
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPTIMIZER CHOICE MATTERS FOR THE EMERGENCE
OF NEURAL COLLAPSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Collapse (NC) refers to the emergence of highly symmetric geometric
structures in the representations of deep neural networks during the terminal phase
of training. Despite its prevalence, the theoretical understanding of NC remains
limited. Existing analyses largely ignore the role of the optimizer, thereby suggest-
ing that NC is universal across optimization methods. In this work, we challenge
this assumption and demonstrate that the choice of optimizer plays a critical role in
the emergence of NC. The phenomenon is typically quantified through NC metrics,
which, however, are difficult to track and analyze theoretically. To overcome this
limitation, we introduce a novel diagnostic metric, NC0, whose convergence to
zero is a necessary condition for NC. Using NC0, we provide theoretical evidence
that NC cannot emerge under decoupled weight decay, as implemented in AdamW.
Concretely, we prove that SGD, SignGD with coupled weight decay (a special case
of Adam), and SignGD with decoupled weight decay (a special case of AdamW) ex-
hibit qualitatively different NC0 dynamics. Finally, we conduct extensive empirical
experiments consisting of 3,900 training runs across various datasets, architectures,
optimizers, and hyperparameters, confirming our theoretical results. This work
provides the first theoretical explanation for optimizer-dependent emergence of
NC and highlights the overlooked role of weight-decay coupling in shaping the
implicit biases of optimizers.

1 INTRODUCTION

Neural networks have driven many of the recent breakthroughs in artificial intelligence, yet the
mechanisms underlying their success remain only partially understood. A key empirical clue is
neural collapse (NC) – first documented by Papyan et al. (2020) – in which the last-layer feature
vectors and classifier weights self-organise into a highly symmetric configuration during the terminal
phase of training (TPT). While the reasons for the emergence of NC are still not fully understood, its
impact on the behavior of a model is evident. For instance, Liu et al. (2023) induce NC to improve
generalization in class-imbalanced training and Galanti et al. (2021) show that the emergence of NC
improves transfer learning as well. Furthermore, the presence of NC has been connected to better
out-of-distribution detection (Liu & Qin, 2023).

Theoretical explanations for NC have primarily relied on simplified models and assumptions (Mixon
et al., 2022; Zhu et al., 2021) that have largely ignored the role of the optimizer, thereby suggesting
that NC is universal across optimization methods. In this work, we challenge this assumption and
demonstrate that the choice of optimizer plays a critical role in the emergence of NC. Concretely,
we show that training with AdamW (Loshchilov & Hutter, 2019) does not lead to an NC solution,
whereas training with SGD or Adam (Kingma & Ba, 2014) does. Through extensive experiments, we
trace this back to how weight decay is applied in both optimizer and identify the coupling of weight
decay as a necessity for the emergence of NC.

One major challenge in studying NC lies in the original metrics, which are difficult to track and
analyze theoretically. These metrics were designed to quantify the progressive geometric alignment
associated with NC and are expected to converge to zero in the idealized setting where NC holds as
training time approaches infinity. However, under realistic training regimes, such as finite training
epochs and learning rate decay, these metrics typically plateau at small but nonzero values. As a
result, there is no rigorous criterion for determining whether NC has truly occurred.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

This limitation motivates us to introduce a novel diagnostic metric, NC0, whose convergence to zero
is necessary (though not sufficient) for NC. Unlike previous metrics, NC0 enables a more definitive
assessment: if NC0 diverges during training, we can conclude that NC can not occur—even in
cases where other NC metrics misleadingly converge to small positive values, creating an illusion
of collapse. We discuss the peculiarity of interpreting NC metrics in practice later in Section 4.1.
Furthermore, NC0 allows us to go beyond loss landscape analysis and theoretically derive convergence
rates with which NC0 converges to zero.

Contribution In this paper, we conduct extensive experiments – spanning over 3,900 training
runs – to investigate the role of coupled weight decay in the emergence of NC. We identify coupled
weight decay as a key driver of NC in realistic settings, extending recent theoretical insights (Pan
& Cao, 2024; Jacot et al., 2024) that were limited to quasi-optimal solutions in simplified models.
In particular, we show that the form of weight decay used in adaptive optimizers such as Adam
(Kingma & Ba, 2014) and AdamW (Loshchilov & Hutter, 2019) critically affects whether NC
emerges. Strikingly, while networks trained with Adam often exhibit NC, AdamW – despite its
algorithmic similarity –fails to produce NC, with the corresponding metrics failing to converge to
zero over time (Figure 1). This subtle yet consequential distinction has been largely overlooked in
prior work.

In summary, we make the following contributions:

1. Across a wide range of experiments, we find that coupled weight decay is a necessary
condition for NC to emerge.

2. Furthermore, we show the accelerating effect of momentum on NC when trained with SGD,
being the first result concerning momentum in the context of NC.

3. We support our empirical findings with the following theoretical statements on the new NC0
metric:

• with SGD, NC0 converges to zero at an exponential rate proportional to the weight
decay;

• with sign gradient descent (SignGD) with decoupled weight decay, a special case of
AdamW, NC0 converges to some positive constant;

• with SignGD with coupled weight decay, a special case of Adam, NC0 exhibits a
non-monotonic trajectory, increasing before eventually decreasing.

Organization This paper is organized as follows. In Section 2, we recapitulate the four properties
to characterize NC and introduce a novel NC property NC0. In Section 3 we present our main
experimental results with theoretical support. Finally, Section 4 provides insights and discussions on
the implications of our results.

0 10 5 10 4 10 3 10 2 10 1 100 101

Weight decay

10 1

100

101

NC
0

optimizer
AdamW
Adam

0 10 5 10 4 10 3 10 2 10 1 100 101

Weight decay

0.2

0.4

0.6

0.8

1.0

NC
3

optimizer
AdamW
Adam

Figure 1: NC0 (left) and NC3 (right) met-
rics at the end of training. Lower values
indicate stronger NC. AdamW shows con-
sistently higher metrics than Adam. Av-
erages computed over runs with varying
learning rates and momentum; shaded re-
gions show ±1 standard deviation. X-axis
is log-scaled.

Notation We use [K] = {1, 2, . . . ,K} to denote the index set for any integer K ∈ N. For a
matrix W, we let Vec(W) denote the vectorization of W obtained by stacking its columns. The
Frobenius inner product between two matrices W,W′ is denoted by ⟨W,W′⟩ = Tr(W⊤W′).
With slight abuse of notation, we write ∥W∥ = ∥W∥F for the Frobenius norm when W is a matrix,
and ∥v∥ = ∥v∥2 for the Euclidean norm when v is a vector. In other words, ∥W∥ = ∥Vec(W)∥.
We denote by I the identity matrix, by 1 the all-ones column vector, and by J the all-ones matrix, i.e.,
J = 11⊤.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 NEURAL COLLAPSE

Neural collapse (NC), observed during the terminal phase of training (TPT) in deep neural networks
(DNN), manifests itself through several geometric properties involving the last-layer features and
weights in the K-class classification task:

min
W,θ

N∑
n=1

ℓ(Whθ(xn), yn) +
λ

2
∥W∥2 + λ

2
∥Vec(θ)∥2 (1)

where (xn, yn)
N
n=1 ⊂ RD × [K] is the training set, W ∈ RK×P is the last-layer weights, hθ(xn) ∈

RP is the last-layer feature as the output of some backbone parameterized by θ, ℓ : RK × [K] →
[0,∞) is the loss function, and λ > 0 is the L2-regularization constant.

These properties, formalized by their corresponding metrics in the original paper Papyan et al. (2020),
are:

1. NC1 - Variability Collapse: Features collapse to their respective class means, indicating
that within-class variability vanishes.

2. NC2 - Convergence of Class Means to Simplex ETF: Class means converge to a simplex
equiangular tight frame (ETF).

3. NC3 - Convergence to Self-Duality: Rows of the last-layer weight W ∈ RK×P align with
the columns of the class means, creating a dual relationship between weights and features.

4. NC4 - Simplification to Nearest-Class-Center: The classifier’s decision boundaries are
simplified to those of a nearest-class-mean (NCC) classifier.

A solution satisfying all of these properties is referred to as a NC solution. In addition to these
prior NC properties, we introduce another novel NC property NC0, whose convergence to zero is a
necessary condition (though not sufficient) for NC.

NC0 - Zero Row Sum of Last-Layer Weight: The row sum of the last-layer weight W in the model
converges to zero.

The first observation is that NC0 is a necessary condition for NC2 and NC3:
Proposition 2.1. NC2 and NC3 implies NC0.

Proof. For each class k ∈ [K], we define the class mean µk = 1
|{n:yn=k}|

∑
n:yn=k hθ(xn) ∈ RP

and the centered class mean µ̄k = µk − 1
N

∑N
n=1 hθ(xn). We concatenate them into a matrix

M = (µ̄k)
K
k=1 ∈ RP×K with M1 = 0, since we centered the class means. By NC2, M converge

to a simplex ETF in the ambient space RP , meaning M/∥M∥F → QM∗ where M∗ ∈ RK×K is a
unit matrix with columns forming a K-simplex EFT in RK and Q ∈ RP×K is the isometric injection
map into the ambient space. Since M1 = 0 and Q is injective, the unit matrix M∗ has to be in the
form: M∗ def.

= 1√
K−1

(
I− 1

KJ
)
. Hence

M⊤M/∥M⊤M∥2F → (QM∗)⊤QM∗ = (M∗)2 = M∗.

On the other hand, NC3 states that M/∥M∥ − W⊤/∥W∥ → 0 as t → ∞. Hence we have
WW⊤

∥W∥2
F
−M∗ → 0 as t → ∞. Now note that 1⊤M∗1 = 0, hence ∥W⊤1∥2 = 1⊤WW⊤1 → 0.

Note that the last line holds if and only if NC0 holds.

NC0 offers two key advantages. First, it serves as a diagnostic tool: if NC0 does not converge, then
at least one of NC2 or NC3 must fail, providing a clear signal that neural collapse cannot occur.
Second, NC0 is more mathematically tractable than the original NC metrics, whose dynamics are
difficult to analyze and remain underexplored. As we demonstrate in Section 3, NC0’s evolution
during training can be reliably tracked and used to explain empirical trends observed across different
optimizers. In addition, our extensive experiments also show that NC0 is correlating well with prior
NC metrics, particularly for small learning rates (see Figure 2). For a more detailed explanation and
formal definitions of NC properties and their metrics, we refer the reader to Section B.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

10 2 102

NC0

0

1

NC
3

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 2: NC0 weakly correlates with NC3 across different optimizers and learning rates. Details on
the regression fit can be found in Appendix D.3

3 MAIN RESULT

3.1 EXPERIMENTAL SETUP

We conducted extensive experiments training a ResNet9 and VGG9 using various optimizers, includ-
ing Adam, AdamW, SGD, SGD with decoupled weight decay (SGDW), Signum (Bernstein et al.,
2018), and Signum with decoupled weight decay (SignumW) trained on MNIST, FashionMNIST and
Cifar10. Every optimizer is trained with three different learning rates (LR), six different values of
momentum, and six different values of weight decay to also control the effect of hyperparameters on
the emergence of NC. This resulted in a total of 2× 3× 6× 108 = 3, 888 training runs. All networks
were trained for 200 epochs using a batch size of 128, with the learning rate being decayed by a factor
of 10 after one-third and two-thirds of the training duration, as described in the original work by
Papyan et al. (2020). In addition, we conducted ablation studies to control for the number of training
epochs and to verify that the results also hold for unconstrained feature models (UFM)1, leading
to a total of over 3,900+ training runs. Further details and all experimental results can be found in
Appendix D. Ablation studies on the effect of training epochs can be found in Appendix D.4.1

Table 1: Final NC metrics for the same setting as in Figure 5, following the setup of Papyan
et al. (2020). Lower values (↓) indicate stronger neural collapse. Values in parentheses represent
percentages relative to the metric at initialization.

