Marcus Hutter. On the role of neural collapse in transfer learning.
arXiv preprint arXiv:2112.15121, 2021.

Connall Garrod and Jonathan P. Keating. The persistence of neural collapse despite low-rank bias:
An analytic perspective through unconstrained features, 2024.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 1842–1850.
PMLR, 10–15 Jul 2018.

X. Y. Han, Vardan Papyan, and David L. Donoho. Neural collapse under mse loss: Proximity to and
dynamics on the central path, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Md Yousuf Harun, Jhair Gallardo, and Christopher Kanan. Controlling neural collapse enhances
out-of-distribution detection and transfer learning, 2025.

Like Hui, Mikhail Belkin, and Preetum Nakkiran. Limitations of neural collapse for understanding
generalization in deep learning. arXiv preprint arXiv:2202.08384, 2022.

Arthur Jacot, Peter Súkeník, Zihan Wang, and Marco Mondelli. Wide neural networks trained with
weight decay provably exhibit neural collapse, 2024.

Wenlong Ji, Yiping Lu, Yiliang Zhang, Zhun Deng, and Weijie J Su. An unconstrained layer-peeled
perspective on neural collapse. arXiv preprint arXiv:2110.02796, 2021.

Jiachen Jiang, Jinxin Zhou, Peng Wang, Qing Qu, Dustin Mixon, Chong You, and Zhihui Zhu.
Generalized neural collapse for a large number of classes. arXiv preprint arXiv:2310.05351, 2023.

K Jordan, Y Jin, V Boza, Y Jiacheng, F Cecista, L Newhouse, and J Bernstein. Muon: An optimizer
for hidden layers in neural networks, 2024b. URL https://kellerjordan. github. io/posts/muon.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vignesh Kothapalli. Neural collapse: A review on modelling principles and generalization, 2023.

Litian Liu and Yao Qin. Detecting out-of-distribution through the lens of neural collapse. arXiv
preprint arXiv:2311.01479, 2023.

Xuantong Liu, Jianfeng Zhang, Tianyang Hu, He Cao, Yuan Yao, and Lujia Pan. Inducing neural
collapse in deep long-tailed learning. In International conference on artificial intelligence and
statistics, pp. 11534–11544. PMLR, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Wojciech Masarczyk, Mateusz Ostaszewski, Ehsan Imani, Razvan Pascanu, Piotr Miłoś, and Tomasz
Trzciński. The tunnel effect: Building data representations in deep neural networks. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 76772–76805. Curran Associates, Inc., 2023.

Dustin G Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained features.
Sampling Theory, Signal Processing, and Data Analysis, 20(2):11, 2022.

Kaouther Mouheb, Marawan Elbatel, Stefan Klein, and Esther E Bron. Evaluating the fairness of
neural collapse in medical image classification. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 286–296. Springer, 2024.

Leyan Pan and Xinyuan Cao. Towards understanding neural collapse: The effects of batch normaliza-
tion and weight decay, 2024.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

Akshay Rangamani, Marius Lindegaard, Tomer Galanti, and Tomaso A Poggio. Feature learning
in deep classifiers through intermediate neural collapse. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 28729–28745. PMLR, 23–29 Jul 2023.

Christos Thrampoulidis, Ganesh Ramachandra Kini, Vala Vakilian, and Tina Behnia. Imbalance
trouble: Revisiting neural-collapse geometry. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp.
27225–27238. Curran Associates, Inc., 2022.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Robert Wu and Vardan Papyan. Linguistic collapse: Neural collapse in (large) language models.
arXiv preprint arXiv:2405.17767, 2024.

Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power
of variance reduction for training large models, 2024.

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A
geometric analysis of neural collapse with unconstrained features. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, volume 34, pp. 29820–29834. Curran Associates, Inc., 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A LLM USAGE STATEMENT

We disclaim that we have used Large Language Models to refine a few sentences and additionally as
a proxy of a search engine to retrieve additional related work.

The appendix is organized as follows. In Section B, we formally define the neural collapse (NC)
phenomenon and introduce the metrics used in the experiments presented in the main text. In
Appendix C, we review prior works related to our paper. Section D provides detailed descriptions and
additional observations from our experiments. In Section E, we present the full proof of the theorems
stated in the main text.

B NC METRICS

Neural collapse (NC), discovered by Papyan et al. (2020), is a striking phenomenon observed during
the terminal phase of training (TPT) deep neural networks (DNN) for multi-class classification tasks,
particularly when trained with cross-entropy (CE) loss. Formally, let the (trained) last-layer features
of the DNN be denoted by hn, and concatenate them into a matrix H ∈ Rp×N , where p is the
width of the last layer and N is the number of training samples indexed by n. The output logits of
the network are then computed as WLH ∈ RK×N , where WL ∈ RK×p is the last-layer weight,
b ∈ RK is the bias vector, and K is the number of classes. 3

The DNN is trained using the CE loss computed on the logits:

CE(WL,H) = −
N∑

n=1

log

(
exp(WLhn)yn∑K
k=1 exp(WLhn)k

)
,

where yn ∈ [K] denotes the class label index of the feature vector hn. Let Ck
def.
= n ∈ [N] : yn = k

be the index set of data points belonging to class k ∈ [K]. In this paper, we assume that the classes
are balanced, i.e., |Ck| is equal for all k ∈ [K]. For the effects of class imbalance on NC, we refer the
reader to Han et al. (2022); Thrampoulidis et al. (2022); Behnia et al. (2023).

Let µk
def.
= 1

|Ck|
∑

n∈Ck
hn be the class mean for each class k. The global mean of all classes is

given by µG = 1
K

∑K
k=1 µk and centered class means are defined as µ̄k = µk − µG. Let the

between-class covariance ΣB ∈ Rp×p and the within-class covariance ΣW ∈ Rp×p be:

ΣB =
1

K

K∑
k=1

µ̄kµ̄
⊤
k ,

ΣW =
1

K

1

N

K∑
k=1

N∑
n=1

(hk
n − µk)(h

k
n − µk)

⊤,

where hk
n correspond to the feature vectors of class k.

We also concatenate the centered class means into a matrix M
def.
= (µ̄1, ..., µ̄K) ∈ Rp×K .

With these definitions in place, we now conceptually outline the NC properties and introduce
corresponding metrics to quantitatively measure these properties in our experiments.

3For simplicity, we interchangeably refer to an input x ∈ Rd and its corresponding last-layer feature h ∈ Rp

after the parameters of the network have converged during TPT and the mapping x 7→ h is fixed.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

NC1 - Variability Collapse The first property of neural collapse (NC1) describes the collapse of
features to their respective class means. Formally, this means that the distance between a feature
vector hn and its corresponding class mean µk approaches zero:

∥hn − µk∥2 → 0,∀k ∈ [K], n ∈ Ck.
A corresponding metric is defined as Zhu et al. (2021); Kothapalli (2023); Ammar et al. (2024):

NC1 def.
=

1

K
Tr[ΣWΣ†

B] (2)

where † denotes the Moore-Penrose pseudo-inverse.

NC2 - Convergence of Class Means to Simplex ETF The second property of neural collapse
(NC2) describes the convergence of class means to a simplex equiangular tight frame (ETF), where
the angles between the means are maximally symmetric. Formally, this property can be expressed as:{

∥µ̄j∥2 − ∥µ̄k∥2 → 0〈
µ̄j

∥µ̄j∥2
, µ̄k

∥µ̄k∥2

〉
→ K

K−1δjk − 1
K−1 ,

∀j, k ∈ [K].

To measure this property, we define two metrics capturing the equinormality and equiangularity of
the centered class means Papyan et al. (2020); Ammar et al. (2024):

NC2n =
stdk{∥µ̄k∥2}
avgk{∥µ̄k∥2}

; (3)

NC2a = avgk ̸=k′

∣∣∣∣〈 µ̄k

∥µ̄k∥2
,

µ̄k′

∥µ̄k′∥2

〉
+

1

K − 1

∣∣∣∣ . (4)

Here, std•(·) and avg•(·) denote the standard deviation and mean, respectively, over the specified
index.

An alternative metric for NC2, introduced by Kothapalli (2023), directly measures the deviation of
the centered class means from a simplex ETF:

NC2 def.
=

1

K2

∥∥∥∥ M⊤M

∥M⊤M∥F
−M∗

∥∥∥∥
F

(5)

where

M∗ def.
=

1√
K − 1

(
IK − 1

K
JK

)
,

IK ∈ RK×K is the identity matrix and J ∈ RK×K is the matrix of ones. Note that NC2n,NC2a →
0 ⇐⇒ NC2 → 0.

NC2W - Convergence of Weight Rows to Simplex ETF In addition to NC2, we define a related
property, NC2W, which describes the convergence of the rows of the last-layer weights WL ∈ RK×p

to a simplex ETF. If the third NC property, NC3 (described later), holds, then NC2 and NC2W are
equivalent. However, to study partial NC, it is essential to decouple these properties and measure
NC2 and NC2W separately.

To measure NC2W, Zhu et al. (2021) introduced the following metric:

NC2W def.
=

1

K2

∥∥∥∥∥ WLW
⊤
L∥∥WLW⊤
L

∥∥
F

−M∗

∥∥∥∥∥
F

. (6)

While this metric measures the overall alignment of WL with a simplex ETF, it does not account for
the equinormality and equiangularity of the rows of WL. To address this, we introduce the following
metrics:

NC2Wn =
stdk{∥wk∥2}
avgk{∥wk∥2}

(7)

NC2Wa = avgk ̸=k′

∣∣∣∣〈 wk

∥wk∥2
,

wk′

∥wk′∥2

〉
+

1

K − 1

∣∣∣∣ (8)

where w⊤
k ∈ Rp is the k-th row of WL.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

NC2M - Convergence of Product to Simplex ETF Finally, Zhu et al. (2021); Kothapalli (2023)
proposed a metric that interpolates between NC2 and NC2W: 4

NC2M def.
=

1

K2

∥∥∥∥ WLM

∥WLM∥F
−M∗

∥∥∥∥
F

. (9)

Note that NC2,NC2W → 0 =⇒ NC2M → 0 but the converse does not hold.

