

# 000 001 002 003 004 005 006 007 008 009 010 OPTIMIZER CHOICE MATTERS FOR THE EMERGENCE OF NEURAL COLLAPSE

005 **Anonymous authors**

006 Paper under double-blind review

## ABSTRACT

011 Neural Collapse (NC) refers to the emergence of highly symmetric geometric  
 012 structures in the representations of deep neural networks during the terminal phase  
 013 of training. Despite its prevalence, the theoretical understanding of NC remains  
 014 limited. Existing analyses largely ignore the role of the optimizer, thereby suggesting  
 015 that NC is universal across optimization methods. In this work, we challenge  
 016 this assumption and demonstrate that the choice of optimizer plays a critical role in  
 017 the emergence of NC. The phenomenon is typically quantified through NC metrics,  
 018 which, however, are difficult to track and analyze theoretically. To overcome this  
 019 limitation, we introduce a novel diagnostic metric, NC0, whose convergence to  
 020 zero is a necessary condition for NC. Using NC0, we provide theoretical evidence  
 021 that NC cannot emerge under decoupled weight decay, as implemented in AdamW.  
 022 Concretely, we prove that SGD, SignGD with coupled weight decay (a special case  
 023 of Adam), and SignGD with decoupled weight decay (a special case of AdamW) ex-  
 024 hibit qualitatively different NC0 dynamics. Finally, we conduct extensive empirical  
 025 experiments consisting of 3,900 training runs across various datasets, architectures,  
 026 optimizers, and hyperparameters, confirming our theoretical results. This work  
 027 provides the first theoretical explanation for optimizer-dependent emergence of  
 028 NC and highlights the overlooked role of weight-decay coupling in shaping the  
 029 implicit biases of optimizers.

## 030 1 INTRODUCTION

031 Neural networks have driven many of the recent breakthroughs in artificial intelligence, yet the  
 032 mechanisms underlying their success remain only partially understood. A key empirical clue is  
 033 neural collapse (NC) – first documented by Papyan et al. (2020) – in which the last-layer feature  
 034 vectors and classifier weights self-organise into a highly symmetric configuration during the terminal  
 035 phase of training (TPT). While the reasons for the emergence of NC are still not fully understood, its  
 036 impact on the behavior of a model is evident. For instance, Liu et al. (2023) induce NC to improve  
 037 generalization in class-imbalanced training and Galanti et al. (2021) show that the emergence of NC  
 038 improves transfer learning as well. Furthermore, the presence of NC has been connected to better  
 039 out-of-distribution detection (Liu & Qin, 2023).

040 Theoretical explanations for NC have primarily relied on simplified models and assumptions (Mixon  
 041 et al., 2022; Zhu et al., 2021) that have largely ignored the role of the optimizer, thereby suggesting  
 042 that NC is universal across optimization methods. In this work, we challenge this assumption and  
 043 demonstrate that the choice of optimizer plays a critical role in the emergence of NC. Concretely,  
 044 we show that training with AdamW (Loshchilov & Hutter, 2019) does not lead to an NC solution,  
 045 whereas training with SGD or Adam (Kingma & Ba, 2014) does. Through extensive experiments, we  
 046 trace this back to how weight decay is applied in both optimizer and identify the coupling of weight  
 047 decay as a necessity for the emergence of NC.

048 One major challenge in studying NC lies in the original metrics, which are difficult to track and  
 049 analyze theoretically. These metrics were designed to quantify the progressive geometric alignment  
 050 associated with NC and are expected to converge to zero in the idealized setting where NC holds as  
 051 training time approaches infinity. However, under realistic training regimes, such as finite training  
 052 epochs and learning rate decay, these metrics typically plateau at small but nonzero values. As a  
 053 result, there is no rigorous criterion for determining whether NC has truly occurred.

This limitation motivates us to introduce a novel diagnostic metric,  $\text{NC}_0$ , whose convergence to zero is necessary (though not sufficient) for  $\text{NC}$ . Unlike previous metrics,  $\text{NC}_0$  enables a more definitive assessment: if  $\text{NC}_0$  diverges during training, we can conclude that  $\text{NC}$  can not occur—even in cases where other  $\text{NC}$  metrics misleadingly converge to small positive values, creating an illusion of collapse. We discuss the peculiarity of interpreting  $\text{NC}$  metrics in practice later in Section 4.1. Furthermore,  $\text{NC}_0$  allows us to go beyond loss landscape analysis and theoretically derive convergence rates with which  $\text{NC}_0$  converges to zero.

**Contribution** In this paper, we conduct extensive experiments – spanning over 3,900 training runs – to investigate the role of coupled weight decay in the emergence of  $\text{NC}$ . We identify coupled weight decay as a key driver of  $\text{NC}$  in realistic settings, extending recent theoretical insights (Pan & Cao, 2024; Jacot et al., 2024) that were limited to quasi-optimal solutions in simplified models. In particular, we show that the form of weight decay used in adaptive optimizers such as Adam (Kingma & Ba, 2014) and AdamW (Loshchilov & Hutter, 2019) critically affects whether  $\text{NC}$  emerges. Strikingly, while networks trained with Adam often exhibit  $\text{NC}$ , AdamW – despite its algorithmic similarity – fails to produce  $\text{NC}$ , with the corresponding metrics failing to converge to zero over time (Figure 1). This subtle yet consequential distinction has been largely overlooked in prior work.

In summary, we make the following contributions:

1. Across a wide range of experiments, we find that coupled weight decay is a necessary condition for  $\text{NC}$  to emerge in adaptive optimizers, such as Adam and Signum.
2. Furthermore, we show the accelerating effect of momentum on  $\text{NC}$  when trained with SGD, being the first result concerning momentum in the context of  $\text{NC}$ . We show that this goes beyond the fact that momentum accelerates convergence.
3. We support our empirical findings with the following theoretical statements on the new  $\text{NC}_0$  metric:
  - with SGD (with both coupled or decoupled weight decay),  $\text{NC}_0$  converges to zero at an exponential rate proportional to the weight decay;
  - with sign gradient descent (SignGD) with decoupled weight decay, a special case of AdamW,  $\text{NC}_0$  converges to some positive constant;
  - with SignGD with coupled weight decay, a special case of Adam,  $\text{NC}_0$  exhibits a non-monotonic trajectory, increasing before eventually decreasing. Using learning rate decreasing to zero, we show that  $\text{NC}_0$  also vanishes.

**Organization** This paper is organized as follows. In Section 2, we recapitulate the four properties to characterize  $\text{NC}$  and introduce a novel  $\text{NC}$  property  $\text{NC}_0$ . In Section 3 we present our main experimental results with theoretical support. Finally, Section 4 provides insights and discussions on the implications of our results.



Figure 1:  $\text{NC}_0$  (left) and  $\text{NC}_3$  (right) metrics at the end of training. Lower values indicate stronger  $\text{NC}$ . AdamW shows consistently higher metrics than Adam. Averages computed over runs with varying learning rates and momentum; shaded regions show  $\pm 1$  standard deviation. X-axis is log-scaled. Note that there are no values for Adam for WD larger than 0.05 as the model did not train due to over regularization.

**Notation** We use  $[K] = \{1, 2, \dots, K\}$  to denote the index set for any integer  $K \in \mathbb{N}$ . For a matrix  $\mathbf{W}$ , we let  $\text{Vec}(\mathbf{W})$  denote the vectorization of  $\mathbf{W}$  obtained by stacking its columns. The Frobenius inner product between two matrices  $\mathbf{W}, \mathbf{W}'$  is denoted by  $\langle \mathbf{W}, \mathbf{W}' \rangle = \text{Tr}(\mathbf{W}^\top \mathbf{W}')$ . With slight abuse of notation, we write  $\|\mathbf{W}\| = \|\mathbf{W}\|_F$  for the Frobenius norm when  $\mathbf{W}$  is a matrix, and  $\|\mathbf{v}\| = \|\mathbf{v}\|_2$  for the Euclidean norm when  $\mathbf{v}$  is a vector. In other words,  $\|\mathbf{W}\| = \|\text{Vec}(\mathbf{W})\|$ .

108 We denote by  $\mathbf{I}$  the identity matrix, by  $\mathbf{1}$  the all-ones column vector, and by  $\mathbf{J}$  the all-ones matrix, i.e.,  
 109  $\mathbf{J} = \mathbf{1}\mathbf{1}^\top$ .  
 110

## 111 2 NEURAL COLLAPSE

113 Neural collapse (NC), observed during the terminal phase of training (TPT) in deep neural networks  
 114 (DNN), manifests itself through several geometric properties involving the last-layer features and  
 115 weights in the  $K$ -class classification task:  
 116

$$117 \min_{\mathbf{W}, \theta} \sum_{n=1}^N \ell(\mathbf{W}h_\theta(\mathbf{x}_n), y_n) + \frac{\lambda}{2} \|\mathbf{W}\|^2 + \frac{\lambda}{2} \|\text{Vec}(\theta)\|^2 \quad (1)$$

120 where  $(\mathbf{x}_n, y_n)_{n=1}^N \subset \mathbb{R}^D \times [K]$  is the training set,  $\mathbf{W} \in \mathbb{R}^{K \times P}$  is the last-layer weights,  $h_\theta(\mathbf{x}_n) \in$   
 121  $\mathbb{R}^P$  is the last-layer feature as the output of some backbone parameterized by  $\theta$ ,  $\ell : \mathbb{R}^K \times [K] \rightarrow$   
 122  $[0, \infty)$  is the loss function, and  $\lambda > 0$  is the L2-regularization constant.  
 123

124 These properties, formalized by their corresponding metrics in the original paper Papyan et al. (2020),  
 125 are:  
 126

- 127 **NC1 - Variability Collapse:** Features collapse to their respective class means, indicating  
 that within-class variability vanishes.
- 128 **NC2 - Convergence of Centered Class Means to Simplex ETF:** Centered Class means  
 converge to a simplex equiangular tight frame (ETF).
- 129 **NC3 - Convergence to Self-Duality:** Rows of the last-layer weight  $\mathbf{W} \in \mathbb{R}^{K \times P}$  align with  
 the columns of the class means, creating a dual relationship between weights and features.
- 130 **NC4 - Simplification to Nearest-Class-Center:** The classifier's decision boundaries are  
 simplified to those of a nearest-class-mean (NCC) classifier.  
 131

132 A solution satisfying all of these properties is referred to as a *NC solution*. In addition to these  
 133 prior NC properties, we introduce another novel NC property **NC0**, whose convergence to zero is a  
 134 necessary condition (though not sufficient) for NC.  
 135

136 **NC0 - Zero Row Sum of Last-Layer Weight:** The row sum of the last-layer weight  $\mathbf{W}$  in the model  
 137 converges to zero.  
 138

139 The first observation is that NC0 is a necessary condition for NC2 and NC3:  
 140

141 **Proposition 2.1.** *NC2 and NC3 implies NC0.*  
 142

143 *Proof.* For each class  $k \in [K]$ , we define the class mean  $\mu_k = \frac{1}{|\{n: y_n=k\}|} \sum_{n: y_n=k} h_\theta(\mathbf{x}_n) \in \mathbb{R}^P$   
 144 and the centered class mean  $\bar{\mu}_k = \mu_k - \frac{1}{N} \sum_{n=1}^N h_\theta(\mathbf{x}_n)$ . We concatenate them into a matrix  
 145  $\mathbf{M} = (\bar{\mu}_k)_{k=1}^K \in \mathbb{R}^{P \times K}$  with  $\mathbf{M}\mathbf{1} = 0$ , since we centered the class means. By NC2,  $\mathbf{M}$  converge  
 146 to a simplex ETF in the ambient space  $\mathbb{R}^P$ , meaning  $\mathbf{M}/\|\mathbf{M}\|_F \rightarrow \mathbf{Q}\mathbf{M}^*$  where  $\mathbf{M}^* \in \mathbb{R}^{K \times K}$  is a  
 147 unit matrix with columns forming a  $K$ -simplex EFT in  $\mathbb{R}^K$  and  $\mathbf{Q} \in \mathbb{R}^{P \times K}$  is the isometric injection  
 148 map into the ambient space. **Since  $\mathbf{M}\mathbf{1} = 0$  and  $\mathbf{Q}$  is injective, the unit matrix  $\mathbf{M}^*$  has to be in**  
 149 **the form:  $\mathbf{M}^* \stackrel{\text{def.}}{=} \mathbf{P} \frac{1}{\sqrt{K-1}} (\mathbf{I} - \frac{1}{K} \mathbf{J})$  for some orthogonal matrix  $\mathbf{P}$ . But it can be absorbed into**  
 150  **$\mathbf{Q}$  as the matrix  $\mathbf{Q}\mathbf{P}$  is still an isometric injection.** Hence, without loss of generality, we assume  
 151  $\mathbf{M}^* \stackrel{\text{def.}}{=} \frac{1}{\sqrt{K-1}} (\mathbf{I} - \frac{1}{K} \mathbf{J})$  and hence  
 152

$$153 \mathbf{M}^\top \mathbf{M} / \|\mathbf{M}^\top \mathbf{M}\|_F^2 \rightarrow (\mathbf{Q}\mathbf{M}^*)^\top \mathbf{Q}\mathbf{M}^* = (\mathbf{M}^*)^2 = \mathbf{M}^*. \quad 154$$

155 On the other hand, NC3 states that  $\mathbf{M}/\|\mathbf{M}\| - \mathbf{W}^\top / \|\mathbf{W}\| \rightarrow 0$  as  $t \rightarrow \infty$ . Hence we have  
 156  $\frac{\mathbf{W}\mathbf{W}^\top}{\|\mathbf{W}\|_F^2} - \mathbf{M}^* \rightarrow 0$  as  $t \rightarrow \infty$ . Now note that  $\mathbf{1}^\top \mathbf{M}^* \mathbf{1} = 0$ , hence  $\|\mathbf{W}^\top \mathbf{1}\|^2 = \mathbf{1}^\top \mathbf{W}\mathbf{W}^\top \mathbf{1} \rightarrow 0$ .  
 157 Note that the last line holds if and only if NC0 holds.  $\square$   
 158

159 NC0 offers two key advantages. First, it serves as a diagnostic tool: if NC0 does not converge, then  
 160 at least one of NC2 or NC3 must fail, providing a clear signal that neural collapse cannot occur.  
 161

Second, NC0 is more mathematically tractable than the original NC metrics, whose dynamics are difficult to analyze and remain underexplored. As we demonstrate in Section 3, NC0’s evolution during training can be reliably tracked and used to explain empirical trends observed across different optimizers. In addition, our extensive experiments also show that NC0 is correlating well with prior NC metrics, particularly for small learning rates (see Figure 2). For a more detailed explanation and formal definitions of NC properties and their metrics, we refer the reader to Section B.



Figure 2: NC0 weakly correlates with NC3 across different optimizers and learning rates. Details on the regression fit can be found in Appendix D.3

### 3 MAIN RESULT

#### 3.1 EXPERIMENTAL SETUP

We conducted extensive experiments training a ResNet9 and VGG9 using various optimizers, including Adam, AdamW, SGD, SGD with decoupled weight decay (SGDW), Signum (Bernstein et al., 2018), and Signum with decoupled weight decay (SignumW) trained on MNIST, FashionMNIST and Cifar10. Every optimizer is trained with three different learning rates (LR), six different values of momentum, and six different values of weight decay to also control the effect of hyperparameters on the emergence of NC. This resulted in a total of  $2 \times 3 \times 6 \times 108 = 3,888$  training runs. Note that we only keep runs with reasonably high training accuracy. Too large weight decay over regularize the model and the model does not train anymore. Thus, the number of valid training runs is actually smaller than 3,888. All networks were trained for 200 epochs using a batch size of 128, with the learning rate being decayed by a factor of 10 after one-third and two-thirds of the training duration, as described in the original work by Papyan et al. (2020). In addition, we conducted ablation studies to control for the number of training epochs and to verify that the results also hold for unconstrained feature models (UFM)<sup>1</sup>, leading to a total of over 3,900+ training runs. Further details and all experimental results can be found in Appendix D. Ablation studies on the effect of training epochs can be found in Appendix D.4.1

Table 1: Final NC metrics for the same setting as in Figure 5, following the setup of Papyan et al. (2020). Lower values ( $\downarrow$ ) indicate stronger neural collapse. Values in parentheses represent percentages relative to the metric at initialization.

| Optimizer | NC0 $\downarrow$                | NC1 $\downarrow$          | NC2 $\downarrow$          | NC3 $\downarrow$          |
|-----------|---------------------------------|---------------------------|---------------------------|---------------------------|
| SGD       | <b>2.14e-04</b> ( $< -99.5\%$ ) | 0.05 ( $-99.3\%$ )        | <b>0.29</b> ( $-63.0\%$ ) | <b>0.35</b> ( $-75.1\%$ ) |
| SGDW      | 0.55 ( $-68.9\%$ )              | 0.26 ( $-96.3\%$ )        | 0.46 ( $-42.4\%$ )        | 0.80 ( $-43.5\%$ )        |
| Adam      | 0.34 ( $-80.6\%$ )              | <b>0.04</b> ( $-99.5\%$ ) | 0.29 ( $-63.9\%$ )        | 0.29 ( $-79.5\%$ )        |
| AdamW     | 5.33 ( $> 100\%$ )              | 0.20 ( $-97.2\%$ )        | 0.54 ( $-32.4\%$ )        | 0.78 ( $-45.2\%$ )        |
| Signum    | 0.78 ( $-55.3\%$ )              | 0.13 ( $-98.1\%$ )        | 0.50 ( $-36.8\%$ )        | 0.58 ( $-59.0\%$ )        |
| SignumW   | 3185.69 ( $> 100\%$ )           | 0.30 ( $-95.7\%$ )        | 1.15 ( $+44.2\%$ )        | 1.40 ( $-1.2\%$ )         |

#### 3.2 WEIGHT DECAY IS ESSENTIAL AND MOMENTUM ACCELERATES NC

Our experiments show that weight decay is necessary to reduce the NC metric across all optimizers and hyperparameter settings, as shown in Figure 3 for Signum and SGD, and earlier in Figure 1 for Adam and AdamW as well as in our ablation studies in Appendix D.4.1 and Appendix D.4.6.