Optimizer NC0↓ NC1↓ NC2↓ NC3↓
SGD 2.14e-04 (< −99.5%) 0.05 (−99.3%) 0.29 (−63.0%) 0.35 (−75.1%)
SGDW 0.55 (−68.9%) 0.26 (−96.3%) 0.46 (−42.4%) 0.80 (−43.5%)
Adam 0.34 (−80.6%) 0.04 (−99.5%) 0.29 (−63.9%) 0.29 (−79.5%)
AdamW 5.33 (≫ 100%) 0.20 (−97.2%) 0.54 (−32.4%) 0.78 (−45.2%)
Signum 0.78 (−55.3%) 0.13 (−98.1%) 0.50 (−36.8%) 0.58 (−59.0%)
SignumW 3185.69 (≫ 100%) 0.30 (−95.7%) 1.15 (+44.2%) 1.40 (−1.2%)

3.2 WEIGHT DECAY IS ESSENTIAL AND MOMENTUM ACCELERATES NC

Our experiments show that weight decay is necessary to reduce the NC metric across all optimizers
and hyperparameter settings, as shown in Figure 3 for Signum and SGD, and earlier in Figure 1 for
Adam and AdamW.

From the figures, we can conclude that larger weight decay leads to a stronger decrease of NC metrics.
In particular, we show that adaptive optimizers with decoupled weight decay have much larger NC
metrics, which are strictly away from zero, showing no sign of NC. In addition, we show empirically
that momentum amplifies the effect of weight decay on the decrease of NC metrics in SGD, as shown
in the heatmap in Figure 4. This implies that one achieves a decrease in the NC metrics both by
increasing weight decay for fixed momentum or by increasing momentum for fixed non-zero weight
decay. The effect of momentum on the NC metrics becomes larger for larger values of weight decay.

The experimental results are complemented by Theorem 3.1 showing that NC0 converges to 0
with an exponential rate trained with SGD, which is proportional to momentum and weight decay,

1see Appendix C.5 for an introduction to UFM.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 10 5 10 4 10 3 10 2 10 1

Weight decay

100

101

102

103

104

NC
0 optimizer

SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.4

0.6

0.8

1.0

1.2

1.4

NC
3

optimizer
SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

10 5

10 4

10 3

10 2

10 1

100

NC
0

SGDW
SGD

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.2

0.4

0.6

0.8

1.0

NC
3

optimizer
SGDW
SGD

Figure 3: NC0 and NC3 metrics at the end of training for a ResNet9 trained on FashionMNIST
for Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one
standard deviation across all trainings run with corresponding optimizer.

0.
0

2.
5e

-0
5

5e
-0

5

0.
00

01

0.
00

05

0.
00

1

0.
00

25

0.
00

5

weight_decay

0.
0

0.
5

0.
7

0.
9

0.
95

0.
97

0.
98

m
om

en
tu

m

1.75 1.75 1.75 1.75 1.72 1.69 1.61 1.48

1.75 1.75 1.75 1.74 1.69 1.64 1.48 1.24

1.75 1.75 1.74 1.73 1.66 1.56 1.32 0.99

1.75 1.74 1.72 1.69 1.48 1.24 0.74 0.31

1.75 1.72 1.69 1.64 1.24 0.88 0.31 0.06

1.75 1.70 1.66 1.56 0.99 0.56 0.10 0.01

1.75 1.68 1.61 1.48 0.74 0.31 0.02 0.00

NC0, LR=0.001

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.
0

2.
5e

-0
5

5e
-0

5

0.
00

01

0.
00

05

0.
00

1

0.
00

25

0.
00

5
weight_decay

0.
0

0.
5

0.
7

0.
9

0.
95

0.
97

0.
98

m
om

en
tu

m

0.62 0.62 0.62 0.62 0.62 0.61 0.60 0.58

0.59 0.60 0.59 0.59 0.59 0.58 0.55 0.51

0.58 0.58 0.58 0.58 0.57 0.56 0.51 0.42

0.56 0.56 0.56 0.55 0.52 0.47 0.33 0.22

0.57 0.56 0.55 0.55 0.47 0.37 0.22 0.15

0.56 0.55 0.54 0.53 0.40 0.27 0.16 0.14

0.56 0.55 0.55 0.52 0.32 0.21 0.15 0.13

NC2, LR=0.001

0.2

0.3

0.4

0.5

0.6

0.
0

2.
5e

-0
5

5e
-0

5

0.
00

01

0.
00

05

0.
00

1

0.
00

25

0.
00

5

weight_decay

0.
0

0.
5

0.
7

0.
9

0.
95

0.
97

0.
98

m
om

en
tu

m

0.72 0.72 0.72 0.72 0.72 0.71 0.70 0.67

0.70 0.70 0.70 0.69 0.69 0.68 0.65 0.60

0.68 0.68 0.68 0.68 0.67 0.65 0.60 0.52

0.65 0.65 0.65 0.64 0.61 0.57 0.43 0.30

0.63 0.63 0.63 0.62 0.55 0.46 0.30 0.19

0.62 0.61 0.60 0.59 0.48 0.37 0.20 0.17

0.62 0.62 0.61 0.58 0.42 0.31 0.16 0.16

NC3, LR=0.001

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4: Heatmap of NC0, NC2 and NC3 for varying values of momentum and weight decay on
ResNet9 trained on FashionMNIST with SGD.

highlighting that NC cannot be achieved without weight decay and that momentum accelerates the
convergence of NC metrics.
Note that Theorem 3.1 holds for any model f(W, θ, x) = Whθ(x) with the last layer being a linear
classifier and with any backbone hθ parameterized by θ.

Theorem 3.1 (SGD promotes NC0). Assume a model of the form f(W, θ, x) = Whθ(x) is trained
using cross-entropy loss with stochastic gradient descent (SGD) and momentum β ∈ [0, 1), weight
decay λ ∈ [0, 1), and learning rate η > 0 sufficiently small. The last-layer weights W are updated
according to:

Vt+1 = βVt +∇Wt
LCE + λWt,

Wt+1 = Wt − ηVt+1.

Let αt :=
1
K ∥W⊤

t 1∥22 denote the NC0 metric. Suppose the condition 2λ
log β−1 < 1 holds. Fix a finite

time horizon T > 0 such that ηt ≤ T .

Then there exists an absolute constant C > 1 such that

αt ≤

C exp

(
− ληt

log β−1

)
+O(η) if β > 0,

C(1− λη)t if β = 0,

Proof. The key observation is that the row sum of the loss gradient ∇LCE(Wt)
⊤1K is zero, which

largely simplifies the NC0 metric to only be dependent on the weight decay λ and momentum β. For
the details of the proof, please refer to Subsection E in the Appendix.

Remark 3.2 (Convergence rate). Note that existing theoretical analysis on NC usually focuses on
unconstrained feature models (UFM), and on the analysis of global solutions and the optimization
landscape. This theorem goes beyond landscape analysis and computes the actual convergence rate,
which allows us to quantify the effect of momentum and WD on NC.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 WEIGHT DECAY COUPLING MATTERS

While weight decay has been theoretically shown to be essential for NC in prior works (Pan & Cao,
2024; Jacot et al., 2022), these works ignore how weight decay is applied by treating L2-regularization
of the gradient and applying weight decay directly on parameters as equivalent. However, we note that
this equivalency only holds for vanilla SGD and not for adaptive optimizers, such as Adam or AdamW,
nor when momentum is applied. In particular, our experiments reveal that NC does not emerge under
SignumW and AdamW under realistic settings. This highlights the crucial role of coupled weight
decay – that is L2-regularization applied directly within the gradient update – as a requirement for
NC. This subtle yet important distinction has been largely overlooked in prior literature.

0 100 200
epoch

10 2

100

102

NC
0

0 100 200
epoch

10 1

100

101

NC
1

0 100 200
epoch

0.5

1.0

NC
2

0 100 200
epoch

0.5

1.0

NC
3

SGD SGDW AdamW Adam Signum SignumW

Figure 5: NC metrics throughout training on a ResNet9 trained on FashionMNIST.

Importantly, tracking the evolution of the NC metrics (Figure 5) and the singular values of centered
class means M and the last-layer weight W (Figure 6) throughout training (here shown for a ResNet9
trained on FashionMNIST), one can see that using adaptive optimizers with decoupled weight decay
leads to fundamentally different dynamics of the NC metrics and singular values despite all models
reaching TPT, where training error is (almost) zero.

0 50 100 150 200
Epoch

0

5

10

15

Si
ng

ul
ar

 v
al

ue
s o

f W

0 50 100 150 200
Epoch

0

10

20

30

40

Si
ng

ul
ar

 v
al

ue
s o

f M

SGD SGDW AdamW Adam Signum

Figure 6: Singular values of last-layer weights W (left) and centered class means M (right) through-
out training. The dotted line corresponds to the smallest singular value and the full line corresponds
to the average singular value, excluding the smallest singular value. Singular values for SignumW
are out-of-range and are shown in Figure 16 in the appendix.

Specifically, Figure 6 shows that the smallest singular value of W increases during training with
AdamW and SignumW, indicating failure to satisfy NC3. Additionally, NC0 and the nonzero singular
values of M grow throughout training and exhibit high variance, suggesting that NC2 is also less
well-fulfilled in these settings.

In Figure 5, we further observe that SGD and Adam achieve the lowest NC metric values, while
AdamW, SignumW, and SGDW saturate early at much higher levels. Although the NC metrics for
Signum are slightly larger than for SGD and Adam, they continue to decrease over time, suggesting
potential convergence to NC under longer training.

Finally, our experiments in Figure 1 and Figure 3 demonstrate that the NC0 and NC3 metrics of
AdamW and SignumW remain significantly larger than those of Adam and Signum, even when using
weight decay several orders of magnitudes higher. This indicates that models trained with AdamW or
SignumW are consistently farther from achieving NC. Interestingly, the NC metrics for SGD and
SGDW remain relatively close – only slightly shifted – showing that the gap between coupled and
decoupled weight decay has a more pronounced effect in adaptive optimizers than in SGD. This
suggests the effect is not simply due to greater weight decay accumulation through momentum but
stems from a deeper interaction with the optimization dynamics.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.4 INTERPOLATING ADAMW AND ADAM

To further investigate why AdamW fails to exhibit neural collapse (NC) while Adam does, we con-
ducted an ablation study by “interpolating” between the two optimizers. Specifically, we implemented
a variant that combines both coupled weight decay (as in Adam) and decoupled weight decay (as
in AdamW). For each run, we varied the strength of the coupled weight decay while adjusting the
decoupled component such that the total weight decay remained fixed at 0.0005. The momentum was
set to 0.9 across all configurations.

As shown in Figure 7, increasing the coupled component leads to a smooth improvement in NC
metrics—particularly NC0, NC2, and NC3—while the validation accuracy remains largely unaffected.
This experiment suggests that coupled weight decay is a critical factor in enabling neural collapse,
yet it is not strictly necessary for achieving strong generalization performance, as all configurations
yield similar validation accuracy. This strengthens a point raised earlier about the limitations of NC
to understand generalization Hui et al. (2022).

0 50 100 150 200
epoch

0.980

0.985

0.990

0.995

1.000

va
lid

at
io

n 
ac

cu
ra

cy

coupled weight decay
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005

0 50 100 150 200
epoch

100

NC
0

0 50 100 150 200
epoch

0.2

0.4

0.6

0.8

NC
2

0 50 100 150 200
epoch

0.2

0.4

0.6

0.8

NC
3

Figure 7: Interpolating Adam and AdamW by varying the coupled and decoupled weight decay. Total
weight decay was fixed to 0.0005. Note that coupled weight decay = 0 is equivalent to AdamW and
coupled weight decay = 0.0005 is equivalent to Adam. Experiments trained on ResNet9 with MNIST.

This observation is supported by our theoretical results in Theorem 3.3 and Theorem 3.4, which show
that SignGD with decoupled weight decay fails to satisfy NC0 and therefore cannot converge to a
neural collapse solution, whereas SignGD with coupled weight decay exhibits different behaviour.
We note that SignGD corresponds to a special case of Adam and AdamW when the parameters β1,
β2, and ε are set to zero.
Theorem 3.3 (Sign GD with decoupled weight decay avoids NC0). Consider sign GD with
(decoupled) weight decay λ > 0 and step size η > 0 on the UFM loss LCE(WH, I) =∑N

n=1 LCE(Whn, en), where the feature H = M∗ is fixed to an NC solution and only the weight
W is trained:

Wt+1 = Wt − η(sign(∇WtLCE) + λWt)

Define the NC0 metric α = ∥W⊤
t 1K∥22 as before. Then we have

lim
t→∞

αt =
(K − 2)2

λ2
.