NC3 - Convergence to Self-Duality The third property of neural collapse (NC3) describes that the
rows of the last-layer weight align with the column of the class means, that is,∥∥∥∥ WL

∥WL∥F
− M⊤

∥M⊤∥F

∥∥∥∥
F

→ 0;

the corresponding metric is an obvious one Papyan et al. (2020); Garrod & Keating (2024):

NC3 def.
=

1

Kp

∥∥∥∥ WL

∥WL∥F
− M⊤

∥M⊤∥F

∥∥∥∥
F

(10)

NC4 - Simplification of Nearest-Class-Center (NCC) The fourth property of neural collapse
(NC4) describes that the classifier decision boundaries become equivalent to those derived by a
nearest-class-mean classifier, that is,

argmax
k

⟨wk,h⟩ → argmin ∥h− µk∥2

for any test feature h ∈ Rp; hence we can fix a test set of features {htest
n }N

test

n=1 define the metric:

NC4 def.
=

1

N test

N test∑
n=1

1{argmax
k

⟨wk,h
test
n ⟩ = argmin

k

∥∥htest
n − µk

∥∥
2
} (11)

where 1 is the indicator function.

The above NC properties hold if their corresponding metrics approach zero (except for NC4, which
approach one) as the training step t→ ∞. A solution WL,H satisfying these properties is referred
to as an NC solution.

To observe the interpolation between partial and full NC, we introduce a weaker property:

NC0 - Zero Row Sum of Last-Layer Weight This new property describes that the rows of the
last-layer weight WL sums up to zero with the corresponding metric

NC0 def.
=

1

p

∥∥W⊤
L1
∥∥
2
, (12)

Note that NC2W → 0 =⇒ NC0 → 0 but the converse does not hold.

The analogous property for the last-layer features, Zero Column Sum of Last-Layer Features,
holds automatically because the columns of M are centered class means:

K∑
k=1

µ̄k =

K∑
k=1

(µk − µG) = 0.

Thus, NC0 for the last-layer weights already represents a form of duality similar to NC3.

4In the original works, this metric was used to evaluate self-duality. However, in this paper, we decouple the
NC properties to study the effects of implicit biases on each individually.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C ADDITIONAL RELATED WORK

C.1 WEIGHT DECAY AND NEURAL COLLAPSE

Weight Decay has been shown to be essential for NC in prior works, like (Zhu et al., 2021; Pan &
Cao, 2024; Jacot et al., 2024). However, their statements on weight decay are for (quasi-)optimal
solutions in oversimplified models, which ignore the complex interaction between non-convex loss
landscape and optimizers. Please see Appendix C.5 for an example.

C.2 EMPIRICAL STUDIES ON THE EMERGENCE OF NEURAL COLLAPSE

Neural collapse has also been studied beyond the original problem setting, which assumes few
balanced classes as well as noise-free labels. Notably, Wu & Papyan (2024) studied the occurrence
of NC for large language models, which do not satisfy any of the original assumption. Jiang et al.
(2023) studied neural collapse for a large number of classes, while Mouheb et al. (2024) studied the
influence of imbalanced in medical image classification on NC.

C.3 APPLICATIONS OF NEURAL COLLAPSE

The observation of neural collapse (NC) has inspired a growing body of follow-up work that applies
NC metrics across various settings. In the context of out-of-distribution (OOD) detection, Ammar
et al. (2024) propose a novel post-hoc detection method based on the geometric properties of NC,
while Harun et al. (2025) show that explicitly controlling for NC1 can enhance OOD detection
performance. Notably, the latter also claim that AdamW leads to NC, based on empirical results
where NC3 values hover around 0.5 across different models—mirroring the misleading metrics
reported in Table 2. As we demonstrate in the main text, however, this does not indicate true NC.
This discrepancy underscores the need for a more precise and systematic framework for evaluating
NC – one of the central contributions of this work.

In a separate line of inquiry, Liu et al. (2023) study the impact of class imbalance on NC and
propose explicit feature regularization terms to induce NC under imbalanced distributions, resulting
in improved model performance.

C.4 COUPLED WEIGHT DECAY IN THE CONTEXT OF NEURAL COLLAPSE

To the best of our knowledge, no prior work has investigated the role of optimizer choice in the
context of NC. When minimizing the objective in Equation (1) or Equation (13), the weight decay
induced by the L2-regularization parameter λ is coupled with the training loss. However, with the
introduction of AdamW Loshchilov & Hutter (2019), decoupled weight decay has become the default
in many modern optimizers. This paper aims to bridge this gap by systematically examining the
impact of coupled versus decoupled weight decay on the emergence of NC.

C.5 UNCONSTRAINED FEATURE MODEL

The unconstrained feature model (UFM) Mixon et al. (2022); Zhu et al. (2021) is a simplified
theoretical framework commonly used to study neural collapse (NC). In UFM, the last layer feature is
replaced by a trainable matrix H = (hn)

N
n=1, referred to as the unconstrained feature, which mimics

the role of feature extraction layers in deep neural networks (DNN). For analytical simplicity, the
layer following the unconstrained feature is often assumed to be linear W, making UFM a special
case of deep linear networks (DLN):

min
W,H

N∑
n=1

ℓ(Whn,yn) +
λ

2
∥W∥2 + λ

2
∥H∥2, (13)

simplifying the minimization problem in Equation (1). In this paper, the loss ℓ is always assumed to
be the cross-entropy (CE) loss, because it is the standard loss used in multi-classification tasks.

Zhu et al. (2021) has reported positive results on NC using UFM. Informally it holds that:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Theorem C.1 (Theorem 3.1 and 3.2 in Zhu et al. (2021)). Any global optimal solution of UFM is an
NC solution, while all other critical points are strict saddles. As a result, for random initialization, it
is almost surely that gradient descent finds an NC solution.

Zhu et al. (2021) also experimented NC on realistic models with optimizers like SGD and Adam,
concluding the universality of NC across different optimizers.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D EXPERIMENT

The experiments of this work, particularly regarding computing the NC metrics, were based on
code in Wu & Papyan (2024), which can be found at Github repository https://github.
com/rhubarbwu/neural-collapse, which was published under the MIT license. The
implementation of VGG9 was based on Code taken from https://github.com/jerett/
PyTorch-CIFAR10. The author granted explicit permission to use the code.
An overview of the experiments that were conducted in this work can be found in Table 3, which
resulted in a total number of 36 different experimental settings of (architecture × optimizer × dataset)
combinations. Each optimizer optimizer was trained using three different learning rates, six different
values of momentum and six different values of weight decay, resulting in 108 training runs per
optimizer and 3.888 training runs in total. Some of the runs diverged or only achieved suboptimal
training performance, which were then discarded. In total we had 2.500 “valid” training runs, which
reached at least 99% training accuracy, which were considered for for the subsequent data analysis.

Table 3: Overview of experiments conducted in this work.

Architectures Optimizers Datasets

ResNet9, VGG9 SGD, SGDW, Adam,
AdamW, Signum, SignumW MNIST, FashionMNIST, CIFAR10

D.1 DETAILS ON CHOICE OF HYPERPARAMETERS

Every model was trained over 200 epochs with a batch size of 128. The learning rate λ was chosen to
be in λ ∈ {0.001, 0.01, 0.0679} for SGD and SGDW (the last learning rate was also reported in the
original work by Papyan et al. (2020)) and λ ∈ {0.001, 0.005, 0.01} for Adam, AdamW, Signum, and
SignumW because most trainings diverged with larger learning rates during initial experimental train-
ing runs. The learning rate was decayed by a factor of 10 after one third and two third of training as has
been done in original work by Papyan et al. (2020). Momentum µ (or β1 for Adam, AdamW, Signum,
and SignumW) was chosen to be in the range µ ∈ {0, 0.5, 0.7, 0.9, 0.95, 0.98} for all optimizers and
weight decay WD was chosen to be in the range WD ∈ {0, 5e−5, 5e−4, 5e−3, 0.05, 0.5} for SGD,
SGDW, Adam, and Signum and WD ∈ {0, 5e−4, 0.05, 0.5, 5, 10} for SignumW and AdamW. The
main motivation for using AdamW and Signum W with much larger weight decay values was based
on the hypothesis that the effect of weight decay is reduced due to decoupling. The β2 parameter in
Adam and AdamW was left to its default value of 0.999.

D.2 DETAILS ON COMPUTATIONAL RESOURCES

All experiments, including preliminary experiments as well as the final 3.888 experiments were
run on 5 NVIDIA RTX4090 GPUs with 24 GB RAM. Since the models and the batch size was
comparably small, actually only 3 GB GPU memory per training was required. Each training took
between 8 and 16 minutes, leading to a total of 500-1000 GPU hours of training.

Table 4: Hyperparameters for each optimizer to achieve the smallest NC3 metric shown in Table 2.

Optimizer Learning rate Momentum/β1 Weight decay

SGD 0.01 0.9 0.05
SGDW 0.0679 0.5 0.05
Adam 0.005 0.98 0.05
AdamW 0.005 0.95 5
Signum 0.001 0.9 0.05
SignumW 0.001 0.98 10

18

https://github.com/rhubarbwu/neural-collapse
https://github.com/rhubarbwu/neural-collapse
https://github.com/jerett/PyTorch-CIFAR10
https://github.com/jerett/PyTorch-CIFAR10

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Summary of regression fit between NC3 and NC0

Experiment n β̂ SE(β̂) t-value p-value 95 % CI R2/ Adj R2 F-statistic

LR=0.001 170 0.1903 0.008 24.262 0.000 [0.175, 0.206] 0.778 / 0.777 588.6
LR=0.005 74 0.2017 0.012 16.252 0.000 [0.177, 0.226] 0.786 / 0.783 264.1
LR=0.01 114 0.1439 0.007 19.892 0.000 [0.13, 0.158] 0.779 / 0.777 395.7
LR=0.0679 41 0.1771 0.012 14.367 0.000 [0.152, 0.202] 0.841 / 0.837 206.4
all 399 0.1582 0.005 32.760 0.000 [0.149, 0.168] 0.730 / 0.729 1073

D.3 DETAILS ON REGRESSION FIT BETWEEN NC3 AND NC0

In this subsection we provide additional details regarding the regression fit between NC3 and NC0.
For the sake of completeness, we show the regression fit in Figure 9 again below. In addition, we
have also computed a regression fit across all training runs, which converged, and all learning rates,
shown in Figure 10. A summary of the regression fit can be found in Table 5, showing that more than
70% of the variation in NC3 can be explained by NC0.

