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Abstract

The task of zero-shot commonsense question
answering evaluates models on their capac-
ity to reason about general scenarios beyond
those presented in specific datasets. Existing
approaches for tackling this task leverage ex-
ternal knowledge from CommonSense Knowl-
edge Bases (CSKBs) by pre-training the model
on synthetic QA pairs constructed from CSKBs.
In these approaches, negative examples (dis-
tractors) are formulated by randomly sampling
from CSKBs using fairly primitive keyword
constraints. However, two bottlenecks limit
these approaches: the inherent incompleteness
of CSKBs limits the semantic coverage of syn-
thetic QA pairs, and the lack of human anno-
tations makes the sampled negative examples
potentially uninformative and contradictory.

To tackle these limitations above, we pro-
pose Conceptualization-Augmented Reasoner
(CAR), a zero-shot commonsense question-
answering framework that fully leverages the
power of conceptualization. Specifically, CAR
abstracts a commonsense knowledge triple to
many higher-level instances, which increases
the coverage of the CSKB and expands the
ground-truth answer space, reducing the like-
lihood of selecting false-negative distractors.
Extensive experiments demonstrate that CAR
more robustly generalizes to answering ques-
tions about zero-shot commonsense scenar-
ios than existing methods, including large
language models, such as GPT3.5 and Chat-
GPT. Our code, data, and model checkpoints
are available at https://github.com/HKUST-
KnowComp/CAR.

1 Introduction

Pre-trained Language Models (PLMs; Devlin et al.,
2019; Clark et al., 2020) fine-tuned on task-specific
training sets achieve remarkable near-human per-
formance on held-out test sets, yet struggle to gener-
alize to examples that are distributionally different
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Figure 1: An example of constructing synthetic QA
pairs from CSKB (Ma et al., 2021). The simple heuristic
used in this process can result in false negative options.

from their training sets (McCoy et al., 2019; Ma
et al., 2019; Zhou et al., 2021; Wang et al., 2021).
This discrepancy arises because fine-tuned PLMs
often rely on spurious, dataset-specific correlations
to learn a task rather than learning to fully leverage
implicit commonsense knowledge required for rea-
soning (Branco et al., 2021). For reasoning systems
to be effective, though, they must be robust across
domains and generalize beyond the specificities of
individual datasets.

To confront the generalization issue in com-
monsense reasoning tasks, the task of zero-shot
commonsense Question-Answering (QA) requires
models to answer questions for evaluation bench-
marks without access to their corresponding train-
ing data (Shwartz et al., 2020; Li et al., 2020).
Among several methods that tackle this task, the
most performant ones inject commonsense knowl-
edge from CSKBs (Hwang et al., 2021; Jiang et al.,
2021) into PLMs by fine-tuning them on synthetic
QA pairs transformed from commonsense knowl-
edge triples, where the head and relation are trans-
formed to a question, and the tail serves as a ground
answer. Negative examples are randomly sampled
with keyword-overlap constraints (Ma et al., 2021).
Such knowledge injection benefits not only QA
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…
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Figure 2: An example of conceptualization inference.
More abstracted knowledge, such as (Do sport, xWant,
take a rest), can be obtained through conceptualization.

tasks that are derived from CSKBs, such as So-
cialIQA (Sap et al., 2019b), which is derived from
ATOMIC (Sap et al., 2019a), but also QA datasets
in other domains (Bisk et al., 2020).

Despite recent advancements in this area, two
major challenges remain. First, manually curated
CSKBs, such as ATOMIC, are incomplete (Kuo
and Hsu, 2010). While consolidating multiple
CSKBs can improve coverage, it remains infea-
sible to cover all conceivable knowledge for the
vast range of entities and situations in the real
world (He et al., 2022). Automatic methods for ex-
panding CSKBs exist, such as knowledge base com-
pletion (Li et al., 2016; Malaviya et al., 2020), and
knowledge distillation from large language mod-
els (West et al., 2022; Gao et al., 2023), but they ei-
ther fail to provide knowledge about novel entities
or only provide highly accurate yet less informative
knowledge (e.g., vague adjectives, such as happy,
as situation descriptors). Second, in zero-shot com-
monsense QA, negative examples are required for
models to learn to distinguish the validity of com-
monsense scenarios (Chen et al., 2023a). However,
existing negative QA examples are synthesized us-
ing simple heuristic-based negative sampling with-
out considering deeper semantics, resulting in too
many false negative options. For instance, in Fig-
ure 1, “have a drink” is also plausible in the context
of “after playing a football game.” These questions
that label plausible options as negative instances
confuse the model during training, impeding its
ability to discern correct commonsense knowledge.

We tackle both of these challenges by utilizing
conceptualization. As Murphy (2004) posits, hu-
mans rely on conceptual induction to draw infer-
ences about unseen situations without the need for

memorizing specific knowledge. Conceptualiza-
tion (He et al., 2022) offers a similar capability by
abstracting a set of instances into concepts, which
allows for the derivation of abstract commonsense
knowledge associated with each concept that can
be instantiated to assist reasoning on specific down-
stream situations. For example, in Figure 2, “play
a football game” can be conceptualized as a tiring
event, which further generalizes as abstract knowl-
edge. The benefits of conceptualization are twofold.
First, conceptualized commonsense knowledge in-
troduces abstract knowledge through a one-step
concept inference based on the original CSKB,
enhancing knowledge coverage. Second, as the
abstract knowledge is conditioned on the origi-
nal knowledge, the recall of knowledge regarding
the same head is increased, leading to more fine-
grained constraints for negative option sampling.

Inspired by these advantages, we propose CAR
(Conceptualization-Augmented Reasoner), a sim-
ple yet effective zero-shot commonsense QA frame-
work that leverages conceptualization to expand ex-
isting CSKBs and reduce false-negative distractors.
We first augment the original CSKB with concep-
tualization to infuse abstract commonsense knowl-
edge to improve knowledge coverage. Then, we
propose a conceptualization-constraint sampling
strategy that generates distractors with concept-
level constraints to prevent false negative options
(Section 4). Experimental results on five popular
commonsense QA benchmarks demonstrate the ef-
fectiveness of CAR, which even surpasses GPT3.5
and ChatGPT (Section 5). In Section 6, we ana-
lyze why CAR works by providing human eval-
uations that show a significant reduction of false
negative options compared to other methods. Fi-
nally, our analysis reveals that conceptualization-
augmented training examples tend to be more am-
biguous (Swayamdipta et al., 2020) than those pro-
duced by prior heuristics, leading to better out-of-
domain generalization.

2 Related Works

Zero-shot Commonsense QA. Zero-shot com-
monsense QA evaluates a model’s reasoning gener-
alizability on unseen QA entries without any super-
vision signals from the corresponding annotated
training data. To tackle this task, two primary
pipelines have emerged in existing works. The
first paradigm employs off-the-shelf language mod-
els without changing the parameters, either using



vanilla language modeling with prompts (Trinh and
Le, 2018; Li et al., 2022), or with some inference-
time mechanisms specifically designed for reason-
ing, such as self-talk (Shwartz et al., 2020), cloze
translation (Dou and Peng, 2022), and dynamic
generation of reasoning sub-graphs and graph rea-
soning (Bosselut et al., 2021). The second pipeline
leverages external CSKBs as knowledge sources
to provide PLMs with additional supervision sig-
nals for further fine-tuning (Banerjee and Baral,
2020; Ma et al., 2021; Su et al., 2022). A common
strategy involves converting knowledge triples in
CSKBs to synthetic QA pairs by transforming the
head and relation to a question, the tail to a gold
answer, and (randomly) sample tails from other
heads as distractors. Such fine-tuning paradigm
benefits from incorporating CSKBs within differ-
ent domains (Kim et al., 2022; Shi et al., 2023) and
exploiting multi-hop graph structures with graph
neural networks (Guan et al., 2023), and heightens
the model’s commonsense sensitivity in a QA con-
text, which leads to state-of-the-art performances.

Conceptualization. Conceptualization refers to
the process of abstracting a group of instances or
events into a general concept (Song et al., 2011,
2015). In commonsense reasoning, it simulates
conceptual induction (Murphy, 2004) and enables
the derivation of abstract commonsense knowledge
under the specific contextualization of the origi-
nal commonsense knowledge (Tenenbaum et al.,
2011), which is often lacking in existing CSKBs.
Around many existing works studying conceptu-
alization (Durme et al., 2009; Gong et al., 2016;
Liu et al., 2022; Peng et al., 2022), He et al.
(2022) investigate it at event-level semantics and
construct AbstractATOMIC, an event conceptual-
ization benchmark and knowledge base based on
ATOMIC (Sap et al., 2019a). Recently, Wang et al.
(2023a) propose to conceptualize CSKBs at scale
with semi-supervised learning and demonstrate ab-
stract knowledge can enhance commonsense in-
ference modeling (Bosselut et al., 2019; Da et al.,
2021). With current works mostly investigating
the problem of conceptualization itself, none of
them have extrinsically evaluated the impact of
conceptualization on downstream tasks, such as
commonsense QA (Talmor et al., 2019) or machine
reading comprehension (Nguyen et al., 2016).