In particular, αt does not vanish as t→ ∞.

Proof idea: The key observation is that the signed loss gradient sign(∇LCE(Wt)) in this setting is
constant in t, simplifying the following computation. See Appendix E for the full proof. □

Theorem 3.4 (Sign GD with coupled weight decay can lead to NC0). Consider sign
GD with (coupled) weight decay λ > 0 and step size η > 0 on the UFM loss
LCE(WH, I) =

∑N
n=1 LCE(Whn, en), where the feature H = M∗ is fixed to an NC solu-

tion and only the weight W is trained:

Wt+1 = Wt − η(sign(∇Wt
LCE + λWt))

We initialize W0 = 0 ∈ RK×K and define the covariance matrix Ct = WtW
⊤
t and the scalar

αt = ⟨Ct, Ĵ⟩F where Ĵ = 1
K11⊤. Then there exists some T2, T1 > 1 such that α increases for

t ∈ [1, T1], decreases for t ∈ [T1 + 1, T2] and oscillates with range O
(
d3η2

)
for t > T2 + 1.

Proof. See Appendix E.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 100
Epoch

0.00094

0.00095

0.00096

0.00097

NC
0

SGD

=5e-04
=1e-03
=5e-03

0 100
Epoch

0.002

0.004

0.006

0.008

NC
0

Adam

=5e-04
=1e-03
=5e-03

0 100
Epoch

0.007

0.008

0.009

0.010

NC
0

AdamW

=5e-04
=1e-03
=5e-03

0 100
Epoch

0.000

0.001

0.002

0.003

0.004

NC
0

SignSGD
=5e-04
=1e-03
=5e-03

0 100
Epoch

0.008

0.010

0.012

0.014

0.016

NC
0

SignSGDW

=5e-04
=1e-03
=5e-03

Figure 8: Training dynamic of NC0 with optimizers SGD, Adam, AdamW, Adam0 (β1 = β2 = 0),
AdamW0 (β1 = β2 = 0).

The key difference between the results of Theorem 3.3 and Theorem 3.4 lies in how coupled weight
decay affects the signed gradient during training. As the weight norm ∥W∥ increases, the coupled
decay term can eventually flip the sign of the gradient, altering the trajectory of the NC0 metric αt.
Initially, αt grows at a similar rate in both cases, but their behaviors diverge once the decay term
becomes dominant.

To illustrate this effect, we conducted a small-scale experiment using a simple MLP on a separable
dataset with various optimizers. As shown in Figure 8, SignSGD displays non-monotonic dynamics
in αt, while SignSGDW exhibits steady convergence to a positive value. Similar patterns appear in
Adam and AdamW, though more smoothed due to their adaptive updates.

4 DISCUSSION AND LIMITATIONS

In this section, we discuss new insights, additional considerations and limitations from the main
results in Section 3. Additionally, we explore potential follow-up research directions that could
provide theoretical explanations or extend our experiments to broader settings.

4.1 INTERPRETING NC METRICS IN PRACTICE

While NC is defined by the convergence of all NC metrics to zero in the limit, practical experiments
never achieve exact zeros. Since NC is inherently a continuous rather than discrete phenomenon, it
becomes necessary to define what constitutes the presence of NC in practice. This important issue
has not been thoroughly addressed in the existing literature.

A further complication is that different NC metrics operate on different scales and these scales vary
across settings of architectures and datasets. For example, in our experiments, the smallest observed
values for NC2 and NC3 are on the order of 0.1, whereas NC1 can reach values an order of magnitude
smaller.

In this work, we therefore refer to the emergence of NC in terms of relative strength. Specifically, we
use the NC metric values at initialization as a baseline for models that do not exhibit NC, and use the
smallest values achieved across all experiments as a reference point for models that do. This framing
allows us to discuss the strength of NC emergence across different optimizers and settings.

4.2 THE REDUNDANT NC4 PROPERTY

Readers may notice that we omit NC4 from the results in Section 3. This is because we observed
that NC4 is consistently satisfied whenever the training accuracy approaches 100%, regardless of
whether the other NC metrics (NC1–NC3) exhibit collapse. As shown in Figure 44, NC4 is largely
uncorrelated with the other metrics. To maintain a clearer and more focused presentation, we therefore
exclude NC4 from our main analysis.

4.3 PARTIAL NEURAL COLLAPSE

Another subtlety we observe is what we term partial neural collapse. As shown in Table 2, AdamW
can achieve minimal values for NC1 and NC2 among all optimizers, even while NC0 diverges and
NC3 is not satisfied. This indicates that NC properties may not always emerge jointly, contrary to the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Final NC metrics for the run with the smallest absolute NC3 metric and > 99% training
accuracy for each optimizer. Lower values (↓) indicate stronger neural collapse. Values in parentheses
represent percentages relative to the metric at initialization. Hyperparameters used for each optimizer
can be found in Table 4.

Optimizer NC0↓ NC1↓ NC2↓ NC3↓
SGD 1.53e-05 (< −99.5%) 0.02 (< −99.5%) 0.19 (−75.8%) 0.13 (−90.9%)
SGDW 1.54e-04 (< −99.5%) 0.01 (< −99.5%) 0.15 (−81.7%) 0.10 (−92.7%)
Adam 0.12 (< −93.2%) 0.04 (−99.5%) 0.23 (−71.6%) 0.17 (−88.2%)
AdamW 8.09 (≫100%) 0.01 (< −99.5%) 0.14 (−82.1%) 0.49 (−65.1%)

original claim in Papyan et al. (2020). Understanding the theoretical conditions under which only a
subset of NC properties holds remains an intriguing open question.

4.4 LIMITATIONS OF THEORETICAL SUPPORT

Our experiments on Adam and AdamW are conducted on realistic models and datasets, whereas our
theoretical results (Theorem 3.3, Theorem 3.4) focus on a simplified setting: SignGD applied to the
unconstrained feature model. While this restricted setup already demonstrates that AdamW fails to
achieve NC, it does not fully capture the complexity of deep neural networks or adaptive optimizers
in practice. Nevertheless, we believe our proof techniques could be extended to explain why Adam
may lead to NC in more general settings. Moreover, our theoretical analysis is limited to the training
dynamics of NC0, chosen for its analytical tractability and strong empirical correlation with other
NC metrics. A full theoretical understanding of NC1–NC3 under realistic optimization dynamics
remains an open challenge, and we leave this direction for future work.

4.5 FUTURE RESEARCH

Other than the topic we have discussed in the previous subsections, our findings also open other
intriguing avenues for future research.

• Empirical studies should be expanded to include larger models, such as Vision Transformers
(ViTs) and DenseNets, as well as more diverse datasets, to assess the broader generality of
our findings. Our preliminary results on ViT are available in Appendix D.4.5, and largely
confirm our findings also extend to Transformers.

• Due to computational constraints, our study only analyzed NC properties in the last layer.
However, previous works (Masarczyk et al., 2023; Rangamani et al., 2023) suggest that
these properties may also manifest in intermediate layers. Investigating NC behavior across
different depths could provide further insights into hierarchical feature representations.

• In addition to the optimizers (SGD, Adam, AdamW, Signum) studied in this work, novel
first-order methods such as Lion (Chen et al., 2023) and Mars (Yuan et al., 2024), and second-
order methods, such as Shampoo (Gupta et al., 2018), SOAP (Vyas et al., 2024) and Muon
(Jordan et al.) demonstrated promising improvements in convergence and generalization.
However, their effects on NC remain largely unexplored.

5 CONCLUSION

In this paper we have conducted an extensive number of experiments to elucidate the role of the
optimization algorithm in the emergence of the neural collapse (NC) phenomenon. In particular,
our experiments consistently show that coupled weight decay is necessary for achieving small NC
metrics. While the role of weight decay in the context of NC has been studied in the literature before,
this is the first paper distinguishing between coupled and decoupled weight decay. Moreover, our
theoretical results show that the resulting training dynamics differ considerably and one needs to take
this into account. These findings underscore the limitations of existing theoretical frameworks, which
have studied NC mainly under gradient flow or gradient descent, and highlight the need for further
investigation into the interplay between optimizers and NC.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Mouïn Ben Ammar, Nacim Belkhir, Sebastian Popescu, Antoine Manzanera, and Gianni Franchi.
Neco: Neural collapse based out-of-distribution detection, 2024.

Tina Behnia, Ganesh Ramachandra Kini, Vala Vakilian, and Christos Thrampoulidis. On the implicit
geometry of cross-entropy parameterizations for label-imbalanced data. In Francisco Ruiz, Jennifer
Dy, and Jan-Willem van de Meent (eds.), Proceedings of The 26th International Conference on
Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research,
pp. 10815–10838. PMLR, 25–27 Apr 2023.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine
Learning, pp. 560–569. PMLR, 2018.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Symbolic discovery of optimization algo-
rithms. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances
in Neural Information Processing Systems, volume 36, pp. 49205–49233. Curran Associates, Inc.,
2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Tomer Galanti, András György, and Marcus Hutter. On the role of neural collapse in transfer learning.
arXiv preprint arXiv:2112.15121, 2021.

Connall Garrod and Jonathan P. Keating. The persistence of neural collapse despite low-rank bias:
An analytic perspective through unconstrained features, 2024.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 1842–1850.
PMLR, 10–15 Jul 2018.

Ernst Hairer, Gerhard Wanner, and Syvert P. Nørsett. Solving Ordinary Differential Equations I
Nonstiff Problems. Springer-Verlag, Berlin„ 1993.

X. Y. Han, Vardan Papyan, and David L. Donoho. Neural collapse under mse loss: Proximity to and
dynamics on the central path, 2022.

Md Yousuf Harun, Jhair Gallardo, and Christopher Kanan. Controlling neural collapse enhances
out-of-distribution detection and transfer learning, 2025.

Like Hui, Mikhail Belkin, and Preetum Nakkiran. Limitations of neural collapse for understanding
generalization in deep learning. arXiv preprint arXiv:2202.08384, 2022.

Arthur Jacot, François Ged, Berfin Şimşek, Clément Hongler, and Franck Gabriel. Saddle-to-saddle
dynamics in deep linear networks: Small initialization training, symmetry, and sparsity, 2022.

Arthur Jacot, Peter Súkeník, Zihan Wang, and Marco Mondelli. Wide neural networks trained with
weight decay provably exhibit neural collapse, 2024.

Jiachen Jiang, Jinxin Zhou, Peng Wang, Qing Qu, Dustin Mixon, Chong You, and Zhihui Zhu.
Generalized neural collapse for a large number of classes. arXiv preprint arXiv:2310.05351, 2023.

K Jordan, Y Jin, V Boza, Y Jiacheng, F Cecista, L Newhouse, and J Bernstein. Muon: An optimizer
for hidden layers in neural networks, 2024b. URL https://kellerjordan. github. io/posts/muon.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vignesh Kothapalli. Neural collapse: A review on modelling principles and generalization, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Litian Liu and Yao Qin. Detecting out-of-distribution through the lens of neural collapse. arXiv
preprint arXiv:2311.01479, 2023.

Xuantong Liu, Jianfeng Zhang, Tianyang Hu, He Cao, Yuan Yao, and Lujia Pan. Inducing neural
collapse in deep long-tailed learning. In International conference on artificial intelligence and
statistics, pp. 11534–11544. PMLR, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Wojciech Masarczyk, Mateusz Ostaszewski, Ehsan Imani, Razvan Pascanu, Piotr Miłoś, and Tomasz
Trzciński. The tunnel effect: Building data representations in deep neural networks. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 76772–76805. Curran Associates, Inc., 2023.

Dustin G Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained features.
Sampling Theory, Signal Processing, and Data Analysis, 20(2):11, 2022.

Kaouther Mouheb, Marawan Elbatel, Stefan Klein, and Esther E Bron. Evaluating the fairness of
neural collapse in medical image classification. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 286–296. Springer, 2024.

Leyan Pan and Xinyuan Cao. Towards understanding neural collapse: The effects of batch normaliza-
tion and weight decay, 2024.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

Akshay Rangamani, Marius Lindegaard, Tomer Galanti, and Tomaso A Poggio. Feature learning
in deep classifiers through intermediate neural collapse. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 28729–28745. PMLR, 23–29 Jul 2023.