10 2 102

NC0

0

1

NC
3

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 9: Figure 2 shown again for ease of reading. NC0 weakly correlates with NC3 across different
optimizers and learning rates (here shown for ResNet9 trained on FashionMNIST).

10 3 100 103

NC0

0.0

0.5

1.0

NC
3

AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 10: NC0 correlates with NC3 even when considered across all learning rates together (here
shown for ResNet9 trained on FashionMNIST).

D.4 ADDITIONAL EXPERIMENTAL RESULTS

D.4.1 ABLATION STUDY ON TRAINING EPOCHS

As Neural collapse occurs at the terminal phase of training, it is natural to control for the effect that
the number of training epochs has on the final NC metrics. After all, it is possible that the emergence
of NC occurs at different speeds for different optimizers.

For this reason, we conducted two ablation studies, in which we prolong the training in two settings:
We train a ResNet9 in FashionMNIST, which corresponds to the setting which is shown in Figure 1,
for 2000 epochs with LR=0.0005 and momentum=0.9 for both optimizers. We note that in this setting,
AdamW reaches 100% training accuracy already after around 700 epochs for all training runs with
WD ≤ 0.05. The results can be found in Figure 13 While this leads to some improvement of the final

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

10 4 10 2 100 102 104

NC0

10 2

10 1

100

101

102

103

NC
1

lr = 0.001

10 4 10 2 100 102 104

NC0

lr = 0.005

10 4 10 2 100 102 104

NC0

lr = 0.01

10 4 10 2 100 102 104

NC0

lr = 0.0679

optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 11: NC0 vs. NC1 across different optimizers and learning rates (here shown for ResNet9
trained on FashionMNIST).

10 4 10 2 100 102 104

NC0

0.2

0.4

0.6

0.8

1.0

1.2

NC
2

lr = 0.001

10 4 10 2 100 102 104

NC0

lr = 0.005

10 4 10 2 100 102 104

NC0

lr = 0.01

10 4 10 2 100 102 104

NC0

lr = 0.0679

optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 12: NC0 vs. NC2 across different optimizers and learning rates (here shown for ResNet9
trained on FashionMNIST).

NC1 and NC2 metric for AdamW for some values of weight decay, this has barely an effect on NC0
and NC3.

Furthermore we extend training to up to 2000 epochs for selected runs from Figure 4. Concretely,
these runs trained with a LR of 0.001 and the following combination of WD and momentum (mom,
WD) ∈ {(0, 0), (0.97, 5e−5), (0, 5e−4), (0.9, 5e−4), (0.9, 0), (0.95, 0.0025)}, which corresponds to
different parts in the heatmap. The results can be found in Figure 14. While one can observe a
general decrease of the NC metrics in all cases, the overall trend for increasing weight decay remains
unchanged. Both figures indicate that training the models considered in this work for 200 epochs is
sufficient to draw the conclusions that we make about the necessity of coupled WD for the emergence
of full NC.

0 10
4

10
3

10
2

10
1

10
0

weight_decay

10
1

10
0

10
1

N
C

0

0 10
4

10
3

10
2

10
1

10
0

weight_decay

0.4

0.6

0.8

1.0

N
C

3

0 10
4

10
3

10
2

10
1

10
0

weight_decay

0.1

0.2

0.3

N
C

1

0 10
4

10
3

10
2

10
1

10
0

weight_decay

0.2

0.4

0.6

0.8

N
C

2

optimizer AdamW Adam epochs 200 2000

Figure 13: ResNet9 trained on FashionMNIST with Adam and AdamW for more epochs.

D.4.2 UNCONSTRAINED FEATURE MODEL

We also validated our results on the unconstrained feature model (UFM) (see Appendix C.5 for
reference) with width d = 512, K = 10 classes and N = 10.000 samples. The UFM was trained
with Adam, AdamW and SGDMW with momentum=0.9 and varying lr∈ {0.1, 0.3, 0.5, 1.0} and
weight decay ranging from 0.0 to 0.05. We then filtered the results, by only including models which
achieved 100% training accuracy. The results in can be found in Figure 15. The plots show that the
NC metrics, in particular NC0 and NC3 remain at least one magnitude of order larger than the same
metrics for Adam and SGDMW, highlighting that AdamW converges to a different solution than
Adam, which is not NC.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 10
4

10
3

10
2

weight_decay

10
3

10
1

N
C

0

0 10
4

10
3

10
2

weight_decay

0.2

0.4

0.6

N
C

3

0 10
4

10
3

10
2

weight_decay

0.05

0.10

0.15

N
C

1

0 10
4

10
3

10
2

weight_decay

0.2

0.4

0.6

N
C

2

epochs 200 2000 optimizer SGDMW

Figure 14: Selected runs from Figure 4 trained for more number of epochs.

0 10
5

10
4

10
3

10
2

10
1

weight_decay

10
3

10
1

10
1

N
C

0

0 10
5

10
4

10
3

10
2

10
1

weight_decay

10
3

10
2

10
1

10
0

N
C

3

0 10
5

10
4

10
3

10
2

10
1

weight_decay

10
3

10
2

10
1

10
0

10
1

N
C

1

0 10
5

10
4

10
3

10
2

10
1

weight_decay

10
3

10
2

10
1

10
0

N
C

2

optimizer
AdamW
Adam
SGDMW
lr
0.1
0.3
0.5
1.0

Figure 15: NC0 (left), NC3 (center left), NC1 (center right), and NC2 (right) for increasing weight
decay.

D.4.3 TRAINING DYNAMICS OF MINIMAL NC3 RUNS

In this section we provide the dynamics of the NC metrics as well as the singular values from the
training runs which reached the smallest final NC3 metric as reported in Table 4. The purpose is to
disentangle the effect of using first-order optimizers (such as SGD and SGDW) vs. second-order like
optimizers (such as Adam and AdamW) from the effect of applying coupled vs. decoupled weight
decay. The main question we try to answer here is: Is the difference between Adam and SGD with
respect to the emergence of NC larger than the difference between AdamW and Adam? Figure 16
shows that all runs reach a perfect train accuracy well before the end of training, such that they have
reached the terminal-phase of training (TPT) at epoch 200. Looking at the NC1-NC3 metrics in
Figure 17 and Figure 19, one can see that the NC metrics for SGD and SGDW are close to each other.
It is harder to judge whether AdamW or Adam are closer to NC, as NC3 is considerably larger for
AdamW, while NC1 is slightly larger for Adam, compared to the other optimizers. Nonetheless, the
NC0 metric in Figure 17 and the evolution of the singular values of W in Figure 18 (left) indicate that
AdamW has considerably different training dynamics than Adam, as both NC0 as well as the smallest
singular value increase instead of converging to zero for AdamW, but not for Adam. While the NC0
metric of Adam is still orders of magnitude larger than for SGD and SGDW and the smallest singular
value of W converges to a small, but non-zero value, Adam shares similar trends as SGD and SGDW
and as such converges to a solution which is arguably closer to NC3 than AdamW. Whether the
solution found by Adam can already be classified as NC or not is an inherent problem of interpreting
the NC metrics in practical settings, as we have also discussed in Section 4.1.

0 50 100 150 200
epoch

10 7

10 5

10 3

10 1

101

tra
in

_lo
ss

0 50 100 150 200
epoch

0.80

0.85

0.90

0.95

1.00

tra
in

_a
cc

SGD SGDW Adam AdamW

Figure 16: Train loss (left) and train accuracy (right) for training runs with smallest final NC3 metric
for different optimizers.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 50 100 150 200
epoch

10 5

10 3

10 1

101

NC
0

0 50 100 150 200
epoch

0.0

0.5

1.0

NC
3

SGD SGDW Adam AdamW

Figure 17: NC0 (left) and NC3 (right) for training runs with smallest final NC3 metric for different
optimizers.

0 100 200
Epoch

0

1

2

Si
ng

ul
ar

 v
al

ue
s o

f W

SGD
SGDW

Adam
AdamW

0 100 200
Epoch

0
10
20
30

Si
ng

ul
ar

 v
al

ue
s o

f M

SGD
SGDW

Adam
AdamW

Figure 18: Singular values of last-layer weights W (left) and centered class means M (right)
throughout training for runs corresponding to Table 4. The dotted line corresponds to the smallest
singular value and the full line corresponds to the average singular value, excluding the smallest
singular value.

0 50 100 150 200
epoch

0.02

0.04

0.06

0.08

0.10

NC
1

0 50 100 150 200
epoch

0.2

0.4

0.6

0.8

1.0

NC
2

SGD SGDW Adam AdamW

Figure 19: NC1 (left) and NC2 (right) for training runs with smallest final NC3 metric for different
optimizers.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 50 100 150 200
epoch

10 5

10 3

10 1

101

NC
0

0 50 100 150 200
epoch

10 5

10 3

10 1

NC
0_

no
rm

al
ize

d

Figure 20: NC0 (left) and normalized NC0 (right) for training runs with smallest final NC3 metric
for different optimizers.

0 100 101 102 103

epoch

1.7536

1.7538

1.7540

1.7542

1.7544

N
C
0

0 100 101 102 103

epoch

10 1

100

N
C
0
_n
o
rm

a
liz
e
d

mom 0.0 0.7 0.9 0.95 0.98 n_epochs 200 2000

Figure 21: NC0 (left) and normalized NC0 (right) for training runs with zero weight decay from the
ablation study in Appendix D.4.6. Note that the x-axis is in logarithmic scale and that the point at
epoch -1 corresponds to the model at initialization.