<sup>1</sup>see Appendix C.5 for an introduction to UFM.

216 While the experiments cannot fully exclude the possibility that NC can be achieved eventually in the  
 217 asymptotic limit without weight decay, we argue that WD is essential to observe the emergence of  
 218 NC in *practical finite-length training settings on realistic models*<sup>2</sup>.



220  
 221  
 222  
 223  
 224  
 225  
 226  
 227 Figure 3: NC0 and NC3 metrics at the end of training for a ResNet9 trained on FashionMNIST  
 228 for Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one  
 229 standard deviation across all trainings run with corresponding optimizer. **Note that there are fewer**  
 230 **values for Signum and SGD as the model did not train due to over regularization for too large WD.**

231 From the figures, we can conclude that larger weight decay leads to a stronger decrease of NC metrics.  
 232 In particular, we show that adaptive optimizers with decoupled weight decay have much larger NC  
 233 metrics, which are strictly away from zero, showing no sign of NC. In addition, we show empirically  
 234 that momentum amplifies the effect of weight decay on the decrease of NC metrics in SGD, as shown  
 235 in the heatmap in Figure 4. This implies that one achieves a decrease in the NC metrics both by  
 236 increasing weight decay for fixed momentum or by increasing momentum for fixed non-zero weight  
 237 decay. The effect of momentum on the NC metrics becomes larger for larger values of weight decay.  
 238 **We remark that this goes beyond the acceleration of convergence of the train loss, as we show in an**  
 239 **ablation study in Appendix D.4.5.**



240  
 241  
 242  
 243  
 244  
 245  
 246  
 247  
 248  
 249  
 250  
 251  
 252 Figure 4: Heatmap of NC0, NC2 and NC3 for varying values of momentum and weight decay on  
 253 ResNet9 trained on FashionMNIST with SGD.

255 The experimental results are complemented by **Theorem 3.1** and **Theorem 3.2** showing that NC0  
 256 converges to 0 with an exponential rate trained with SGD, which is proportional to momentum and  
 257 weight decay, highlighting that NC cannot be achieved without weight decay and that momentum  
 258 accelerates the convergence of NC metrics.

259  
 260 **Theorem 3.1** (SGD with decoupled weight decay promotes NC0). *Assume a model of the form*  
 261  *$f(\mathbf{W}, \theta, x) = \mathbf{W}h_\theta(x)$  is trained using cross-entropy loss with stochastic gradient descent (SGD)*  
 262 *and momentum  $\beta \in [0, 1]$ , weight decay  $\lambda \in [0, 1]$ , and learning rate  $\eta > 0$  on all parameters  $\theta, \mathbf{W}$ .*  
 263 *For instance, the last-layer weights  $\mathbf{W}$  are updated according to:*

$$\mathbf{V}_{t+1} = \beta \mathbf{V}_t + \nabla_{\mathbf{W}_t} L_{CE},$$

$$\mathbf{W}_{t+1} = (1 - \eta \lambda) \mathbf{W}_t - \eta \mathbf{V}_{t+1}.$$

264  
 265  
 266  
 267 *If  $0 < \eta \lambda < 2$ , then the NC0 metric  $\alpha_t := \frac{1}{K} \|\mathbf{W}_t^\top \mathbf{1}\|_2^2$  decays exponentially to zero in  $t$ .*

268  
 269 <sup>2</sup>We note that Ji et al. (2021) show both theoretically and empirically the emergence of NC on the unconstrained layer-peeled model (ULPM) objective under gradient flow without weight decay.

270 *Proof.* The key observation is that the row sum of the loss gradient  $\nabla L_{\text{CE}}(\mathbf{W}_t)^\top \mathbf{1}_K$  is zero, which  
 271 largely simplifies the NC0 metric to only be dependent on the weight decay  $\lambda$  and momentum  $\beta$ . For  
 272 the details of the proof, please refer to Subsection E in the Appendix.  $\square$   
 273

274 **Theorem 3.2** (SGD with coupled weight decay promotes NC0). *Assume a model of the form  
 275  $f(\mathbf{W}, \theta, x) = \mathbf{W}h_\theta(x)$  is trained using cross-entropy loss with stochastic gradient descent (SGD)  
 276 and momentum  $\beta \in [0, 1]$ , weight decay  $\lambda \in [0, 1]$ , and learning rate  $\eta > 0$  on all parameters  $\theta, \mathbf{W}$ .  
 277 For instance, the last-layer weights  $\mathbf{W}$  are updated according to:*

$$278 \quad \mathbf{V}_{t+1} = \beta \mathbf{V}_t + \nabla_{\mathbf{W}_t} L_{\text{CE}} + \lambda \mathbf{W}_t, \\ 279 \quad \mathbf{W}_{t+1} = \mathbf{W}_t - \eta \mathbf{V}_{t+1}.$$

281 *If  $0 < \eta\lambda < 2(1 + \beta)$ , then the NC0 metric  $\alpha_t := \frac{1}{K} \|\mathbf{W}_t \mathbf{1}\|_2^2$  decays exponentially to zero in  $t$ .*  
 282

283 *Proof.* Similar to the proof of Theorem 3.1 For the details of the proof, please refer to Subsection E  
 284 in the Appendix.  $\square$   
 285

### 286 3.3 WEIGHT DECAY COUPLING MATTERS

288 While weight decay has been theoretically shown to be essential for NC in prior works (Pan & Cao,  
 289 2024; Jacot et al., 2024), these works ignore how weight decay is applied by treating  $L_2$ -regularization  
 290 of the gradient and applying weight decay directly on parameters as equivalent. However, we note that  
 291 this equivalency only holds for vanilla SGD and not for adaptive optimizers, such as Adam or AdamW,  
 292 nor when momentum is applied. In particular, our experiments reveal that NC does not emerge under  
 293 SignumW and AdamW under realistic settings. This highlights the crucial role of coupled weight  
 294 decay – that is  $L_2$ -regularization applied directly within the gradient update – as a requirement for  
 295 NC. This subtle yet important distinction has been largely overlooked in prior literature.



304 Figure 5: NC metrics throughout training on a ResNet9 trained on FashionMNIST.  
 305

306 Importantly, tracking the evolution of the NC metrics (Figure 5) and the singular values of centered  
 307 class means  $\mathbf{M}$  and the last-layer weight  $\mathbf{W}$  (Figure 6) throughout training (here shown for a ResNet9  
 308 trained on FashionMNIST), one can see that using adaptive optimizers with decoupled weight decay  
 309 leads to fundamentally different dynamics of the NC metrics and singular values despite all models  
 310 reaching TPT, where training error is (almost) zero.



321 Figure 6: Singular values of last-layer weights  $\mathbf{W}$  (left) and centered class means  $\mathbf{M}$  (right) through-  
 322 out training. The dotted line corresponds to the smallest singular value and the full line corresponds  
 323 to the average singular value, excluding the smallest singular value. Singular values for SignumW  
 are out-of-range and are shown in Figure 28 in the appendix.

324 Specifically, Figure 6 shows that the smallest singular value of  $\mathbf{W}$  increases during training with  
 325 AdamW and SignumW, indicating failure to satisfy NC3. Additionally, NC0 and the nonzero singular  
 326 values of  $\mathbf{M}$  grow throughout training and exhibit high variance, suggesting that NC2 is also less  
 327 well-fulfilled in these settings.

328 In Figure 5, we further observe that SGD and Adam achieve the lowest NC metric values, while  
 329 AdamW, SignumW, and SGDW saturate early at much higher levels. Although the NC metrics for  
 330 Signum are slightly larger than for SGD and Adam, they continue to decrease over time, suggesting  
 331 potential convergence to NC under longer training.

332 Finally, our experiments in Figure 1 and Figure 3 demonstrate that the NC0 and NC3 metrics of  
 333 AdamW and SignumW remain significantly larger than those of Adam and Signum, even when using  
 334 weight decay several orders of magnitudes higher. This indicates that models trained with AdamW  
 335 or SignumW are consistently farther from achieving NC. ~~Interestingly, the NC metrics for SGD and~~  
 336 ~~SGDW remain relatively close—only slightly shifted—showing that the gap between coupled and~~  
 337 ~~decoupled weight decay has a more pronounced effect in adaptive optimizers than in SGD. Note that~~  
 338 ~~the NC metrics for SGD and SGDW remain relatively close, consistent with our theoretical results in~~  
 339 ~~Theorem 3.1 and Theorem 3.2, while the gap between coupled and decoupled weight decay has a~~  
 340 ~~more pronounced effect in adaptive optimizers than in SGD.~~ This suggests the effect is not simply  
 341 due to greater weight decay accumulation through momentum but stems from a deeper interaction  
 342 with the optimization dynamics.

### 344 3.4 INTERPOLATING ADAMW AND ADAM

345 To further investigate why AdamW fails to exhibit neural collapse (NC) while Adam does, we con-  
 346 ducted an ablation study by “interpolating” between the two optimizers. Specifically, we implemented  
 347 a variant that combines both coupled weight decay (as in Adam) and decoupled weight decay (as  
 348 in AdamW). For each run, we varied the strength of the coupled weight decay while adjusting the  
 349 decoupled component such that the total weight decay remained fixed at 0.0005. The momentum was  
 350 set to 0.9 across all configurations.

351 As shown in Figure 7, increasing the coupled component leads to a smooth improvement in NC  
 352 metrics—particularly NC0, NC2, and NC3—while the validation accuracy remains largely unaffected.  
 353 This experiment suggests that coupled weight decay is a critical factor in enabling neural collapse,  
 354 yet it is not strictly necessary for achieving strong generalization performance, as all configura-  
 355 tions yield similar validation accuracy. This strengthens a point raised earlier about the limitations of NC  
 356 to understand generalization Hui et al. (2022).



357  
 358 Figure 7: Interpolating Adam and AdamW by varying the coupled and decoupled weight decay. Total  
 359 weight decay was fixed to 0.0005. Note that coupled weight decay = 0 is equivalent to AdamW and  
 360 coupled weight decay = 0.0005 is equivalent to Adam. Experiments trained on ResNet9 with MNIST.  
 361

362 This observation is supported by our theoretical results in Theorem 3.3 and Theorem 3.4, which show  
 363 that SignGD with decoupled weight decay fails to satisfy NC0 and therefore cannot converge to a  
 364 neural collapse solution, whereas SignGD with coupled weight decay exhibits different behaviour.  
 365 We note that SignGD corresponds to a special case of Adam and AdamW when the parameters  $\beta_1$ ,  
 366  $\beta_2$ , and  $\varepsilon$  are set to zero.

367 **Theorem 3.3** (Sign GD with decoupled weight decay avoids NC0). *Consider sign GD with*  
 368 *(decoupled) weight decay  $\lambda > 0$  and step size  $\eta > 0$  on the UFM loss  $L_{CE}(\mathbf{WH}, \mathbf{I}) =$*   
 369  *$\sum_{n=1}^N L_{CE}(\mathbf{Wh}_n, \mathbf{e}_n)$ , where the feature  $\mathbf{H} = \mathbf{M}^*$  is fixed to an NC solution and only the weight*  
 370  *$\mathbf{W}$  is trained:*

$$\mathbf{W}_{t+1} = \mathbf{W}_t - \eta(\text{sign}(\nabla_{\mathbf{W}_t} L_{CE}) + \lambda \mathbf{W}_t)$$



Figure 8: Training dynamic of NC0 with optimizers SGD, Adam, AdamW, Adam0 ( $\beta_1 = \beta_2 = 0$ ), AdamW0 ( $\beta_1 = \beta_2 = 0$ ). For AdamW and SignSGD the inlay shows the NC0 metric more detailed for the last 2000 steps. Note that 5 steps correspond to one training epoch.

Then the NC0 metric  $\alpha = \|\mathbf{W}_t^\top \mathbf{1}_K\|_2^2$  increases monotonically from zero to the limit:

$$\lim_{t \rightarrow \infty} \alpha_t = \frac{(K-2)^2}{\lambda^2}.$$

In particular,  $\alpha_t$  does not vanish as  $t \rightarrow \infty$ .

*Proof idea:* The key observation is that the signed loss gradient  $\text{sign}(\nabla L_{\text{CE}}(\mathbf{W}_t))$  in this setting is constant in  $t$ , simplifying the following computation. See Appendix E for the full proof.  $\square$

**Theorem 3.4** (Sign GD with coupled weight decay can lead to NC0). *Consider sign GD with (coupled) weight decay  $\lambda > 0$  and step size  $\eta > 0$  on the UFM loss  $L_{\text{CE}}(\mathbf{W}\mathbf{H}, \mathbf{I}) = \sum_{n=1}^N L_{\text{CE}}(\mathbf{W}\mathbf{h}_n, \mathbf{e}_n)$ , where the feature  $\mathbf{H} = \mathbf{M}^*$  is fixed to an NC solution and only the weight  $\mathbf{W}$  is trained:*

$$\mathbf{W}_{t+1} = \mathbf{W}_t - \eta(\text{sign}(\nabla_{\mathbf{W}_t} L_{\text{CE}} + \lambda \mathbf{W}_t))$$

We initialize  $\mathbf{W}_0 = 0 \in \mathbb{R}^{K \times K}$  and define the covariance matrix  $\mathbf{C}_t = \mathbf{W}_t \mathbf{W}_t^\top$  and the scalar  $\alpha_t = \langle \mathbf{C}_t, \hat{\mathbf{J}} \rangle_F$  where  $\hat{\mathbf{J}} = \frac{1}{K} \mathbf{1} \mathbf{1}^\top$ . Then there exists a learning rate decay scheme  $\eta = \eta(t) \xrightarrow[t \rightarrow \infty]{} 0$  such that  $\alpha_t \xrightarrow[t \rightarrow \infty]{} 0$ .

*Proof.* See Appendix E.  $\square$

The key difference between the results of Theorem 3.3 and Theorem 3.4 lies in how coupled weight decay affects the signed gradient during training. As the weight norm  $\|\mathbf{W}\|$  increases, the coupled decay term can eventually flip the sign of the gradient, altering the trajectory of the NC0 metric  $\alpha_t$ . Initially,  $\alpha_t$  grows at a similar rate in both cases, but their behaviors diverge once the decay term becomes dominant.

To illustrate this effect, we conducted a small-scale experiment using a simple MLP on a separable dataset with various optimizers. As shown in Figure 8, SignSGD displays non-monotonic dynamics in  $\alpha_t$ , while SignSGDW exhibits steady convergence to a positive value. Similar patterns appear in Adam and AdamW, though more smoothed due to their adaptive updates.

## 4 DISCUSSION AND LIMITATIONS

In this section, we discuss new insights, additional considerations and limitations from the main results in Section 3. Additionally, we explore potential follow-up research directions that could provide theoretical explanations or extend our experiments to broader settings.

### 4.1 INTERPRETING NC METRICS IN PRACTICE

While NC is defined by the convergence of all NC metrics to zero in the limit, practical experiments never achieve exact zeros. Since NC is inherently a continuous rather than discrete phenomenon, it becomes necessary to define what constitutes the presence of NC in practice. This important issue has not been thoroughly addressed in the existing literature.

432 A further complication is that different NC metrics operate on different scales and these scales vary  
 433 across settings of architectures and datasets. For example, in our experiments, the smallest observed  
 434 values for NC2 and NC3 are on the order of 0.1, whereas NC1 can reach values an order of magnitude  
 435 smaller.