Christos Thrampoulidis, Ganesh Ramachandra Kini, Vala Vakilian, and Tina Behnia. Imbalance
trouble: Revisiting neural-collapse geometry. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp.
27225–27238. Curran Associates, Inc., 2022.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Robert Wu and Vardan Papyan. Linguistic collapse: Neural collapse in (large) language models.
arXiv preprint arXiv:2405.17767, 2024.

Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power
of variance reduction for training large models, 2024.

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A
geometric analysis of neural collapse with unconstrained features. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, volume 34, pp. 29820–29834. Curran Associates, Inc., 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Appendix

A LLM USAGE STATEMENT

We disclaim that we have used Large Language Models to refine a few sentences and additionally as
a proxy of a search engine to retrieve additional related work.

The appendix is organized as follows. In Section B, we formally define the neural collapse (NC)
phenomenon and introduce the metrics used in the experiments presented in the main text. In
Appendix C, we review prior works related to our paper. Section D provides detailed descriptions and
additional observations from our experiments. In Section E, we present the full proof of the theorems
stated in the main text.

B NC METRICS

Neural collapse (NC), discovered by Papyan et al. (2020), is a striking phenomenon observed during
the terminal phase of training (TPT) deep neural networks (DNN) for multi-class classification tasks,
particularly when trained with cross-entropy (CE) loss. Formally, let the (trained) last-layer features
of the DNN be denoted by hn, and concatenate them into a matrix H ∈ Rp×N , where p is the width
of the last layer and N is the number of training samples indexed by n. The output logits of the
network are then computed as WLH+b1⊤

N ∈ RK×N , where WL ∈ RK×p is the last-layer weight,
b ∈ RK is the bias vector, and K is the number of classes. 2

The DNN is trained using the CE loss computed on the logits:

CE(WL,H) = −
N∑

n=1

log

(
exp(WLhn)yn∑K
k=1 exp(WLhn)k

)
,

where yn ∈ [K] denotes the class label index of the feature vector hn. Let Ck
def.
= n ∈ [N ] : yn = k

be the index set of data points belonging to class k ∈ [K]. In this paper, we assume that the classes
are balanced, i.e., |Ck| is equal for all k ∈ [K]. For the effects of class imbalance on NC, we refer the
reader to Han et al. (2022); Thrampoulidis et al. (2022); Behnia et al. (2023).

Let µk
def.
= 1

|Ck|
∑

n∈Ck
hn be the class mean for each class k. The global mean of all classes is

given by µG = 1
K

∑K
k=1 µk and centered class means are defined as µ̄k = µk − µG. Let the

between-class covariance ΣB ∈ Rp×p and the within-class covariance ΣW ∈ Rp×p be:

ΣB =
1

K

K∑
k=1

µ̄kµ̄
⊤
k ,

ΣW =
1

N

K∑
k=1

(hn − µG)(hn − µG)
⊤.

We also concatenate the centered class means into a matrix M
def.
= (µ̄1, ..., µ̄K) ∈ Rp×K .

With these definitions in place, we now conceptually outline the NC properties and introduce
corresponding metrics to quantitatively measure these properties in our experiments.

NC1 - Variability Collapse The first property of neural collapse (NC1) describes the collapse of
features to their respective class means. Formally, this means that the distance between a feature

2For simplicity, we interchangeably refer to an input x ∈ Rd and its corresponding last-layer feature h ∈ Rp

after the parameters of the network have converged during TPT and the mapping x 7→ h is fixed.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

vector hn and its corresponding class mean µk approaches zero:

∥hn − µk∥2 → 0,∀k ∈ [K], n ∈ Ck.
A corresponding metric is defined as Zhu et al. (2021); Kothapalli (2023); Ammar et al. (2024):

NC1 def.
=

1

K
Tr[ΣWΣ†

B ] (2)

where † denotes the Moore-Penrose pseudo-inverse.

NC2 - Convergence of Class Means to Simplex ETF The second property of neural collapse
(NC2) describes the convergence of class means to a simplex equiangular tight frame (ETF), where
the angles between the means are maximally symmetric. Formally, this property can be expressed as:{

∥µ̄j∥2 − ∥µ̄k∥2 → 0〈
µ̄j

∥µ̄j∥2
, µ̄k

∥µ̄k∥2

〉
→ K

K−1δjk − 1
K−1 ,

∀j, k ∈ [K].

To measure this property, we define two metrics capturing the equinormality and equiangularity of
the centered class means Papyan et al. (2020); Ammar et al. (2024):

NC2n =
stdk{∥µ̄k∥2}
avgk{∥µ̄k∥2}

; (3)

NC2a = avgk ̸=k′

∣∣∣∣〈 µ̄k

∥µ̄k∥2
,

µ̄k′

∥µ̄k′∥2

〉
+

1

K − 1

∣∣∣∣ . (4)

Here, std•(·) and avg•(·) denote the standard deviation and mean, respectively, over the specified
index.

An alternative metric for NC2, introduced by Kothapalli (2023), directly measures the deviation of
the centered class means from a simplex ETF:

NC2 def.
=

1

K2

∥∥∥∥ M⊤M

∥M⊤M∥F
−M∗

∥∥∥∥
F

(5)

where

M∗ def.
=

1√
K − 1

(
IK − 1

K
JK

)
,

IK ∈ RK×K is the identity matrix and J ∈ RK×K is the matrix of ones. Note that NC2n,NC2a →
0 ⇐⇒ NC2 → 0.

NC2W - Convergence of Weight Rows to Simplex ETF In addition to NC2, we define a related
property, NC2W, which describes the convergence of the rows of the last-layer weights WL ∈ RK×p

to a simplex ETF. If the third NC property, NC3 (described later), holds, then NC2 and NC2W are
equivalent. However, to study partial NC, it is essential to decouple these properties and measure
NC2 and NC2W separately.

To measure NC2W, Zhu et al. (2021) introduced the following metric:

NC2W def.
=

1

K2

∥∥∥∥∥ WLW
⊤
L∥∥WLW⊤
L

∥∥
F

−M∗

∥∥∥∥∥
F

. (6)

While this metric measures the overall alignment of WL with a simplex ETF, it does not account for
the equinormality and equiangularity of the rows of WL. To address this, we introduce the following
metrics:

NC2Wn =
stdk{∥wk∥2}
avgk{∥wk∥2}

(7)

NC2Wa = avgk ̸=k′

∣∣∣∣〈 wk

∥wk∥2
,

wk′

∥wk′∥2

〉
+

1

K − 1

∣∣∣∣ (8)

where w⊤
k ∈ Rp is the k-th row of WL.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

NC2M - Convergence of Product to Simplex ETF Finally, Zhu et al. (2021); Kothapalli (2023)
proposed a metric that interpolates between NC2 and NC2W: 3

NC2M def.
=

1

K2

∥∥∥∥ WLM

∥WLM∥F
−M∗

∥∥∥∥
F

. (9)

Note that NC2,NC2W → 0 =⇒ NC2M → 0 but the converse does not hold.

NC3 - Convergence to Self-Duality The third property of neural collapse (NC3) describes that the
rows of the last-layer weight align with the column of the class means, that is,∥∥∥∥ WL

∥WL∥F
− M⊤

∥M⊤∥F

∥∥∥∥
F

→ 0;

the corresponding metric is an obvious one Papyan et al. (2020); Garrod & Keating (2024):

NC3 def.
=

1

Kp

∥∥∥∥ WL

∥WL∥F
− M⊤

∥M⊤∥F

∥∥∥∥
F

(10)

NC4 - Simplification of Nearest-Class-Center (NCC) The fourth property of neural collapse
(NC4) describes that the classifier decision boundaries become equivalent to those derived by a
nearest-class-mean classifier, that is,

argmax
k

⟨wk,h⟩ → argmin ∥h− µk∥2

for any test feature h ∈ Rp; hence we can fix a test set of features {htest
n }N

test

n=1 define the metric:

NC4 def.
=

1

N test

N test∑
n=1

1{argmax
k

⟨wk,h
test
n ⟩ = argmin

k

∥∥htest
n − µk

∥∥
2
} (11)

where 1 is the indicator function.

The above NC properties hold if their corresponding metrics approach zero (except for NC4, which
approach one) as the training step t→ ∞. A solution WL,H satisfying these properties is referred
to as an NC solution.

To observe the interpolation between partial and full NC, we introduce a weaker property:

NC0 - Zero Row Sum of Last-Layer Weight This new property describes that the rows of the
last-layer weight WL sums up to zero with the corresponding metric

NC0 def.
=

1

p

∥∥W⊤
L1
∥∥
2
, (12)

Note that NC2W → 0 =⇒ NC0 → 0 but the converse does not hold.

The analogous property for the last-layer features, Zero Column Sum of Last-Layer Features,
holds automatically because the columns of M are centered class means:

K∑
k=1

µ̄k =

K∑
k=1

(µk − µG) = 0.

Thus, NC0 for the last-layer weights already represents a form of duality similar to NC3.

3In the original works, this metric was used to evaluate self-duality. However, in this paper, we decouple the
NC properties to study the effects of implicit biases on each individually.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C ADDITIONAL RELATED WORK

C.1 WEIGHT DECAY AND NEURAL COLLAPSE

Weight Decay has been shown to be essential for NC in prior works, like (Zhu et al., 2021; Pan &
Cao, 2024; Jacot et al., 2024). However, their statements on weight decay are for (quasi-)optimal
solutions in oversimplified models, which ignore the complex interaction between non-convex loss
landscape and optimizers. Please see Appendix C.5 for an example.

C.2 EMPIRICAL STUDIES ON THE EMERGENCE OF NEURAL COLLAPSE

Neural collapse has also been studied beyond the original problem setting, which assumes few
balanced classes as well as noise-free labels. Notably, Wu & Papyan (2024) studied the occurrence
of NC for large language models, which do not satisfy any of the original assumption. Jiang et al.
(2023) studied neural collapse for a large number of classes, while Mouheb et al. (2024) studied the
influence of imbalanced in medical image classification on NC.

C.3 APPLICATIONS OF NEURAL COLLAPSE

The observation of neural collapse (NC) has inspired a growing body of follow-up work that applies
NC metrics across various settings. In the context of out-of-distribution (OOD) detection, Ammar
et al. (2024) propose a novel post-hoc detection method based on the geometric properties of NC,
while Harun et al. (2025) show that explicitly controlling for NC1 can enhance OOD detection
performance. Notably, the latter also claim that AdamW leads to NC, based on empirical results
where NC3 values hover around 0.5 across different models—mirroring the misleading metrics
reported in Table 2. As we demonstrate in the main text, however, this does not indicate true NC.
This discrepancy underscores the need for a more precise and systematic framework for evaluating
NC – one of the central contributions of this work.

In a separate line of inquiry, Liu et al. (2023) study the impact of class imbalance on NC and
propose explicit feature regularization terms to induce NC under imbalanced distributions, resulting
in improved model performance.

C.4 COUPLED WEIGHT DECAY IN THE CONTEXT OF NEURAL COLLAPSE

To the best of our knowledge, no prior work has investigated the role of optimizer choice in the
context of NC. When minimizing the objective in Equation (1) or Equation (13), the weight decay
induced by the L2-regularization parameter λ is coupled with the training loss. However, with the
introduction of AdamW Loshchilov & Hutter (2019), decoupled weight decay has become the default
in many modern optimizers. This paper aims to bridge this gap by systematically examining the
impact of coupled versus decoupled weight decay on the emergence of NC.

C.5 UNCONSTRAINED FEATURE MODEL

The unconstrained feature model (UFM) Mixon et al. (2022); Zhu et al. (2021) is a simplified
theoretical framework commonly used to study neural collapse (NC). In UFM, the last layer feature is
replaced by a trainable matrix H = (hn)

N
n=1, referred to as the unconstrained feature, which mimics

the role of feature extraction layers in deep neural networks (DNN). For analytical simplicity, the
layer following the unconstrained feature is often assumed to be linear W, making UFM a special
case of deep linear networks (DLN):

min
W,H

N∑
n=1

ℓ(Whn,yn) +
λ

2
∥W∥2 + λ

2
∥H∥2, (13)

simplifying the minimization problem in Equation (1). In this paper, the loss ℓ is always assumed to
be the cross-entropy (CE) loss, because it is the standard loss used in multi-classification tasks.