Data Augmentation. Data augmentation aims
at generating new examples from existing data to

expand the size and diversity of a training set with-
out requiring costly data annotations (Wei and Zou,
2019). Various methods have been proposed to
augment textual data, including those using ran-
dom perturbation (Wei and Zou, 2019), text em-
beddings (Wang and Yang, 2015), lexical seman-
tics (Niu and Bansal, 2018), back translation (Sen-
nrich et al., 2016), and large language models (West
et al., 2022; Ismayilzada and Bosselut, 2023; Gao
et al., 2023) for CSKB construction. Nevertheless,
text-perturbation-based augmentations do not pro-
vide new knowledge to CSKBs, and knowledge
mining from large language models suffers from
high typicality (e.g., favoring simple commonsense
over informative yet rare commonsense) and low
density, still making negative sampling subject to
false negatives (Malaviya et al., 2020).

3 Problem Definition

3.1 Definitions

Conceptualization. Formally, denote a CSKB
as D with knowledge triples in the format of
D = {(h, r, t)|h ∈ H, r ∈ R, t ∈ T}, where H ,
R, and T are the sets of heads, relations, and tails in
the original CSKB. Following He et al. (2022), the
conceptualized CSKB, conditioned on D, can be
denoted as DC = {(hc, r, t)|hc ∈ Hc, r ∈ R, t ∈
T}, where Hc is the set of conceptualized head
events. Specifically, each conceptualized head hc
is obtained by replacing a component i ∈ h with its
abstract concept c while ensuring that the formed
(hc, r, t) triple is still plausible in the original con-
text (r, t). Such (hc, r, t) triples are commonly
referred to as abstract commonsense knowledge.

Zero-shot Commonsense QA. In this paper, we
employ the zero-shot commonsense QA task pro-
posed by Ma et al. (2021) to study our frame-
work. First, the CSKB D is transformed into multi-
ple (Qi, Ai) pairs where Qi is a natural langauge
question and Ai = {Ai,1, Ai,2, ..., Ai,m} is a set
of options with m candidates. Specifically, for
a given knowledge triple (h, r, t) ∈ D, we con-
vert h, r into Qi via natural language templates
and use t as the ground answer. Additionally, we
retrieve m − 1 distractors from other triples sam-
pled from D using a manually defined strategy,
such as keyword overlap filtering. The objective
of our task is to train a QA model from the syn-
thetic QA sets DQ = {(Qi, Ai)|(hi, ri, ti) ∈ D}.
Once trained, the model is tested on held-out test
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Figure 3: An overview of the CAR framework, which shows the process of synthesizing (PersonX arrive at the bar,
xWant, relax himself) into QA pairs. The triple is conceptualized first, and potential distractor triples are sampled
and filtered by keyword and concept overlap. Only those triples that have no overlap are used as distractors.

entries (Qtest, Atest) from QA benchmarks. This
requires the model to perform zero-shot common-
sense reasoning since the training data from the
target benchmarks are unavailable to the model.

3.2 Dataset

We use ATOMIC (Sap et al., 2019b) as the source
CSKB D. ATOMIC contains inferential common-
sense knowledge, in the format of (h, r, t) triple,
that is associated with commonly seen events.
Specifically, the heads of ATOMIC triples are
events, whereas the tail nodes are either events
or attributes. For conceptualization, we use the
human-annotated abstract knowledge from Abstrac-
tATOMIC (He et al., 2022) to train a generative con-
ceptualizer for acquiring DC . More details of con-
ceptualizations and statistics of AbstractATOMIC
are provided in Section 4.1 and Appendix B.1.

3.3 Evaluation Benchmarks

Following Ma et al. (2021), we evaluate our frame-
work on the validation split of five commonsense
QA benchmarks: Abductive NLI (aNLI; Bhagavat-
ula et al., 2020), CommonsenseQA (CSQA; Tal-
mor et al., 2019), PhysicalIQA (PIQA; Bisk et al.,
2020), SocialIQA (SIQA; Sap et al., 2019b), and
WinoGrande (WG; Sakaguchi et al., 2021). These
manually constructed benchmarks evaluate various
knowledge types essential for robust commonsense
reasoning (Kim et al., 2022). Detailed statistics and
explanations of these benchmarks are provided in
Appendix A.

4 CAR Framework

This section introduces our proposed CAR frame-
work. A general sketch is presented in Figure 3.
Our framework can be summarized into three steps:
(1) Conduct one-step conceptualization inference
on existing triples in the CSKB to obtain abstract
commonsense knowledge triples. (2) Transfer the
triples into QA pairs and generate distractors using
keywords and conceptualizations as constraints. (3)
Train the QA model using marginal ranking loss.

4.1 Conceptualization Augmentation

To incorporate abstract knowledge into the CSKB,
we begin by augmenting the (h, r, t) ∈ D triples by
conducting a one-step conceptualization inference.
Initially, given a head event h, we retrieve all plau-
sible conceptualizations Ch = {ci1,1, ci1,2, ...} for
all identified instances i ∈ {i1, i2, ...|i ∈ h} using
entity-linking heuristics to retrieve concepts from
Probase (Wu et al., 2012) and WordNet (Miller,
1995). The conceptualized head event hc is then
obtained by replacing an i ∈ h with one of its re-
trieved conceptualization c ∈ {ci,1, ci,2, ...}. This
is done for all identified instances and their re-
trieved conceptualizations, thereby constructing
the set of conceptualized head events of h. Subse-
quently, we link the non-abstract counterpart (r, t)
after hc to generate candidate abstract knowledge
triples (hc, r, t), where we adopt a discriminator
trained with a semi-supervised conceptualization-
instantiation framework to determine their plausi-
bility (Wang et al., 2023a). Only plausible triples



are kept to form DC . Details about the conceptu-
alization retrieval processes and the discriminator
are presented in Appendix B.1.

4.2 Concept-Constrained QA Synthesis
To synthesize a commonsense triple (h, r, t) into a
(Qi, Ai) pair, we first transfer h, r into Qi by using
natural language templates and set t as the ground-
truth answer A1. For example, the triple in Figure 3
becomes “PersonX arrives at the bar, what does Per-
sonX want to do?” with the answer being “relax
himself.” Additional distractors are generated by
transforming sampled distractor triples from the
original CSKB, where only triples with the same
commonsense relation r are sampled to ensure in-
formativeness. To prevent sampling false negative
options, we constrain sampling distractor knowl-
edge by filtering keywords and conceptualizations.
Formally, denote the keywords of a head event h
as Th = {t1, t2, · · · } and the full set of plausi-
ble conceptualizations for all identified instances
in h as Ch = {ci1,1, ci1,2, · · · , ci2,1, · · · }, we as-
sociate a triple (h, r, t) with Th + Ch to form its
constraint. Only knowledge triple (h′, r, t′) which
satisfies (Th′ + Ch′) ∩ (Th + Ch) = ∅ can be
sampled as a distractor candidate. This constraint
requires that the two triples have no common key-
words, and their instances cannot be abstracted
into the same conceptualization. For example, in
Figure 3, “(PersonX is at the casino, xWant, have a
drink)” cannot be used as a distractor triple because
“casino” can be conceptualized as “entertainment
place,” which is the same as “bar” in the original
triple. Finally, we sample two distractor triples
for the triple (h, r, t) and use the tails of these two
triples as the distractors. To guarantee that the ab-
stract commonsense knowledge from our previous
augmentation is learnable by the QA model, we
synthesize both the original triple (h, r, t) and its
conceptualized versions (hc, r, t) into QA pairs.

4.3 Model Training
Following Ma et al. (2021), we train our QA model
by fine-tuning a pre-trained Masked Language
Model (MLM) using the Marginal Ranking (MR)
loss. Let C represent the original context (if any),
Q represent the question, and (A1, A2, ...) be the
list of options. We first concatenate C, Q, and
an answer option Ai together via natural language
prompts to generate input sequences (T1, T2, ...).
For example, the synthesized question with its cor-
rect answer in Figure 3 will be transformed as:

“PersonX arrives at the bar, as a result, PersonX
want to, relax himself.” We then repeatedly mask
out a token at one time and calculate the masked
loss. The final MLM score for an input sequence
T ∈ {T1, T2, ...} with n tokens is:

S(T ) = − 1

n

n∑
i=1

logP (ti|..., ti−1, ti+1, ...) (1)

After calculating the scores S1, S2, ... for all
answer candidates A1, A2, ..., we compute the
marginal ranking loss based on Equation 2, where
η represents the margin and y is the index of the
correct answer.

L =
1

m

m∑
i=1,i ̸=y

max(0, η − Sy + Si) (2)

During the evaluation phase, we use the same
scoring procedure to assign a score to each option
and select the one whose concatenated sentence
achieves the lowest score as the model’s prediction.

5 Experiments

5.1 Setup
Baselines First, we use random voting (Ran-
dom) and most-frequent labeling (Majority) to
demonstrate the characteristics of each benchmark.
Vanilla RoBERTa-Large (Liu et al., 2019), and
DeBERTa-v3-Large (He et al., 2023) PLMs are
used to demonstrate the power of fine-tuning. The
performances of these two models under a super-
vised training regime are also included to show the
upper bound of our results. We also include the
results of several existing approaches that tackle
the same task, including Self-talk (Shwartz et al.,
2020), COMET-DynaGen (Bosselut et al., 2021),
SMLM (Banerjee and Baral, 2020), MICO (Su
et al., 2022), and the previous state-of-the-art STL-
Adapter (Kim et al., 2022). Most importantly,
we compare our framework with Ma et al. (2021)
to validate the efficacy of conceptualization since
both methods share similar model architecture and
training procedures. Both RoBERTa-Large and
DeBERTa-v3-Large are used as the backbones for
fair comparisons. There are, in total, 534,833 syn-
thetic QA pairs provided by Ma et al. (2021).