D.4.4 ABLATION STUDY ON NORMALIZING THE NC0 METRIC

We evaluate whether measuring a normalized NC0 metric affects the conclusions that we draw in our
work. Concretely, we compute the normalization as

NC0normalized :=
1

p
∥W⊤

L1∥2/∥WL∥F . (14)

We compute both NC0 as well as normalized NC0 for the setting of minimal NC3 that
we studied in Appendix D.4.3, which we show in Figure 20. While the absolute values differ
slightly between NC0 and NC0normalized, both the trends as well as the final values are almost the same.

For zero weight decay, one would expect to see more difference between the dynamics of
NC0 and normalized NC0, which we show in Figure 21. While one can observe the monotontic
effect of momentum on normalized NC0, but not on NC0, we point out that in this case normalized
NC0 does not correlate with NC1-NC3 anymore. On the contrary, NC1-NC3, while still comparably
large, are smaller with less momentum.
As the dynamics of NC0 and normalized NC0 are almost the same for larger values of WD or
normalized NC0 is not consistent with NC1-NC3 for zero WD, we are tentative to conclude that the
normalization will not affect the conclusions that we draw in this work.

D.4.5 ABLATION STUDY ON EFFECT OF MOMENTUM ON NC EMERGENCE

We conduct another ablation study to further evaluate the effect of momentum on the NC emergence.
The main question that we try to answer with this ablation is whether the effect of momentum on
smaller NC metrics can be simply traced back to the fact that momentum accelerates convergence or
if it affects the emergence of NC beyond this.
Concretely, we track the evolution of the NC metrics together with the train loss and accuracy for the
same setting as in Figure 4 over time for a fixed value fo weight decay=0.005 and varying values
of momentum. This is because the final train loss value varies for different values of WD due to

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 50 100 150 200
epoch

10 2

10 1

100

tra
in

_lo
ss

0.0
0.5
0.7
0.9
0.95
0.97
0.98

0 50 100 150 200
epoch

0.80

0.85

0.90

0.95

1.00

tra
in

_a
cc

mom
0.0
0.5
0.7
0.9
0.95
0.97
0.98

0 50 100 150 200
epoch

10 3

10 2

10 1

100

NC
0

0.0
0.5
0.7
0.9
0.95
0.97
0.98

0 50 100 150 200
epoch

0.25

0.50

0.75

1.00

1.25

NC
3

0.0
0.5
0.7
0.9
0.95
0.97
0.98

0 50 100 150 200
epoch

10 2

10 1

100

NC
1

0.0
0.5
0.7
0.9
0.95
0.97
0.98

0 50 100 150 200
epoch

0.2

0.4

0.6

0.8

1.0
NC

2

0.0
0.5
0.7
0.9
0.95
0.97
0.98

Figure 22: Train loss, train accuracy and NC metrics for fixed WD=0.005 and different values of
momentum on a ResNet9 trained with SGD with otherwise same hyperparameters as in Figure 4.

its regularizing effect. The results can be seen in Figure 22. There are two things to be observed:
While the accelerating effect of momentum is mainly visible in the early phase of training (up to
50-100 epochs), modulo some loss spikes for high momentum, the final train loss is not smallest for
the largest value of momentum. While this is not surprising per se, as too large momentum can lead
to a overshooting of the training trajectory, the NC metrics show a clear monotonic behavior with
respect to the momentum. Furthermore, while the training runs with momentum=0.7 and 0.9 reach
almost the exact same final train loss, the disparity in NC metrics indicates that they converged to
solutions with very different geometric structure. This can be seen more clearly in Figure 23. Both
observations suggest that momentum affects the emergence of NC beyond simply accelerating the
speed of convergence. To the best of our knowledge, connecting the magnitude of momentum to NC
is novel and not been discussed in prior work.

D.4.6 ABLATION STUDY ON NC EMERGENCE UNDER ZERO WEIGHT DECAY

To investigate whether WD is necessary or not for the emergence of NC, we track the NC metrics
while training a ResNet9 on FashionMNIST (Note that this is the same problem setting as in
Appendix D.4.5.) using SGD with zero WD and varying values of momentum with an initial LR=0.01
for 200 epochs. Additionally, we train the model also with zero momentum and high momentum=0.98
for 2000 epochs, with LR decay after 1/3 and 2/3 of training. Importantly, all training runs reach
perfect train accuracy after 40 epochs. The training dynamics can be found in Figure 24. We draw
two conclusions from this ablation study:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 50 100 150 200
epoch

10 2

10 1

100

tra
in

_lo
ss

0.7
0.9

0 50 100 150 200
epoch

0.80

0.85

0.90

0.95

1.00

tra
in

_a
cc

mom
0.7
0.9

0 50 100 150 200
epoch

100

3 × 10 1

4 × 10 1

6 × 10 1NC
0

0.7
0.9

0 50 100 150 200
epoch

0.4

0.6

0.8

1.0

1.2

1.4

NC
3

0.7
0.9

0 50 100 150 200
epoch

10 1

100

NC
1

0.7
0.9

0 50 100 150 200
epoch

0.4

0.5

0.6

0.7

0.8

NC
2

0.7
0.9

Figure 23: Train loss, train accuracy and NC metrics for fixed WD=0.005 and mom=0.7 and 0.9.
Although both runs converge to almost exactly the same train loss, the final NC metrics differ
considerably.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 6: Smallest NC metrics achieved with and without weight decay for training a ResNet9 on
FashionMNIST.

SGD with ... NC1 NC2 NC3
no WD (2000 epochs) ≈ 0.2 ≈ 0.55 ≈ 0.7

WD (200 epochs) ≈ 0.02 ≈ 0.2 ≈ 0.13

1. The final NC metrics NC0-NC3 after 2000 epochs are slightly smaller than after 200 epochs,
consistent with our ablation study in D.4.1. that longer training reduces the NC metrics.
This decrease is however fairly small.

2. The final NC metrics (both for 200 epochs and 2000 epochs of training) remain considerably
higher than what is achieved by the "best" run of SGD in terms of NC metrics with 200
epochs of training for all NC metrics, even with 10 times longer training. See Figure 17 and
Figure 19 for a comparison.

The final NC1-NC3 metrics achieved with WD after 200 epochs and without WD after 2000 epochs
can be found in Table 6. While the experiments cannot fully exclude the possibility that NC can be
achieved eventually in the asymptotic limit, we argue that WD is essential to observe the emergence
of NC in practical finite-length training settings.

D.4.7 MORE DETAILED PLOTS ON COUPLED VS. DECOUPLED WEIGHT DECAY

As we average across different values of momentum and learning rates in Figure 1 and Figure 3, we
provide more detailed plots here in Figure 25, Figure 26, and Figure 27. It can be seen that for the
adaptive optimizers and SGDW the variance for varying values of momentum is comparably small
for each fixed learning rate, with the variance generally increasing with larger weight decay. For
SGD the variance for NC0 is higher for large values of weight decay, consistent with what is shown
in Figure 3 (right) and what is shown in Figure 4.

D.4.8 MISSING PLOT: SINGULAR VALUE OF W AND M WITH SIGNUMW

The missing plot of the evolution of the singular values of the last-layer weights W and feature
matrix M can be found in Figure 28.

D.4.9 COUPLED VS. DECOUPLED DECAY ON OTHER DATASETS

The comparison between coupled and decoupled decay on SGD, Adam, and Signum on other
combinations of (architecture × dataset) can be found in the following pages below, which confirm
our observations made earlier on the ResNet9 trained on FashionMNIST. While NC0 (visually)
correlates well with NC3, it correlates considerably less with NC1 and NC2, although a general trend
is still visible across all experiments.

ResNet50 on ImageNet1K We also conducted experiments on a ResNet50 trained on ImageNet1K
Deng et al. (2009). The model was trained with Adam and AdamW for 90 epochs. We left out other
optimizers due to limited resources. For both optimizers the learning rate was chosen as 0.0003
with a step-wise decay after 1/3 and 2/3 of training, momentum was chosen from {0.0, 0.5, 0.9} and
weight decay was chosen from {0.0, 1e−5, 1e−4, 1e−3}. The resulting NC metrics can be found in
Figure 29 and Figure 30, and confirm the conclusion that AdamW does not have full NC emergence.

VGG9 on FashionMNIST The comparison between coupled and decoupled weight decay on SGD,
Adam, and Signum on a VGG9 trained on FashionMNIST can be found in Figure 31 and Figure 32.
The relation between NC0 and NC3 can be found in Figure 35, between NC0 and NC1 in Figure 33,
and between NC0 and NC2 in Figure 34.

ResNet9 on Cifar10 The comparison between coupled and decoupled weight decay on SGD,
Adam, and Signum on a ResNet9 trained on Cifar10 can be found in Figure 36 and Figure 37. The
relation between NC0 and NC3 can be found in Figure 40, between NC0 and NC1 in Figure 38, and
between NC0 and NC2 in Figure 39.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 100 101 102 103

epoch

10 5

10 4

10 3

10 2

10 1

100
tra

in
_lo

ss

0 100 101 102 103

epoch
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

tra
in

_a
cc

mom 0.0 0.7 0.9 0.95 0.98 n_epochs 200 2000

0 100 101 102 103

epoch

1.7536 × 100

1.7537 × 100

1.7538 × 100

1.7539 × 100

1.754 × 100

1.7541 × 100

1.7542 × 100

1.7543 × 100

1.7544 × 100

NC
0

0 100 101 102 103

epoch

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

NC
3

mom 0.0 0.7 0.9 0.95 0.98 n_epochs 200 2000

0 100 101 102 103

epoch
0.0

0.2

0.4

0.6

0.8

1.0

NC
1

0 100 101 102 103

epoch

0.6

0.7

0.8

0.9

1.0

1.1

NC
2

mom 0.0 0.7 0.9 0.95 0.98 n_epochs 200 2000

Figure 24: Training loss and train accuracy (top row), NC0 and NC3 (middle row), and NC1 and
NC2 (bottom row) for a ResNet9 trained on FashionMNIST with SGD without weight decay for
varying values of momentum and number of epochs. Note that the x-axis is in log-scale to improve
readability.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

010 5 10 4 10 3 10 2 10 1 100 101

weight_decay

10 1

100

101

NC
0

lr = 0.001

010 5 10 4 10 3 10 2 10 1 100 101

weight_decay

lr = 0.005

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

lr = 0.01

optimizer
AdamW
Adam

momentum
0.0
0.5
0.7
0.9
0.95
0.98

010 5 10 4 10 3 10 2 10 1 100 101

weight_decay

0.2

0.4

0.6

0.8

1.0

NC
3

lr = 0.001

010 5 10 4 10 3 10 2 10 1 100 101

weight_decay

lr = 0.005

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

lr = 0.01

optimizer
AdamW
Adam

momentum
0.0
0.5
0.7
0.9
0.95
0.98

Figure 25: NC0 metric (top) and NC3 metric (bottom for different values of weight decay, momentum
and LR for Adam vs. AdamW.