Zhu et al. (2021) has reported positive results on NC using UFM. Informally it holds that:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Theorem C.1 (Theorem 3.1 and 3.2 in Zhu et al. (2021)). Any global optimal solution of UFM is an
NC solution, while all other critical points are strict saddles. As a result, for random initialization, it
is almost surely that gradient descent finds an NC solution.

Zhu et al. (2021) also experimented NC on realistic models with optimizers like SGD and Adam,
concluding the universality of NC across different optimizers.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D EXPERIMENT

The experiments of this work, particularly regarding computing the NC metrics, were based on
code in Wu & Papyan (2024), which can be found at Github repository https://github.
com/rhubarbwu/neural-collapse, which was published under the MIT license. The
implementation of VGG9 was based on Code taken from https://github.com/jerett/
PyTorch-CIFAR10. The author granted explicit permission to use the code.
An overview of the experiments that were conducted in this work can be found in Table 3, which
resulted in a total number of 36 different experimental settings of (architecture × optimizer × dataset)
combinations. Each optimizer optimizer was trained using three different learning rates, six different
values of momentum and six different values of weight decay, resulting in 108 training runs per
optimizer and 3.888 training runs in total. Some of the runs diverged or only achieved suboptimal
training performance, which were then discarded. In total we had 2.500 “valid” training runs, which
reached at least 99% training accuracy, which were considered for for the subsequent data analysis.

Table 3: Overview of experiments conducted in this work.

Architectures Optimizers Datasets

ResNet9, VGG9 SGD, SGDW, Adam,
AdamW, Signum, SignumW MNIST, FashionMNIST, CIFAR10

D.1 DETAILS ON CHOICE OF HYPERPARAMETERS

Every model was trained over 200 epochs with a batch size of 128. The learning rate λ was chosen to
be in λ ∈ {0.001, 0.01, 0.0679} for SGD and SGDW (the last learning rate was also reported in the
original work by Papyan et al. (2020)) and λ ∈ {0.001, 0.005, 0.01} for Adam, AdamW, Signum, and
SignumW because most trainings diverged with larger learning rates during initial experimental train-
ing runs. The learning rate was decayed by a factor of 10 after one third and two third of training as has
been done in original work by Papyan et al. (2020). Momentum µ (or β1 for Adam, AdamW, Signum,
and SignumW) was chosen to be in the range µ ∈ {0, 0.5, 0.7, 0.9, 0.95, 0.98} for all optimizers and
weight decay WD was chosen to be in the range WD ∈ {0, 5e−5, 5e−4, 5e−3, 0.05, 0.5} for SGD,
SGDW, Adam, and Signum and WD ∈ {0, 5e−4, 0.05, 0.5, 5, 10} for SignumW and AdamW. The
main motivation for using AdamW and Signum W with much larger weight decay values was based
on the hypothesis that the effect of weight decay is reduced due to decoupling. The β2 parameter in
Adam and AdamW was left to its default value of 0.999.

D.2 DETAILS ON COMPUTATIONAL RESOURCES

All experiments, including preliminary experiments as well as the final 3.888 experiments were
run on 5 NVIDIA RTX4090 GPUs with 24 GB RAM. Since the models and the batch size was
comparably small, actually only 3 GB GPU memory per training was required. Each training took
between 8 and 16 minutes, leading to a total of 500-1000 GPU hours of training.

Table 4: Hyperparameters for each optimizer to achieve the smallest NC3 metric shown in Table 2.

Optimizer Learning rate Momentum/β1 Weight decay

SGD 0.01 0.9 0.05
SGDW 0.0679 0.5 0.05
Adam 0.005 0.98 0.05
AdamW 0.005 0.95 5
Signum 0.001 0.9 0.05
SignumW 0.001 0.98 10

17

https://github.com/rhubarbwu/neural-collapse
https://github.com/rhubarbwu/neural-collapse
https://github.com/jerett/PyTorch-CIFAR10
https://github.com/jerett/PyTorch-CIFAR10


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Summary of regression fit between NC3 and NC0

Experiment n β̂ SE(β̂) t-value p-value 95 % CI R2/ Adj R2 F-statistic

LR=0.001 170 0.1903 0.008 24.262 0.000 [0.175, 0.206] 0.778 / 0.777 588.6
LR=0.005 74 0.2017 0.012 16.252 0.000 [0.177, 0.226] 0.786 / 0.783 264.1
LR=0.01 114 0.1439 0.007 19.892 0.000 [0.13, 0.158] 0.779 / 0.777 395.7
LR=0.0679 41 0.1771 0.012 14.367 0.000 [0.152, 0.202] 0.841 / 0.837 206.4
all 399 0.1582 0.005 32.760 0.000 [0.149, 0.168] 0.730 / 0.729 1073

D.3 DETAILS ON REGRESSION FIT BETWEEN NC3 AND NC0

In this subsection we provide additional details regarding the regression fit between NC3 and NC0.
For the sake of completeness, we show the regression fit in Figure 9 again below. In addition, we
have also computed a regression fit across all training runs, which converged, and all learning rates,
shown in Figure 10. A summary of the regression fit can be found in Table 5, showing that more than
70% of the variation in NC3 can be explained by NC0.

10 2 102

NC0

0

1

NC
3

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 9: Figure 2 shown again for ease of reading. NC0 weakly correlates with NC3 across different
optimizers and learning rates (here shown for ResNet9 trained on FashionMNIST).

10 3 100 103

NC0

0.0

0.5

1.0

NC
3

AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 10: NC0 correlates with NC3 even when considered across all learning rates together (here
shown for ResNet9 trained on FashionMNIST).

D.4 ADDITIONAL EXPERIMENTAL RESULTS

D.4.1 ABLATION STUDY ON TRAINING EPOCHS

As Neural collapse occurs at the terminal phase of training, it is natural to control for the effect that
the number of training epochs has on the final NC metrics. After all, it is possible that the emergence
of NC occurs at different speeds for different optimizers.

For this reason, we conducted two ablation studies, in which we prolong the training in two settings:
We train a ResNet9 in FashionMNIST, which corresponds to the setting which is shown in Figure 1,
for 2000 epochs with LR=0.0005 and momentum=0.9 for both optimizers. We note that in this setting,
AdamW reaches 100% training accuracy already after around 700 epochs for all training runs with
WD ≤ 0.05. The results can be found in Figure 13 While this leads to some improvement of the final

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

10 4 10 2 100 102 104

NC0

10 2

10 1

100

101

102

103

NC
1

lr = 0.001

10 4 10 2 100 102 104

NC0

lr = 0.005

10 4 10 2 100 102 104

NC0

lr = 0.01

10 4 10 2 100 102 104

NC0

lr = 0.0679

optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 11: NC0 vs. NC1 across different optimizers and learning rates (here shown for ResNet9
trained on FashionMNIST).

10 4 10 2 100 102 104

NC0

0.2

0.4

0.6

0.8

1.0

1.2

NC
2

lr = 0.001

10 4 10 2 100 102 104

NC0

lr = 0.005

10 4 10 2 100 102 104

NC0

lr = 0.01

10 4 10 2 100 102 104

NC0

lr = 0.0679

optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 12: NC0 vs. NC2 across different optimizers and learning rates (here shown for ResNet9
trained on FashionMNIST).

NC1 and NC2 metric for AdamW for some values of weight decay, this has barely an effect on NC0
and NC3.

Furthermore we extend training to up to 2000 epochs for selected runs from Figure 4. Concretely,
these runs trained with a LR of 0.001 and the following combination of WD and momentum (mom,
WD) ∈ {(0, 0), (0.97, 5e−5), (0, 5e−4), (0.9, 5e−4), (0.9, 0), (0.95, 0.0025)}, which corresponds to
different parts in the heatmap. The results can be found in Figure 14. While one can observe a
general decrease of the NC metrics in all cases, the overall trend for increasing weight decay remains
unchanged. Both figures indicate that training the models considered in this work for 200 epochs is
sufficient to draw the conclusions that we make about the necessity of coupled WD for the emergence
of full NC.

0 10
4

10
3

10
2

10
1

10
0

weight_decay

10
1

10
0

10
1

N
C

0

0 10
4

10
3

10
2

10
1

10
0

weight_decay

0.4

0.6

0.8

1.0

N
C

3

0 10
4

10
3

10
2

10
1

10
0

weight_decay

0.1

0.2

0.3

N
C

1

0 10
4

10
3

10
2

10
1

10
0

weight_decay

0.2

0.4

0.6

0.8

N
C

2

optimizer AdamW Adam epochs 200 2000

Figure 13: ResNet9 trained on FashionMNIST with Adam and AdamW for more epochs.

D.4.2 UNCONSTRAINED FEATURE MODEL

We also validated our results on the unconstrained feature model (UFM) (see Appendix C.5 for
reference) with width d = 512, K = 10 classes and N = 10.000 samples. The UFM was trained
with Adam, AdamW and SGDMW with momentum=0.9 and varying lr∈ {0.1, 0.3, 0.5, 1.0} and
weight decay ranging from 0.0 to 0.05. We then filtered the results, by only including models which
achieved 100% training accuracy. The results in can be found in Figure 15. The plots show that the
NC metrics, in particular NC0 and NC3 remain at least one magnitude of order larger than the same
metrics for Adam and SGDMW, highlighting that AdamW converges to a different solution than
Adam, which is not NC.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 10
4

10
3

10
2

weight_decay

10
3

10
1

N
C

0

0 10
4

10
3

10
2

weight_decay

0.2

0.4

0.6

N
C

3

0 10
4

10
3

10
2

weight_decay

0.05

0.10

0.15

N
C

1

0 10
4

10
3

10
2

weight_decay

0.2

0.4

0.6

N
C

2

epochs 200 2000 optimizer SGDMW

Figure 14: Selected runs from Figure 4 trained for more number of epochs.

0 10
5

10
4

10
3

10
2

10
1

weight_decay

10
3

10
1

10
1

N
C

0

0 10
5

10
4

10
3

10
2

10
1

weight_decay

10
3

10
2

10
1

10
0

N
C

3

0 10
5

10
4

10
3

10
2

10
1

weight_decay

10
3

10
2

10
1

10
0

10
1

N
C

1

0 10
5

10
4

10
3

10
2

10
1

weight_decay

10
3

10
2

10
1

10
0

N
C

2

optimizer
AdamW
Adam
SGDMW
lr
0.1
0.3
0.5
1.0

Figure 15: NC0 (left), NC3 (center left), NC1 (center right), and NC2 (right) for increasing weight
decay.

D.4.3 MISSING PLOT: SINGULAR VALUE OF W AND M WITH SIGNUMW

The missing plot of the evolution of the singular values of the last-layer weights W and feature
matrix M can be found in Figure 16.

0 50 100 150 200
Epoch

0

200

400

600

Si
ng

ul
ar

 v
al

ue
s o

f W

SignumW

0 50 100 150 200
Epoch

0

100

200

Si
ng

ul
ar

 v
al

ue
s o

f M SignumW

Figure 16: Singular values of last-layer weights W (left) and feature matrix M (right) throughout
training for SignumW on ResNet9 trained on FashionMNIST. Dotted line corresponds do smallest
singular value and full line corresponds to the average singular value excluding the smallest singular
value.

D.4.4 COUPLED VS. DECOUPLED DECAY ON OTHER DATASETS

The comparison between coupled and decoupled decay on SGD, Adam, and Signum on other
combinations of (architecture × dataset) can be found in the following pages below, which confirm
our observations made earlier on the ResNet9 trained on FashionMNIST. While NC0 (visually)
correlates well with NC3, it correlates considerably less with NC1 and NC2, although a general trend
is still visible across all experiments.

ResNet50 on ImageNet1K We also conducted experiments on a ResNet50 trained on ImageNet1K
Deng et al. (2009). The model was trained with Adam and AdamW for 90 epochs. We left out other
optimizers due to limited resources. For both optimizers the learning rate was chosen as 0.0003
with a step-wise decay after 1/3 and 2/3 of training, momentum was chosen from {0.0, 0.5, 0.9} and
weight decay was chosen from {0.0, 1e−5, 1e−4, 1e−3}. The resulting NC metrics can be found in
Figure 17 and Figure 18, and confirm the conclusion that AdamW does not have full NC emergence.