With the recent advances in Large Langauge
Models (LLMs) (Bang et al., 2023; Chan et al.,
2023; Qin et al., 2023), we also benchmark the
performances of GPT3.5 (Brown et al., 2020) and
ChatGPT (OpenAI, 2022) as baselines. We prompt



Model CSKB a-NLI CSQA PIQA SIQA WG Avg.

Random - 50.0 20.0 50.0 33.3 50.0 40.7
Majority - 50.8 20.9 50.5 33.6 50.4 41.2
RoBERTa-L (Liu et al., 2019) - 65.5 45.0 67.6 47.3 57.5 56.6
DeBERTa-v3-L (He et al., 2023) - 59.9 25.4 44.8 47.8 50.3 45.6
Self-talk (Shwartz et al., 2020) - - 32.4 70.2 46.2 54.7 -
COMET-DynGen (Bosselut et al., 2021) ATOMIC - - - 50.1 - -
SMLM (Banerjee and Baral, 2020) * 65.3 38.8 - 48.5 - -
MICO (Su et al., 2022) ATOMIC - 44.2 - 56.0 - -
STL-Adapter (Kim et al., 2022) ATOMIC 71.3 66.5 71.1 64.4 60.3 66.7

Backbone: RoBERTa-Large 340M
RoBERTa-L (MR) (Ma et al., 2021) ATM-10X 70.8 59.4 72.1 58.5 58.3 63.8
△ RoBERTa-L (MR) (Ma et al., 2021) ATOMIC 70.8 64.2 72.1 63.1 59.2 65.9
⋄ CAR-RoBERTa-L (Ours) ATOMIC 72.3↑1.5 64.8↑0.6 73.2↑1.1 64.8↑1.7 61.3↑2.1 67.3↑1.4
⋄ CAR-RoBERTa-L (Ours) ATMC 72.7↑1.9 66.3↑2.1 73.2↑1.1 64.0↑0.9 62.0↑2.8 67.6↑1.7

Backbone: DeBERTa-v3-Large 435M
DeBERTa-v3-L (MR) (Ma et al., 2021) ATM-10X 75.1 71.6 79.0 59.7 71.7 71.4
△ DeBERTa-v3-L (MR) (Ma et al., 2021) ATOMIC 76.0 67.0 78.0 62.1 76.0 71.8
⋄ CAR-DeBERTa-v3-L (Ours) ATOMIC 78.9↑2.9 67.2↑0.2 78.6↑0.6 63.8↑1.7 78.1↑2.1 73.3↑1.5
⋄ CAR-DeBERTa-v3-L (Ours) ATMC 79.6↑3.6 69.3↑2.3 78.6↑0.6 64.0↑1.9 78.2↑2.2 73.9↑2.1

Large Language Models
GPT-3.5 (text-davinci-003) - 61.8 68.9 67.8 68.0 60.7 65.4
ChatGPT (gpt-3.5-turbo) - 69.3 74.5 75.1 69.5 62.8 70.2

Supervised Learning & Human Performance
RoBERTa-L (Supervised) - 85.6 78.5 79.2 76.6 79.3 79.8
DeBERTa-v3-L (Supervised) - 89.0 82.1 84.5 80.1 84.1 84.0
Human Performance - 91.4 88.9 94.9 86.9 94.1 91.2

Table 1: Zero-shot evaluation results (%) on five commonsense question answering benchmarks. The best results are
bold-faced, and the second-best ones are underlined. ↑ indicates the performance gain of our framework (marked
with ⋄) compared with the results acquired by Ma et al. (2021) on ATOMIC (marked with △). ATMC stands for the
ATOMIC with abstract commonsense knowledge injected. ATM-10X stands for using ATOMIC-10X (West et al.,
2022) as the source CSKB D. All baseline results are consistent with their original papers.

the LLM directly in a zero-shot setting, where no
in-context learning (Min et al., 2022) or chain-of-
thought reasoning (Wei et al., 2022) are applied.
For every QA entry, the LLM is presented with a
question, several choices, and a natural language
command that asks it to choose the index of the
correct answer directly (Robinson et al., 2022). We
then parse the generated outputs to obtain the “pre-
dictions” of LLM by using meticulously designed
rules and compare them with the ground-truth la-
bels. More details of the baselines and LLM setups
can be found in Appendix B.2 and B.3.

Implementation Details We use accuracy as
the evaluation metric and compare our framework
with the following baseline methods. For con-
ceptualization, we leverage an off-the-shelf con-
ceptualizer from Wang et al. (2023a), which is
a semi-supervised conceptualization discrimina-
tor fine-tuned on labeled conceptualization data
from AbstractATOMIC and unlabeled data from
ATOMIC. We use a plausibility score T = 0.9
to filter out plausible conceptualizations, which
results in 440K conceptualization-aided synthetic

QA pairs for training. We employ an AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a learn-
ing rate of 7e-6 and a max sequence length of 128 to
accommodate QA pairs with different lengths. We
select the best checkpoint according to the highest
accuracy achieved on the synthetic validation QA
set. Each experiment is repeated using three differ-
ent random seeds, and the average performance is
reported. The model is warmed up with 5% of total
iterations and evaluated every 1000 global steps,
while the margin η for the marginal ranking loss is
set to 1, in line with the choices made by Ma et al.
(2021) and Kim et al. (2022). More details about
implementations can be found in Appendix B.4,

5.2 Results

The main results are reported in Table 1. For
the baselines, DeBERTa-v3-Large (MR) trained
on ATOMIC achieves the best performance, fol-
lowed by ChatGPT. Both achieve an accuracy of
more than 70% on average. Our best system,
based on DeBERTa-v3-Large and trained on our
conceptualization-augmented ATOMIC, achieves



Augmentation Div↑ Exp.Div↑ Plau.↑ %F.Neg.↓ aNLI CSQA PIQA SIQA WG

N/A (Baseline) N/A N/A 88.0 45.7 76.0 67.0 78.0 62.1 76.0

EDA (Wei and Zou, 2019) 8.10 4.67 9.33 33.0 76.5 65.6 76.6 61.4 74.9
Word2Vec (Wang and Yang, 2015) 11.8 4.00 9.00 55.0 74.3 65.8 75.1 62.9 74.7
GLOVE (Wang and Yang, 2015) 8.21 6.67 4.67 44.3 74.7 64.2 74.6 61.1 74.4
BERT-base (Kobayashi, 2018) 0.81 8.33 14.3 41.7 70.4 63.9 72.4 63.5 61.0
Synonym (Niu and Bansal, 2018) 6.92 11.0 5.67 45.0 75.5 64.9 74.5 62.5 75.7
GPT3-distil (West et al., 2022) 35.6 24.3 95.7 42.7 75.4 71.8 75.6 63.4 76.0
Conceptualization (Ours) 48.5 37.0 90.0 22.7 79.6 69.3 78.6 64.0 78.2

Table 2: Comparison results (%) of different augmentation methods against conceptualization. N/A stands for not
using any augmentation. Plau. is the expert-evaluated ratio of plausible augmented knowledge, %F.Neg. represents
the expert-annotated proportion of false negative options. Div. and Exp.Div. are diversities measured by embedding
similarity and expert annotated knowledge coverage. Performances on the right refer to accuracies achieved by the
QA model trained on data augmented by each method. The best performances are bold-faced.

state-of-the-art results and significantly outper-
forms all PLM-based baselines on every bench-
mark, and can advance the average accuracy by
2.1% compared with the same baseline model. It
also significantly surpasses the performance of the
same model that is trained on ATOMIC-10X with
only 10% amount of data (more explanations and
experiments in Appendix B.5). Notably, compared
with LLMs, our system champions three bench-
marks and performs better on average with a 3.7%
leap. This indicates that supervision signals from
CSKBs are important for downstream applications,
and CSKBs aided by conceptualization can signifi-
cantly enhance this process. Moreover, as an abla-
tion, we study the role of concept-level distractor
sampling by discarding conceptualization augmen-
tation and only training the models on ATOMIC,
synthesized to QA format with our proposed con-
straint technique. Comparing the results in Table 1,
it can be observed that the concept-level distrac-
tor sampling improves the average performance by
approximately 1.5%. This demonstrates that our
proposed technique is effective, and generating dis-
tractors with a stronger positive knowledge recall
is helpful in synthesizing QA pairs that are both
fair and informative.

6 Analysis and Discussion

In this section, we study the effects of conceptual-
ization and the reasons contributing to CAR’s suc-
cess. First, we conduct expert evaluations on the
synthetic QA pairs to study the quality and diversity
of different CSKB augmentation methods in com-
parison with conceptualization. Second, we con-
duct training dynamics (Swayamdipta et al., 2020)
analysis to show that conceptualization-aided QA
pairs can provide more ambiguous examples help-

ful for training. Finally, we study the impact of
filtering ATOMIC10X with different critic thresh-
olds, the ablations of CAR, and the effect of concep-
tualization from an out-of-domain generalization
perspective in Appendix B.5, B.7, and B.8.