010 5 10 4 10 3 10 2 10 1 100 101

weight_decay

10 1

100

101

102

103

104

NC
0

lr = 0.001

010 5 10 4 10 3 10 2 10 1 100 101

weight_decay

lr = 0.005

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

lr = 0.01

optimizer
SignumW
Signum

momentum
0.0
0.5
0.7
0.9
0.95
0.98

010 5 10 4 10 3 10 2 10 1 100 101

weight_decay

0.4

0.6

0.8

1.0

1.2

1.4

NC
3

lr = 0.001

010 5 10 4 10 3 10 2 10 1 100 101

weight_decay

lr = 0.005

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

lr = 0.01

optimizer
SignumW
Signum

momentum
0.0
0.5
0.7
0.9
0.95
0.98

Figure 26: NC0 metric (top) and NC3 metric (bottom for different values of weight decay, momentum
and LR for Signum vs. SignumW.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

010 5 10 4 10 3 10 2 10 1 100 101

weight_decay

10 5

10 4

10 3

10 2

10 1

100

NC
0

lr = 0.001

010 5 10 4 10 3 10 2 10 1 100 101

weight_decay

lr = 0.01

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

lr = 0.0679

optimizer
SGDW
SGD

momentum
0.0
0.5
0.7
0.9
0.95
0.98

010 5 10 4 10 3 10 2 10 1 100 101

weight_decay

10 1

100

NC
3

lr = 0.001

010 5 10 4 10 3 10 2 10 1 100 101

weight_decay

lr = 0.01

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

lr = 0.0679

optimizer
SGDW
SGD

momentum
0.0
0.5
0.7
0.9
0.95
0.98

Figure 27: NC0 metric (top) and NC3 metric (bottom for different values of weight decay, momentum
and LR for SGD vs. SGDW.

0 50 100 150 200
Epoch

0

200

400

600

Si
ng

ul
ar

 v
al

ue
s o

f W

SignumW

0 50 100 150 200
Epoch

0

100

200

Si
ng

ul
ar

 v
al

ue
s o

f M SignumW

Figure 28: Singular values of last-layer weights W (left) and feature matrix M (right) throughout
training for SignumW on ResNet9 trained on FashionMNIST. Dotted line corresponds do smallest
singular value and full line corresponds to the average singular value excluding the smallest singular
value.

VGG9 on Cifar10 The comparison between coupled and decoupled weight decay on SGD, Adam,
and Signum can be found in Figure 41 and Figure 42. The relation between NC0 and NC3 can be
found in Figure 45, between NC0 and NC1 in Figure 43, and between NC0 and NC2 in Figure 44.

ResNet9 on MNIST The comparison between coupled and decoupled weight decay on SGD,
Adam, and Signum on a ResNet9 trained on MNIST can be found in Figure 46 and Figure 47. The
relation between NC0 and NC3 can be found in Figure 50, between NC0 and NC1 in Figure 48, and
between NC0 and NC2 in Figure 49.

VGG9 on MNIST The comparison between coupled and decoupled weight decay on SGD, Adam,
and Signum on a VGG9 trained on MNIST can be found in Figure 51 and Figure 52. The relation
between NC0 and NC3 can be found in Figure 55, between NC0 and NC1 in Figure 53, and between
NC0 and NC2 in Figure 54.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 10 5 10 4 10 3

Weight decay

102

NC
0

optimizer
AdamW
Adam

0 10 5 10 4 10 3

Weight decay

0.5

0.6

0.7

0.8

0.9

1.0

NC
3

optimizer
AdamW
Adam

Figure 29: NC0 (left) and NC3 (right) metrics plotted against weight decay on a ResNet50 trained on
ImageNet1K for Adam and AdamW. Shaded area refers to one standard deviation across all trainings
run with corresponding optimizer.

0 10 5 10 4 10 3

Weight decay

1

2

3

4

5

6

NC
1

optimizer
AdamW
Adam

0 10 5 10 4 10 3

Weight decay

1.28

1.29

1.30

1.31

1.32

1.33

NC
2

AdamW Adam

Figure 30: NC1 (left) and NC2 (right) metrics plotted against weight decay on a ResNet50 trained on
ImageNet1K for Adam and AdamW. Shaded area refers to one standard deviation across all trainings
run with corresponding optimizer.

D.4.10 PRELIMINARY EXPERIMENTAL RESULTS ON VISION TRANSFORMER

We have also conducted preliminary experiments pretraining small Vision Transformers (ViT) on
Cifar10 from scratch. Given that training ViTs is computationally much more expensive given the
larger size of the model, we had to limit ourselves to a more restricted number of experiments.
Specifically, we chose to train the ViT with Adam, AdamW, and SGD for 200 epochs with a
batch size of 512 with momentum µ in the range µ ∈ {0, 0.8, 0.9, 0.95} and weight decay WD
∈ {0, 1e−5, 1e−4, 5e−4, 1e−3, 0.05, 0.5} for Adam and SGD and WD ∈ {0, 1e−4, 0.05, 0.5, 1, 2, 4}
for AdamW. We discarded all runs, which did not achieve a training accuracy of at least 50%. This
mainly corresponded to training runs of SGD and Adam either with momentum=0 or WD≥ 0.05.

The ViT implementation is based on code from https://github.com/tintn/
vision-transformer-from-scratch/tree/main, which is published under the
MIT license. Specifically, the transformer model was chosen with a hidden dimension of 512, 6
hidden layers, and 8 attention heads, with no dropout applied.

Compared to the training procedure used in other settings, we employ a cosine-decay learning rate
schedule with warm-up, where 5% of the total training steps are allocated to warm-up, and the base
learning rate is set to 1 × 10−3. Weight decay is applied to all layers except for LayerNorm and
biases, which is standard practice.

The highest final test accuracy across all trainings was achieved by AdamW (β1 = 0.95,WD = 0.5)
with 83.67%, with a final test loss of 0.895. Notably, higher accuracy levels can be attained by
increasing the network size and applying data augmentation or by using a pre-trained model as in
Ammar et al. (2024). However, to ensure consistency with the experiments in the main study, we
do not perform data augmentation due to limited computational resources. This likely explains the
relatively lower test accuracy. Investigating the impact of data augmentation on the convergence to
NC remains an interesting avenue for future work.

30

https://github.com/tintn/vision-transformer-from-scratch/tree/main
https://github.com/tintn/vision-transformer-from-scratch/tree/main

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0 10 5 10 4 10 3 10 2 10 1 100 101

Weight decay

10 1

100

101

NC
0

AdamW
Adam

0 10 5 10 4 10 3 10 2 10 1 100 101

Weight decay

0.2

0.4

0.6

0.8

1.0

NC
3

optimizer
AdamW
Adam

Figure 31: NC0 (left) and NC3 (right) metrics plotted against weight decay on a VGG9 trained
on FashionMNIST for Adam and AdamW. Shaded area refers to one standard deviation across all
trainings run with corresponding optimizer.

0 10 5 10 4 10 3 10 2 10 1

Weight decay

100

101

102

103

104

NC
0 optimizer

SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.4

0.6

0.8

1.0

1.2

1.4

NC
3 optimizer

SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

10 5

10 4

10 3

10 2

10 1

100

NC
0

SGDW
SGD

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.2

0.4

0.6

0.8

NC
3

optimizer
SGDW
SGD

Figure 32: NC0 and NC3 metrics plotted against weight decay on a VGG9 trained on FashionMNIST
for Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one
standard deviation across all trainings run with corresponding optimizer.

While we observe the general trend of decreasing NC metrics with increasing values of weight decay
for SGD (Figure 57a), we note that in the case of ViTs the NC0 metric for both Adam and AdamW
first increases before decreasing (Figure 57b, left), while the NC3 metric for both Adam and AdamW
has a U-shape (Figure 57b, right). We also note that the ViT is much more sensitive to the choice of
weight decay and the training and validation accuracy degrades quickly due to overregularization, as
can be seen in Figure 57c. A further investigation of these observations is left for future work.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

10 2 102

NC0

10 2

10 1

100

NC
1

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 33: NC0 vs. NC1 on VGG9 trained on FashionMNIST. Note that the x-axis is plotted in
log-scale.

10 2 102

NC0

0.5

1.0

NC
2

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 34: NC0 vs. NC2 on VGG9 trained on FashionMNIST. Note that the x-axis is plotted in
log-scale.

10 2 102

NC0

0.0

0.5

1.0

NC
3

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 35: NC0 vs. NC3 on VGG9 trained on FashionMNIST. Note that the x-axis is plotted in
log-scale.

0 10 5 10 4 10 3 10 2 10 1

Weight decay

101

NC
0

AdamW
Adam

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.5

0.6

0.7

0.8

NC
3

optimizer
AdamW
Adam

Figure 36: NC0 (left) and NC3 (right) metrics plotted against weight decay on a ResNet9 trained on
Cifar10 for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run
with corresponding optimizer.