436 In this work, we therefore refer to the emergence of NC in terms of relative strength. Specifically, we  
 437 use the NC metric values at initialization as a baseline for models that do not exhibit NC, and use the  
 438 smallest values achieved across all experiments as a reference point for models that do. This framing  
 439 allows us to discuss the strength of NC emergence across different optimizers and settings.  
 440

## 441 4.2 THE REDUNDANT NC4 PROPERTY

443 Readers may notice that we omit NC4 from the results in Section 3. This is because we observed  
 444 that NC4 is consistently satisfied whenever the training accuracy approaches 100%, regardless of  
 445 whether the other NC metrics (NC1–NC3) exhibit collapse. As shown in Figure 56, NC4 is largely  
 446 uncorrelated with the other metrics. To maintain a clearer and more focused presentation, we therefore  
 447 exclude NC4 from our main analysis.

## 448 4.3 PARTIAL NEURAL COLLAPSE

449 Table 2: Final NC metrics for the run with the smallest absolute NC3 metric and > 99% training  
 450 accuracy for each optimizer. Lower values ( $\downarrow$ ) indicate stronger neural collapse. Values in parentheses  
 451 represent percentages relative to the metric at initialization. Hyperparameters used for each optimizer  
 452 can be found in Table 4.  
 453

| Optimizer | NC0 $\downarrow$                | NC1 $\downarrow$            | NC2 $\downarrow$          | NC3 $\downarrow$          |
|-----------|---------------------------------|-----------------------------|---------------------------|---------------------------|
| SGD       | <b>1.53e-05</b> ( $< -99.5\%$ ) | 0.02 ( $< -99.5\%$ )        | 0.19 ( $-75.8\%$ )        | 0.13 ( $-90.9\%$ )        |
| SGDW      | 1.54e-04 ( $< -99.5\%$ )        | <b>0.01</b> ( $< -99.5\%$ ) | 0.15 ( $-81.7\%$ )        | <b>0.10</b> ( $-92.7\%$ ) |
| Adam      | 0.12 ( $< -93.2\%$ )            | 0.04 ( $-99.5\%$ )          | 0.23 ( $-71.6\%$ )        | 0.17 ( $-88.2\%$ )        |
| AdamW     | 8.09 ( $\gg 100\%$ )            | <b>0.01</b> ( $< -99.5\%$ ) | <b>0.14</b> ( $-82.1\%$ ) | 0.49 ( $-65.1\%$ )        |

460 Another subtlety we observe is what we term *partial neural collapse*. As shown in Table 2, AdamW  
 461 can achieve minimal values for NC1 and NC2 among all optimizers, even while NC0 diverges and  
 462 NC3 is not satisfied. This indicates that NC properties may not always emerge jointly, contrary to the  
 463 original claim in Papyan et al. (2020). Understanding the theoretical conditions under which only a  
 464 subset of NC properties holds remains an intriguing open question.  
 465

## 466 4.4 LIMITATIONS OF THEORETICAL SUPPORT

467 Our experiments on Adam and AdamW are conducted on realistic models and datasets, whereas our  
 468 theoretical results (Theorem 3.3, Theorem 3.4) focus on a simplified setting: SignGD applied to the  
 469 unconstrained feature model. While this restricted setup already demonstrates that AdamW fails to  
 470 achieve NC, it does not fully capture the complexity of deep neural networks or adaptive optimizers  
 471 in practice. Nevertheless, we believe our proof techniques could be extended to explain why Adam  
 472 may lead to NC in more general settings. Moreover, our theoretical analysis is limited to the training  
 473 dynamics of NC0, chosen for its analytical tractability and strong empirical correlation with other  
 474 NC metrics. A full theoretical understanding of NC1–NC3 under realistic optimization dynamics  
 475 remains an open challenge, and we leave this direction for future work.  
 476

## 477 4.5 FUTURE RESEARCH

478 Other than the topic we have discussed in the previous subsections, our findings also open other  
 479 intriguing avenues for future research.  
 480

- 481 • Empirical studies should be expanded to include larger models, such as Vision Transformers  
 482 (ViTs) and DenseNets, as well as more diverse datasets, to assess the broader generality of  
 483 our findings. Our preliminary results on ViT are available in Appendix D.4.10, and largely  
 484 confirm our findings also extend to Transformers.  
 485

- 486 • Due to computational constraints, our study only analyzed NC properties in the last layer.  
487 However, previous works (Masarczyk et al., 2023; Rangamani et al., 2023) suggest that  
488 these properties may also manifest in intermediate layers. Investigating NC behavior across  
489 different depths could provide further insights into hierarchical feature representations.
- 490 • In addition to the optimizers (SGD, Adam, AdamW, Signum) studied in this work, novel  
491 first-order methods such as Lion (Chen et al., 2023) and Mars (Yuan et al., 2024), and second-  
492 order methods, such as Shampoo (Gupta et al., 2018), SOAP (Vyas et al., 2024) and Muon  
493 (Jordan et al.) demonstrated promising improvements in convergence and generalization.  
494 However, their effects on NC remain largely unexplored.

## 496 5 CONCLUSION

497  
498 In this paper we have conducted an extensive number of experiments to elucidate the role of the  
499 optimization algorithm in the emergence of the neural collapse (NC) phenomenon. In particular,  
500 our experiments consistently show that coupled weight decay is necessary for achieving small NC  
501 metrics. While the role of weight decay in the context of NC has been studied in the literature before,  
502 this is the first paper distinguishing between coupled and decoupled weight decay. Moreover, our  
503 theoretical results show that the resulting training dynamics differ considerably and one needs to take  
504 this into account. These findings underscore the limitations of existing theoretical frameworks, which  
505 have studied NC mainly under gradient flow or gradient descent, and highlight the need for further  
506 investigation into the interplay between optimizers and NC.

## 507 5 REFERENCES

508  
509 Mouïn Ben Ammar, Nacim Belkhir, Sebastian Popescu, Antoine Manzanera, and Gianni Franchi.  
510 Neco: Neural collapse based out-of-distribution detection, 2024.

511  
512 Tina Behnia, Ganesh Ramachandra Kini, Vala Vakilian, and Christos Thrampoulidis. On the implicit  
513 geometry of cross-entropy parameterizations for label-imbalanced data. In Francisco Ruiz, Jennifer  
514 Dy, and Jan-Willem van de Meent (eds.), *Proceedings of The 26th International Conference on  
515 Artificial Intelligence and Statistics*, volume 206 of *Proceedings of Machine Learning Research*,  
516 pp. 10815–10838. PMLR, 25–27 Apr 2023.

517  
518 Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:  
519 Compressed optimisation for non-convex problems. In *International Conference on Machine  
520 Learning*, pp. 560–569. PMLR, 2018.

521  
522 Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,  
523 Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Symbolic discovery of optimization algo-  
524 rithms. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances  
525 in Neural Information Processing Systems*, volume 36, pp. 49205–49233. Curran Associates, Inc.,  
526 2023.

527  
528 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale  
529 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,  
530 pp. 248–255. Ieee, 2009.

531  
532 Tomer Galanti, András György, and Marcus Hutter. On the role of neural collapse in transfer learning.  
533 *arXiv preprint arXiv:2112.15121*, 2021.

534  
535 Connall Garrod and Jonathan P. Keating. The persistence of neural collapse despite low-rank bias:  
536 An analytic perspective through unconstrained features, 2024.

537  
538 Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-  
539 tion. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International Conference  
540 on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pp. 1842–1850.  
541 PMLR, 10–15 Jul 2018.

542  
543 X. Y. Han, Vardan Papyan, and David L. Donoho. Neural collapse under mse loss: Proximity to and  
544 dynamics on the central path, 2022.

540 Md Yousuf Harun, Jhair Gallardo, and Christopher Kanan. Controlling neural collapse enhances  
 541 out-of-distribution detection and transfer learning, 2025.

542

543 Like Hui, Mikhail Belkin, and Preetum Nakkiran. Limitations of neural collapse for understanding  
 544 generalization in deep learning. *arXiv preprint arXiv:2202.08384*, 2022.

545 Arthur Jacot, Peter Súkeník, Zihan Wang, and Marco Mondelli. Wide neural networks trained with  
 546 weight decay provably exhibit neural collapse, 2024.

547

548 Wenlong Ji, Yiping Lu, Yiliang Zhang, Zhun Deng, and Weijie J Su. An unconstrained layer-peeled  
 549 perspective on neural collapse. *arXiv preprint arXiv:2110.02796*, 2021.

550 Jiachen Jiang, Jinxin Zhou, Peng Wang, Qing Qu, Dustin Mixon, Chong You, and Zhihui Zhu.  
 551 Generalized neural collapse for a large number of classes. *arXiv preprint arXiv:2310.05351*, 2023.

552

553 K Jordan, Y Jin, V Boza, Y Jiacheng, F Cecista, L Newhouse, and J Bernstein. Muon: An optimizer  
 554 for hidden layers in neural networks, 2024b. *URL https://kellerjordan.github.io/posts/muon*.

555 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint  
 556 arXiv:1412.6980*, 2014.

557

558 Vignesh Kothapalli. Neural collapse: A review on modelling principles and generalization, 2023.

559

560 Litian Liu and Yao Qin. Detecting out-of-distribution through the lens of neural collapse. *arXiv  
 561 preprint arXiv:2311.01479*, 2023.

562

563 Xuantong Liu, Jianfeng Zhang, Tianyang Hu, He Cao, Yuan Yao, and Lujia Pan. Inducing neural  
 564 collapse in deep long-tailed learning. In *International conference on artificial intelligence and  
 565 statistics*, pp. 11534–11544. PMLR, 2023.

566

567 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

568

569 Wojciech Masarczyk, Mateusz Ostaszewski, Ehsan Imani, Razvan Pascanu, Piotr Miłoś, and Tomasz  
 570 Trzciński. The tunnel effect: Building data representations in deep neural networks. In A. Oh,  
 571 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural  
 572 Information Processing Systems*, volume 36, pp. 76772–76805. Curran Associates, Inc., 2023.

573

574 Dustin G Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained features.  
 575 *Sampling Theory, Signal Processing, and Data Analysis*, 20(2):11, 2022.

576

577 Kaouthar Mouheb, Marawan Elbatel, Stefan Klein, and Esther E Bron. Evaluating the fairness of  
 578 neural collapse in medical image classification. In *International Conference on Medical Image  
 579 Computing and Computer-Assisted Intervention*, pp. 286–296. Springer, 2024.

580

581 Leyan Pan and Xinyuan Cao. Towards understanding neural collapse: The effects of batch normalization  
 582 and weight decay, 2024.

583

584 Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal  
 585 phase of deep learning training. *Proceedings of the National Academy of Sciences*, 117(40):  
 586 24652–24663, 2020.

587

588 Akshay Rangamani, Marius Lindegaard, Tomer Galanti, and Tomaso A Poggio. Feature learning  
 589 in deep classifiers through intermediate neural collapse. In Andreas Krause, Emma Brunskill,  
 590 Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of  
 591 the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine  
 592 Learning Research*, pp. 28729–28745. PMLR, 23–29 Jul 2023.

593

594 Christos Thrampoulidis, Ganesh Ramachandra Kini, Vala Vakilian, and Tina Behnia. Imbalance  
 595 trouble: Revisiting neural-collapse geometry. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,  
 596 K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp.  
 597 27225–27238. Curran Associates, Inc., 2022.

598

599 Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas  
 600 Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. *arXiv preprint  
 601 arXiv:2409.11321*, 2024.

594 Robert Wu and Vardan Papyan. Linguistic collapse: Neural collapse in (large) language models.  
595 *arXiv preprint arXiv:2405.17767*, 2024.  
596

597 Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power  
598 of variance reduction for training large models, 2024.

599 Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A  
600 geometric analysis of neural collapse with unconstrained features. In M. Ranzato, A. Beygelzimer,  
601 Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing  
602 Systems*, volume 34, pp. 29820–29834. Curran Associates, Inc., 2021.

603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647

---

## Appendix

---

### A LLM USAGE STATEMENT

We disclaim that we have used Large Language Models to refine a few sentences and additionally as a proxy of a search engine to retrieve additional related work.

The appendix is organized as follows. In Section B, we formally define the neural collapse (NC) phenomenon and introduce the metrics used in the experiments presented in the main text. In Appendix C, we review prior works related to our paper. Section D provides detailed descriptions and additional observations from our experiments. In Section E, we present the full proof of the theorems stated in the main text.

### B NC METRICS

Neural collapse (NC), discovered by Papyan et al. (2020), is a striking phenomenon observed during the terminal phase of training (TPT) deep neural networks (DNN) for multi-class classification tasks, particularly when trained with cross-entropy (CE) loss. Formally, let the (trained) last-layer features of the DNN be denoted by  $\mathbf{h}_n$ , and concatenate them into a matrix  $\mathbf{H} \in \mathbb{R}^{p \times N}$ , where  $p$  is the width of the last layer and  $N$  is the number of training samples indexed by  $n$ . The output logits of the network are then computed as  $\mathbf{W}_L \mathbf{H} \in \mathbb{R}^{K \times N}$ , where  $\mathbf{W}_L \in \mathbb{R}^{K \times p}$  is the last-layer weight,  $\mathbf{b} \in \mathbb{R}^K$  is the bias vector, and  $K$  is the number of classes.<sup>3</sup>

The DNN is trained using the CE loss computed on the logits:

$$\text{CE}(\mathbf{W}_L, \mathbf{H}) = - \sum_{n=1}^N \log \left( \frac{\exp(\mathbf{W}_L \mathbf{h}_n)_{y_n}}{\sum_{k=1}^K \exp(\mathbf{W}_L \mathbf{h}_n)_k} \right),$$

where  $y_n \in [K]$  denotes the class label index of the feature vector  $\mathbf{h}_n$ . Let  $\mathcal{C}_k \stackrel{\text{def.}}{=} n \in [N] : y_n = k$  be the index set of data points belonging to class  $k \in [K]$ . In this paper, we assume that the classes are balanced, i.e.,  $|\mathcal{C}_k|$  is equal for all  $k \in [K]$ . For the effects of class imbalance on NC, we refer the reader to Han et al. (2022); Thrampoulidis et al. (2022); Behnia et al. (2023).

Let  $\boldsymbol{\mu}_k \stackrel{\text{def.}}{=} \frac{1}{|\mathcal{C}_k|} \sum_{n \in \mathcal{C}_k} \mathbf{h}_n$  be the class mean for each class  $k$ . The global mean of all classes is given by  $\boldsymbol{\mu}_G = \frac{1}{K} \sum_{k=1}^K \boldsymbol{\mu}_k$  and centered class means are defined as  $\bar{\boldsymbol{\mu}}_k = \boldsymbol{\mu}_k - \boldsymbol{\mu}_G$ . Let the between-class covariance  $\boldsymbol{\Sigma}_B \in \mathbb{R}^{p \times p}$  and the within-class covariance  $\boldsymbol{\Sigma}_W \in \mathbb{R}^{p \times p}$  be:

$$\boldsymbol{\Sigma}_B = \frac{1}{K} \sum_{k=1}^K \bar{\boldsymbol{\mu}}_k \bar{\boldsymbol{\mu}}_k^\top,$$

$$\boldsymbol{\Sigma}_W = \frac{1}{K} \frac{1}{N} \sum_{k=1}^K \sum_{n=1}^N (\mathbf{h}_n^k - \boldsymbol{\mu}_k)(\mathbf{h}_n^k - \boldsymbol{\mu}_k)^\top,$$

where  $\mathbf{h}_n^k$  correspond to the feature vectors of class  $k$ .

We also concatenate the centered class means into a matrix  $\mathbf{M} \stackrel{\text{def.}}{=} (\bar{\boldsymbol{\mu}}_1, \dots, \bar{\boldsymbol{\mu}}_K) \in \mathbb{R}^{p \times K}$ .

With these definitions in place, we now conceptually outline the NC properties and introduce corresponding metrics to quantitatively measure these properties in our experiments.

<sup>3</sup>For simplicity, we interchangeably refer to an input  $\mathbf{x} \in \mathbb{R}^d$  and its corresponding last-layer feature  $\mathbf{h} \in \mathbb{R}^p$  after the parameters of the network have converged during TPT and the mapping  $\mathbf{x} \mapsto \mathbf{h}$  is fixed.