6.1 Comparisons With Data Augmentations

To demonstrate the effectiveness of our proposed
conceptualization method, we conduct comprehen-
sive analyses with other data augmentations that
expand the semantic coverage of CSKBs in a simi-
lar way as conceptualization using both expert and
automatic evaluations. We use EDA, augmenting
with word embedding (Word2Vec; Mikolov et al.,
2013 and GLOVE; Pennington et al., 2014), con-
textual embedding (BERT; Devlin et al., 2019), and
synonym (WordNet; Miller, 1995) as baselines. To
align all the baselines for fair comparisons, we
only augment the identified instance i ∈ h in each
ATOMIC triple’s head event h according to the
number of its valid conceptualizations |Ch|. Addi-
tionally, we randomly sample another same amount
of knowledge from ATOMIC-10X into ATOMIC as
a form of augmentation by distilling GPT3 (Brown
et al., 2020) to set distilling an LLM as another
baseline (more explanations in Appendix B.5).

We comprehensively analyze the comparison us-
ing three dimensions: diversity, quality of synthetic
QA pairs, and zero-shot commonsense QA perfor-
mances. Three expert annotators are recruited to
facilitate our evaluations who are undergraduate
or graduate students actively involved in common-
sense research. They demonstrate a high level of
agreement among themselves, with an IAA of 83%
in terms of pairwise agreement and a Fleiss Kappa
score (McHugh, 2012) of 0.64, comparable to 0.62,
as reported by (Ma et al., 2021).
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Figure 4: Analyses on training dynamics of different knowledge. The dotted lines refer to the median values.

Diversity. First, we study whether augmentations
can introduce new knowledge to the training set.
We begin by calculating the average cosine simi-
larity of each ATOMIC triple and its augmented
siblings from each method according to their Sen-
tenceBERT (Reimers and Gurevych, 2019) em-
beddings. For ATOMIC-10X, we regard the sam-
pled knowledge as augmentations. The comple-
ment of average similarity across all ATOMIC
triples serves as an automatically measured diver-
sity (Div.). Meanwhile, we retrieve top-10 similar
triples from ATOMIC for each augmented triple ac-
cording to their SentenceBERT similarity. The ex-
perts are asked to annotate whether each triple can
be semantically covered by their retrievals. We de-
fine the expert-evaluated diversity as the ratio of un-
covered triples among 300 samples. Table 2 shows
that conceptualization champions both metrics, in-
dicating that the introduced abstract knowledge is
diverse and lacking in existing CSKBs, which is
helpful in expanding their knowledge coverage.

Quality of Synthetic QA Pairs. Next, we syn-
thesize the augmented triples into QA pairs with
their head events’ keywords and augmentations as
constraints. We then sample 300 QA pairs for each
method and ask the same experts to perform expert
evaluations by annotating the correctness of each
QA pair’s ground-truth answer and whether the dis-
tractors could also be plausible with respect to the
augmented head event. This evaluates the plausi-
bility ratio of the augmented knowledge and the
ratio of QA pairs containing false negative distrac-
tors. Table 2 shows that the majority of augmented
knowledge is implausible, and they fail to enhance
distractors sampling. Conceptualization, on the
other hand, maintains being highly plausible and
can effectively eliminate false negative distractors.
Expert annotators also achieve a remarkable ac-
curacy of 86% while working on 300 randomly
sampled question-answer pairs, surpassing the 80%

accuracy reported by Ma et al. (2021).

Zero-shot Commonsense QA Performances.
Finally, we train DeBERTa-v3-Large models on
the QA pairs synthesized from the concatenation of
both original and augmented ATOMIC triples from
each method. Only keywords of each head event
are used as their constraints. The models are trained
using a marginal ranking loss, as explained in Sec-
tion 4.3, and evaluated on five QA benchmarks
in a zero-shot manner. Performances by different
methods are shown in Table 2. We observe that
conceptualization outperforms all other augmen-
tations on average and successfully improves the
model’s zero-shot commonsense reasoning ability.

Comparison with ATOMIC-10X. Augmenting
ATOMIC10X appears to be a promising option
as it contains a wealth of valuable commonsense
knowledge. However, despite its diverse and high-
quality knowledge, Table 2 demonstrates that the
model cannot leverage this information effectively.
One possible explanation is that the model’s perfor-
mance is hindered by the significantly high number
of false-negative distractors. This issue arises be-
cause the knowledge distilled from GPT-3 tends
to be versatile, resulting in many tail events being
general and vague. These events can be applied to
a large collection of heads, which leads to false neg-
ative options. More experiments and case studies
are in Appendix B.5 and C, respectively.

6.2 Training Dynamics Analysis

Training dynamics effectively assess a model’s
confidence and variability for individual instances
when training on a large dataset. In the context of
QA, we define confidence as the model’s certainty
when assigning the correct label to the ground-truth
option compared to distractors, as indicated by the
logit difference. Variability, on the other hand,
refers to the fluctuation of confidence over time.
These insights can aid in analyzing the model’s



Model CSKB Avg.

RoBERTa-L (MR) (Ma et al., 2021) CWWV 64.8
MTL (Kim et al., 2022) CWWV 63.7
ZS-Fusion (Kim et al., 2022) CWWV 64.7
CAR-RoBERTa-L (Ours) CWWVC 65.8

Table 3: Experiments on the generalizability of CAR on
other CSKBs (CWWV).

behavior when different knowledge is introduced
into the training set. More explanations are in Ap-
pendix B.6.

In this section, we examine the impact of ab-
stract commonsense knowledge (conceptualiza-
tion) and GPT3-distilled knowledge (ATOMIC-
10X) by exploring their training dynamics on two
sets of data. We train three QA models on syn-
thetic QA pairs from conceptualization-augmented
ATOMIC, ATOMIC10X-augmented ATOMIC, and
the original ATOMIC, which serves as the base-
line. First, we randomly select the same 1,000
QA pairs synthesized from the original ATOMIC
and calculate their training dynamics using these
three models. The left side of Figure 4 displays the
alterations caused by the two augmentation meth-
ods in comparison with the baseline. It is evident
that introducing abstract commonsense knowledge
through conceptualization significantly reduces the
model’s average variability and enhances its confi-
dence in learning the knowledge from the original
ATOMIC. In contrast, incorporating knowledge
from ATOMIC-10X produces the opposite effect.

Second, we check the training dynamics on
1,000 randomly sampled QA pairs synthesized
from abstract commonsense knowledge and an-
other 1,000 from knowledge in ATOMIC-10X.
The rightmost plots in Figure 4 reveal that, com-
pared to ATOMIC-10X, conceptualization intro-
duces knowledge with higher variability and lower
confidence, making it more ambiguous and chal-
lenging for the model to learn. As Swayamdipta
et al. (2020) suggest, such data contributes to a
more robust model to out-of-distribution (OOD)
data, which are downstream QA datasets in our
case. Therefore, we conclude that conceptualiza-
tion is superior to ATOMIC-10X as abstract knowl-
edge, on the one hand, makes the original knowl-
edge more easy-to-learn to aid optimization, and on
the other hand, provides more ambiguous examples
to boost OOD generalization.

50 60 70 80 90 100
Proportion of ATMC data (%)

73.00
73.25
73.50
73.75
74.00

Av
g.

 A
cc

ur
ac

y

Figure 5: Average accuracy achieved by models trained
on our training set downsampled to several ratios.

6.3 Impact of Training Data Size

In Figure 5, we present the influence of the number
of training examples against the final performance,
which reveals a clear and intuitive trend of a pos-
itive correlation between the amount of training
data and overall performance.

6.4 Generalization to other CSKBs

We explore the feasibility of transferring our frame-
work to CSKBs other than ATOMIC. We take the
CWWV dataset as an example, which comprises
multiple CSKBs, including ConceptNet (Speer
et al., 2017), WordNet (Miller, 1995), and Wiki-
Data (Vrandecic and Krötzsch, 2014). We use the
off-the-shelf GPT2 conceptualizer (Wang et al.,
2023a) and ChatGPT as two flexible generative
conceptualizers. The generated conceptualizations
are then transformed into abstract knowledge and
integrated into the CWWV dataset. The experimen-
tal results are presented in Table 3, which shows an
improvement of over 1% compared to all baselines
leveraging CWWV as the source of knowledge, in-
dicating CAR’s generalizability to other CSKBs.
More details are presented in the Appendix B.9.

7 Conclusions

In this paper, we present CAR, a pioneering frame-
work for zero-shot commonsense QA empowered
by conceptualization. Our approach surpasses even
large language models on five QA benchmarks,
achieving state-of-the-art performance on average.
Our analyses reveal that conceptualization can im-
prove the sampling of negative examples, and ab-
stract knowledge is more helpful compared with
those distilled from GPT3 as it provides more am-
biguous knowledge to support OOD generalization.
These findings demonstrate the substantial bene-
fits of introducing conceptualization and abstract
knowledge into zero-shot commonsense reasoning.