0 10 5 10 4 10 3 10 2 10 1

Weight decay

102

103

104

NC
0

SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.8

0.9

1.0

1.1

1.2

1.3

1.4

NC
3

optimizer
SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

10 5

10 4

10 3

10 2

10 1

100

NC
0

SGDW
SGD

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.2

0.4

0.6

0.8

NC
3

optimizer
SGDW
SGD

Figure 37: NC0 and NC3 metrics plotted against weight decay on a ResNet9 trained on Cifar10
for Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one
standard deviation across all trainings run with corresponding optimizer.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

10 2 102

NC0

10 1

100

NC
1

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 38: NC0 vs. NC1 on ResNet9 trained on Cifar10. Note that the x-axis is plotted in log-scale.

10 2 102

NC0

0.5

1.0

NC
2

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 39: NC0 vs. NC2 on ResNet9 trained on Cifar10. Note that the x-axis is plotted in log-scale.

10 2 102

NC0

0.5

1.0

NC
3

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 40: NC0 vs. NC3 on ResNet9 trained on Cifar10. Note that the x-axis is plotted in log-scale.

0 10 5 10 4 10 3 10 2 10 1

Weight decay

101

NC
0

AdamW
Adam

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.3

0.4

0.5

0.6

0.7

0.8

0.9

NC
3

optimizer
AdamW
Adam

Figure 41: NC0 (left) and NC3 (right) metrics plotted against weight decay on a VGG9 trained on
Cifar10 for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run
with corresponding optimizer.

0 10 5 10 4 10 3 10 2 10 1

Weight decay

102

103

104

NC
0

SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

NC
3

optimizer
SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

10 5

10 4

10 3

10 2

10 1

100

NC
0

SGDW
SGD

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.2

0.4

0.6

0.8

NC
3

optimizer
SGDW
SGD

Figure 42: NC0 and NC3 metrics plotted against weight decay on a VGG9 trained on Cifar10 for
Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one standard
deviation across all trainings run with corresponding optimizer.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

10 2 102

NC0

100

102

NC
1

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 43: NC0 vs. NC1 on VGG9 trained on Cifar10. Note that the x-axis is plotted in log-scale.

10 2 102

NC0

0.5

1.0

NC
2

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 44: NC0 vs. NC2 on VGG9 trained on Cifar10. Note that the x-axis is plotted in log-scale.

10 2 102

NC0
0.0

0.5

1.0

NC
3

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 45: NC0 vs. NC3 on VGG9 trained on Cifar10. Note that the x-axis is plotted in log-scale.

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

10 2

10 1

100

101

NC
0

optimizer
AdamW
Adam

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

0.2

0.4

0.6

0.8

NC
3

optimizer
AdamW
Adam

Figure 46: NC0 (left) and NC3 (right) metrics plotted against weight decay on a ResNet9 trained on
MNIST for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run
with corresponding optimizer.

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

10 1

100

101

102

103

104

NC
0 optimizer

SignumW
Signum

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

0.2

0.4

0.6

0.8

1.0

1.2

1.4

NC
3 optimizer

SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

10 5

10 4

10 3

10 2

10 1

100

NC
0

SGDW
SGD

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.2

0.4

0.6

0.8

NC
3

optimizer
SGDW
SGD

Figure 47: NC0 and NC3 metrics plotted against weight decay on a ResNet9 trained on MNIST
for Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one
standard deviation across all trainings run with corresponding optimizer.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

10 2 103

NC0

10 2

10 1

100

NC
1

lr = 0.001

10 2 103

NC0

lr = 0.005

10 2 103

NC0

lr = 0.01

10 2 103

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 48: NC0 vs. NC1 on ResNet9 trained on MNIST. Note that the x-axis is plotted in log-scale.

10 2 103

NC0

0.0

0.5

1.0

NC
2

lr = 0.001

10 2 103

NC0

lr = 0.005

10 2 103

NC0

lr = 0.01

10 2 103

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 49: NC0 vs. NC2 on ResNet9 trained on MNIST. Note that the x-axis is plotted in log-scale.

10 2 103

NC0

0

1

NC
3

lr = 0.001

10 2 103

NC0

lr = 0.005

10 2 103

NC0

lr = 0.01

10 2 103

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 50: NC0 vs. NC3 on ResNet9 trained on MNIST. Note that the x-axis is plotted in log-scale.

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

10 2

10 1

100

101

NC
0

optimizer
AdamW
Adam

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

0.0

0.2

0.4

0.6

0.8

1.0

NC
3

optimizer
AdamW
Adam

Figure 51: NC0 (left) and NC3 (right) metrics plotted against weight decay on a VGG9 trained on
MNIST for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run
with corresponding optimizer.

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

10 1

100

101

102

103

104

NC
0 optimizer

SignumW
Signum

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

NC
3 optimizer

SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

10 5

10 4

10 3

10 2

10 1

100

NC
0

SGDW
SGD

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.0

0.2

0.4

0.6

0.8

NC
3

optimizer
SGDW
SGD

Figure 52: NC0 and NC3 metrics plotted against weight decay on a VGG9 trained on MNIST for
Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one standard
deviation across all trainings run with corresponding optimizer.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

10 2 103

NC0

10 1

101
NC

1
lr = 0.001

10 2 103

NC0

lr = 0.005

10 2 103

NC0

lr = 0.01

10 2 103

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 53: NC0 vs. NC1 on VGG9 trained on MNIST. Note that the x-axis is plotted in log-scale.

10 2 103

NC0

0.0

0.5

1.0

NC
2

lr = 0.001

10 2 103

NC0

lr = 0.005

10 2 103

NC0

lr = 0.01

10 2 103

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 54: NC0 vs. NC2 on VGG9 trained on MNIST. Note that the x-axis is plotted in log-scale.

10 2 103

NC0

0

1

NC
3

lr = 0.001

10 2 103

NC0

lr = 0.005

10 2 103

NC0

lr = 0.01

10 2 103

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 55: NC0 vs. NC3 on VGG9 trained on MNIST. Note that the x-axis is plotted in log-scale.

10 1 101 103

NC1

0.8

0.9

1.0

NC
4

0.25 0.50 0.75 1.00
NC2

0.8

0.9

1.0

NC
4

0.5 1.0
NC3

0.8

0.9

1.0

NC
4

AdamW Adam SGDW SGD SignumW Signum

Figure 56: NC4 is largely uncorrelated with NC1-3 across different optimizers and learning rates.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

0 10 4 10 3

weight_decay

1.2

1.3

1.4

NC
0

optimizer
SGD

0 10 4 10 3

weight_decay

0.6

0.7

0.8

NC
3

optimizer
SGD

(a) NC0 (left) and NC3 (right) metric for varying values of weight decay on a ViT trained with SGD on
Cifar10.

0 10 5 10 4 10 3 10 2 10 1 100

weight_decay

1

2

3

4

NC
0

optimizer
AdamW
Adam

0 10 5 10 4 10 3 10 2 10 1 100

weight_decay

0.6

0.8

1.0

NC
3

(b) NC0 (left) and NC3 (right) metric for varying values of weight decay on a ViT trained with Adam and
AdamW on Cifar10.

0 10 5 10 4 10 3 10 2 10 1 100

weight_decay

0.6

0.7

0.8

0.9

1.0

Tr
ai

n
ac

cu
ra

cy

0 10 5 10 4 10 3 10 2 10 1 100

weight_decay

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
ac

cu
ra

cy

AdamW SGD Adam

(c) Training accuracy (left) and validation accuracy (right) for varying values of weight decay on a ViT
trained on Cifar10.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

E PROOFS

In this section, we will present the proof which is omitted in the main text.
Theorem E.1 (Effect of decoupled SGD update on NC0). Assume a model of the form f(W, θ, x) =
Whθ(x) is trained using cross-entropy loss with SGD with decoupled weight decay for all parameters
W, θ. For instance, the last layer weight W has the following update rule:

Vt+1 = βVt +∇Wt
LCE,

Wt+1 = (1− ηλ)Wt − ηVt+1,

where β ∈ [0, 1), η > 0, and λ ∈ R. Define the NC0 metric

αt :=
1

K

∥∥W⊤
t 1
∥∥2
2
.

Then, for all t ≥ 0,
αt = (1− ηλ)2t α0.

In particular, if 0 < ηλ < 2, then αt decays exponentially to zero:

αt = (1− ηλ)2t α0 −−−→
t→∞

0.

Proof. We track the evolution of the row sums of Wt and Vt. Define

mt := W⊤
t 1 ∈ RK , qt := V⊤

t 1 ∈ RK .

By definition of αt we have

αt =
1

K
∥mt∥22.

Note that by Lemma E.5, the cross-entropy gradient with respect to the last layer satisfies(
∇Wt

LCE

)⊤
1 = 0

for all Wt. Consider the momentum update

Vt+1 = βVt +∇Wt
LCE.

Multiplying on the right by 1 and using the above result, we obtain

qt+1 = V⊤
t+11 =

(
βVt +∇Wt

LCE

)⊤
1 = βV⊤

t 1+
(
∇Wt

LCE

)⊤
1 = βqt + 0.

Thus qt+1 = βqt, and by induction
qt = βtq0.

Since V0 = 0, we have q0 = 0, hence

qt = 0 for all t ≥ 0.

Consider now the decoupled weight update

Wt+1 = (1− ηλ)Wt − ηVt+1.

Multiplying on the right by 1 gives

mt+1 = W⊤
t+11 =

(
(1−ηλ)Wt−ηVt+1

)⊤
1 = (1−ηλ)W⊤

t 1−ηV⊤
t+11 = (1−ηλ)mt−ηqt+1.

Using qt+1 = 0 for all t, we obtain the simple linear recursion

mt+1 = (1− ηλ)mt.

Solving this recursion yields
mt = (1− ηλ)tm0.

Substituting the expression for mt into the definition of αt gives

αt =
1

K
∥mt∥22 =

1

K

∥∥(1− ηλ)tm0

∥∥2
2
= (1− ηλ)2t

1

K
∥m0∥22 = (1− ηλ)2tα0.