**702 NC1 - Variability Collapse** The first property of neural collapse (NC1) describes the collapse of  
 703 features to their respective class means. Formally, this means that the distance between a feature  
 704 vector  $\mathbf{h}_n$  and its corresponding class mean  $\mu_k$  approaches zero:  
 705

$$\|\mathbf{h}_n - \mu_k\|_2 \rightarrow 0, \forall k \in [K], n \in \mathcal{C}_k.$$

706 A corresponding metric is defined as Zhu et al. (2021); Kothapalli (2023); Ammar et al. (2024):  
 707

$$\mathcal{NC1} \stackrel{\text{def.}}{=} \frac{1}{K} \text{Tr}[\Sigma_W \Sigma_B^\dagger] \quad (2)$$

710 where  $\dagger$  denotes the Moore-Penrose pseudo-inverse.  
 711

**712 NC2 - Convergence of Class Means to Simplex ETF** The second property of neural collapse  
 713 (NC2) describes the convergence of class means to a simplex equiangular tight frame (ETF), where  
 714 the angles between the means are maximally symmetric. Formally, this property can be expressed as:  
 715

$$\begin{cases} \|\bar{\mu}_j\|_2 - \|\bar{\mu}_k\|_2 \rightarrow 0 \\ \left\langle \frac{\bar{\mu}_j}{\|\bar{\mu}_j\|_2}, \frac{\bar{\mu}_k}{\|\bar{\mu}_k\|_2} \right\rangle \rightarrow \frac{K}{K-1} \delta_{jk} - \frac{1}{K-1}, \end{cases} \forall j, k \in [K].$$

718 To measure this property, we define two metrics capturing the equinormality and equiangularity of  
 719 the centered class means Papyan et al. (2020); Ammar et al. (2024):  
 720

$$\mathcal{NC2}_n = \frac{\text{std}_k\{\|\bar{\mu}_k\|_2\}}{\text{avg}_k\{\|\bar{\mu}_k\|_2\}}; \quad (3)$$

$$\mathcal{NC2}_a = \text{avg}_{k \neq k'} \left| \left\langle \frac{\bar{\mu}_k}{\|\bar{\mu}_k\|_2}, \frac{\bar{\mu}_{k'}}{\|\bar{\mu}_{k'}\|_2} \right\rangle + \frac{1}{K-1} \right|. \quad (4)$$

725 Here,  $\text{std}_\bullet(\cdot)$  and  $\text{avg}_\bullet(\cdot)$  denote the standard deviation and mean, respectively, over the specified  
 726 index.  
 727

An alternative metric for NC2, introduced by Kothapalli (2023), directly measures the deviation of  
 728 the centered class means from a simplex ETF:  
 729

$$\mathcal{NC2} \stackrel{\text{def.}}{=} \frac{1}{K^2} \left\| \frac{\mathbf{M}^\top \mathbf{M}}{\|\mathbf{M}^\top \mathbf{M}\|_F} - \mathbf{M}^* \right\|_F \quad (5)$$

732 where

$$\mathbf{M}^* \stackrel{\text{def.}}{=} \frac{1}{\sqrt{K-1}} \left( \mathbf{I}_K - \frac{1}{K} \mathbf{J}_K \right),$$

735  $\mathbf{I}_K \in \mathbb{R}^{K \times K}$  is the identity matrix and  $\mathbf{J} \in \mathbb{R}^{K \times K}$  is the matrix of ones. Note that  $\mathcal{NC2}_n, \mathcal{NC2}_a \rightarrow 0 \iff \mathcal{NC2} \rightarrow 0$ .  
 736  
 737

**738 NC2W - Convergence of Weight Rows to Simplex ETF** In addition to NC2, we define a related  
 739 property, NC2W, which describes the convergence of the rows of the last-layer weights  $\mathbf{W}_L \in \mathbb{R}^{K \times p}$   
 740 to a simplex ETF. If the third NC property, NC3 (described later), holds, then NC2 and NC2W are  
 741 equivalent. However, to study partial NC, it is essential to decouple these properties and measure  
 742 NC2 and NC2W separately.  
 743

To measure NC2W, Zhu et al. (2021) introduced the following metric:  
 744

$$\mathcal{NC2W} \stackrel{\text{def.}}{=} \frac{1}{K^2} \left\| \frac{\mathbf{W}_L \mathbf{W}_L^\top}{\|\mathbf{W}_L \mathbf{W}_L^\top\|_F} - \mathbf{M}^* \right\|_F. \quad (6)$$

748 While this metric measures the overall alignment of  $\mathbf{W}_L$  with a simplex ETF, it does not account for  
 749 the equinormality and equiangularity of the rows of  $\mathbf{W}_L$ . To address this, we introduce the following  
 750 metrics:  
 751

$$\mathcal{NC2W}_n = \frac{\text{std}_k\{\|\mathbf{w}_k\|_2\}}{\text{avg}_k\{\|\mathbf{w}_k\|_2\}} \quad (7)$$

$$\mathcal{NC2W}_a = \text{avg}_{k \neq k'} \left| \left\langle \frac{\mathbf{w}_k}{\|\mathbf{w}_k\|_2}, \frac{\mathbf{w}_{k'}}{\|\mathbf{w}_{k'}\|_2} \right\rangle + \frac{1}{K-1} \right| \quad (8)$$

755 where  $\mathbf{w}_k^\top \in \mathbb{R}^p$  is the  $k$ -th row of  $\mathbf{W}_L$ .  
 756

756 **NC2M - Convergence of Product to Simplex ETF** Finally, Zhu et al. (2021); Kothapalli (2023)  
 757 proposed a metric that interpolates between NC2 and NC2W:<sup>4</sup>  
 758

$$759 \quad \mathcal{NC2M} \stackrel{\text{def.}}{=} \frac{1}{K^2} \left\| \frac{\mathbf{W}_L \mathbf{M}}{\|\mathbf{W}_L \mathbf{M}\|_F} - \mathbf{M}^* \right\|_F. \quad (9)$$

761 Note that  $\mathcal{NC2}, \mathcal{NC2W} \rightarrow 0 \implies \mathcal{NC2M} \rightarrow 0$  but the converse does not hold.  
 762

763 **NC3 - Convergence to Self-Duality** The third property of neural collapse (NC3) describes that the  
 764 rows of the last-layer weight align with the column of the class means, that is,  
 765

$$766 \quad \left\| \frac{\mathbf{W}_L}{\|\mathbf{W}_L\|_F} - \frac{\mathbf{M}^\top}{\|\mathbf{M}^\top\|_F} \right\|_F \rightarrow 0;$$

768 the corresponding metric is an obvious one Papyan et al. (2020); Garrod & Keating (2024):  
 769

$$770 \quad \mathcal{NC3} \stackrel{\text{def.}}{=} \frac{1}{Kp} \left\| \frac{\mathbf{W}_L}{\|\mathbf{W}_L\|_F} - \frac{\mathbf{M}^\top}{\|\mathbf{M}^\top\|_F} \right\|_F \quad (10)$$

773 **NC4 - Simplification of Nearest-Class-Center (NCC)** The fourth property of neural collapse  
 774 (NC4) describes that the classifier decision boundaries become equivalent to those derived by a  
 775 nearest-class-mean classifier, that is,

$$776 \quad \arg \max_k \langle \mathbf{w}_k, \mathbf{h} \rangle \rightarrow \arg \min_k \|\mathbf{h} - \boldsymbol{\mu}_k\|_2$$

779 for any test feature  $\mathbf{h} \in \mathbb{R}^p$ ; hence we can fix a test set of features  $\{\mathbf{h}_n^{\text{test}}\}_{n=1}^{N^{\text{test}}}$  define the metric:  
 780

$$781 \quad \mathcal{NC4} \stackrel{\text{def.}}{=} \frac{1}{N^{\text{test}}} \sum_{n=1}^{N^{\text{test}}} \mathbf{1} \{ \arg \max_k \langle \mathbf{w}_k, \mathbf{h}_n^{\text{test}} \rangle = \arg \min_k \|\mathbf{h}_n^{\text{test}} - \boldsymbol{\mu}_k\|_2 \} \quad (11)$$

784 where  $\mathbf{1}$  is the indicator function.

785 The above NC properties hold if their corresponding metrics approach zero (except for NC4, which  
 786 approach one) as the training step  $t \rightarrow \infty$ . A solution  $\mathbf{W}_L, \mathbf{H}$  satisfying these properties is referred  
 787 to as an NC solution.

788 To observe the interpolation between partial and full NC, we introduce a weaker property:  
 789

790 **NC0 - Zero Row Sum of Last-Layer Weight** This new property describes that the rows of the  
 791 last-layer weight  $\mathbf{W}_L$  sums up to zero with the corresponding metric  
 792

$$793 \quad \mathcal{NC0} \stackrel{\text{def.}}{=} \frac{1}{p} \left\| \mathbf{W}_L^\top \mathbf{1} \right\|_2, \quad (12)$$

795 Note that  $\mathcal{NC2W} \rightarrow 0 \implies \mathcal{NC0} \rightarrow 0$  but the converse does not hold.  
 796

797 The analogous property for the last-layer features, **Zero Column Sum of Last-Layer Features**,  
 798 holds automatically because the columns of  $\mathbf{M}$  are centered class means:  
 799

$$800 \quad \sum_{k=1}^K \bar{\boldsymbol{\mu}}_k = \sum_{k=1}^K (\boldsymbol{\mu}_k - \boldsymbol{\mu}_G) = 0.$$

803 Thus, NC0 for the last-layer weights already represents a form of duality similar to NC3.  
 804  
 805  
 806  
 807  
 808

809 <sup>4</sup>In the original works, this metric was used to evaluate self-duality. However, in this paper, we decouple the  
 NC properties to study the effects of implicit biases on each individually.

810 C ADDITIONAL RELATED WORK  
811812 C.1 WEIGHT DECAY AND NEURAL COLLAPSE  
813814 Weight Decay has been shown to be essential for NC in prior works, like (Zhu et al., 2021; Pan &  
815 Cao, 2024; Jacot et al., 2024). However, their statements on weight decay are for (quasi-)optimal  
816 solutions in oversimplified models, which ignore the complex interaction between non-convex loss  
817 landscape and optimizers. Please see Appendix C.5 for an example.  
818819 C.2 EMPIRICAL STUDIES ON THE EMERGENCE OF NEURAL COLLAPSE  
820821 Neural collapse has also been studied beyond the original problem setting, which assumes few  
822 balanced classes as well as noise-free labels. Notably, Wu & Popyan (2024) studied the occurrence  
823 of NC for large language models, which do not satisfy any of the original assumption. Jiang et al.  
824 (2023) studied neural collapse for a large number of classes, while Mouheb et al. (2024) studied the  
825 influence of imbalanced in medical image classification on NC.  
826827 C.3 APPLICATIONS OF NEURAL COLLAPSE  
828829 The observation of neural collapse (NC) has inspired a growing body of follow-up work that applies  
830 NC metrics across various settings. In the context of out-of-distribution (OOD) detection, Ammar  
831 et al. (2024) propose a novel post-hoc detection method based on the geometric properties of NC,  
832 while Harun et al. (2025) show that explicitly controlling for NC1 can enhance OOD detection  
833 performance. Notably, the latter also claim that AdamW leads to NC, based on empirical results  
834 where NC3 values hover around 0.5 across different models—mirroring the misleading metrics  
835 reported in Table 2. As we demonstrate in the main text, however, this does not indicate true NC.  
836 This discrepancy underscores the need for a more precise and systematic framework for evaluating  
837 NC – one of the central contributions of this work.838 In a separate line of inquiry, Liu et al. (2023) study the impact of class imbalance on NC and  
839 propose explicit feature regularization terms to induce NC under imbalanced distributions, resulting  
840 in improved model performance.  
841842 C.4 COUPLED WEIGHT DECAY IN THE CONTEXT OF NEURAL COLLAPSE  
843844 To the best of our knowledge, no prior work has investigated the role of optimizer choice in the  
845 context of NC. When minimizing the objective in Equation (1) or Equation (13), the weight decay  
846 induced by the L2-regularization parameter  $\lambda$  is coupled with the training loss. However, with the  
847 introduction of AdamW Loshchilov & Hutter (2019), decoupled weight decay has become the default  
848 in many modern optimizers. This paper aims to bridge this gap by systematically examining the  
849 impact of coupled versus decoupled weight decay on the emergence of NC.  
850851 C.5 UNCONSTRAINED FEATURE MODEL  
852853 The unconstrained feature model (UFM) Mixon et al. (2022); Zhu et al. (2021) is a simplified  
854 theoretical framework commonly used to study neural collapse (NC). In UFM, the last layer feature is  
855 replaced by a trainable matrix  $\mathbf{H} = (\mathbf{h}_n)_{n=1}^N$ , referred to as the *unconstrained feature*, which mimics  
856 the role of feature extraction layers in deep neural networks (DNN). For analytical simplicity, the  
857 layer following the unconstrained feature is often assumed to be linear  $\mathbf{W}$ , making UFM a special  
858 case of deep linear networks (DLN):  
859

860 
$$\min_{\mathbf{W}, \mathbf{H}} \sum_{n=1}^N \ell(\mathbf{W}\mathbf{h}_n, \mathbf{y}_n) + \frac{\lambda}{2} \|\mathbf{W}\|^2 + \frac{\lambda}{2} \|\mathbf{H}\|^2, \quad (13)$$

861 simplifying the minimization problem in Equation (1). In this paper, the loss  $\ell$  is always assumed to  
862 be the cross-entropy (CE) loss, because it is the standard loss used in multi-classification tasks.  
863864 Zhu et al. (2021) has reported positive results on NC using UFM. Informally it holds that:  
865

864

**Theorem C.1** (Theorem 3.1 and 3.2 in Zhu et al. (2021)). *Any global optimal solution of UFM is an NC solution, while all other critical points are strict saddles. As a result, for random initialization, it is almost surely that gradient descent finds an NC solution.*

867

868

Zhu et al. (2021) also experimented NC on realistic models with optimizers like SGD and Adam, concluding the universality of NC across different optimizers.

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 **D EXPERIMENT**  
919920  
921 The experiments of this work, particularly regarding computing the NC metrics, were based on  
922 code in Wu & Popyan (2024), which can be found at Github repository <https://github.com/rhubarbwu/neural-collapse>, which was published under the MIT license. The  
923 implementation of VGG9 was based on Code taken from <https://github.com/jerett/PyTorch-CIFAR10>. The author granted explicit permission to use the code.  
924925 An overview of the experiments that were conducted in this work can be found in Table 3, which  
926 resulted in a total number of 36 different experimental settings of (architecture  $\times$  optimizer  $\times$  dataset)  
927 combinations. Each optimizer optimizer was trained using three different learning rates, six different  
928 values of momentum and six different values of weight decay, resulting in 108 training runs per  
929 optimizer and 3.888 training runs in total. Some of the runs diverged or only achieved suboptimal  
930 training performance, which were then discarded. In total we had 2.500 “valid” training runs, which  
931 reached at least 99% training accuracy, which were considered for for the subsequent data analysis.  
932933 Table 3: Overview of experiments conducted in this work.  
934935 

| Architectures | Optimizers                                 | Datasets                     |
|---------------|--------------------------------------------|------------------------------|
| ResNet9, VGG9 | SGD, SGDW, Adam,<br>AdamW, Signum, SignumW | MNIST, FashionMNIST, CIFAR10 |

938  
939  
940 **D.1 DETAILS ON CHOICE OF HYPERPARAMETERS**  
941942 Every model was trained over 200 epochs with a batch size of 128. The learning rate  $\lambda$  was chosen to  
943 be in  $\lambda \in \{0.001, 0.01, 0.0679\}$  for SGD and SGDW (the last learning rate was also reported in the  
944 original work by Popyan et al. (2020)) and  $\lambda \in \{0.001, 0.005, 0.01\}$  for Adam, AdamW, Signum, and  
945 SignumW because most trainings diverged with larger learning rates during initial experimental training  
946 runs. The learning rate was decayed by a factor of 10 after one third and two third of training as has  
947 been done in original work by Popyan et al. (2020). Momentum  $\mu$  (or  $\beta_1$  for Adam, AdamW, Signum,  
948 and SignumW) was chosen to be in the range  $\mu \in \{0, 0.5, 0.7, 0.9, 0.95, 0.98\}$  for all optimizers and  
949 weight decay WD was chosen to be in the range  $WD \in \{0, 5e^{-5}, 5e^{-4}, 5e^{-3}, 0.05, 0.5\}$  for SGD,  
950 SGDW, Adam, and Signum and  $WD \in \{0, 5e^{-4}, 0.05, 0.5, 5, 10\}$  for SignumW and AdamW. The  
951 main motivation for using AdamW and Signum W with much larger weight decay values was based  
952 on the hypothesis that the effect of weight decay is reduced due to decoupling. The  $\beta_2$  parameter in  
953 Adam and AdamW was left to its default value of 0.999.  
954955 **D.2 DETAILS ON COMPUTATIONAL RESOURCES**  
956957 All experiments, including preliminary experiments as well as the final 3.888 experiments were  
958 run on 5 NVIDIA RTX4090 GPUs with 24 GB RAM. Since the models and the batch size was  
959 comparably small, actually only 3 GB GPU memory per training was required. Each training took  
960 between 8 and 16 minutes, leading to a total of 500-1000 GPU hours of training.  
961  
962963 Table 4: Hyperparameters for each optimizer to achieve the smallest NC3 metric shown in Table 2.  
964965 

| Optimizer | Learning rate | Momentum/ $\beta_1$ | Weight decay |
|-----------|---------------|---------------------|--------------|
| SGD       | 0.01          | 0.9                 | 0.05         |
| SGDW      | 0.0679        | 0.5                 | 0.05         |
| Adam      | 0.005         | 0.98                | 0.05         |
| AdamW     | 0.005         | 0.95                | 5            |
| Signum    | 0.001         | 0.9                 | 0.05         |
| SignumW   | 0.001         | 0.98                | 10           |