Limitations

One limitation of this paper is that the proposed
CAR framework has only been validated on the
ATOMIC dataset. While previous works (Ma et al.,
2021; Kim et al., 2022; Dou and Peng, 2022) have
studied the zero-shot commonsense question an-
swering task by consolidating multiple CSKBs,
including ATOMIC (Sap et al., 2019a), Concept-
Net (Speer et al., 2017), WordNet (Miller, 1995),
VisualGenome (Krishna et al., 2017), and Wiki-
Data (Vrandecic and Krötzsch, 2014), our work
only utilizes ATOMIC (more details discussed in
Appendix B.2). This was mainly due to the avail-
ability of conceptualizations for the CSKB, with
only AbstractATOMIC (He et al., 2022) being avail-
able as the conceptualized expansion of ATOMIC,
while other CSKBs lack such resources. Addition-
ally, ATOMIC has been shown to play the most
critical role in experimental results by Ma et al.
(2021). Nonetheless, such limitation does not re-
strict CAR’s potential to seek further improvements
from incorporating other CSKBs, as conceptualiza-
tion frameworks, such as CAT (Wang et al., 2023a),
can be applied to other CSKBs and provide the re-
quired resources for CAR to operate. Thus, we be-
lieve CAR can overcome such limitations and still
possess the potential to improve with more CSKB-
associated conceptualization resources available.
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Appendices

A Benchmark Descriptions

In this section, we introduce more details regarding
five evaluation benchmarks.

Abductive NLI (aNLI) (Bhagavatula et al.,
2020) is a Natural Langauge Inference (NLI) bench-
mark that aims to infer the most plausible expla-
nation based on a given causal situation. For each
question sample, the model is required to choose
the more plausible hypothesis out of two options
that fit the beginning and end of a story. This bench-
mark evaluates the model’s abductive reasoning
ability, which typically requires commonsense rea-
soning.

CommonsenseQA (CSQA) (Talmor et al.,
2019) is a question-answering benchmark that eval-
uates a broad range of commonsense aspects. Each
sample contains a question and five choices. The
question and some choices are generated from sub-
graphs of ConceptNet (Speer et al., 2017) while
crowdsourcing annotators also annotate some dis-
tractors. This benchmark evaluates the model’s
concept-level commonsense reasoning ability.

PhysicalIQA (PIQA) (Bisk et al., 2020) is a
question-answering benchmark that requires the
model to select the more plausible option out of
two possible continuations given a common sce-
nario that requires physical commonsense to in-
fer. This benchmark evaluates the model’s physical
commonsense reasoning ability.

SocialIQA (SIQA) (Sap et al., 2019b) is a
question-answering benchmark that requires rea-
soning about social interactions. Each sample con-
tains a context that is derived from ATOMIC (Sap
et al., 2019a), a question, and three choices. The
questions are automatically generated using nine
templates that correspond to the nine relations
in ATOMIC, and the correct answers are crowd-
sourced. This benchmark evaluates the model’s
reasoning ability for emotional and social common-
sense in daily situations.

WinoGrande (WG) (Sakaguchi et al., 2021) is
a pronoun resolution benchmark. Each sample con-
tains an emphasized pronoun and a short context
description. The model is asked to choose the cor-
rect reference given two options. This benchmark
evaluates the model’s pronoun resolution ability,
which is also part of commonsense knowledge.

In our experiments, we use the validation splits
of these benchmarks as the official testing sets may

aNLI CSQA PIQA SIQA WG

#QA Pairs 1,532 1,221 1,838 1,954 1,267
#Options 2 5 2 3 2

Table 4: Statistics on the number of QA pairs and the
number of options for each question within each bench-
mark’s validation split.

not be publicly available. Detailed statistics on the
number of QA pairs and the number of options per
question are reported in Table 4.

B Additional Explanations and Analyses

In this section, we aim to cover additional details
regarding the CSKB conceptualization in CAR (Ap-
pendix B.1), implementations of our system (Ap-
pendix B.4), baselines (Appendix B.2 and B.3),
experiments using ATOMIC-10X (Appendix B.5),
analyses (Appendix B.6, B.7, and B.8), and gener-
alizability experiments (Appendix B.9) that are not
covered in the body text due to space constraints.

B.1 Definitions and Statistics of CSKB
Conceptualization

Conceptualization plays a crucial role in general-
izable commonsense reasoning. Previous studies
have demonstrated its potential in aiding common-
sense inference modeling (Wang et al., 2023a) and
commonsense knowledge graph construction (Yu
et al., 2023; Zhang et al., 2022). In our paper,
we follow the definition of conceptualization pro-
posed by He et al. (2022) and Wang et al. (2023a)
in conceptualizing an instance within an event to
a concept: (1) Events: Each event represents a
commonly observed occurrence that encompasses
valuable subsequential or inferential commonsense
knowledge. In AbstractATOMIC, the events are
the head events of all triples in ATOMIC without a
wildcard (’_’). (2) Instances: Within each event,
multiple instances have been identified with seman-
tic parsing tools, representing specific components
of the event that are worthy of conceptualization.
(3) Concepts: Concepts are the conceptualization
of each instance. These concepts are thus extracted
from Probase/WordNet and further validated by
human annotators or critic filtering models.

For an event e, which is the head of an ATOMIC
triple, an instance refers to either an entity within
the event or the complete event itself. Multi-
ple instances can exist within a single event, de-
noted as i1, i2, i3, . . . , in ∈ e. A concept corre-



sponds to the conceptualization of an instance,
and multiple conceptualizations can be associ-
ated with a single instance, as demonstrated by
(i1, c1, 1), (i1, c1, 2), (i1, c1, 3), ..., (i2, c2, 1), ...,
(in, cn, 1), . . . , (in, cn,m). For instance, consider
the event “PersonX is drunk when exiting the bar.”
In this case, two instances can be identified: “Per-
sonX is drunk when exiting the bar” and “bar.”
The conceptualization for the instance “PersonX is
drunk when exiting the bar” may include “drunk”
or “enjoyed,” while the instance “bar” can be con-
ceptualized as an “entertainment place” or a “fun
place.”

In this paper, we leverage the AbstractATOMIC
dataset, provided by He et al. (2022), as our
primary source for conceptualizations. Abstrac-
tATOMIC is a benchmark for conceptualized
commonsense knowledge that is built upon the
ATOMIC dataset (Sap et al., 2019a). It contains
three folds of data, each conditioned on the orig-
inal commonsense knowledge triples (h, r, t) in
ATOMIC.

In the first fold, He et al. (2022) identify
all possible instances {i1, i2, i3, · · · |i ⊆ h} in
each ATOMIC head event, using syntactic pars-
ing through a spaCy1 parser and matching with
five human-defined rules. It is important to note
that, unlike traditional entity-level conceptualiza-
tion benchmarks, the identified instance in Abstrac-
tATOMIC can also be the entire head event i = h.

In the next fold, each identified instance i is
heuristically matched against Probase (Wu et al.,
2012) and WordNet (Miller, 1995) via Gloss-
BERT (Huang et al., 2019) to find their correspond-
ing conceptualization candidates. Human annota-
tions are conducted to verify part of the plausibility
of the conceptualization candidates. To pseudo-
label unannotated conceptualizations, we use a
semi-supervised conceptualization discriminator
provided by Wang et al. (2023a) and set a threshold
of T = 0.9 to filter out plausible conceptualiza-
tions. Additionally, we utilize a GPT2-based (Rad-
ford et al., 2019) generator, trained on the concate-
nation of annotated and positively pseudo-labeled
conceptualizations, to generate additional concep-
tualizations for further expanding the size of the
conceptualization bank.

However, it is worth noting that such conceptual-
ization may not yield plausible abstract knowledge
when (r, t) is connected back to hc, where hc is

1https://spacy.io/

Dl
h Du

h Total

#Unq. event 7,196 15,165 15,388
#Unq. instance 7,935 20,843 21,493
#Unq. concept 20,036 20,367 31,227

Avg. #concept/event 18.21 24.57 32.73
Avg. #concept/instance 16.51 17.88 23.43

Table 5: Statistics of conceptualizations used in CAR, as
reported by Wang et al. (2023a). Dl

h stands for human-
annotated conceptualizations and Du

h are unlabeled con-
ceptualizations. Unq stands for unique, and Avg refers
to average.

obtained by replacing i ∈ h with its conceptual-
izations. This is because the process of concep-
tualizing a head event omits its context in (r, t).
Thus, the last fold of data stores the plausibility of
such abstract commonsense triples (hc, r, t), where
human annotations are conducted to verify part of
the triples’ plausibilities. In addition, we adopt
a semi-supervised instantiation discriminator, pro-
vided by Wang et al. (2023a), to pseudo-label the
unannotated triples. Another threshold, T = 0.9,
is set to filter out plausible abstract triples.

In the CAR framework, for every ATOMIC event
h, we retrieve every instance i’s plausible concep-
tualizations {ci,1, ci,2, · · · } from all plausible con-
ceptualizations derived in the second fold to serve
as the distractor sampling constraint. We also aug-
ment the original (h, r, t) triples with their plausi-
ble (hc, r, t) siblings from both human-annotated
and pseudo-labeled triples, as explained in the last
fold. These knowledge triples are then synthesized
into QA pairs using our proposed method to train
the model to perform general reasoning. Detailed
statistics for the conceptualizations and abstract
commonsense triples we finally obtained from the
AbstractATOMIC dataset are reported in Table 5
and Table 6, respectively.

B.2 Baseline Performances

For SMLM (Banerjee and Baral, 2020), we adopt
the official implementation of Banerjee and Baral
(2020), which employs the CSKB that exhibits the
highest alignment with each task. Specifically, So-
cialIQA uses ATOMIC, while CommonsenseQA
uses ConceptNet. For STL-Adapter (Kim et al.,
2022), only those trained on ATOMIC are used
for comparison in the body text. In this paper, all
baseline performances are solely based on their
officially reported results in their respective papers.