This establishes the exact formula claimed in the theorem.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Theorem E.2 (Effect of SGD update with coupled weight decay on NC0). Assume a model of the
form f(W, θ, x) = Whθ(x) is trained using cross-entropy loss with stochastic gradient descent
(SGD) and momentum β ∈ [0, 1), weight decay λ ∈ [0, 1), and learning rate η > 0 sufficiently small.
The last-layer weights Wt are updated according to:

Vt+1 = βVt +∇WtLCE + λWt,

Wt+1 = Wt − ηVt+1,
(15)

where β ∈ [0, 1), η > 0, and λ ∈ R. Then there exists a constant C ≥ 1 such that

αt =
1

K

∥∥mt

∥∥2
2

≤ C ρ2t α0 for all t ≥ 0, (16)

where ρ := max{|r+|, |r−|} and r± are the roots of

r2 − (1 + β − ηλ) r + β = 0. (17)

In particular: if ηλ < 2(1 + β), then ρ < 1 and the NC0 metric αt decays exponentially in t.

Proof. We follow the same strategy as in the decoupled case: track the evolution of the row sums of
Vt and Wt.

From (15),
Vt+1 = βVt +∇Wt

LCE + λWt.

Right-multiplying by 1 and using Lemma (E.5), we get

qt+1 = V⊤
t+11

=
(
βVt +∇Wt

LCE + λWt

)⊤
1

= βV⊤
t 1+

(
∇Wt

LCE

)⊤
1+ λW⊤

t 1

= β qt + λmt.

Thus
qt+1 = β qt + λmt. (18)

From the weight update
Wt+1 = Wt − ηVt+1,

we obtain

mt+1 = W⊤
t+11 =

(
Wt − ηVt+1

)⊤
1

= W⊤
t 1− ηV⊤

t+11 = mt − η qt+1.

Using (18) this becomes

mt+1 = mt − η
(
β qt + λmt

)
= (1− ηλ)mt − ηβ qt. (19)

We also have, from the weight update at time t,

mt = mt−1 − η qt,

which is just (19) with index shifted by one. Hence

qt =
1

η

(
mt−1 −mt

)
. (20)

Substitute (20) into (19):

mt+1 = (1− ηλ)mt − ηβ · 1
η

(
mt−1 −mt

)
= (1− ηλ)mt − β

(
mt−1 −mt

)
= (1− ηλ)mt − βmt−1 + βmt

= (1 + β − ηλ)mt − βmt−1.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

We are given m0 = W⊤
0 1 and q0 = V⊤

0 1 = 0. Then

q1 = βq0 + λm0 = λm0,

and hence from the weight update

m1 = m0 − ηq1 = m0 − ηλm0 = (1− ηλ)m0.

The recurrence is linear and homogeneous with constant coefficients. For each coordinate of mt, say
(mt)k, we have a scalar second-order recursion

(mt+1)k = (1 + β − ηλ) (mt)k − β (mt−1)k.

The characteristic polynomial is

r2 − (1 + β − ηλ) r + β = 0,

with roots r+ and r− given by

r± =
1 + β − ηλ±

√
(1 + β − ηλ)2 − 4β

2
.

Thus each coordinate can be written as

(mt)k = c+,kr
t
+ + c−,kr

t
−,

for some coefficients c+,k, c−,k determined by (m0)k and (m1)k. Let

ρ := max{|r+|, |r−|}

be the spectral radius of the recursion. Then there exists a constant C ≥ 1 (depending only on β, λ, η)
such that ∥∥mt

∥∥
2

≤ C ρt
∥∥m0

∥∥
2
,

and therefore
αt =

1

K

∥∥mt

∥∥2
2

≤ C2 ρ2t
1

K

∥∥m0

∥∥2
2
= C ′ ρ2t α0

for some C ′ ≥ 1, which is (16). Finally, for a general quadratic equation r2 + br + c = 0, the roots
are in the unit circle if |c| < 1, 1+ b+ c > 0 and 1− b+ c > 0. Thus it is not difficult to check from
the characteristic polynomial that ηλ < 2(1 + β) implies ρ < 1.

Note that the above Theorem holds for any model f(W, θ, x) = Whθ(x) with last layer as linear
classifier and with any backbone hθ parameterized by θ.

However, the dynamics of Adam is more complicated, hence we further restrict the setting to SignGD,
a special case of Adam, training a UFM.

Here, we assume a balanced dataset with only one element in each class k ∈ [K]. It is obvious to
extend our result to multiple elements per class. Hence the total input N = K is equal to the number
of classes and the UFM loss can be written as

LCE(WH, I) =

N∑
n=1

LCE(Whn, en),

where we can decouple the regularization λ
2 ∥W∥2 + λ

2 ∥H∥2 into weight decay.

By Zhu et al. (2021), we know that the UFM

max
W,H

N∑
n=1

LCE(Whn,yn) +
λ

2
∥W∥2 + λ

2
∥H∥2,

has unique global minimum W,H and no strict saddle points. In particular, H = UM∗ for some
orthogonal matrix U ∈ O(P). To further simplify the analysis, we assume that P = N = K with
H = M∗. Then we have the followings:

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Theorem E.3. Consider sign GD with (decoupled) weight decay λ > 0 and step size η > 0 on the
UFM loss

LCE(WH, I) =

N∑
n=1

LCE(Whn, en),

where the feature H = M∗ is fixed to an NC solution and only the weight W is trained:
Wt+1 = Wt − η(sign(∇Wt

LCE) + λWt)

with initialization W0 = 0 ∈ RK×K . We define the covariance matrix Ct = WtW
⊤
t and the scalar

αt = ⟨Ct, Ĵ⟩F where Ĵ = 1
K11⊤. Then αt will increase monotonically from zero to the limit:

lim
t→∞

αt =
(K − 2)2

λ2
.

In particular, αt does not vanish as t→ ∞.

Proof. By Lemma E.5, we have ∇LCE(W) = 1
N (S − Y)H⊤ = 1

N (S − I) · 1√
K−1

(I − 1
KJ) =

1
N

√
K−1

(softmax(WH)− I) since (softmax(WH)− I)J = 0. Since softmax has range between 0
and 1, we have

sign (∇LCE(WH)) = J− 2I,

that is, the signed gradient is −1 on the diagonal and +1 elsewhere. Note that this holds for all
W ∈ RK×K . The sign GD updates can hence be written as:

Wt+1 = Wt − η
[

J− 2I︸ ︷︷ ︸
sign(∇WtLCE)

+λWt

]
. (21)

Since sign
(
∇LCE(Wt)

)
is constant, the dynamics collapse onto a scalar wt:

Wt = wt

(
J− 2I

)
,

which has the following recursive form:
wt+1 = (1− ηλ)wt − η, w0 = 0.

Solve it and obtain
wt = − 1

λ

[
1− (1− ηλ)t

]
.

Recall the definition:

Ct = WtW
⊤
t Ĵ =

1

K
11⊤and αt = ⟨Ct, Ĵ⟩F .

Since ∥
(
J− 2I

)⊤
1∥2 = (K − 2)2K and the factor of 1/K gives (K − 2)2, we have

αt = (K − 2)2w2
t

Therefore

αt = (K − 2)2
[
− 1

λ

(
1− (1− ηλ)t

)]2
=

(K − 2)2

λ2

[
1−

(
1− ηλ

)t]2
.

As t→ ∞,
(
1− ηλ

)t → 0, so

α∞ =
(K − 2)2

λ2
.

Theorem E.4. Consider sign GD with (coupled) weight decay λ > 0 and step size η > 0 on the
UFM loss

LCE(WH, I) =

N∑
n=1

LCE(Whn, en),

where the feature H = M∗ is fixed to an NC solution and only the weight W is trained :
Wt+1 = Wt − η(sign(∇Wt

LCE + λWt))

with initialization W0 = 0 ∈ RK×K . We define the covariance matrix Ct = WtW
⊤
t and the

scalar αt = ⟨Ct, Ĵ⟩F where Ĵ = 1
K11⊤. Then there exists a learning rate decay scheme

η = η(t) −−−→
t→∞

0 such that αt −−−→
t→∞

0.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Proof. Throughout the training, we apply mathematical induction on the structure of Wt: for all t,
there exists at, bt ≥ 0 such that

Wt = (at + bt)I− btJ.

It is not hard to see that α = 1
N (at − (K − 1)bt)

2. Note that for t = 0, the signed gradient is the
same as in the case with decoupled weight decay in Theorem 3.3:

sign(∇Wt
LCE + λWt) = sign(∇W0

LCE) = sign(softmax(0)− I) = J− 2I.

Hence, W1 = η(2I− J) where a1 = b1 = η. Since H = M∗ = 1√
K−1

(I− J/k),

WH = ((at + bt)I− btJ) ·
1√

K − 1
(I− J/k)

=
1√

K − 1

(
(at + bt)I− btJ− (at + bt)J/k + (bt/k)J

2
)

=
at + bt√
K − 1

H = γtH

where we define γt = at+bt√
K−1

.By Lemma E.5 and the above expression, the loss gradient becomes:

∇Wt
LCE =

1

N
√
K − 1

(softmax(WH)− I)

=
1

N
√
K − 1

(softmax(γtH)− I)

= ψt(−KI+ J)

where ψt =
1

N
√
K−1

· 1
eγt/

√
K−1+(K−1)

= 1
N

√
K−1

· 1
e(at+bt)/(K−1)+(K−1)

. Hence the update weight
will also of form

Wt+1 = (at+1 + bt+1)I− bt+1J.

Hence the update rule of the signed GD with coupled weight decay can be written as:

at+1 = at + η · sign ((K − 1)ψt − λat)

bt+1 = bt + η · sign(ψt − λbt)

Then for each fixed η > 0, starting from t = 0, let ∆t = (at+1 − at, bt+1 − bt), the training can be
divided into three phases:

1. ∆t = (+η,+η) as long as (K − 1)ψt ≥ λat and ψt ≥ λbt. Note that ψt ∝
1

e(at+bt)/(K−1)+(K−1)
hence ψt+1 < ψt as ∆t = (+η,+η). Since ψt is strictly decreasing

with at+ bt, assume η is small enough, there exists a constant T1 such that ∆T1 = (+η,+η)
but ∆T1+1 = (+η,−η) where (K − 1)ψT1

≥ λat ≥ λbt > ψT1
.