Table 5: Summary of regression fit between NC3 and NC0

| Experiment | n   | $\hat{\beta}$ | SE( $\hat{\beta}$ ) | t-value | p-value | 95 % CI        | $R^2$ / Adj $R^2$ | F-statistic |
|------------|-----|---------------|---------------------|---------|---------|----------------|-------------------|-------------|
| LR=0.001   | 170 | 0.1903        | 0.008               | 24.262  | 0.000   | [0.175, 0.206] | 0.778 / 0.777     | 588.6       |
| LR=0.005   | 74  | 0.2017        | 0.012               | 16.252  | 0.000   | [0.177, 0.226] | 0.786 / 0.783     | 264.1       |
| LR=0.01    | 114 | 0.1439        | 0.007               | 19.892  | 0.000   | [0.13, 0.158]  | 0.779 / 0.777     | 395.7       |
| LR=0.0679  | 41  | 0.1771        | 0.012               | 14.367  | 0.000   | [0.152, 0.202] | 0.841 / 0.837     | 206.4       |
| all        | 399 | 0.1582        | 0.005               | 32.760  | 0.000   | [0.149, 0.168] | 0.730 / 0.729     | 1073        |

### D.3 DETAILS ON REGRESSION FIT BETWEEN NC3 AND NC0

In this subsection we provide additional details regarding the regression fit between NC3 and NC0. For the sake of completeness, we show the regression fit in Figure 9 again below. In addition, we have also computed a regression fit across all training runs, which converged, and all learning rates, shown in Figure 10. A summary of the regression fit can be found in Table 5, showing that more than 70% of the variation in NC3 can be explained by NC0.



Figure 9: Figure 2 shown again for ease of reading. NC0 weakly correlates with NC3 across different optimizers and learning rates (here shown for ResNet9 trained on FashionMNIST).



Figure 10: NC0 correlates with NC3 even when considered across all learning rates together (here shown for ResNet9 trained on FashionMNIST).

## D.4 ADDITIONAL EXPERIMENTAL RESULTS

### D.4.1 ABLATION STUDY ON TRAINING EPOCHS

As Neural collapse occurs at the terminal phase of training, it is natural to control for the effect that the number of training epochs has on the final NC metrics. After all, it is possible that the emergence of NC occurs at different speeds for different optimizers.

For this reason, we conducted two ablation studies, in which we prolong the training in two settings: We train a ResNet9 in FashionMNIST, which corresponds to the setting which is shown in Figure 1, for 2000 epochs with LR=0.0005 and momentum=0.9 for both optimizers. We note that in this setting, AdamW reaches 100% training accuracy already after around 700 epochs for all training runs with  $WD \leq 0.05$ . The results can be found in Figure 13 While this leads to some improvement of the final



Figure 11: NC0 vs. NC1 across different optimizers and learning rates (here shown for ResNet9 trained on FashionMNIST).



Figure 12: NC0 vs. NC2 across different optimizers and learning rates (here shown for ResNet9 trained on FashionMNIST).

NC1 and NC2 metric for AdamW for some values of weight decay, this has barely an effect on NC0 and NC3.

Furthermore we extend training to up to 2000 epochs for selected runs from Figure 4. Concretely, these runs trained with a LR of 0.001 and the following combination of WD and momentum (mom, WD)  $\in \{(0, 0), (0.97, 5e^{-5}), (0, 5e^{-4}), (0.9, 5e^{-4}), (0.9, 0), (0.95, 0.0025)\}$ , which corresponds to different parts in the heatmap. The results can be found in Figure 14. While one can observe a general decrease of the NC metrics in all cases, the overall trend for increasing weight decay remains unchanged. Both figures indicate that training the models considered in this work for 200 epochs is sufficient to draw the conclusions that we make about the necessity of coupled WD for the emergence of full NC.



Figure 13: ResNet9 trained on FashionMNIST with Adam and AdamW for more epochs.

#### D.4.2 UNCONSTRAINED FEATURE MODEL

We also validated our results on the unconstrained feature model (UFM) (see Appendix C.5 for reference) with width  $d = 512$ ,  $K = 10$  classes and  $N = 10.000$  samples. The UFM was trained with Adam, AdamW and SGDMW with momentum=0.9 and varying  $lr \in \{0.1, 0.3, 0.5, 1.0\}$  and weight decay ranging from 0.0 to 0.05. We then filtered the results, by only including models which achieved 100% training accuracy. The results in can be found in Figure 15. The plots show that the NC metrics, in particular NC0 and NC3 remain at least one magnitude of order larger than the same metrics for Adam and SGDMW, highlighting that AdamW converges to a different solution than Adam, which is not NC.



Figure 14: Selected runs from Figure 4 trained for more number of epochs.



Figure 15: NC0 (left), NC3 (center left), NC1 (center right), and NC2 (right) for increasing weight decay.

#### D.4.3 TRAINING DYNAMICS OF MINIMAL NC3 RUNS

In this section we provide the dynamics of the NC metrics as well as the singular values from the training runs which reached the smallest final NC3 metric as reported in Table 4. The purpose is to disentangle the effect of using first-order optimizers (such as SGD and SGDMW) vs. second-order like optimizers (such as Adam and AdamW) from the effect of applying coupled vs. decoupled weight decay. The main question we try to answer here is: Is the difference between Adam and SGD with respect to the emergence of NC larger than the difference between AdamW and Adam? Figure 16 shows that all runs reach a perfect train accuracy well before the end of training, such that they have reached the terminal-phase of training (TPT) at epoch 200. Looking at the NC1-NC3 metrics in Figure 17 and Figure 19, one can see that the NC metrics for SGD and SGDMW are close to each other. It is harder to judge whether AdamW or Adam are closer to NC, as NC3 is considerably larger for AdamW, while NC1 is slightly larger for Adam, compared to the other optimizers. Nonetheless, the NC0 metric in Figure 17 and the evolution of the singular values of  $\mathbf{W}$  in Figure 18 (left) indicate that AdamW has considerably different training dynamics than Adam, as both NC0 as well as the smallest singular value increase instead of converging to zero for AdamW, but not for Adam. While the NC0 metric of Adam is still orders of magnitude larger than for SGD and SGDMW and the smallest singular value of  $\mathbf{W}$  converges to a small, but non-zero value, Adam shares similar trends as SGD and SGDMW and as such converges to a solution which is arguably closer to NC3 than AdamW. Whether the solution found by Adam can already be classified as NC or not is an inherent problem of interpreting the NC metrics in practical settings, as we have also discussed in Section 4.1.



Figure 16: Train loss (left) and train accuracy (right) for training runs with smallest final NC3 metric for different optimizers.



Figure 17: NCO (left) and NC3 (right) for training runs with smallest final NC3 metric for different optimizers.



Figure 18: Singular values of last-layer weights  $\mathbf{W}$  (left) and centered class means  $\mathbf{M}$  (right) throughout training for runs corresponding to Table 4. The dotted line corresponds to the smallest singular value and the full line corresponds to the average singular value, excluding the smallest singular value.



Figure 19: NC1 (left) and NC2 (right) for training runs with smallest final NC3 metric for different optimizers.



Figure 20: NC0 (left) and normalized NC0 (right) for training runs with smallest final NC3 metric for different optimizers.



Figure 21: NC0 (left) and normalized NC0 (right) for training runs with zero weight decay from the ablation study in Appendix D.4.6. Note that the x-axis is in logarithmic scale and that the point at epoch -1 corresponds to the model at initialization.

#### D.4.4 ABLATION STUDY ON NORMALIZING THE NC0 METRIC

We evaluate whether measuring a normalized NC0 metric affects the conclusions that we draw in our work. Concretely, we compute the normalization as

$$NC0_{\text{normalized}} := \frac{1}{p} \|\mathbf{W}_L^\top \mathbf{1}\|_2 / \|\mathbf{W}_L\|_F. \quad (14)$$

We compute both NC0 as well as normalized NC0 for the setting of minimal NC3 that we studied in Appendix D.4.3, which we show in Figure 20. While the absolute values differ slightly between NC0 and NC0<sub>normalized</sub>, both the trends as well as the final values are almost the same.

For zero weight decay, one would expect to see more difference between the dynamics of NC0 and normalized NC0, which we show in Figure 21. While one can observe the monotonic effect of momentum on normalized NC0, but not on NC0, we point out that in this case normalized NC0 does not correlate with NC1-NC3 anymore. On the contrary, NC1-NC3, while still comparably large, are smaller with less momentum.

As the dynamics of NC0 and normalized NC0 are almost the same for larger values of WD or normalized NC0 is not consistent with NC1-NC3 for zero WD, we are tentative to conclude that the normalization will not affect the conclusions that we draw in this work.

#### D.4.5 ABLATION STUDY ON EFFECT OF MOMENTUM ON NC EMERGENCE

We conduct another ablation study to further evaluate the effect of momentum on the NC emergence. The main question that we try to answer with this ablation is whether the effect of momentum on smaller NC metrics can be simply traced back to the fact that momentum accelerates convergence or if it affects the emergence of NC beyond this.

Concretely, we track the evolution of the NC metrics together with the train loss and accuracy for the same setting as in Figure 4 over time for a fixed value of weight decay=0.005 and varying values of momentum. This is because the final train loss value varies for different values of WD due to



Figure 22: Train loss, train accuracy and NC metrics for fixed  $WD=0.005$  and different values of momentum on a ResNet9 trained with SGD with otherwise same hyperparameters as in Figure 4.

its regularizing effect. The results can be seen in Figure 22. There are two things to be observed: While the accelerating effect of momentum is mainly visible in the early phase of training (up to 50-100 epochs), modulo some loss spikes for high momentum, the final train loss is not smallest for the largest value of momentum. While this is not surprising per se, as too large momentum can lead to a overshooting of the training trajectory, the NC metrics show a clear monotonic behavior with respect to the momentum. Furthermore, while the training runs with momentum=0.7 and 0.9 reach almost the exact same final train loss, the disparity in NC metrics indicates that they converged to solutions with very different geometric structure. This can be seen more clearly in Figure 23. Both observations suggest that momentum affects the emergence of NC beyond simply accelerating the speed of convergence. To the best of our knowledge, connecting the magnitude of momentum to NC is novel and not been discussed in prior work.

#### D.4.6 ABLATION STUDY ON NC EMERGENCE UNDER ZERO WEIGHT DECAY

To investigate whether WD is necessary or not for the emergence of NC, we track the NC metrics while training a ResNet9 on FashionMNIST (Note that this is the same problem setting as in Appendix D.4.5.) using SGD with zero WD and varying values of momentum with an initial LR=0.01 for 200 epochs. Additionally, we train the model also with zero momentum and high momentum=0.98 for 2000 epochs, with LR decay after 1/3 and 2/3 of training. Importantly, all training runs reach perfect train accuracy after 40 epochs. The training dynamics can be found in Figure 24. We draw two conclusions from this ablation study:



Figure 23: Train loss, train accuracy and NC metrics for fixed  $WD=0.005$  and  $mom=0.7$  and  $0.9$ . Although both runs converge to almost exactly the same train loss, the final NC metrics differ considerably.

1350      **Table 6: Smallest NC metrics achieved with and without weight decay for training a ResNet9 on**  
 1351      **FashionMNIST.**

| SGD with ...        | NC1            | NC2            | NC3            |
|---------------------|----------------|----------------|----------------|
| no WD (2000 epochs) | $\approx 0.2$  | $\approx 0.55$ | $\approx 0.7$  |
| WD (200 epochs)     | $\approx 0.02$ | $\approx 0.2$  | $\approx 0.13$ |

1356

- 1357      1. The final NC metrics NC0-NC3 after 2000 epochs are slightly smaller than after 200 epochs,  
 1358      consistent with our ablation study in D.4.1. that longer training reduces the NC metrics.  
 1359      This decrease is however fairly small.
- 1360      2. The final NC metrics (both for 200 epochs and 2000 epochs of training) remain considerably  
 1361      higher than what is achieved by the "best" run of SGD in terms of NC metrics with 200  
 1362      epochs of training for all NC metrics, even with 10 times longer training. See Figure 17 and  
 1363      Figure 19 for a comparison.

1364

1365      The final NC1-NC3 metrics achieved with WD after 200 epochs and without WD after 2000 epochs  
 1366      can be found in Table 6. While the experiments cannot fully exclude the possibility that NC can be  
 1367      achieved eventually in the asymptotic limit, we argue that WD is essential to observe the emergence  
 1368      of NC *in practical finite-length training settings*.

1369      **D.4.7 MORE DETAILED PLOTS ON COUPLED VS. DECOUPLED WEIGHT DECAY**

1370

1371      As we average across different values of momentum and learning rates in Figure 1 and Figure 3, we  
 1372      provide more detailed plots here in Figure 25, Figure 26, and Figure 27. It can be seen that for the  
 1373      adaptive optimizers and SGDW the variance for varying values of momentum is comparably small  
 1374      for each fixed learning rate, with the variance generally increasing with larger weight decay. For  
 1375      SGD the variance for NC0 is higher for large values of weight decay, consistent with what is shown  
 1376      in Figure 3 (right) and what is shown in Figure 4.

1377      **D.4.8 MISSING PLOT: SINGULAR VALUE OF  $\mathbf{W}$  AND  $\mathbf{M}$  WITH SIGNUMW**

1378

1379      The missing plot of the evolution of the singular values of the last-layer weights  $\mathbf{W}$  and feature  
 1380      matrix  $\mathbf{M}$  can be found in Figure 28.

1381      **D.4.9 COUPLED VS. DECOUPLED DECAY ON OTHER DATASETS**

1382

1383      The comparison between coupled and decoupled decay on SGD, Adam, and Signum on other  
 1384      combinations of (architecture  $\times$  dataset) can be found in the following pages below, which confirm  
 1385      our observations made earlier on the ResNet9 trained on FashionMNIST. While NC0 (visually)  
 1386      correlates well with NC3, it correlates considerably less with NC1 and NC2, although a general trend  
 1387      is still visible across all experiments.

1388

1389      **ResNet50 on ImageNet1K** We also conducted experiments on a ResNet50 trained on ImageNet1K  
 1390      Deng et al. (2009). The model was trained with Adam and AdamW for 90 epochs. We left out other  
 1391      optimizers due to limited resources. For both optimizers the learning rate was chosen as 0.0003  
 1392      with a step-wise decay after 1/3 and 2/3 of training, momentum was chosen from  $\{0.0, 0.5, 0.9\}$  and  
 1393      weight decay was chosen from  $\{0.0, 1e^{-5}, 1e^{-4}, 1e^{-3}\}$ . The resulting NC metrics can be found in  
 1394      Figure 29 and Figure 30, and confirm the conclusion that AdamW does not have full NC emergence.

1395

1396      **VGG9 on FashionMNIST** The comparison between coupled and decoupled weight decay on SGD,  
 1397      Adam, and Signum on a VGG9 trained on FashionMNIST can be found in Figure 31 and Figure 32.  
 1398      The relation between NC0 and NC3 can be found in Figure 35, between NC0 and NC1 in Figure 33,  
 1399      and between NC0 and NC2 in Figure 34.

1400

1401      **ResNet9 on Cifar10** The comparison between coupled and decoupled weight decay on SGD,  
 1402      Adam, and Signum on a ResNet9 trained on Cifar10 can be found in Figure 36 and Figure 37. The  
 1403      relation between NC0 and NC3 can be found in Figure 40, between NC0 and NC1 in Figure 38, and  
 1404      between NC0 and NC2 in Figure 39.



Figure 24: Training loss and train accuracy (top row), NC0 and NC3 (middle row), and NC1 and NC2 (bottom row) for a ResNet9 trained on FashionMNIST with SGD without weight decay for varying values of momentum and number of epochs. Note that the x-axis is in log-scale to improve readability.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

Figure 25: NC0 metric (top) and NC3 metric (bottom for different values of weight decay, momentum and LR for Adam vs. AdamW.