As noted in the Limitations section, previous re-

https://spacy.io/


Relation ATOMIC Dl
t Du

t

xEffect 78,832 12,168 412,455
oEffect 28,351 3,526 113,301
xWant 101,249 15,312 177,745
oWant 43,079 5,408 38,938
xReact 62,969 8,923 295,044
oReact 26,570 3,030 104,038
xNeed 74,272 11,733 378,442
xAttr 110,791 14,249 275,224
xIntent 45,490 6,848 234,948

Total 572,053 81,197 2,030,135

Table 6: Statistics of abstract commonsense triples
used in CAR, as reported by Wang et al. (2023a). Dl

t

stands for human-annotated triples and Du
t are unla-

beled triples.

search in this area has primarily focused on using
four CSKBs, namely ATOMIC (Sap et al., 2019a),
ConceptNet (Speer et al., 2017), WordNet (Miller,
1995), and WikiData (Vrandecic and Krötzsch,
2014). In order to comprehensively benchmark
our framework’s performance in the field of zero-
shot commonsense QA, we compare our results
on ATOMIC against baseline methods that use
multiple CSKBs despite the unbalanced amount
of knowledge in such a comparison. Table 11
presents a full comparison of our method with
all existing baselines. Notably, for models based
on RoBERTa-Large, our approach trained only
on abstract knowledge injected ATOMIC achieves
second place in the leaderboard, falling only be-
hind Kim et al. (2022) with four CSKBs. While
this comparison may be unfair due to the unbal-
anced amount of knowledge, it provides a strong
justification for the excellent performance of our
system. Our DeBERTa-v3-Large-based model still
surpasses all baselines on average, indicating the
necessity of leveraging a strong pre-trained lan-
guage model.

B.3 Benchmarking Large Language Models

We then discuss our method for benchmarking
large language models on five commonsense QA
benchmarks. The emergence of Large Language
Models (LLMs), such as ChatGPT (OpenAI, 2022),
has been the hot trend in recent NLP research. Nu-
merous studies have evaluated the capability of
LLMs on various NLP downstream tasks. Among
them, Qin et al. (2023); Chan et al. (2023) have
shown that ChatGPT can achieve competitive per-
formance on commonsense reasoning tasks, such
as CommonsenseQA (Talmor et al., 2019), Wino-

Grande (Sakaguchi et al., 2021), and Common-
sense Knowledge Base Population (Fang et al.,
2021b,a). In this study, we aim to benchmark Chat-
GPT’s zero-shot performance on five QA evalua-
tion benchmarks used in our zero-shot common-
sense QA task. Following (Robinson et al., 2022),
we design and leverage a batch of prompts, as
shown in Table 7, to probe ChatGPT’s predictions.
The prompt provides ChatGPT with a question
and its possible choices, along with a natural lan-
guage command to control the response action of
ChatGPT. We then parse the generations using our
meticulously designed rules, where punctuations
and irrelevant wordings will be dropped, and the
first choice-letter prediction will be identified as
ChatGPT’s answer. Specifically, if ChatGPT hesi-
tates and cannot make a concrete prediction, it will
be counted as a wrong answer. The benchmarking
results are shown in Table 1. We observe that Chat-
GPT demonstrates superior performance compared
to GPT3.5 (Ouyang et al., 2022) and excels in tasks
such as CommonsenseQA (Talmor et al., 2019) and
SocialIQA (Sap et al., 2019b), potentially due to
the high frequency of their questions and answers
in large text corpora. However, its performance on
the remaining three benchmarks is suboptimal, sug-
gesting that they are more challenging and require
more complex reasoning (Bai et al., 2023; Ding
et al., 2023) and implicit commonsense knowledge
to solve. This intriguing outcome warrants further
investigation to determine the reasons behind it and
explore methods to boost the LLM’s abilities in
these challenging benchmarks.

Generally speaking, CAR and conceptualization
own the advantage over the large language model
in the following aspects: (1) Smaller Model Size:
The CAR framework offers models that are signif-
icantly smaller in scale compared to LLMs (0.2%
of a standard 175 billion parameter GPT-3 model)
while maintaining comparable performance in a
zero-shot setting. Such size makes it more efficient
in terms of training and deployment. In contrast,
advanced prompting techniques used in LLMs re-
quire extensive computational resources, making
the conceptualization-based model more versatile
and accessible to researchers with limited access or
resources for deploying LLMs. (2) Broader Com-
monsense Knowledge: Conceptualization provides
a broader range of commonsense knowledge com-
pared to current CSKBs. Integrating this type of
knowledge into generative models has been shown



Task Prompt Gen

aNLI

Premise: Jim decided to be a rockstar.
Choice A: but didn’t know how to play an instrument. Jim signed up for guitar lessons.
Choice B: Jim knew he would need to have a nickname. Jim signed up for guitar lessons.
Which one is more likely to happen, given the premise? Only answer A or B without any other word.

A.

CSQA

Question: He was at the gym trying to build muscle, what is it called that he is trying to build muscle on?
Choice A: body of animal
Choice B: arm
Choice C: bodybuilder
Choice D: body of dog
Choice E: human body
Which choice is correct? Only answer A or B or C or D or E without any other word.

C

PIQA

Goal: To remove an avocado from the shell
Choice A: cut the avocado lengthwise, remove the pit, and scoop with a spoon
Choice B: cut the avocado width wise, remove the pit, and scoop with a spoon
Which choice can achieve the goal? Only answer A or B without any other word.

A.

SIQA

Question: Robin went to the polls and posted her ballot for the candidate she wanted.
As a result, Robin wanted to:
Choice A: bomb the candidate
Choice B: attend a rally
Choice C: go home.
Which choice is correct? Only answer A or B or C without any other word.

C.

WG

Question: Jessica enjoyed a simple, basic life with Betty, but
Choice A: Jessica was bored having a quiet existence.
Choice B: Betty was bored having a quiet existence.
Which choice is correct? Only answer A or B without any other word.

A

Table 7: Prompts used for evaluating GPT3.5 and ChatGPT. Gen. refers to the generated outputs from ChatGPT.

to enhance their performance in commonsense rea-
soning tasks (Wang et al., 2023a). Such knowl-
edge can also be dynamically encoded in language
models during inference time (Chen et al., 2023b).
(3) Advanced Prompting of LLMs: Conceptual-
ization data introduces the potential for a more
advanced prompting framework of reasoning with
LLMs. The process of conceptualization and the
instantiation of knowledge play a crucial role in
reasoning. Thus, future work may consider intro-
ducing the “chain of concept” reasoning process
to further advance the popular “chain of thought”
reasoning paradigm (Wei et al., 2022; Wang et al.,
2023b).

B.4 Implementation Details
We present additional implementation details for
building our system. For the pre-trained language
models, We use PLMs from the Huggingface Trans-
formers2 Library (Wolf et al., 2020) as the vanilla
model checkpoints. Our system relies heavily on
the open-source code repository3 provided by Ma
et al. (2021) for synthesizing QA pairs and training
the QA models. To optimize the model, we em-
ploy an AdamW optimizer (Loshchilov and Hutter,

2https://huggingface.co/docs/transformers/
3https://github.com/Mayer123/HyKAS-CSKG

2019) with a learning rate of 7e-6 and a max se-
quence length of 128 to accommodate QA pairs
with different lengths. When evaluating the model
on downstream commonsense QA benchmarks, a
maximum sequence length of 80 is used. We select
the best checkpoint according to the highest accu-
racy achieved on the synthetic validation QA set.
Each experiment is repeated using different random
seeds three times, and the average performance is
reported. To overcome the limited GPU memory
issue, we utilize gradient accumulation with a gra-
dient accumulated four steps before every descent,
and each step calculates the gradient of eight data
samples. The model is warmed up with 5% of total
iterations and evaluated every 1000 global steps,
while the margin η for the marginal ranking loss
is set to 1, in line with the choices made by Ma
et al. (2021) and Kim et al. (2022). The Hugging-
face model code for our RoBERTa-Large model is
roberta-large, and the one for our DeBERTa-v3-
Large model is microsoft/deberta-v3-large.
All of our experiments are conducted on eight
NVIDIA A100 GPUs, each with 40G graphical
memory. Training a RoBERTa-based model typi-
cally requires 14G graphical memory, while train-
ing DeBERTa-based models requires 30G graphi-
cal memory.

https://huggingface.co/docs/transformers/
https://github.com/Mayer123/HyKAS-CSKG


Model CSKB Critic a-NLI CSQA PIQA SIQA WG Avg.