VGG9 on FashionMNIST The comparison between coupled and decoupled weight decay on SGD,
Adam, and Signum on a VGG9 trained on FashionMNIST can be found in Figure 19 and Figure 20.
The relation between NC0 and NC3 can be found in Figure 23, between NC0 and NC1 in Figure 21,
and between NC0 and NC2 in Figure 22.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 10 5 10 4 10 3

Weight decay

102

NC
0

optimizer
AdamW
Adam

0 10 5 10 4 10 3

Weight decay

0.5

0.6

0.7

0.8

0.9

1.0

NC
3

optimizer
AdamW
Adam

Figure 17: NC0 (left) and NC3 (right) metrics plotted against weight decay on a ResNet50 trained on
ImageNet1K for Adam and AdamW. Shaded area refers to one standard deviation across all trainings
run with corresponding optimizer.

0 10 5 10 4 10 3

Weight decay

1

2

3

4

5

6

NC
1

optimizer
AdamW
Adam

0 10 5 10 4 10 3

Weight decay

1.28

1.29

1.30

1.31

1.32

1.33

NC
2

AdamW Adam

Figure 18: NC1 (left) and NC2 (right) metrics plotted against weight decay on a ResNet50 trained on
ImageNet1K for Adam and AdamW. Shaded area refers to one standard deviation across all trainings
run with corresponding optimizer.

ResNet9 on Cifar10 The comparison between coupled and decoupled weight decay on SGD,
Adam, and Signum on a ResNet9 trained on Cifar10 can be found in Figure 24 and Figure 25. The
relation between NC0 and NC3 can be found in Figure 28, between NC0 and NC1 in Figure 26, and
between NC0 and NC2 in Figure 27.

VGG9 on Cifar10 The comparison between coupled and decoupled weight decay on SGD, Adam,
and Signum can be found in Figure 29 and Figure 30. The relation between NC0 and NC3 can be
found in Figure 33, between NC0 and NC1 in Figure 31, and between NC0 and NC2 in Figure 32.

ResNet9 on MNIST The comparison between coupled and decoupled weight decay on SGD,
Adam, and Signum on a ResNet9 trained on MNIST can be found in Figure 34 and Figure 35. The
relation between NC0 and NC3 can be found in Figure 38, between NC0 and NC1 in Figure 36, and
between NC0 and NC2 in Figure 37.

VGG9 on MNIST The comparison between coupled and decoupled weight decay on SGD, Adam,
and Signum on a VGG9 trained on MNIST can be found in Figure 39 and Figure 40. The relation
between NC0 and NC3 can be found in Figure 43, between NC0 and NC1 in Figure 41, and between
NC0 and NC2 in Figure 42.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 10 5 10 4 10 3 10 2 10 1 100 101

Weight decay

10 1

100

101

NC
0

AdamW
Adam

0 10 5 10 4 10 3 10 2 10 1 100 101

Weight decay

0.2

0.4

0.6

0.8

1.0

NC
3

optimizer
AdamW
Adam

Figure 19: NC0 (left) and NC3 (right) metrics plotted against weight decay on a VGG9 trained
on FashionMNIST for Adam and AdamW. Shaded area refers to one standard deviation across all
trainings run with corresponding optimizer.

0 10 5 10 4 10 3 10 2 10 1

Weight decay

100

101

102

103

104

NC
0 optimizer

SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.4

0.6

0.8

1.0

1.2

1.4

NC
3 optimizer

SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

10 5

10 4

10 3

10 2

10 1

100

NC
0

SGDW
SGD

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.2

0.4

0.6

0.8

NC
3

optimizer
SGDW
SGD

Figure 20: NC0 and NC3 metrics plotted against weight decay on a VGG9 trained on FashionMNIST
for Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one
standard deviation across all trainings run with corresponding optimizer.

D.4.5 PRELIMINARY EXPERIMENTAL RESULTS ON VISION TRANSFORMER

We have also conducted preliminary experiments pretraining small Vision Transformers (ViT) on
Cifar10 from scratch. Given that training ViTs is computationally much more expensive given the
larger size of the model, we had to limit ourselves to a more restricted number of experiments.
Specifically, we chose to train the ViT with Adam, AdamW, and SGD for 200 epochs with a
batch size of 512 with momentum µ in the range µ ∈ {0, 0.8, 0.9, 0.95} and weight decay WD
∈ {0, 1e−5, 1e−4, 5e−4, 1e−3, 0.05, 0.5} for Adam and SGD and WD ∈ {0, 1e−4, 0.05, 0.5, 1, 2, 4}
for AdamW. We discarded all runs, which did not achieve a training accuracy of at least 50%. This
mainly corresponded to training runs of SGD and Adam either with momentum=0 or WD≥ 0.05.

The ViT implementation is based on code from https://github.com/tintn/
vision-transformer-from-scratch/tree/main, which is published under the
MIT license. Specifically, the transformer model was chosen with a hidden dimension of 512, 6
hidden layers, and 8 attention heads, with no dropout applied.

Compared to the training procedure used in other settings, we employ a cosine-decay learning rate
schedule with warm-up, where 5% of the total training steps are allocated to warm-up, and the base
learning rate is set to 1 × 10−3. Weight decay is applied to all layers except for LayerNorm and
biases, which is standard practice.

The highest final test accuracy across all trainings was achieved by AdamW (β1 = 0.95,WD = 0.5)
with 83.67%, with a final test loss of 0.895. Notably, higher accuracy levels can be attained by
increasing the network size and applying data augmentation or by using a pre-trained model as in
Ammar et al. (2024). However, to ensure consistency with the experiments in the main study, we
do not perform data augmentation due to limited computational resources. This likely explains the
relatively lower test accuracy. Investigating the impact of data augmentation on the convergence to
NC remains an interesting avenue for future work.

While we observe the general trend of decreasing NC metrics with increasing values of weight decay
for SGD (Figure 45a), we note that in the case of ViTs the NC0 metric for both Adam and AdamW
first increases before decreasing (Figure 45b, left), while the NC3 metric for both Adam and AdamW
has a U-shape (Figure 45b, right). We also note that the ViT is much more sensitive to the choice of

22

https://github.com/tintn/vision-transformer-from-scratch/tree/main
https://github.com/tintn/vision-transformer-from-scratch/tree/main


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

10 2 102

NC0

10 2

10 1

100

NC
1

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 21: NC0 vs. NC1 on VGG9 trained on FashionMNIST. Note that the x-axis is plotted in
log-scale.

10 2 102

NC0

0.5

1.0

NC
2

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 22: NC0 vs. NC2 on VGG9 trained on FashionMNIST. Note that the x-axis is plotted in
log-scale.

weight decay and the training and validation accuracy degrades quickly due to overregularization, as
can be seen in Figure 45c. A further investigation of these observations is left for future work.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

10 2 102

NC0

0.0

0.5

1.0
NC

3

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 23: NC0 vs. NC3 on VGG9 trained on FashionMNIST. Note that the x-axis is plotted in
log-scale.

0 10 5 10 4 10 3 10 2 10 1

Weight decay

101

NC
0

AdamW
Adam

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.5

0.6

0.7

0.8

NC
3

optimizer
AdamW
Adam

Figure 24: NC0 (left) and NC3 (right) metrics plotted against weight decay on a ResNet9 trained on
Cifar10 for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run
with corresponding optimizer.

0 10 5 10 4 10 3 10 2 10 1

Weight decay

102

103

104

NC
0

SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.8

0.9

1.0

1.1

1.2

1.3

1.4

NC
3

optimizer
SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

10 5

10 4

10 3

10 2

10 1

100

NC
0

SGDW
SGD

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.2

0.4

0.6

0.8

NC
3

optimizer
SGDW
SGD

Figure 25: NC0 and NC3 metrics plotted against weight decay on a ResNet9 trained on Cifar10
for Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one
standard deviation across all trainings run with corresponding optimizer.

10 2 102

NC0

10 1

100

NC
1

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 26: NC0 vs. NC1 on ResNet9 trained on Cifar10. Note that the x-axis is plotted in log-scale.

10 2 102

NC0

0.5

1.0

NC
2

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 27: NC0 vs. NC2 on ResNet9 trained on Cifar10. Note that the x-axis is plotted in log-scale.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

10 2 102

NC0

0.5

1.0
NC

3

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 28: NC0 vs. NC3 on ResNet9 trained on Cifar10. Note that the x-axis is plotted in log-scale.

0 10 5 10 4 10 3 10 2 10 1

Weight decay

101

NC
0

AdamW
Adam

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.3

0.4

0.5

0.6

0.7

0.8

0.9

NC
3

optimizer
AdamW
Adam

Figure 29: NC0 (left) and NC3 (right) metrics plotted against weight decay on a VGG9 trained on
Cifar10 for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run
with corresponding optimizer.

0 10 5 10 4 10 3 10 2 10 1

Weight decay

102

103

104

NC
0

SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

NC
3

optimizer
SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

10 5

10 4

10 3

10 2

10 1

100

NC
0

SGDW
SGD

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.2

0.4

0.6

0.8

NC
3

optimizer
SGDW
SGD

Figure 30: NC0 and NC3 metrics plotted against weight decay on a VGG9 trained on Cifar10 for
Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one standard
deviation across all trainings run with corresponding optimizer.

10 2 102

NC0

100

102

NC
1

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 31: NC0 vs. NC1 on VGG9 trained on Cifar10. Note that the x-axis is plotted in log-scale.

10 2 102

NC0

0.5

1.0

NC
2

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 32: NC0 vs. NC2 on VGG9 trained on Cifar10. Note that the x-axis is plotted in log-scale.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

10 2 102

NC0
0.0

0.5

1.0
NC

3

lr = 0.001

10 2 102

NC0

lr = 0.005

10 2 102

NC0

lr = 0.01

10 2 102

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 33: NC0 vs. NC3 on VGG9 trained on Cifar10. Note that the x-axis is plotted in log-scale.

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

10 2

10 1

100

101

NC
0

optimizer
AdamW
Adam

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

0.2

0.4

0.6

0.8

NC
3

optimizer
AdamW
Adam

Figure 34: NC0 (left) and NC3 (right) metrics plotted against weight decay on a ResNet9 trained on
MNIST for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run
with corresponding optimizer.

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

10 1

100

101

102

103

104

NC
0 optimizer

SignumW
Signum

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

0.2

0.4

0.6

0.8

1.0

1.2

1.4

NC
3 optimizer

SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

10 5

10 4

10 3

10 2

10 1

100

NC
0

SGDW
SGD

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.2

0.4

0.6

0.8

NC
3

optimizer
SGDW
SGD

Figure 35: NC0 and NC3 metrics plotted against weight decay on a ResNet9 trained on MNIST
for Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one
standard deviation across all trainings run with corresponding optimizer.

10 2 103

NC0

10 2

10 1

100

NC
1

lr = 0.001

10 2 103

NC0

lr = 0.005

10 2 103

NC0

lr = 0.01

10 2 103

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 36: NC0 vs. NC1 on ResNet9 trained on MNIST. Note that the x-axis is plotted in log-scale.

10 2 103

NC0

0.0

0.5

1.0

NC
2

lr = 0.001

10 2 103

NC0

lr = 0.005

10 2 103

NC0

lr = 0.01

10 2 103

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 37: NC0 vs. NC2 on ResNet9 trained on MNIST. Note that the x-axis is plotted in log-scale.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

10 2 103

NC0

0

1
NC

3

lr = 0.001

10 2 103

NC0

lr = 0.005

10 2 103

NC0

lr = 0.01

10 2 103

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 38: NC0 vs. NC3 on ResNet9 trained on MNIST. Note that the x-axis is plotted in log-scale.

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

10 2

10 1

100

101

NC
0

optimizer
AdamW
Adam

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

0.0

0.2

0.4

0.6

0.8

1.0

NC
3

optimizer
AdamW
Adam

Figure 39: NC0 (left) and NC3 (right) metrics plotted against weight decay on a VGG9 trained on
MNIST for Adam and AdamW. Shaded area refers to one standard deviation across all trainings run
with corresponding optimizer.