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

Figure 26: NC0 metric (top) and NC3 metric (bottom for different values of weight decay, momentum and LR for Signum vs. SignumW.

1507

1508

1509

1510

1511





Figure 27: NC0 metric (top) and NC3 metric (bottom) for different values of weight decay, momentum and LR for SGD vs. SGDW.



Figure 28: Singular values of last-layer weights  $\mathbf{W}$  (left) and feature matrix  $\mathbf{M}$  (right) throughout training for SignumW on ResNet9 trained on FashionMNIST. Dotted line corresponds to the smallest singular value and full line corresponds to the average singular value excluding the smallest singular value.

**VGG9 on Cifar10** The comparison between coupled and decoupled weight decay on SGD, Adam, and Signum can be found in Figure 41 and Figure 42. The relation between NC0 and NC3 can be found in Figure 45, between NC0 and NC1 in Figure 43, and between NC0 and NC2 in Figure 44.

**ResNet9 on MNIST** The comparison between coupled and decoupled weight decay on SGD, Adam, and Signum on a ResNet9 trained on MNIST can be found in Figure 46 and Figure 47. The relation between NC0 and NC3 can be found in Figure 50, between NC0 and NC1 in Figure 48, and between NC0 and NC2 in Figure 49.

**VGG9 on MNIST** The comparison between coupled and decoupled weight decay on SGD, Adam, and Signum on a VGG9 trained on MNIST can be found in Figure 51 and Figure 52. The relation between NC0 and NC3 can be found in Figure 55, between NC0 and NC1 in Figure 53, and between NC0 and NC2 in Figure 54.



Figure 29: NC0 (left) and NC3 (right) metrics plotted against weight decay on a ResNet50 trained on ImageNet1K for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run with corresponding optimizer.



Figure 30: NC1 (left) and NC2 (right) metrics plotted against weight decay on a ResNet50 trained on ImageNet1K for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run with corresponding optimizer.

#### D.4.10 PRELIMINARY EXPERIMENTAL RESULTS ON VISION TRANSFORMER

We have also conducted preliminary experiments pretraining small Vision Transformers (ViT) on Cifar10 from scratch. Given that training ViTs is computationally much more expensive given the larger size of the model, we had to limit ourselves to a more restricted number of experiments. Specifically, we chose to train the ViT with Adam, AdamW, and SGD for 200 epochs with a batch size of 512 with momentum  $\mu$  in the range  $\mu \in \{0, 0.8, 0.9, 0.95\}$  and weight decay WD  $\in \{0, 1e^{-5}, 1e^{-4}, 5e^{-4}, 1e^{-3}, 0.05, 0.5\}$  for Adam and SGD and WD  $\in \{0, 1e^{-4}, 0.05, 0.5, 1, 2, 4\}$  for AdamW. We discarded all runs, which did not achieve a training accuracy of at least 50%. This mainly corresponded to training runs of SGD and Adam either with momentum=0 or WD  $\geq 0.05$ .

The ViT implementation is based on code from <https://github.com/tintn/vision-transformer-from-scratch/tree/main>, which is published under the MIT license. Specifically, the transformer model was chosen with a hidden dimension of 512, 6 hidden layers, and 8 attention heads, with no dropout applied.

Compared to the training procedure used in other settings, we employ a cosine-decay learning rate schedule with warm-up, where 5% of the total training steps are allocated to warm-up, and the base learning rate is set to  $1 \times 10^{-3}$ . Weight decay is applied to all layers except for LayerNorm and biases, which is standard practice.

The highest final test accuracy across all trainings was achieved by AdamW ( $\beta_1 = 0.95$ , WD = 0.5) with 83.67%, with a final test loss of 0.895. Notably, higher accuracy levels can be attained by increasing the network size and applying data augmentation or by using a pre-trained model as in Ammar et al. (2024). However, to ensure consistency with the experiments in the main study, we do not perform data augmentation due to limited computational resources. This likely explains the relatively lower test accuracy. Investigating the impact of data augmentation on the convergence to NC remains an interesting avenue for future work.



Figure 31: NC0 (left) and NC3 (right) metrics plotted against weight decay on a VGG9 trained on FashionMNIST for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run with corresponding optimizer.



Figure 32: NC0 and NC3 metrics plotted against weight decay on a VGG9 trained on FashionMNIST for Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one standard deviation across all trainings run with corresponding optimizer.

While we observe the general trend of decreasing NC metrics with increasing values of weight decay for SGD (Figure 57a), we note that in the case of ViTs the NC0 metric for both Adam and AdamW first increases before decreasing (Figure 57b, left), while the NC3 metric for both Adam and AdamW has a U-shape (Figure 57b, right). We also note that the ViT is much more sensitive to the choice of weight decay and the training and validation accuracy degrades quickly due to overregularization, as can be seen in Figure 57c. A further investigation of these observations is left for future work.



Figure 33: NC0 vs. NC1 on VGG9 trained on FashionMNIST. Note that the x-axis is plotted in log-scale.



Figure 34: NC0 vs. NC2 on VGG9 trained on FashionMNIST. Note that the x-axis is plotted in log-scale.



Figure 35: NC0 vs. NC3 on VGG9 trained on FashionMNIST. Note that the x-axis is plotted in log-scale.



Figure 36: NC0 (left) and NC3 (right) metrics plotted against weight decay on a ResNet9 trained on Cifar10 for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run with corresponding optimizer.



Figure 37: NC0 and NC3 metrics plotted against weight decay on a ResNet9 trained on Cifar10 for Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one standard deviation across all trainings run with corresponding optimizer.



Figure 41: NC0 (left) and NC3 (right) metrics plotted against weight decay on a VGG9 trained on Cifar10 for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run with corresponding optimizer.





Figure 43: NC0 vs. NC1 on VGG9 trained on Cifar10. Note that the x-axis is plotted in log-scale.



Figure 44: NC0 vs. NC2 on VGG9 trained on Cifar10. Note that the x-axis is plotted in log-scale.



Figure 45: NC0 vs. NC3 on VGG9 trained on Cifar10. Note that the x-axis is plotted in log-scale.



Figure 46: NC0 (left) and NC3 (right) metrics plotted against weight decay on a ResNet9 trained on MNIST for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run with corresponding optimizer.



Figure 47: NC0 and NC3 metrics plotted against weight decay on a ResNet9 trained on MNIST for Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one standard deviation across all trainings run with corresponding optimizer.



Figure 48: NC0 vs. NC1 on ResNet9 trained on MNIST. Note that the x-axis is plotted in log-scale.



Figure 49: NC0 vs. NC2 on ResNet9 trained on MNIST. Note that the x-axis is plotted in log-scale.



Figure 50: NC0 vs. NC3 on ResNet9 trained on MNIST. Note that the x-axis is plotted in log-scale.



Figure 51: NC0 (left) and NC3 (right) metrics plotted against weight decay on a VGG9 trained on MNIST for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run with corresponding optimizer.



Figure 52: NC0 and NC3 metrics plotted against weight decay on a VGG9 trained on MNIST for Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one standard deviation across all trainings run with corresponding optimizer.



Figure 53: NC0 vs. NC1 on VGG9 trained on MNIST. Note that the x-axis is plotted in log-scale.



Figure 54: NC0 vs. NC2 on VGG9 trained on MNIST. Note that the x-axis is plotted in log-scale.



Figure 55: NC0 vs. NC3 on VGG9 trained on MNIST. Note that the x-axis is plotted in log-scale.



Figure 56: NC4 is largely uncorrelated with NC1-3 across different optimizers and learning rates.



(a) NC0 (left) and NC3 (right) metric for varying values of weight decay on a ViT trained with SGD on Cifar10.



(b) NC0 (left) and NC3 (right) metric for varying values of weight decay on a ViT trained with Adam and AdamW on Cifar10.



(c) Training accuracy (left) and validation accuracy (right) for varying values of weight decay on a ViT trained on Cifar10.

1998 **E PROOFS**

1999

2000 In this section, we will present the proof which is omitted in the main text.

2001 **Theorem E.1** (Effect of decoupled SGD update on NC0). *Assume a model of the form  $f(\mathbf{W}, \theta, x) =$*

2002  *$\mathbf{W}h_\theta(x)$  is trained using cross-entropy loss with SGD with decoupled weight decay for all parameters*

2003  *$\mathbf{W}, \theta$ . For instance, the last layer weight  $\mathbf{W}$  has the following update rule:*

$$2004 \mathbf{V}_{t+1} = \beta \mathbf{V}_t + \nabla_{\mathbf{W}_t} L_{\text{CE}},$$

2005 
$$\mathbf{W}_{t+1} = (1 - \eta\lambda) \mathbf{W}_t - \eta \mathbf{V}_{t+1},$$

2006 where  $\beta \in [0, 1)$ ,  $\eta > 0$ , and  $\lambda \in \mathbb{R}$ . Define the NC0 metric

$$2007 \alpha_t := \frac{1}{K} \|\mathbf{W}_t^\top \mathbf{1}\|_2^2.$$

2008 Then, for all  $t \geq 0$ ,

$$2009 \alpha_t = (1 - \eta\lambda)^{2t} \alpha_0.$$

2010 In particular, if  $0 < \eta\lambda < 2$ , then  $\alpha_t$  decays exponentially to zero:

$$2011 \alpha_t = (1 - \eta\lambda)^{2t} \alpha_0 \xrightarrow{t \rightarrow \infty} 0.$$

2012 *Proof.* We track the evolution of the row sums of  $\mathbf{W}_t$  and  $\mathbf{V}_t$ . Define

$$2013 \mathbf{m}_t := \mathbf{W}_t^\top \mathbf{1} \in \mathbb{R}^K, \quad \mathbf{q}_t := \mathbf{V}_t^\top \mathbf{1} \in \mathbb{R}^K.$$

2014 By definition of  $\alpha_t$  we have

$$2015 \alpha_t = \frac{1}{K} \|\mathbf{m}_t\|_2^2.$$

2016 Note that by Lemma E.5, the cross-entropy gradient with respect to the last layer satisfies

$$2017 (\nabla_{\mathbf{W}_t} L_{\text{CE}})^\top \mathbf{1} = \mathbf{0}$$

2018 for all  $\mathbf{W}_t$ . Consider the momentum update

$$2019 \mathbf{V}_{t+1} = \beta \mathbf{V}_t + \nabla_{\mathbf{W}_t} L_{\text{CE}}.$$

2020 Multiplying on the right by  $\mathbf{1}$  and using the above result, we obtain

$$2021 \mathbf{q}_{t+1} = \mathbf{V}_{t+1}^\top \mathbf{1} = (\beta \mathbf{V}_t + \nabla_{\mathbf{W}_t} L_{\text{CE}})^\top \mathbf{1} = \beta \mathbf{V}_t^\top \mathbf{1} + (\nabla_{\mathbf{W}_t} L_{\text{CE}})^\top \mathbf{1} = \beta \mathbf{q}_t + \mathbf{0}.$$

2022 Thus  $\mathbf{q}_{t+1} = \beta \mathbf{q}_t$ , and by induction

$$2023 \mathbf{q}_t = \beta^t \mathbf{q}_0.$$

2024 Since  $\mathbf{V}_0 = \mathbf{0}$ , we have  $\mathbf{q}_0 = \mathbf{0}$ , hence

$$2025 \mathbf{q}_t = \mathbf{0} \quad \text{for all } t \geq 0.$$

2026 Consider now the decoupled weight update

$$2027 \mathbf{W}_{t+1} = (1 - \eta\lambda) \mathbf{W}_t - \eta \mathbf{V}_{t+1}.$$

2028 Multiplying on the right by  $\mathbf{1}$  gives

$$2029 \mathbf{m}_{t+1} = \mathbf{W}_{t+1}^\top \mathbf{1} = ((1 - \eta\lambda) \mathbf{W}_t - \eta \mathbf{V}_{t+1})^\top \mathbf{1} = (1 - \eta\lambda) \mathbf{W}_t^\top \mathbf{1} - \eta \mathbf{V}_{t+1}^\top \mathbf{1} = (1 - \eta\lambda) \mathbf{m}_t - \eta \mathbf{q}_{t+1}.$$

2030 Using  $\mathbf{q}_{t+1} = \mathbf{0}$  for all  $t$ , we obtain the simple linear recursion

$$2031 \mathbf{m}_{t+1} = (1 - \eta\lambda) \mathbf{m}_t.$$

2032 Solving this recursion yields

$$2033 \mathbf{m}_t = (1 - \eta\lambda)^t \mathbf{m}_0.$$

2034 Substituting the expression for  $\mathbf{m}_t$  into the definition of  $\alpha_t$  gives

$$2035 \alpha_t = \frac{1}{K} \|\mathbf{m}_t\|_2^2 = \frac{1}{K} \|(1 - \eta\lambda)^t \mathbf{m}_0\|_2^2 = (1 - \eta\lambda)^{2t} \frac{1}{K} \|\mathbf{m}_0\|_2^2 = (1 - \eta\lambda)^{2t} \alpha_0.$$

2036 This establishes the exact formula claimed in the theorem. □

**Theorem E.2** (Effect of SGD update with coupled weight decay on NC0). *Assume a model of the form  $f(\mathbf{W}, \theta, x) = \mathbf{W}h_\theta(x)$  is trained using cross-entropy loss with stochastic gradient descent (SGD) and momentum  $\beta \in [0, 1]$ , weight decay  $\lambda \in [0, 1]$ , and learning rate  $\eta > 0$  sufficiently small. The last-layer weights  $\mathbf{W}_t$  are updated according to:*

$$\begin{aligned}\mathbf{V}_{t+1} &= \beta \mathbf{V}_t + \nabla_{\mathbf{W}_t} L_{\text{CE}} + \lambda \mathbf{W}_t, \\ \mathbf{W}_{t+1} &= \mathbf{W}_t - \eta \mathbf{V}_{t+1},\end{aligned}\tag{15}$$

where  $\beta \in [0, 1]$ ,  $\eta > 0$ , and  $\lambda \in \mathbb{R}$ . Then there exists a constant  $C \geq 1$  such that

$$\alpha_t = \frac{1}{K} \|\mathbf{m}_t\|_2^2 \leq C \rho^{2t} \alpha_0 \quad \text{for all } t \geq 0,\tag{16}$$

where  $\rho := \max\{|r_+|, |r_-|\}$  and  $r_\pm$  are the roots of

$$r^2 - (1 + \beta - \eta\lambda)r + \beta = 0.\tag{17}$$

In particular: if  $\eta\lambda < 2(1 + \beta)$ , then  $\rho < 1$  and the NC0 metric  $\alpha_t$  decays exponentially in  $t$ .

*Proof.* We follow the same strategy as in the decoupled case: track the evolution of the row sums of  $\mathbf{V}_t$  and  $\mathbf{W}_t$ .