Backbone: RoBERTa-Large 340M
RoBERTa-L (MR) ATOMIC N/A 70.8 64.2 72.1 63.1 59.2 65.9
RoBERTa-L (MR) ATM-10X 0.9 69.6 58.1 72.3 58.3 57.2 63.1
RoBERTa-L (MR) ATM-10X 0.8 70.1 58.9 71.5 58.2 57.7 63.3
RoBERTa-L (MR) ATM-10X 0.7 70.8 59.4 72.1 58.5 58.3 63.8
RoBERTa-L (MR) ATM-10X 0.5 68.7 56.8 71.7 58.4 60.1 63.1
RoBERTa-L (MR) ATM-10X 0.0 70.7 58.3 71.7 58.2 57.5 63.3
RoBERTa-L (MR) ATMATM-10X 0.9 71.7 66.3 73.2 62.8 60.7 66.9
RoBERTa-L (MR) ATMATM-10X 0.8 71.8 66.0 73.2 61.7 59.5 66.4
RoBERTa-L (MR) ATMATM-10X 0.7 71.6 65.6 72.9 62.2 59.8 66.4
RoBERTa-L (MR) ATMATM-10X 0.5 72.0 65.4 72.9 62.0 60.5 66.6
RoBERTa-L (MR) ATMATM-10X 0.0 71.6 66.3 73.3 62.9 61.0 67.0
CAR-RoBERTa-L (Ours) ATOMIC N/A 72.3 64.8 73.2 64.8 61.3 67.3
CAR-RoBERTa-L (Ours) ATMC N/A 72.7 66.3 73.2 64.0 62.0 67.6

Backbone: DeBERTa-v3-Large 435M
DeBERTa-v3-L (MR) ATOMIC N/A 76.0 67.0 78.0 62.1 76.0 71.8
DeBERTa-v3-L (MR) ATM-10X 0.9 74.5 70.8 78.9 59.7 72.2 71.2
DeBERTa-v3-L (MR) ATM-10X 0.8 74.2 70.6 79.5 59.2 70.7 70.8
DeBERTa-v3-L (MR) ATM-10X 0.7 74.6 69.9 79.3 60.0 70.2 70.8
DeBERTa-v3-L (MR) ATM-10X 0.5 74.1 70.4 78.8 58.9 70.1 70.5
DeBERTa-v3-L (MR) ATM-10X 0.0 75.1 71.6 79.0 59.7 71.7 71.4
DeBERTa-v3-L (MR) ATMATM-10X 0.9 75.4 71.3 73.4 61.7 75.3 71.4
DeBERTa-v3-L (MR) ATMATM-10X 0.8 75.4 71.8 75.6 63.4 76.0 72.4
DeBERTa-v3-L (MR) ATMATM-10X 0.7 74.9 71.2 77.4 61.8 76.2 72.3
DeBERTa-v3-L (MR) ATMATM-10X 0.5 74.8 71.2 77.1 61.7 75.7 72.1
DeBERTa-v3-L (MR) ATMATM-10X 0.0 76.2 71.0 75.8 62.8 75.8 72.3
CAR-DeBERTa-v3-L (Ours) ATOMIC N/A 78.9 67.2 78.6 63.8 78.1 73.3
CAR-DeBERTa-v3-L (Ours) ATMC N/A 79.6 69.3 78.6 64.0 78.2 73.9

Large Language Models
GPT-3.5 (text-davinci-003) N/A N/A 61.8 68.9 67.8 68.0 60.7 65.4
ChatGPT (gpt-3.5-turbo) N/A N/A 69.3 74.5 75.1 69.5 62.8 70.2

Table 8: Zero-shot evaluation results (%) on five commonsense question answering benchmarks using different critic
thresholds for filtering ATOMIC-10X. The best results are bold-faced, and the second-best ones are underlined.
ATMC stands for the ATOMIC with abstract commonsense knowledge injected. ATM-10X stands for using
ATOMIC-10X (West et al., 2022) as the source CSKB D. ATMATM-10X indicates the ATOMIC with sampled
knowledge from ATOMIC-10X injected. Critic indicates the lower bound for filtering knowledge from ATOMIC-
10X, which means that only knowledge with a critic score above the threshold will be selected.

B.5 Experiments with ATOMIC-10X

ATOMIC-10X is a machine-generated corpus de-
veloped by West et al. (2022) using the sym-
bolic knowledge distillation framework. They
employed a selective distillation approach to ex-
tract knowledge from large language models like
GPT-3 (Brown et al., 2020) by prompting them
with head events and commonsense relations
from the ATOMIC dataset. The extracted knowl-
edge was used to train a student model to gen-
erate symbolic knowledge graphs evaluated us-
ing a separate critic model. The resulting corpus,
ATOMIC-10X, surpassed the human-generated cor-
pus ATOMIC2020 (Hwang et al., 2021) in scale,
accuracy, and diversity.

In this section, we provide additional explana-
tions regarding the usage of ATOMIC-10X in our
paper and conduct further experiments to explore

its impact on zero-shot commonsense QA. Specifi-
cally, we study the role of filtering the knowledge
in ATOMIC-10X using multiple critic thresholds
to acquire high-quality knowledge and improve
model performance.

We utilize ATOMIC-10X in two distinct sce-
narios. First, as discussed in Section 5.2, we di-
rectly train our QA models on ATOMIC-10X with-
out integrating other CSKBs, such as ATOMIC
and AbstractATOMIC. We source all questions,
answers, and distractors from ATOMIC-10X and
follow its original train/dev/test partitions to di-
vide the data. The lemmatized tokens of the head
event, excluding commonly seen subjects, prepo-
sitions, and stopwords, are used as keywords for
each piece of knowledge, and the original QA syn-
thesis pipeline proposed by Ma et al. (2021) is ap-
plied. To ensure the quality of the knowledge from



ATOMIC-10X, we set multiple critic thresholds to
filter the dataset accordingly. The QA models are
trained using marginal ranking loss on four sub-
sets of ATOMIC-10X, each with a different critic
threshold of 0.9, 0.8, 0.7, and 0.5, along with an
additional model trained on the complete ATOMIC-
10X dataset. Finally, we evaluate these models on
five commonsense QA benchmarks in a zero-shot
setting and report the results in Table 8. Specifi-
cally, models trained solely on ATOMIC-10X us-
ing critic thresholds of 0.7 (RoBERTa) and 0.0
(DeBERTa) for filtering are responsible for the re-
sults reported in Table 1. We observe that even
using high critic thresholds to filter the knowledge
in ATOMIC-10X, the model still fails to improve
beyond marginal. Meanwhile, training the mod-
els only on ATOMIC-10X fails to surpass training
on ATOMIC, which indicates that the amount of
knowledge is not the critical element to determin-
ing the performance. Rather, it should be the diver-
sity and quality of knowledge, where the human-
annotated knowledge from ATOMIC is superior
to those machine-generated ones from ATOMIC.
Nonetheless, none of the models outperform those
trained on conceptualization-augmented ATOMIC
using our CAR framework, which further validates
the strengths of CAR.

In the second scenario, as discussed in Sec-
tion 6.1, we utilize ATOMIC-10X as a means
of augmentation to extend the original ATOMIC
dataset. This is achieved by randomly select-
ing a specific number of knowledge triples from
ATOMIC-10X, equivalent to the total number
of plausible abstract commonsense knowledge in
AbstractATOMIC, and merging them back into
the original dataset. The triples in the resulting
ATOMIC10X-augmented ATOMIC are then trans-
formed into QA pairs and used to train our model
following the original pipeline suggested by Ma
et al. (2021). Similar to the previous scenario, we
set four thresholds, namely 0.9, 0.8, 0.7, and 0.5, to
filter the triples in ATOMIC-10X for augmentation
quality control. In this way, the QA pairs’ distrac-
tors can come from ATOMIC and ATOMIC-10X.
The models are then trained and evaluated on five
benchmarks. Their zero-shot commonsense QA
evaluation results are reported in Table 8, and the
best model, trained using a critic threshold of 0.8
for filtering with DeBERTa-v3-large as the back-
bone, is responsible for the results indicated in
Table 2. Interestingly, we observe that leveraging

the knowledge in ATOMIC-10X, either for direct
training or augmentation, occasionally improves
the model’s performance on a specific benchmark.
However, it fails to boost the overall performance
across all benchmarks on average, which is con-
sidered a closer metric for evaluating the gener-
alizable reasoning ability of a commonsense QA
model. Thus, we come to the conclusion that
ATOMIC-10X is inconsistently helpful in improv-
ing the zero-shot commonsense QA performances,
with most times failing to improve, while concep-
tualization resolves such issues and can benefit the
model across all benchmarks significantly. One po-
tential reason is that ATOMIC-10X main contain
noise that are not benefitial to the task of zero-shot
commonsense QA, as demonstrated by Deng et al.
(2023).

B.6 Training Dynamic Definitions

Training dynamic, as proposed by Swayamdipta
et al. (2020), refers to the analysis of a model’s
behavior on individual instances during training on
large datasets. This analysis examines the model’s
confidence in predicting the true class of an in-
stance and the variability of this confidence across
epochs. To achieve this, multiple checkpoints are
saved throughout a training epoch, and probability
scores are derived for each data instance to calcu-
late their training dynamics. By plotting the train-
ing dynamics of all instances on a data map, in-
stances can be categorized into three groups: easy-
to-learn, ambiguous, and hard-to-learn. For in-
stance, consider a QA pair where a model consis-
tently assigns a higher logit score to the correct
answer than to other distractors across multiple
checkpoints during an epoch. In this scenario, the
model exhibits high confidence and low variability
for that specific instance, suggesting that it is easy
to learn. Conversely, instances with higher vari-
ability are ambiguous to the model, and those with
low confidence are difficult to learn. Experimental
results by Swayamdipta et al. (2020) demonstrates
that training the model with ambiguous data con-
tributes the most to out-of-distribution generaliza-
tion.