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

10 1

100

101

102

103

104

NC
0 optimizer

SignumW
Signum

010 5 10 4 10 3 10 2 10 1 100 101

Weight decay

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

NC
3 optimizer

SignumW
Signum

0 10 5 10 4 10 3 10 2 10 1

Weight decay

10 5

10 4

10 3

10 2

10 1

100

NC
0

SGDW
SGD

0 10 5 10 4 10 3 10 2 10 1

Weight decay

0.0

0.2

0.4

0.6

0.8

NC
3

optimizer
SGDW
SGD

Figure 40: NC0 and NC3 metrics plotted against weight decay on a VGG9 trained on MNIST for
Signum and SignumW (left side) and SGD and SGDW (right side). Shaded area refers to one standard
deviation across all trainings run with corresponding optimizer.

10 2 103

NC0

10 1

101

NC
1

lr = 0.001

10 2 103

NC0

lr = 0.005

10 2 103

NC0

lr = 0.01

10 2 103

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 41: NC0 vs. NC1 on VGG9 trained on MNIST. Note that the x-axis is plotted in log-scale.

10 2 103

NC0

0.0

0.5

1.0

NC
2

lr = 0.001

10 2 103

NC0

lr = 0.005

10 2 103

NC0

lr = 0.01

10 2 103

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 42: NC0 vs. NC2 on VGG9 trained on MNIST. Note that the x-axis is plotted in log-scale.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

10 2 103

NC0

0

1
NC

3

lr = 0.001

10 2 103

NC0

lr = 0.005

10 2 103

NC0

lr = 0.01

10 2 103

NC0

lr = 0.0679 optimizer
AdamW
Adam
SGDW
SGD
SignumW
Signum

Figure 43: NC0 vs. NC3 on VGG9 trained on MNIST. Note that the x-axis is plotted in log-scale.

10 1 101 103

NC1

0.8

0.9

1.0

NC
4

0.25 0.50 0.75 1.00
NC2

0.8

0.9

1.0

NC
4

0.5 1.0
NC3

0.8

0.9

1.0

NC
4

AdamW Adam SGDW SGD SignumW Signum

Figure 44: NC4 is largely uncorrelated with NC1-3 across different optimizers and learning rates.

0 10 4 10 3

weight_decay

1.2

1.3

1.4

NC
0

optimizer
SGD

0 10 4 10 3

weight_decay

0.6

0.7

0.8
NC

3
optimizer

SGD

(a) NC0 (left) and NC3 (right) metric for varying values of weight decay on a ViT trained with SGD on
Cifar10.

0 10 5 10 4 10 3 10 2 10 1 100

weight_decay

1

2

3

4

NC
0

optimizer
AdamW
Adam

0 10 5 10 4 10 3 10 2 10 1 100

weight_decay

0.6

0.8

1.0

NC
3

(b) NC0 (left) and NC3 (right) metric for varying values of weight decay on a ViT trained with Adam and
AdamW on Cifar10.

0 10 5 10 4 10 3 10 2 10 1 100

weight_decay

0.6

0.7

0.8

0.9

1.0

Tr
ai

n 
ac

cu
ra

cy

0 10 5 10 4 10 3 10 2 10 1 100

weight_decay

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n 
ac

cu
ra

cy

AdamW SGD Adam

(c) Training accuracy (left) and validation accuracy (right) for varying values of weight decay on a ViT
trained on Cifar10.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E PROOFS

In this section, we will present the proof which is omitted in the main text.
Theorem E.1 (NC0 decay under momentum and weight decay). Assume a model of the form
f(W, θ, x) = Whθ(x) is trained using cross-entropy loss with stochastic gradient descent (SGD)
and momentum β ∈ [0, 1), weight decay λ ∈ [0, 1), and learning rate η > 0 sufficiently small. The
last-layer weights Wt are updated according to:

Vt+1 = βVt +∇WtLCE + λWt,

Wt+1 = Wt − ηVt+1.
(14)

Let αt :=
1
K ∥W⊤

t 1∥22 denote the NC0 metric. Suppose the condition 2λ
log β−1 < 1 holds. Fix a finite

time horizon T > 0 such that ηt ≤ T .

Then there exists an absolute constant C > 1 such that

αt ≤

C exp

(
− ληt

log β−1

)
+O(η) if β > 0,

C(1− λη)t if β = 0,

Proof. Assume β > 0. We start from Lemma E.5: Then we have the expression:
1

η
(αt+1 − αt) = −2βωt − 2γt − 2λαt + ηνt+1

where ωt
def.
= ⟨VtW

⊤
t , Ĵ⟩, γt

def.
= ⟨GtW

⊤
t , Ĵ⟩, νt

def.
= ⟨VtV

⊤
t , Ĵ⟩.

We assume that Gt = ∇LCE(Wt) and by Lemma E.4, ⟨GtA
⊤, Ĵ⟩ = ⟨AG⊤

t , Ĵ⟩ = 0 for any matrix
A. We derive a recursive formula for ωt = ⟨VtW

⊤
t , Ĵ⟩:

ωt = ⟨(βVt−1 +Gt−1 + λWt−1)(Wt−1 − ηVt)
⊤, Ĵ⟩

= β⟨Vt−1W
⊤
t−1, Ĵ⟩+ λ⟨Wt−1W

⊤
t−1, Ĵ⟩+ ⟨(−βηVt−1 + ληWt−1)V

⊤
t , Ĵ⟩

= βωt−1 + λαt−1 + ⟨(−βηVt−1 + ληWt−1)(βVt−1 +Gt−1 + λWt−1)
⊤, Ĵ⟩

= βωt−1 + λαt−1 − βη(βνt−1 + λωt−1) + λη(βωt−1 + λαt−1)

= βωt−1 + λ(1 + λη)αt−1 − β2ηνt−1.

(15)

By extending Eq. (15) recursively for ωτ for each τ = t− 1, t− 2, ..., 1, we have

ωt = λ(1 + λη)

t−1∑
τ=0

βt−1−τατ − β2η

t−1∑
τ=1

βt−1−τντ . (16)

Next, we derive a recursive formula for νt+1 = ⟨Vt+1V
⊤
t+1, Ĵ⟩:

νt+1 = ⟨(βVt +Gt + λWt)(βVt +Gt + λWt)
⊤, Ĵ⟩ = β2νt + 2βλωt + λ2αt (17)

By Eq. (16) and (17) and the facts that αt, νt ≥ 0, β, λ, η ∈ (0, 1), we bound Eq. (23) from above
1

η
(αt+1 − αt) = −2β(1− λη)ωt − (2λ− λ2η)αt + β2ηνt

= −2β(1− λη)

(
λ(1 + λη)

t−1∑
τ=0

βt−1−τατ − β2η

t−1∑
τ=1

βt−1−τντ

)
− (2λ− λ2η)αt + β2ηνt

≤ −2

(
λ

t−1∑
τ=0

βt−τατ − β2η

t−1∑
τ=1

βt−τντ

)
− λαt + β2ηνt

= −2λ

t−1∑
τ=0

βt−τατ + 2β2η

t−1∑
τ=1

βt−τντ − λαt + β2ηνt

≤ −λ
t∑

τ=0

βt−τατ + 2β2η

t∑
τ=0

βt−τντ . (18)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

By abuse of notation, denote by α(t) with α(0) = α0 the gradient flow of αt by setting α̇(t) =
limη→0

1
η (αt+1 − αt), then we have

α̇(t) ≤ −λ
(∫ t

0

βt−τα(τ)dτ

)
where the residual term 2β2η

∑t
τ=0 β

t−τντ vanishes as η → 0. By Grönwall’s Lemma, solving an
ODE with Laplacian using Lemma E.6, given that 2λ

log β−1 < 1, we have

α(t) ≤ Cα0 exp
(
− λ

log β−1 t
)

(19)

for some absolute constant C > 1.

Finally, by approximation of Euler discretization (see Theorem 7.5 in Hairer et al. (1993)), we have

|αt − α(t)| = O (η) (20)

as long as ηt ≤ T . Replacing the leading constant coefficient by larger constant C if necessary, we
obtain the claim. For the case where β = 0, Equation (18) is reduced to: 1

η (αt+1 − αt) ≤ −λαt.
Standard argument would lead to the claimed result.

Note that the above Theorem holds for any model f(W, θ, x) = Whθ(x) with last layer as linear
classifier and with any backbone hθ parameterized by θ.

However, the dynamics of Adam is more complicated, hence we further restrict the setting to SignGD,
a special case of Adam, training a UFM.

Here, we assume a balanced dataset with only one element in each class k ∈ [K]. It is obvious to
extend our result to multiple elements per class. Hence the total input N = K is equal to the number
of classes and the UFM loss can be written as

LCE(WH, I) =

N∑
n=1

LCE(Whn, en),

where we can decouple the regularization λ
2 ∥W∥2 + λ

2 ∥H∥2 into weight decay.

By Zhu et al. (2021), we know that the UFM

min
W,H

N∑
n=1

LCE(Whn,yn) +
λ

2
∥W∥2 + λ

2
∥H∥2,

has unique global minimum W,H and no strict saddle points. In particular, H = UM∗ for some
orthogonal matrix U ∈ O(P ). To further simplify the analysis, we assume that P = N = K with
H = M∗. Then we have the followings:

Theorem E.2. Consider sign GD with (decoupled) weight decay λ > 0 and step size η > 0 on the
UFM loss

LCE(WH, I) =

N∑
n=1

LCE(Whn, en),

where the feature H = M∗ is fixed to an NC solution and only the weight W is trained:

Wt+1 = Wt − η(sign(∇Wt
LCE) + λWt)

with initialization W0 = 0 ∈ RK×K . We define the covariance matrix Ct = WtW
⊤
t and the scalar

αt = ⟨Ct, Ĵ⟩F where Ĵ = 1
K11⊤. Then we have

lim
t→∞

αt =
(K − 2)2

λ2
.

In particular, αt does not vanish as t→ ∞.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Proof. By Lemma E.4, we have ∇LCE(W) = 1
N (S − Y)H⊤ = 1

N (S − I) · 1√
K−1

(I − 1
KJ) =

1
N

√
K−1

(softmax(WH)− I) since (softmax(WH)− I)J = 0. Since softmax has range between 0
and 1, we have

sign (∇LCE(WH)) = J− 2I,

that is, the signed gradient is −1 on the diagonal and +1 elsewhere. Note that this holds for all
W ∈ RK×K . The sign GD updates can hence be written as:

Wt+1 = Wt − η
[

J− 2I︸ ︷︷ ︸
sign(∇WtLCE)

+λWt

]
. (21)

Since sign
(
∇LCE(Wt)

)
is constant, the dynamics collapse onto a scalar wt:

Wt = wt

(
J− 2I

)
,

which has the following recursive form:

wt+1 = (1− ηλ)wt − η, w0 = 0.

Solve it and obtain
wt = − 1

λ

[
1− (1− ηλ)t

]
.

Recall the definition:

Ct = WtW
⊤
t Ĵ =

1

K
11⊤and αt = ⟨Ct, Ĵ⟩F .

Since ∥
(
J− 2I

)⊤
1∥2 = (K − 2)2K and the factor of 1/K gives (K − 2)2, we have

αt = (K − 2)2w2
t

Therefore

αt = (K − 2)2
[
− 1

λ

(
1− (1− ηλ)t

)]2
=

(K − 2)2

λ2

[
1−

(
1− ηλ

)t]2
.

As t→ ∞,
(
1− ηλ

)t → 0, so

α∞ =
(K − 2)2

λ2
.

Theorem E.3. Consider sign GD with (coupled) weight decay λ > 0 and step size η > 0 on the
UFM loss

LCE(WH, I) =

N∑
n=1

LCE(Whn, en),

where the feature H = M∗ is fixed to an NC solution and only the weight W is trained :

Wt+1 = Wt − η(sign(∇WtLCE + λWt))

with initialization W0 = 0 ∈ RK×K . We define the covariance matrix Ct = WtW
⊤
t and the scalar

αt = ⟨Ct, Ĵ⟩F where Ĵ = 1
K11⊤. Then there exists some T2, T1 > 1 such that α increases for

t ∈ [1, T1], decreases for t ∈ [T1 + 1, T2] and oscillates with range O
(
d3η2

)
for t > T2 + 1.

Proof. Throughout the training, we apply mathematical induction on the structure of Wt: for all t,
there exists at, bt ≥ 0 such that

Wt = (at + bt)I− btJ.