From (15),

$$\mathbf{V}_{t+1} = \beta \mathbf{V}_t + \nabla_{\mathbf{W}_t} L_{\text{CE}} + \lambda \mathbf{W}_t.$$

Right-multiplying by  $\mathbf{1}$  and using Lemma (E.5), we get

$$\begin{aligned}\mathbf{q}_{t+1} &= \mathbf{V}_{t+1}^\top \mathbf{1} \\ &= (\beta \mathbf{V}_t + \nabla_{\mathbf{W}_t} L_{\text{CE}} + \lambda \mathbf{W}_t)^\top \mathbf{1} \\ &= \beta \mathbf{V}_t^\top \mathbf{1} + (\nabla_{\mathbf{W}_t} L_{\text{CE}})^\top \mathbf{1} + \lambda \mathbf{W}_t^\top \mathbf{1} \\ &= \beta \mathbf{q}_t + \lambda \mathbf{m}_t.\end{aligned}$$

Thus

$$\mathbf{q}_{t+1} = \beta \mathbf{q}_t + \lambda \mathbf{m}_t.\tag{18}$$

From the weight update

$$\mathbf{W}_{t+1} = \mathbf{W}_t - \eta \mathbf{V}_{t+1},$$

we obtain

$$\begin{aligned}\mathbf{m}_{t+1} &= \mathbf{W}_{t+1}^\top \mathbf{1} = (\mathbf{W}_t - \eta \mathbf{V}_{t+1})^\top \mathbf{1} \\ &= \mathbf{W}_t^\top \mathbf{1} - \eta \mathbf{V}_{t+1}^\top \mathbf{1} = \mathbf{m}_t - \eta \mathbf{q}_{t+1}.\end{aligned}$$

Using (18) this becomes

$$\mathbf{m}_{t+1} = \mathbf{m}_t - \eta(\beta \mathbf{q}_t + \lambda \mathbf{m}_t) = (1 - \eta\lambda) \mathbf{m}_t - \eta\beta \mathbf{q}_t.\tag{19}$$

We also have, from the weight update at time  $t$ ,

$$\mathbf{m}_t = \mathbf{m}_{t-1} - \eta \mathbf{q}_t,$$

which is just (19) with index shifted by one. Hence

$$\mathbf{q}_t = \frac{1}{\eta} (\mathbf{m}_{t-1} - \mathbf{m}_t).\tag{20}$$

Substitute (20) into (19):

$$\begin{aligned}\mathbf{m}_{t+1} &= (1 - \eta\lambda) \mathbf{m}_t - \eta\beta \cdot \frac{1}{\eta} (\mathbf{m}_{t-1} - \mathbf{m}_t) \\ &= (1 - \eta\lambda) \mathbf{m}_t - \beta (\mathbf{m}_{t-1} - \mathbf{m}_t) \\ &= (1 - \eta\lambda) \mathbf{m}_t - \beta \mathbf{m}_{t-1} + \beta \mathbf{m}_t \\ &= (1 + \beta - \eta\lambda) \mathbf{m}_t - \beta \mathbf{m}_{t-1}.\end{aligned}$$

2106 We are given  $\mathbf{m}_0 = \mathbf{W}_0^\top \mathbf{1}$  and  $\mathbf{q}_0 = \mathbf{V}_0^\top \mathbf{1} = \mathbf{0}$ . Then

$$2108 \quad \mathbf{q}_1 = \beta \mathbf{q}_0 + \lambda \mathbf{m}_0 = \lambda \mathbf{m}_0,$$

2109 and hence from the weight update

$$2111 \quad \mathbf{m}_1 = \mathbf{m}_0 - \eta \mathbf{q}_1 = \mathbf{m}_0 - \eta \lambda \mathbf{m}_0 = (1 - \eta \lambda) \mathbf{m}_0.$$

2113 The recurrence is linear and homogeneous with constant coefficients. For each coordinate of  $\mathbf{m}_t$ , say  
2114  $(\mathbf{m}_t)_k$ , we have a scalar second-order recursion

$$2115 \quad (\mathbf{m}_{t+1})_k = (1 + \beta - \eta \lambda) (\mathbf{m}_t)_k - \beta (\mathbf{m}_{t-1})_k.$$

2117 The characteristic polynomial is

$$2118 \quad r^2 - (1 + \beta - \eta \lambda) r + \beta = 0,$$

2120 with roots  $r_+$  and  $r_-$  given by

$$2121 \quad r_{\pm} = \frac{1 + \beta - \eta \lambda \pm \sqrt{(1 + \beta - \eta \lambda)^2 - 4\beta}}{2}.$$

2124 Thus each coordinate can be written as

$$2125 \quad (\mathbf{m}_t)_k = c_{+,k} r_+^t + c_{-,k} r_-^t,$$

2127 for some coefficients  $c_{+,k}, c_{-,k}$  determined by  $(\mathbf{m}_0)_k$  and  $(\mathbf{m}_1)_k$ . Let

$$2128 \quad \rho := \max\{|r_+|, |r_-|\}$$

2129 be the spectral radius of the recursion. Then there exists a constant  $C \geq 1$  (depending only on  $\beta, \lambda, \eta$ )  
2130 such that

$$2131 \quad \|\mathbf{m}_t\|_2 \leq C \rho^t \|\mathbf{m}_0\|_2,$$

2133 and therefore

$$2134 \quad \alpha_t = \frac{1}{K} \|\mathbf{m}_t\|_2^2 \leq C^2 \rho^{2t} \frac{1}{K} \|\mathbf{m}_0\|_2^2 = C' \rho^{2t} \alpha_0$$

2135 for some  $C' \geq 1$ , which is (16). Finally, for a general quadratic equation  $r^2 + br + c = 0$ , the roots  
2136 are in the unit circle if  $|c| < 1$ ,  $1 + b + c > 0$  and  $1 - b + c > 0$ . Thus it is not difficult to check from  
2137 the characteristic polynomial that  $\eta \lambda < 2(1 + \beta)$  implies  $\rho < 1$ .

2138  $\square$

2140 Note that the above Theorem holds for any model  $f(\mathbf{W}, \theta, x) = \mathbf{W} h_\theta(x)$  with last layer as linear  
2141 classifier and with any backbone  $h_\theta$  parameterized by  $\theta$ .

2143 However, the dynamics of Adam is more complicated, hence we further restrict the setting to SignGD,  
2144 a special case of Adam, training a UFM.

2145 Here, we assume a balanced dataset with only one element in each class  $k \in [K]$ . It is obvious to  
2146 extend our result to multiple elements per class. Hence the total input  $N = K$  is equal to the number  
2147 of classes and the UFM loss can be written as

$$2149 \quad L_{\text{CE}}(\mathbf{W}, \mathbf{H}, \mathbf{I}) = \sum_{n=1}^N L_{\text{CE}}(\mathbf{W} \mathbf{h}_n, \mathbf{e}_n),$$

2152 where we can decouple the regularization  $\frac{\lambda}{2} \|\mathbf{W}\|^2 + \frac{\lambda}{2} \|\mathbf{H}\|^2$  into weight decay.

2153 By Zhu et al. (2021), we know that the UFM

$$2155 \quad \max_{\mathbf{W}, \mathbf{H}} \sum_{n=1}^N L_{\text{CE}}(\mathbf{W} \mathbf{h}_n, \mathbf{y}_n) + \frac{\lambda}{2} \|\mathbf{W}\|^2 + \frac{\lambda}{2} \|\mathbf{H}\|^2,$$

2158 has unique global minimum  $\mathbf{W}, \mathbf{H}$  and no strict saddle points. In particular,  $\mathbf{H} = \mathbf{U} \mathbf{M}^*$  for some  
2159 orthogonal matrix  $\mathbf{U} \in O(P)$ . To further simplify the analysis, we assume that  $P = N = K$  with  
 $\mathbf{H} = \mathbf{M}^*$ . Then we have the followings:

2160  
2161 **Theorem E.3.** Consider sign GD with (decoupled) weight decay  $\lambda > 0$  and step size  $\eta > 0$  on the  
2162 UFM loss

$$2163 \quad L_{CE}(\mathbf{WH}, \mathbf{I}) = \sum_{n=1}^N L_{CE}(\mathbf{Wh}_n, \mathbf{e}_n),$$

2164 where the feature  $\mathbf{H} = \mathbf{M}^*$  is fixed to an NC solution and only the weight  $\mathbf{W}$  is trained:

$$2166 \quad \mathbf{W}_{t+1} = \mathbf{W}_t - \eta(\text{sign}(\nabla_{\mathbf{W}_t} L_{CE}) + \lambda \mathbf{W}_t)$$

2167 with initialization  $\mathbf{W}_0 = 0 \in \mathbb{R}^{K \times K}$ . We define the covariance matrix  $\mathbf{C}_t = \mathbf{W}_t \mathbf{W}_t^\top$  and the scalar  
2168  $\alpha_t = \langle \mathbf{C}_t, \hat{\mathbf{J}} \rangle_F$  where  $\hat{\mathbf{J}} = \frac{1}{K} \mathbf{1} \mathbf{1}^\top$ . Then  $\alpha_t$  will increase monotonically from zero to the limit:

$$2169 \quad \lim_{t \rightarrow \infty} \alpha_t = \frac{(K-2)^2}{\lambda^2}.$$

2170 In particular,  $\alpha_t$  does not vanish as  $t \rightarrow \infty$ .

2171  
2172 *Proof.* By Lemma E.5, we have  $\nabla L_{CE}(\mathbf{W}) = \frac{1}{N} (\mathbf{S} - \mathbf{Y}) \mathbf{H}^\top = \frac{1}{N} (\mathbf{S} - \mathbf{I}) \cdot \frac{1}{\sqrt{K-1}} (\mathbf{I} - \frac{1}{K} \mathbf{J}) =$   
2173  $\frac{1}{N\sqrt{K-1}} (\text{softmax}(\mathbf{WH}) - \mathbf{I})$  since  $(\text{softmax}(\mathbf{WH}) - \mathbf{I}) \mathbf{J} = 0$ . Since softmax has range between 0  
2174 and 1, we have

$$2175 \quad \text{sign}(\nabla L_{CE}(\mathbf{WH})) = \mathbf{J} - 2\mathbf{I},$$

2176 that is, the signed gradient is  $-1$  on the diagonal and  $+1$  elsewhere. Note that this holds for all  
2177  $\mathbf{W} \in \mathbb{R}^{K \times K}$ . The sign GD updates can hence be written as:

$$2178 \quad \mathbf{W}_{t+1} = \mathbf{W}_t - \eta \left[ \underbrace{\mathbf{J} - 2\mathbf{I}}_{\text{sign}(\nabla_{\mathbf{W}_t} L_{CE})} + \lambda \mathbf{W}_t \right]. \quad (21)$$

2179 Since  $\text{sign}(\nabla L_{CE}(\mathbf{W}_t))$  is constant, the dynamics collapse onto a scalar  $w_t$ :

$$2180 \quad \mathbf{W}_t = w_t (\mathbf{J} - 2\mathbf{I}),$$

2181 which has the following recursive form:

$$2182 \quad w_{t+1} = (1 - \eta\lambda)w_t - \eta, \quad w_0 = 0.$$

2183 Solve it and obtain

$$2184 \quad w_t = -\frac{1}{\lambda} \left[ 1 - (1 - \eta\lambda)^t \right].$$

2185 Recall the definition:

$$2186 \quad \mathbf{C}_t = \mathbf{W}_t \mathbf{W}_t^\top \quad \hat{\mathbf{J}} = \frac{1}{K} \mathbf{1} \mathbf{1}^\top \text{ and } \alpha_t = \langle \mathbf{C}_t, \hat{\mathbf{J}} \rangle_F.$$

2187 Since  $\|(\mathbf{J} - 2\mathbf{I})^\top \mathbf{1}\|^2 = (K-2)^2 K$  and the factor of  $1/K$  gives  $(K-2)^2$ , we have

$$2188 \quad \alpha_t = (K-2)^2 w_t^2$$

2189 Therefore

$$2190 \quad \alpha_t = (K-2)^2 \left[ -\frac{1}{\lambda} \left( 1 - (1 - \eta\lambda)^t \right) \right]^2 = \frac{(K-2)^2}{\lambda^2} \left[ 1 - (1 - \eta\lambda)^t \right]^2.$$

2191 As  $t \rightarrow \infty$ ,  $(1 - \eta\lambda)^t \rightarrow 0$ , so

$$2192 \quad \alpha_\infty = \frac{(K-2)^2}{\lambda^2}.$$

2193  $\square$

2194 **Theorem E.4.** Consider sign GD with (coupled) weight decay  $\lambda > 0$  and step size  $\eta > 0$  on the  
2195 UFM loss

$$2196 \quad L_{CE}(\mathbf{WH}, \mathbf{I}) = \sum_{n=1}^N L_{CE}(\mathbf{Wh}_n, \mathbf{e}_n),$$

2197 where the feature  $\mathbf{H} = \mathbf{M}^*$  is fixed to an NC solution and only the weight  $\mathbf{W}$  is trained :

$$2198 \quad \mathbf{W}_{t+1} = \mathbf{W}_t - \eta(\text{sign}(\nabla_{\mathbf{W}_t} L_{CE} + \lambda \mathbf{W}_t))$$

2199 with initialization  $\mathbf{W}_0 = 0 \in \mathbb{R}^{K \times K}$ . We define the covariance matrix  $\mathbf{C}_t = \mathbf{W}_t \mathbf{W}_t^\top$  and the  
2200 scalar  $\alpha_t = \langle \mathbf{C}_t, \hat{\mathbf{J}} \rangle_F$  where  $\hat{\mathbf{J}} = \frac{1}{K} \mathbf{1} \mathbf{1}^\top$ . Then there exists a learning rate decay scheme  
2201  $\eta = \eta(t) \xrightarrow[t \rightarrow \infty]{} 0$  such that  $\alpha_t \xrightarrow[t \rightarrow \infty]{} 0$ .

2214 *Proof.* Throughout the training, we apply mathematical induction on the structure of  $\mathbf{W}_t$ : for all  $t$ ,  
 2215 there exists  $a_t, b_t \geq 0$  such that

$$2216 \quad \mathbf{W}_t = (a_t + b_t)\mathbf{I} - b_t\mathbf{J}.$$

2218 It is not hard to see that  $\alpha = \frac{1}{N}(a_t - (K-1)b_t)^2$ . Note that for  $t = 0$ , the signed gradient is the  
 2219 same as in the case with decoupled weight decay in Theorem 3.3:

$$2220 \quad \text{sign}(\nabla_{\mathbf{W}_t} L_{\text{CE}} + \lambda \mathbf{W}_t) = \text{sign}(\nabla_{\mathbf{W}_0} L_{\text{CE}}) = \text{sign}(\text{softmax}(0) - \mathbf{I}) = \mathbf{J} - 2\mathbf{I}.$$

2222 Hence,  $\mathbf{W}_1 = \eta(2\mathbf{I} - \mathbf{J})$  where  $a_1 = b_1 = \eta$ . Since  $\mathbf{H} = \mathbf{M}^* = \frac{1}{\sqrt{K-1}}(\mathbf{I} - \mathbf{J}/k)$ ,

$$2224 \quad \mathbf{WH} = ((a_t + b_t)\mathbf{I} - b_t\mathbf{J}) \cdot \frac{1}{\sqrt{K-1}}(\mathbf{I} - \mathbf{J}/k) \\ 2225 \\ 2226 = \frac{1}{\sqrt{K-1}}((a_t + b_t)\mathbf{I} - b_t\mathbf{J} - (a_t + b_t)\mathbf{J}/k + (b_t/k)\mathbf{J}^2) \\ 2227 \\ 2228 = \frac{a_t + b_t}{\sqrt{K-1}}\mathbf{H} = \gamma_t\mathbf{H}$$

2231 where we define  $\gamma_t = \frac{a_t + b_t}{\sqrt{K-1}}$ . By Lemma E.5 and the above expression, the loss gradient becomes:  
 2232

$$2233 \quad \nabla_{\mathbf{W}_t} L_{\text{CE}} = \frac{1}{N\sqrt{K-1}}(\text{softmax}(\mathbf{WH}) - \mathbf{I}) \\ 2234 \\ 2235 = \frac{1}{N\sqrt{K-1}}(\text{softmax}(\gamma_t\mathbf{H}) - \mathbf{I}) \\ 2236 \\ 2237 = \psi_t(-K\mathbf{I} + \mathbf{J})$$

2239 where  $\psi_t = \frac{1}{N\sqrt{K-1}} \cdot \frac{1}{e^{\gamma_t/\sqrt{K-1}} + (K-1)} = \frac{1}{N\sqrt{K-1}} \cdot \frac{1}{e^{(a_t + b_t)/(K-1)} + (K-1)}$ . Hence the update weight  
 2240 will also of form

$$2242 \quad \mathbf{W}_{t+1} = (a_{t+1} + b_{t+1})\mathbf{I} - b_{t+1}\mathbf{J}.$$

2243 Hence the update rule of the signed GD with coupled weight decay can be written as:

$$2245 \quad a_{t+1} = a_t + \eta \cdot \text{sign}((K-1)\psi_t - \lambda a_t) \\ 2246 \quad b_{t+1} = b_t + \eta \cdot \text{sign}(\psi_t - \lambda b_t)$$

2247 Then for each fixed  $\eta > 0$ , starting from  $t = 0$ , let  $\Delta_t = (a_{t+1} - a_t, b_{t+1} - b_t)$ , the training can be  
 2248 divided into three phases:

- 2251  $\Delta_t = (+\eta, +\eta)$  as long as  $(K-1)\psi_t \geq \lambda a_t$  and  $\psi_t \geq \lambda b_t$ . Note that  $\psi_t \propto \frac{1}{e^{(a_t + b_t)/(K-1)} + (K-1)}$  hence  $\psi_{t+1} < \psi_t$  as  $\Delta_t = (+\eta, +\eta)$ . Since  $\psi_t$  is strictly decreasing  
 2252 with  $a_t + b_t$ , assume  $\eta$  is small enough, there exists a constant  $T_1$  such that  $\Delta_{T_1} = (+\eta, +\eta)$   
 2253 but  $\Delta_{T_1+1} = (+\eta, -\eta)$  where  $(K-1)\psi_{T_1} \geq \lambda a_{T_1} \geq \lambda b_{T_1} > \psi_{T_1}$ .
- 2255  $\Delta_t = (+\eta, \pm\eta)$  indicating  $a_t$  increases strictly in each step and  $b_t$  starts to oscillate as long  
 2256 as  $(K-1)\psi_t \geq \lambda a_t$ : each time  $\Delta_{t-1} = (+\eta, -\eta)$ , we have  $a_t + b_t = a_{t-1} + b_{t-1}$  and  
 2257 thus  $\psi_t = \psi_{t-1}$ . Hence  $\psi_t$  decreases monotonically but not strictly. Similar to above, there  
 2258 exists a constant  $T_2 > T_1$  such that  $(K-1)\psi_{T_2} \geq \lambda a_{T_2}$  but  $(K-1)\psi_{T_2+1} < \lambda a_{T_2+1}$ .
- 2260 For  $t > T_2$ ,  $\Delta_t = (\pm\eta, \pm\eta)$  where i)  $\psi_t$  becomes constant for  $\Delta_t$  oscillates between  
 2261  $(+\eta, -\eta)$  and  $(-\eta, +\eta)$  or ii)  $\psi_t$  oscillate for  $\Delta_t$  oscillates between  $(+\eta, +\eta)$  and  $(-\eta, -\eta)$ .  
 2262 In either case, we have  $\max_{t > T_2} \{|(K-1)\psi_t - \lambda a_t|, |\psi_t - \lambda b_t|\} < \lambda\eta$  as each update will  
 2263 flip the sign.