2. ∆t = (+η,±η) indicating at increases striclty in each step and bt starts to oscillate as long
as (K − 1)ψt ≥ λat: each time ∆t−1 = (+η,−η), we have at + bt = at−1 + bt−1 and
thus ψt = ψt−1. Hence ψt decreases monotonically but not strictly. Similar to above, there
exists a constant T2 > T1 such that (K − 1)ψT2

≥ λaT2
but (K − 1)ψT2+1 < λaT2+1.

3. For t > T2, ∆t = (±η,±η) where i) ψt becomes constant for ∆t oscillates between
(+η,−η) and (−η,+η) or ii) ψt oscillate for ∆t oscillates between (+η,+η) and (−η,−η).
In wither case, we have maxt>T2{|(K − 1)ψt −λat|, |ψt −λbt|} < λη as each update will
flip the sign.

Hence for each η, we update T2 = T2(η) steps until maxt>T2
{|(K − 1)ψt −λat|, |ψt −λbt|} < λη.

Next, we apply learning rate decay to η′ so that λη′ < min{|(K − 1)ψT2+1 − λaT2+1|, |ψT2+1 −
λbT2+1|} < λη. Repeat the above argument and find a T ′

2 > 0 such that ψt oscillates or remains
constant after t > T2+T

′
2, and hence maxt>T2+T ′

2
{|(K−1)ψt−λat|, |ψt−λbt|} < λη′. Induction

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

on this argument shows that there exists a learning rate decay scheme η = η(t) → 0 such that
maxt{|(K − 1)ψt − λat|, |ψt − λbt|} −−−→

t→∞
0, in which case:

αt = (at − (K − 1)bt)
2

= λ−2 (λat − (K − 1)λbt)
2

≤ λ−2 ((K − 1)ψt + |(K − 1)ψt − λat| − (K − 1)ψt + (K − 1)|ψt − λbt|)2

= λ−2 (|(K − 1)ψt − λat|+ (K − 1)|ψt − λbt|)2

≤ λ−2K2 max
t

{|(K − 1)ψt − λat|, |ψt − λbt|} −−−→
t→∞

0.

Hence αt = (at − (K − 1)bt)
2 −−−→

t→∞
0.

E.1 TECHNICAL LEMMATA

Lemma E.5. Let (X,Y) ∈ Rd×N × RK×N be a dataset where the labels Y are written in columns
of one-hot vectors. For each pair (x,y) ∈ RD × RK , and a weight W1 ∈ RK×d, define the
cross-entropy as:

ℓ(W1)
def.
= −

K∑
k=1

yk log (softmax(W1x))k = log

1 +
∑
k ̸=y

exp(wk −wy)
⊤xi


where y = argmaxk∈[K][y]k is the class index of x. Let L1(W1) = CE(W1X,Y) be the average
cross-entropy loss of the dataset (X,Y). Then the loss gradient ∇L1(W1) is

∇L1(W1) =
1

N
(S−Y)X⊤

where S = (s1, ...sN) and si = softmax(W1xi) for each i. In particular, 1⊤
K∇L1(W1) = 0.

Proof. The expression of the loss gradient comes from simple calculus. The second statement comes
from the fact that the L1 norms of a post-softmax vector and an one-hot vector are both equal to 1,
that is,

1⊤
Ksi = 1⊤

Kyi = 1∀i.

Lemma E.6. Assume the weight Wt is updated as follows:

Vt+1 = βVt +Gt + λWt

Wt+1 = Wt − ηVt+1,

where Gt depends on Wt. Define

α
def.
=

1

K
∥W⊤

t 1∥22 ≥ 0.

Then we have the expression:

1

η
(αt+1 − αt) = −2βωt − 2γt − 2λαt + ηνt+1

where ωt
def.
= ⟨VtW

⊤
t , Ĵ⟩, γt

def.
= ⟨GtW

⊤
t , Ĵ⟩, νt

def.
= ⟨VtV

⊤
t , Ĵ⟩.

Proof. Let Ct
def.
= WtW

⊤
t be the covariance matrix. Notice that αt = ⟨Ct, Ĵ⟩ where Ĵ = 1

K11⊤.
By update rule of Wt and Vt:

1

η
(Ct+1 −Ct) =

1

η

(
(Wt − ηVt+1)(Wt − ηVt+1)

⊤ −Ct

)
= −(Vt+1W

⊤
t +WtV

⊤
t+1) + ηVt+1V

⊤
t+1.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Applying the dot product ⟨·, Ĵ⟩F on both sides, and denote ωt
def.
= ⟨VtW

⊤
t , Ĵ⟩, γt

def.
= ⟨GtW

⊤
t , Ĵ⟩,

νt
def.
= ⟨VtV

⊤
t , Ĵ⟩, we have

1

η
(αt+1 − αt) = −2⟨Vt+1W

⊤
t , Ĵ⟩+ η⟨Vt+1V

⊤
t+1, Ĵ⟩

= −2⟨(βVt +Gt + λWt)W
⊤
t , Ĵ⟩+ ηνt+1

= −2βωt − 2γt − 2λαt + ηνt+1 (22)

where in the first line we use the fact that Ĵ is symmetric.

Lemma E.7. Assume λ, β ∈ (0, 1) such that 2λ
log β−1 < 1. The solution of the following ODE:

α̇(t) = −λ
(∫ t

0

βt−τα(τ)dτ

)
(23)

with initial condition α(0) = α0 > 0 admits the following bound:

α(t) ≤ Cα0 exp

(
− λ

log β−1
t

)
for some absolute constant C > 1.

Proof. Observe that we can write the integral in convolution:∫ t

0

βt−τα(τ)dτ =
(
ϕ ∗ α

)
(t), where ϕ(t) = βt.

Hence (23) can be written as
α̇(t) = −λ

(
ϕ ∗ α

)
(t).

Let L{ψ(t)}(s) =
∫ ∞

0

e−stψ(t)dt denote the Laplace transform. Denote

A(s) = L{α(t)}(s), F (s) = L{ϕ(t)}(s).
Taking the Laplace transform of both sides:

L{α̇(t)}(s) = −λL{(ϕ ∗ α)(t)}(s). (24)

And by integration by part and the property of convolution,

L{α̇(t)}(s) = sA(s)− α(0) and L{(ϕ ∗ α)(t)}(s) = F (s)A(s).

Hence
sA(s)− α(0) = −λF (s)A(s).

Since βt = e(log β)t, we get

F (s) = L{βt}(s) = L
{
e(log β)t

}
(s) =

1

s− log(β)
for s > log(β).

Substitute this back to Eq. (24) and we get:

sA(s)− α(0) = −λ 1

s− log(β)
A(s)

sA(s) +
λ

s− log(β)
A(s) = α(0)

A(s)
(
s+

λ

s− log(β)︸ ︷︷ ︸
s2−s log(β)+λ

s−log(β)

)
= α(0)

A(s) = α(0) ·
[
s− log(β)

]
s2 − s log(β) + λ︸ ︷︷ ︸

(s−r1)(s−r2)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

where r1, r2 =
log(β)±

√[
log(β)

]2
−4λ

2 . We do partial fractions and matching coefficients gives:

s− log(β)

(s− r1)(s− r2)
=

A

s− r1
+

B

s− r2
=⇒ A+B = 1, − log(β) = −Ar2 −Br1.

Since r1 + r2 = log(β), one finds

A =
r2

r2 − r1
, B = − r1

r2 − r1
.

Thus

A(s) = α(0)

[
r2

r2 − r1

1

s− r1
− r1
r2 − r1

1

s− r2

]
.

Recall the inverse of Laplacian transform: L−1{ 1
s−r}(t) = ert. Therefore,

α(t) = L−1{A(s)}(t) = α(0)

[
r2

r2 − r1
er1t − r1

r2 − r1
er2t
]
.

Equivalently,

α(t) = α(0)
[
Aer1t +Ber2t

]
, A =

r2
r2 − r1

, B = − r1
r2 − r1

, (25)

where

r1, r2 =
log(β)±

√[
log(β)

]2 − 4λ

2
.

Since β ∈ (0, 1), set L = − log(β) > 0. By the first order approximation,√
(log β)2 − 4λ =

√
L2 − 4λ = L− 2λ

L
+O

(
λ2

L

)
Hence

r1, r2 =
−L±

(
L− 2λ

L

)
2

+O
(
λ2

L

)
.

This gives:

r1 = −λ

L
+O

(
λ2

L

)
, r2 = −L+

λ

L
+O

(
λ2

L

)
.

Plugging r1, r2 into Eq. (25):

α(t) ≤ Cα(0)er1t = Cα(0) exp
(
− λ

L t
)

for some absolute constant C > 1. Plug in L = − log(β) = log β−1 to finish the proof.

45

	Introduction
	Neural Collapse
	Main Result
	Experimental Setup
	Weight Decay is Essential and Momentum Accelerates NC
	Weight Decay Coupling Matters
	Interpolating AdamW and Adam

	Discussion and Limitations
	Interpreting NC Metrics in Practice
	The Redundant NC4 property
	Partial Neural Collapse
	Limitations of Theoretical Support
	Future Research

	Conclusion
	LLM usage statement
	NC Metrics
	Additional Related work
	Weight Decay and Neural Collapse
	Empirical studies on the Emergence of Neural Collapse
	Applications of Neural Collapse
	Coupled Weight Decay in the context of Neural Collapse
	Unconstrained Feature Model

	Experiment
	Details on Choice of Hyperparameters
	Details on Computational Resources
	Details on Regression Fit between NC3 and NC0
	Additional Experimental Results
	Ablation Study on Training Epochs
	Unconstrained Feature Model
	Training dynamics of minimal NC3 runs
	Ablation study on normalizing the NC0 metric
	Ablation study on effect of momentum on NC emergence
	Ablation study on NC emergence under zero weight decay
	More detailed plots on coupled vs. decoupled weight decay
	Missing plot: Singular value of W and M with SignumW
	Coupled vs. decoupled decay on other datasets
	Preliminary experimental results on Vision Transformer

	Proofs
	Technical Lemmata