Note that for t = 0, the signed gradient is the same as in the case with decoupled weight decay in
Theorem 3.3:

sign(∇WtLCE + λWt) = sign(∇W0LCE) = sign(softmax(0)− I) = J− 2I.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Hence, W1 = η(2I− J) where a1 = b1 = η. Following the same argument, as long as the coupled
weight decay λWt does not flip sign of the gradient, that is, for all j ̸= k,

(softmax(Wt)− I)jk + λWjk > 0, (softmax(Wt)− I)jj + λWjj < 0, (22)

the sign gradient with coupled weight decay is still J− 2I, and thus

Wt+1 = (t+ 1)η(2I− J),

satisfying the induction hypothesis on Wt with at = bt = ηt, as long as Equation (22) holds. Hence
for all t < T1, where T1 ∈ N is chosen retroactively such that the conditions in Equation (22) hold,
the conditions can be rewritten as:

e−bt

eat + (d− 1)e−bt
− λbt > 0,

−(d− 1)e−bt

eat + (d− 1)e−bt
+ λat < 0.

Write ϕ(t) = e−bt

eat+(d−1)e−bt
= 1

e(at+bt)+(d−1)
, the conditions in Equation (22) can be written as:

ϕ(t) > λbt (d− 1)ϕ(t) > λat.

In particular, for all t < T1, at = bt = ηt and we have ϕ(t) = 1
e2ηt+(d−1) . Since ϕ(t) > 0 decreases

with t and ληt increases with t > 0 starting from zero, hence a minimum T1 ∈ N must exist such
that the first condition will break earlier than the second one:

ϕ(T1) =
1

e2ηT1 + (d− 1)
< ληT1 < (d− 1)ϕ(T1).

In which case, we have sign(∇WT1
LCE + λWT1) = −J and thus

WT1+1 = T1η(2I− J) + ηJ = (at + bt)I− btJ,

satisfying the induction hypothesis on WT1+1 with

at = ηt, for t ≤ T1 + 1; bt =

{
ηt for t ≤ T1
η(T1 − 1), for t = T1 + 1

.

In particular, aT1+1 + bT1+1 = 2ηT1 so ϕ(T1 + 1) = ϕ(T1). However, by the choice of T1,

ϕ(T1 + 1) = ϕ(T1) > λη(T1 − 1)

and hence (∇WT1+1
LCE + λWT1+1) = J− 2I, resulting in aT1+2 = η(T1 + 2) and bT1+2 = ηT1.

Hence ϕ(T1 +2) < ϕ(T1 +1) = ϕ(T1) < ληT1 = λbT1+2, breaking the first condition and we have
(∇WT1+2

LCE + λWT1+2) = −J. Hence as long as the second condition holds, we have

at = ηt, for t ≤ T1 + 1; bt =


ηt for t ≤ T1
η(T1 − 1), for t− T1 > 0 odd
ηT1, for t− T1 > 0 even

.

Hence, at will increase until the second condition breaks: there exists a minimum integer T2 > T1
such that

(d− 1)ϕ(T2) =
d− 1

e(at+bt) + d− 1
<

d− 1

eη(T2+T1−1) + d− 1
< λaT2

= ληT2.

Here we do two case distinctions: First assume the first condition also breaks, then we have
sign(∇WT2

LCE + λWT2
) = 2I− J and thus

WT2+1 = WT2
− η(2I− J) = (at + bt)I− btJ,

satisfying the induction hypothesis on WT2+1 with

aT2+1 = η(T2 − 1) = aT2−1; bT2+1 = η(T1 − 1) = bT2−1

Hence the later training will oscillate between (at, bt) = (ηT2, ηT1) and (η(T2 − 1), η(T1 − 1)), for
all t > T2, satisfying the induction hypothesis on Wt.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Now we come to the other case where the first condition holds at t = T2, then we have
sign(∇WT2

LCE + λWT2
) = J and thus

WT2+1 = WT2
− ηJ = (at + bt)I− btJ,

satisfying the induction hypothesis on WT2+1 with

aT2+1 = η(T2 − 1) = aT2−1; bT2+1 = η(T1 − 1 + 1) = bT2
.

Hence for t = T2 + 2, the first condition breaks and the second condition holds, resulting in

aT2+2 = ηT2 = aT2
; bT2+2 = η(T1 − 1).

Hence WT2+3 = WT2+1 and thus the later training will oscillate between (at, bt) = (η(T2−1), ηT1)
and (ηT2, η(T1 − 1)), for all t > T2, satisfying the induction hypothesis on Wt. Also, we have
at = ηmin(t, T2)± η, bt = ηmin(t, T1)± η for all t. The remaining claims follow.

E.1 TECHNICAL LEMMATA

Lemma E.4. Let (X,Y) ∈ Rd×N × RK×N be a dataset where the labels Y are written in columns
of one-hot vectors. For each pair (x,y) ∈ RD × RK , and a weight W1 ∈ RK×d, define the
cross-entropy as:

ℓ(W1)
def.
= −

K∑
k=1

yk log (softmax(W1x))k = log

1 +
∑
k ̸=y

exp(wk −wy)
⊤xi


where y = argmaxk∈[K][y]k is the class index of x. Let L1(W1) = CE(W1X,Y) be the average
cross-entropy loss of the dataset (X,Y). Then the loss gradient ∇L1(W1) is

∇L1(W1) =
1

N
(S−Y)X⊤

where S = (s1, ...sN ) and si = softmax(W1xi) for each i. In particular, 1⊤
K∇L1(W1) = 0.

Proof. The expression of the loss gradient comes from simple calculus. The second statement comes
from the fact that the L1 norms of a post-softmax vector and an one-hot vector are both equal to 1,
that is,

1⊤
Ksi = 1⊤

Kyi = 1∀i.

Lemma E.5. Assume the weight Wt is updated as follows:

Vt+1 = βVt +Gt + λWt

Wt+1 = Wt − ηVt+1,

where Gt depends on Wt. Define

α
def.
=

1

K
∥W⊤

t 1∥22 ≥ 0.

Then we have the expression:
1

η
(αt+1 − αt) = −2βωt − 2γt − 2λαt + ηνt+1

where ωt
def.
= ⟨VtW

⊤
t , Ĵ⟩, γt

def.
= ⟨GtW

⊤
t , Ĵ⟩, νt

def.
= ⟨VtV

⊤
t , Ĵ⟩.

Proof. Let Ct
def.
= WtW

⊤
t be the covariance matrix. Notice that αt = ⟨Ct, Ĵ⟩ where Ĵ = 1

K11⊤.
By update rule of Wt and Vt:

1

η
(Ct+1 −Ct) =

1

η

(
(Wt − ηVt+1)(Wt − ηVt+1)

⊤ −Ct

)
= −(Vt+1W

⊤
t +WtV

⊤
t+1) + ηVt+1V

⊤
t+1.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Applying the dot product ⟨·, Ĵ⟩F on both sides, and denote ωt
def.
= ⟨VtW

⊤
t , Ĵ⟩, γt

def.
= ⟨GtW

⊤
t , Ĵ⟩,

νt
def.
= ⟨VtV

⊤
t , Ĵ⟩, we have

1

η
(αt+1 − αt) = −2⟨Vt+1W

⊤
t , Ĵ⟩+ η⟨Vt+1V

⊤
t+1, Ĵ⟩

= −2⟨(βVt +Gt + λWt)W
⊤
t , Ĵ⟩+ ηνt+1

= −2βωt − 2γt − 2λαt + ηνt+1 (23)

where in the first line we use the fact that Ĵ is symmetric.

Lemma E.6. Assume λ, β ∈ (0, 1) such that 2λ
log β−1 < 1. The solution of the following ODE:

α̇(t) = −λ
(∫ t

0

βt−τα(τ)dτ

)
(24)

with initial condition α(0) = α0 > 0 admits the following bound:

α(t) ≤ Cα0 exp

(
− λ

log β−1
t

)
for some absolute constant C > 1.

Proof. Observe that we can write the integral in convolution:∫ t

0

βt−τα(τ)dτ =
(
ϕ ∗ α

)
(t), where ϕ(t) = βt.

Hence (24) can be written as
α̇(t) = −λ

(
ϕ ∗ α

)
(t).

Let L{ψ(t)}(s) =
∫ ∞

0

e−stψ(t)dt denote the Laplace transform. Denote

A(s) = L{α(t)}(s), F (s) = L{ϕ(t)}(s).
Taking the Laplace transform of both sides:

L{α̇(t)}(s) = −λL{(ϕ ∗ α)(t)}(s). (25)

And by integration by part and the property of convolution,

L{α̇(t)}(s) = sA(s)− α(0) and L{(ϕ ∗ α)(t)}(s) = F (s)A(s).

Hence
sA(s)− α(0) = −λF (s)A(s).

Since βt = e(log β)t, we get

F (s) = L{βt}(s) = L
{
e(log β)t

}
(s) =

1

s− log(β)
for s > log(β).

Substitute this back to Eq. (25) and we get:

sA(s)− α(0) = −λ 1

s− log(β)
A(s)

sA(s) +
λ

s− log(β)
A(s) = α(0)

A(s)
(
s+

λ

s− log(β)︸ ︷︷ ︸
s2−s log(β)+λ

s−log(β)

)
= α(0)

A(s) = α(0) ·
[
s− log(β)

]
s2 − s log(β) + λ︸ ︷︷ ︸

(s−r1)(s−r2)

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

where r1, r2 =
log(β)±

√[
log(β)

]2
−4λ

2 . We do partial fractions and matching coefficients gives:

s− log(β)

(s− r1)(s− r2)
=

A

s− r1
+

B

s− r2
=⇒ A+B = 1, − log(β) = −Ar2 −Br1.

Since r1 + r2 = log(β), one finds

A =
r2

r2 − r1
, B = − r1

r2 − r1
.

Thus

A(s) = α(0)

[
r2

r2 − r1

1

s− r1
− r1
r2 − r1

1

s− r2

]
.

Recall the inverse of Laplacian transform: L−1{ 1
s−r}(t) = ert. Therefore,

α(t) = L−1{A(s)}(t) = α(0)

[
r2

r2 − r1
er1t − r1

r2 − r1
er2t
]
.

Equivalently,

α(t) = α(0)
[
Aer1t +Ber2t

]
, A =

r2
r2 − r1

, B = − r1
r2 − r1

, (26)

where

r1, r2 =
log(β)±

√[
log(β)

]2 − 4λ

2
.

Since β ∈ (0, 1), set L = − log(β) > 0. By the first order approximation,√
(log β)2 − 4λ =

√
L2 − 4λ = L− 2λ

L
+O

(
λ2

L

)
Hence

r1, r2 =
−L±

(
L− 2λ

L

)
2

+O
(
λ2

L

)
.

This gives:

r1 = −λ

L
+O

(
λ2

L

)
, r2 = −L+

λ

L
+O

(
λ2

L

)
.

Plugging r1, r2 into Eq. (26):

α(t) ≤ Cα(0)er1t = Cα(0) exp
(
− λ

L t
)

for some absolute constant C > 1. Plug in L = − log(β) = log β−1 to finish the proof.

35


	Introduction
	Neural Collapse
	Main Result
	Experimental Setup
	Weight Decay is Essential and Momentum Accelerates NC
	Weight Decay Coupling Matters
	Interpolating AdamW and Adam

	Discussion and Limitations
	Interpreting NC Metrics in Practice
	The Redundant NC4 property
	Partial Neural Collapse
	Limitations of Theoretical Support
	Future Research

	Conclusion
	LLM usage statement
	NC Metrics
	Additional Related work
	Weight Decay and Neural Collapse
	Empirical studies on the Emergence of Neural Collapse
	Applications of Neural Collapse
	Coupled Weight Decay in the context of Neural Collapse
	Unconstrained Feature Model

	Experiment
	Details on Choice of Hyperparameters
	Details on Computational Resources
	Details on Regression Fit between NC3 and NC0
	Additional Experimental Results
	Ablation Study on Training Epochs
	Unconstrained Feature Model
	Missing plot: Singular value of W and M with SignumW
	Coupled vs. decoupled decay on other datasets
	Preliminary experimental results on Vision Transformer


	Proofs
	Technical Lemmata