2264 Hence for each  $\eta$ , we update  $T_2 = T_2(\eta)$  steps until  $\max_{t > T_2} \{|(K-1)\psi_t - \lambda a_t|, |\psi_t - \lambda b_t|\} < \lambda\eta$ .  
 2265 Next, we apply learning rate decay to  $\eta'$  so that  $\lambda\eta' < \min\{|(K-1)\psi_{T_2+1} - \lambda a_{T_2+1}|, |\psi_{T_2+1} -$   
 2266  $\lambda b_{T_2+1}|\} < \lambda\eta$ . Repeat the above argument and find a  $T'_2 > 0$  such that  $\psi_t$  oscillates or remains  
 2267 constant after  $t > T_2 + T'_2$ , and hence  $\max_{t > T_2 + T'_2} \{|(K-1)\psi_t - \lambda a_t|, |\psi_t - \lambda b_t|\} < \lambda\eta'$ . Induction

2268 on this argument shows that there exists a learning rate decay scheme  $\eta = \eta(t) \rightarrow 0$  such that  
 2269  $\max_t \{(K-1)\psi_t - \lambda a_t, |\psi_t - \lambda b_t|\} \xrightarrow{t \rightarrow \infty} 0$ , in which case:  
 2270

$$\begin{aligned} 2271 \quad \alpha_t &= (a_t - (K-1)b_t)^2 \\ 2272 &= \lambda^{-2} (\lambda a_t - (K-1)\lambda b_t)^2 \\ 2274 &\leq \lambda^{-2} ((K-1)\psi_t + |(K-1)\psi_t - \lambda a_t| - (K-1)\psi_t + (K-1)|\psi_t - \lambda b_t|)^2 \\ 2275 &= \lambda^{-2} (|(K-1)\psi_t - \lambda a_t| + (K-1)|\psi_t - \lambda b_t|)^2 \\ 2277 &\leq \lambda^{-2} K^2 \max_t \{(K-1)\psi_t - \lambda a_t, |\psi_t - \lambda b_t|\} \xrightarrow{t \rightarrow \infty} 0. \\ 2278 \end{aligned}$$

2279 Hence  $\alpha_t = (a_t - (K-1)b_t)^2 \xrightarrow{t \rightarrow \infty} 0$ . □  
 2280

### 2281 E.1 TECHNICAL LEMMATA

2283 **Lemma E.5.** Let  $(\mathbf{X}, \mathbf{Y}) \in \mathbb{R}^{d \times N} \times \mathbb{R}^{K \times N}$  be a dataset where the labels  $\mathbf{Y}$  are written in columns  
 2284 of one-hot vectors. For each pair  $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^d \times \mathbb{R}^K$ , and a weight  $\mathbf{W}_1 \in \mathbb{R}^{K \times d}$ , define the  
 2285 cross-entropy as:

$$2286 \quad \ell(\mathbf{W}_1) \stackrel{\text{def.}}{=} -\sum_{k=1}^K \mathbf{y}_k \log (\text{softmax}(\mathbf{W}_1 \mathbf{x}))_k = \log \left( 1 + \sum_{k \neq y} \exp(\mathbf{w}_k - \mathbf{w}_y)^\top \mathbf{x}_i \right)$$

2290 where  $y = \arg \max_{k \in [K]} [\mathbf{y}]_k$  is the class index of  $\mathbf{x}$ . Let  $\mathcal{L}_1(\mathbf{W}_1) = CE(\mathbf{W}_1 \mathbf{X}, \mathbf{Y})$  be the average  
 2291 cross-entropy loss of the dataset  $(\mathbf{X}, \mathbf{Y})$ . Then the loss gradient  $\nabla \mathcal{L}_1(\mathbf{W}_1)$  is

$$2292 \quad \nabla \mathcal{L}_1(\mathbf{W}_1) = \frac{1}{N} (\mathbf{S} - \mathbf{Y}) \mathbf{X}^\top$$

2295 where  $\mathbf{S} = (\mathbf{s}_1, \dots, \mathbf{s}_N)$  and  $\mathbf{s}_i = \text{softmax}(\mathbf{W}_1 \mathbf{x}_i)$  for each  $i$ . In particular,  $\mathbf{1}_K^\top \nabla \mathcal{L}_1(\mathbf{W}_1) = 0$ .  
 2296

2297 *Proof.* The expression of the loss gradient comes from simple calculus. The second statement comes  
 2298 from the fact that the L1 norms of a post-softmax vector and an one-hot vector are both equal to 1,  
 2299 that is,

$$2300 \quad \mathbf{1}_K^\top \mathbf{s}_i = \mathbf{1}_K^\top \mathbf{y}_i = 1 \forall i. \quad \square$$

2302 **Lemma E.6.** Assume the weight  $\mathbf{W}_t$  is updated as follows:

$$\begin{aligned} 2304 \quad \mathbf{V}_{t+1} &= \beta \mathbf{V}_t + \mathbf{G}_t + \lambda \mathbf{W}_t \\ 2305 \quad \mathbf{W}_{t+1} &= \mathbf{W}_t - \eta \mathbf{V}_{t+1}, \end{aligned}$$

2306 where  $\mathbf{G}_t$  depends on  $\mathbf{W}_t$ . Define

$$2308 \quad \alpha \stackrel{\text{def.}}{=} \frac{1}{K} \|\mathbf{W}_t^\top \mathbf{1}\|_2^2 \geq 0.$$

2310 Then we have the expression:

$$2312 \quad \frac{1}{\eta} (\alpha_{t+1} - \alpha_t) = -2\beta\omega_t - 2\gamma_t - 2\lambda\alpha_t + \eta\nu_{t+1}$$

2314 where  $\omega_t \stackrel{\text{def.}}{=} \langle \mathbf{V}_t \mathbf{W}_t^\top, \hat{\mathbf{J}} \rangle$ ,  $\gamma_t \stackrel{\text{def.}}{=} \langle \mathbf{G}_t \mathbf{W}_t^\top, \hat{\mathbf{J}} \rangle$ ,  $\nu_t \stackrel{\text{def.}}{=} \langle \mathbf{V}_t \mathbf{V}_t^\top, \hat{\mathbf{J}} \rangle$ .  
 2315

2316 *Proof.* Let  $\mathbf{C}_t \stackrel{\text{def.}}{=} \mathbf{W}_t \mathbf{W}_t^\top$  be the covariance matrix. Notice that  $\alpha_t = \langle \mathbf{C}_t, \hat{\mathbf{J}} \rangle$  where  $\hat{\mathbf{J}} = \frac{1}{K} \mathbf{1} \mathbf{1}^\top$ .  
 2317 By update rule of  $\mathbf{W}_t$  and  $\mathbf{V}_t$ :

$$\begin{aligned} 2319 \quad \frac{1}{\eta} (\mathbf{C}_{t+1} - \mathbf{C}_t) &= \frac{1}{\eta} ((\mathbf{W}_t - \eta \mathbf{V}_{t+1})(\mathbf{W}_t - \eta \mathbf{V}_{t+1})^\top - \mathbf{C}_t) \\ 2320 &= -(\mathbf{V}_{t+1} \mathbf{W}_t^\top + \mathbf{W}_t \mathbf{V}_{t+1}^\top) + \eta \mathbf{V}_{t+1} \mathbf{V}_{t+1}^\top. \\ 2321 \end{aligned}$$

2322 Applying the dot product  $\langle \cdot, \hat{\mathbf{J}} \rangle_F$  on both sides, and denote  $\omega_t \stackrel{\text{def.}}{=} \langle \mathbf{V}_t \mathbf{W}_t^\top, \hat{\mathbf{J}} \rangle$ ,  $\gamma_t \stackrel{\text{def.}}{=} \langle \mathbf{G}_t \mathbf{W}_t^\top, \hat{\mathbf{J}} \rangle$ ,  
 2323  $\nu_t \stackrel{\text{def.}}{=} \langle \mathbf{V}_t \mathbf{V}_t^\top, \hat{\mathbf{J}} \rangle$ , we have  
 2324

$$\begin{aligned} 2325 \quad \frac{1}{\eta}(\alpha_{t+1} - \alpha_t) &= -2\langle \mathbf{V}_{t+1} \mathbf{W}_t^\top, \hat{\mathbf{J}} \rangle + \eta \langle \mathbf{V}_{t+1} \mathbf{V}_{t+1}^\top, \hat{\mathbf{J}} \rangle \\ 2326 \quad &= -2\langle (\beta \mathbf{V}_t + \mathbf{G}_t + \lambda \mathbf{W}_t) \mathbf{W}_t^\top, \hat{\mathbf{J}} \rangle + \eta \nu_{t+1} \\ 2327 \quad &= -2\beta \omega_t - 2\gamma_t - 2\lambda \alpha_t + \eta \nu_{t+1} \end{aligned} \quad (22)$$

2329 where in the first line we use the fact that  $\hat{\mathbf{J}}$  is symmetric.  
 2330

□

2331  
 2332 **Lemma E.7.** Assume  $\lambda, \beta \in (0, 1)$  such that  $\frac{2\lambda}{\log \beta^{-1}} < 1$ . The solution of the following ODE:  
 2333

$$\dot{\alpha}(t) = -\lambda \left( \int_0^t \beta^{t-\tau} \alpha(\tau) d\tau \right) \quad (23)$$

2334 with initial condition  $\alpha(0) = \alpha_0 > 0$  admits the following bound:  
 2335

$$\alpha(t) \leq C \alpha_0 \exp \left( -\frac{\lambda}{\log \beta^{-1}} t \right)$$

2336 for some absolute constant  $C > 1$ .  
 2337

2338 *Proof.* Observe that we can write the integral in convolution:  
 2339

$$\int_0^t \beta^{t-\tau} \alpha(\tau) d\tau = (\phi * \alpha)(t), \quad \text{where } \phi(t) = \beta^t.$$

2340 Hence (23) can be written as  
 2341

$$\dot{\alpha}(t) = -\lambda(\phi * \alpha)(t).$$

2342 Let  $\mathcal{L}\{\psi(t)\}(s) = \int_0^\infty e^{-st} \psi(t) dt$  denote the Laplace transform. Denote  
 2343

$$\mathcal{A}(s) = \mathcal{L}\{\alpha(t)\}(s), \quad F(s) = \mathcal{L}\{\phi(t)\}(s).$$

2344 Taking the Laplace transform of both sides:  
 2345

$$\mathcal{L}\{\dot{\alpha}(t)\}(s) = -\lambda \mathcal{L}\{(\phi * \alpha)(t)\}(s). \quad (24)$$

2346 And by integration by part and the property of convolution,  
 2347

$$\mathcal{L}\{\dot{\alpha}(t)\}(s) = s\mathcal{A}(s) - \alpha(0) \quad \text{and} \quad \mathcal{L}\{(\phi * \alpha)(t)\}(s) = F(s)\mathcal{A}(s).$$

2348 Hence  
 2349

$$s\mathcal{A}(s) - \alpha(0) = -\lambda F(s)\mathcal{A}(s).$$

2350 Since  $\beta^t = e^{(\log \beta)t}$ , we get  
 2351

$$F(s) = \mathcal{L}\{\beta^t\}(s) = \mathcal{L}\{e^{(\log \beta)t}\}(s) = \frac{1}{s - \log(\beta)} \quad \text{for } s > \log(\beta).$$

2352 Substitute this back to Eq. (24) and we get:  
 2353

$$\begin{aligned} 2354 \quad s\mathcal{A}(s) - \alpha(0) &= -\lambda \frac{1}{s - \log(\beta)} \mathcal{A}(s) \\ 2355 \quad s\mathcal{A}(s) + \frac{\lambda}{s - \log(\beta)} \mathcal{A}(s) &= \alpha(0) \\ 2356 \quad \underbrace{\mathcal{A}(s) \left( s + \frac{\lambda}{s - \log(\beta)} \right)}_{\substack{s^2 - s \log(\beta) + \lambda \\ s - \log(\beta)}} &= \alpha(0) \\ 2357 \quad \mathcal{A}(s) &= \alpha(0) \cdot \frac{[s - \log(\beta)]}{\underbrace{s^2 - s \log(\beta) + \lambda}_{(s-r_1)(s-r_2)}} \end{aligned}$$

2376  
 2377 where  $r_1, r_2 = \frac{\log(\beta) \pm \sqrt{[\log(\beta)]^2 - 4\lambda}}{2}$ . We do partial fractions and matching coefficients gives:  
 2378

$$2379 \quad \frac{s - \log(\beta)}{(s - r_1)(s - r_2)} = \frac{A}{s - r_1} + \frac{B}{s - r_2} \implies A + B = 1, \quad -\log(\beta) = -Ar_2 - Br_1.$$

2381 Since  $r_1 + r_2 = \log(\beta)$ , one finds  
 2382

$$2383 \quad A = \frac{r_2}{r_2 - r_1}, \quad B = -\frac{r_1}{r_2 - r_1}.$$

2385 Thus

$$2386 \quad \mathcal{A}(s) = \alpha(0) \left[ \frac{r_2}{r_2 - r_1} \frac{1}{s - r_1} - \frac{r_1}{r_2 - r_1} \frac{1}{s - r_2} \right].$$

2388 Recall the inverse of Laplacian transform:  $\mathcal{L}^{-1}\{\frac{1}{s-r}\}(t) = e^{rt}$ . Therefore,  
 2389

$$2390 \quad \alpha(t) = \mathcal{L}^{-1}\{\mathcal{A}(s)\}(t) = \alpha(0) \left[ \frac{r_2}{r_2 - r_1} e^{r_1 t} - \frac{r_1}{r_2 - r_1} e^{r_2 t} \right].$$

2393 Equivalently,

$$2394 \quad \alpha(t) = \alpha(0) \left[ A e^{r_1 t} + B e^{r_2 t} \right], \quad A = \frac{r_2}{r_2 - r_1}, B = -\frac{r_1}{r_2 - r_1}, \quad (25)$$

2397 where

$$2398 \quad r_1, r_2 = \frac{\log(\beta) \pm \sqrt{[\log(\beta)]^2 - 4\lambda}}{2}.$$

2400 Since  $\beta \in (0, 1)$ , set  $L = -\log(\beta) > 0$ . By the first order approximation,  
 2401

$$2402 \quad \sqrt{(\log \beta)^2 - 4\lambda} = \sqrt{L^2 - 4\lambda} = L - \frac{2\lambda}{L} + \mathcal{O}\left(\frac{\lambda^2}{L}\right)$$

2404 Hence

$$2405 \quad r_1, r_2 = \frac{-L \pm (L - \frac{2\lambda}{L})}{2} + \mathcal{O}\left(\frac{\lambda^2}{L}\right).$$

2408 This gives:

$$2409 \quad r_1 = -\frac{\lambda}{L} + \mathcal{O}\left(\frac{\lambda^2}{L}\right), \quad r_2 = -L + \frac{\lambda}{L} + \mathcal{O}\left(\frac{\lambda^2}{L}\right).$$

2411 Plugging  $r_1, r_2$  into Eq. (25):

$$2412 \quad \alpha(t) \leq C\alpha(0)e^{r_1 t} = C\alpha(0)\exp\left(-\frac{\lambda}{L}t\right)$$

2414 for some absolute constant  $C > 1$ . Plug in  $L = -\log(\beta) = \log \beta^{-1}$  to finish the proof.  
 2415

□

2416  
 2417  
 2418  
 2419  
 2420  
 2421  
 2422  
 2423  
 2424  
 2425  
 2426  
 2427  
 2428  
 2429