Inspired by this finding, our research investi-
gates the role of abstract commonsense knowledge
within the training set and the effects of leverag-
ing conceptualization. Since our QA model is
trained with a marginal ranking loss, as described
in Section 4.3, it does not output a probability



score but rather an MLM score for each option.
Thus, the definition of model’s confidence pro-
posed by Swayamdipta et al. (2020) does not fit
into our problem definition. To address this, we
re-define the calculation of confidence to align
with the model’s degree of certainty in predict-
ing an instance as the true class. Formally, de-
note n as the number of saved checkpoints dur-
ing an epoch for computing their training dynam-
ics and the list of m options in a (Qi, Ai) pair
as Ai = {Ai,1, Ai,2, ..., Ai,m} with Ai,j being the
ground-truth answer (1 ≤ j ≤ m)). We define
the confidence of the model for such a QA pair in
Equation 3, where σ is the sigmoid function and
Sc
i,d is the score of option Ai,d at checkpoint c.

C(Qi, Ai) =
1

n

n∑
c=1

σ(

∑m
d=1(S

c
i,d − Sc

i,j)

m− 1
) (3)

Intuitively, this equation averages the gap be-
tween the ground-truth answer’s score and the
score of each distractor. A larger gap indicates
a more confident model when choosing the answer.
Variability aligns with the definition established
by Swayamdipta et al. (2020). Specifically, it is
calculated as the standard deviation of the score
gap between the ground-truth answer and the dis-
tractors relative to the level of confidence exhibited
throughout an entire epoch, as shown in Equation 4.

V(Qi, Ai) =

√∑n
c=1(σ(

∑m
d=1

(Sc
i,d

−Sc
i,j)

m−1
)− C(Qi, Ai))2

n
(4)

By revisiting the plots in Figure 4, we observe
that the inclusion of abstract commonsense knowl-
edge enhances the model’s confidence and re-
duces variability when encountering knowledge
in ATOMIC. The introduction of conceptualiza-
tion appears to widen the differences between the
model’s predicted scores for the correct answer and
those for the distractors. This suggests that the cor-
rect answer is more likely to be selected, leading
to an improved learning outcome. However, the
introduction of knowledge from ATOMIC-10X re-
sults in a reversed trend, indicating that it does not
aid in better learning ATOMIC. Furthermore, we
observe that abstract knowledge derived from con-
ceptualizations is more ambiguous to the model in
the conceptualization-augmented ATOMIC, which
theoretically contributes more to out-of-domain
generalization. Nonetheless, ATOMIC-10X still
contains some easy-to-learn knowledge that does

Models aNLI CSQA PIQA SIQA WG

CAR (RoBERTa) 72.7 66.3 73.2 64.0 62.0

⋄ w/o CA 72.3 64.8 73.2 64.8 61.3
⋄ w/o CCQS 71.5 67.3 72.1 61.8 62.7

CAR (DeBERTa) 79.6 69.3 78.6 64.0 78.2

⋄ w/o CA 78.9 67.2 78.6 63.8 78.1
⋄ w/o CCQS 78.2 68.1 78.1 63.5 78.3

Table 9: Ablation study on two components of CAR.
CA stands for Conceptualization Augmentation, and
CCQS stands for Concept-Constrained QA Synthesis.
The following five columns denote the accuracy (%) on
each benchmark.

not facilitate the model’s generalization. Thus, ab-
stract commonsense knowledge benefits zero-shot
commonsense QA better than ATOMIC-10X by
providing more ambiguous conceptual knowledge,
which aids in making the model more generaliz-
able.

We also plot the changes in training dynamics on
different QA benchmarks, comparing models with
and without the injection of abstract knowledge.
The plots are shown in Figure 7. We observe that
the inclusion of abstract commonsense knowledge
significantly improves the models’ confidence in
downstream QA entries. However, the impact on
the trend of variability is unclear. Nevertheless,
this improvement in average confidence provides
strong evidence for the model’s enhancement in
these downstream QA benchmarks.

B.7 Ablation Study

Next, we study the ablation of different compo-
nents in our CAR framework to determine the im-
pact of utilizing conceptualization through various
techniques. There are two critical components that
distinguish CAR from traditional zero-shot QA sys-
tems (Ma et al., 2021):
• Conceptualization Augmentation: Augmenting
the original commonsense knowledge in a CSKB
with its conceptualizations to derive abstract com-
monsense knowledge. This knowledge is then syn-
thesized into QA pairs, enabling the model to rea-
son from a more generalized perspective. Without
this component, abstract commonsense knowledge
is not incorporated into the CSKB. Conceptualiza-
tions still remain as constraints for assisting QA
pair synthesis, resulting in an approach that is simi-
lar to applying our proposed QA synthesis protocol
directly to ATOMIC.



• Concept-Constrained QA Synthesis: Constrain-
ing a question’s distractors by ensuring that none of
their head events share a common keyword or con-
ceptualization with the question’s keywords and
conceptualizations. If this component is dropped,
the constraint will be downgraded, and only no
sharing of common keywords between the question
and distractors will be restricted. This approach in-
troduces abstract commonsense knowledge into the
CSKB and uses the original distractor generation
strategy for synthesizing QA pairs.

We then train two batches of QA models, using
RoBERTa-Large and DeBERTa-v3-Large as the
backbone, by sequentially dropping the two com-
ponents mentioned above one at a time. Their zero-
shot performances on five commonsense QA bench-
marks are reported in Table 9. From the results, it
is observed that both components play important
roles in CAR, with CCQS being more effective
on average. This underscores the significance of
eliminating false negative distractors, and concep-
tualization proves to be a useful tool for achieving
this objective in improving the QA model’s overall
performance.

B.8 The Effect of Conceptualization

Lastly, we study the improvement in the general-
izability of our framework with the aid of concep-
tualizations by examining the accuracy gains on
questions with varying levels of semantic overlap
with knowledge in ATOMIC’s training split. To
do so, we sort the questions in every benchmark
by their average BERTScore (Zhang et al., 2020)
between each individual question entry against the
whole training set in the original ATOMIC. We
then split the questions into two sets based on
their BERTScores, with the lower BERTScore in-
dicating a lower semantic overlap and a greater
need for the model to generalize to answer the
question. These questions are denoted as “Diffi-
cult.” Conversely, we refer to questions with high
BERTScores as “Easy.”

Then, we train two QA models following the
pipeline proposed by Ma et al. (2021), with one
trained on conceptualization-augmented ATOMIC
and the other on ATOMIC only. We evaluate
their performance on five commonsense QA bench-
marks and compare the performance gains between
two sets of questions in each benchmark, as shown
in Figure 6. Results demonstrate that incorporat-
ing conceptualizations positively impacts accuracy,

aNLI CSQA SIQA PIQA WG Avg.
Commonsense Question-Answering Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

 A
cc

ur
ac

y 
(%

)

Easy
Difficult

Figure 6: Comparison of accuracy improvement (%)
with/without conceptualization-augmentation for two
groups of QA entries across five benchmarks. Avg.
stands for averaging across all benchmarks.

particularly for questions that deviate significantly
from ATOMIC across multiple benchmarks. This
indicates that augmenting ATOMIC with conceptu-
alizations can improve the model’s generalizability,
particularly for questions that tend to be out-of-
distribution, requiring more relevant knowledge to
answer correctly.

B.9 Generalization to Other CSKBs

While our work primarily experiments with the
AbstractATOMIC dataset as the conceptualization
source of ATOMIC, we also aim to extend our
framework to other CSKBs for a more generaliz-
able evaluation. To address this, we follow Ma
et al. (2021) and explore the feasibility of transfer-
ring our framework to the CWWV dataset, which
comprises multiple CSKBs including Concept-
Net (Speer et al., 2017), WordNet (Miller, 1995),
and WikiData (Vrandecic and Krötzsch, 2014). To
accomplish this, we train a conceptualization gen-
erator based on GPT2 (Radford et al., 2019) and
utilize ChatGPT (OpenAI, 2022) as two flexible
generative conceptualizers. The generated con-
ceptualizations are then transformed into abstract
knowledge and integrated into the CWWV dataset.
This augmented dataset is employed to train a zero-
shot commonsense QA reasoner using our pro-
posed CAR framework. We present the experi-
mental results and compare them with baselines
in Table 10. Our observations reveal a modest im-
provement in an average accuracy of 1% compared
to all baselines and comparable performance to
GPT3.5. These results demonstrate the effective-
ness of incorporating conceptualizations from other
CSKBs. In future research, we suggest exploring



Model CSKB a-NLI CSQA PIQA SIQA WG Avg.

RoBERTa-L (MR) (Ma et al., 2021) CWWV 70.0 67.9 72.0 54.8 59.4 64.8
MTL (Kim et al., 2022) CWWV 69.6 67.3 72.5 52.0 57.2 63.7
ZS-Fusion (Kim et al., 2022) CWWV 69.6 67.6 73.1 53.7 59.5 64.7
CAR-RoBERTa-L (Ours) CWWVC 71.6 68.4 73.0 55.4 60.6 65.8

GPT-3.5 (text-davinci-003) N/A 61.8 68.9 67.8 68.0 60.7 65.4
ChatGPT (gpt-3.5-turbo) N/A 69.3 74.5 75.1 69.5 62.8 70.2

Table 10: Zero-shot evaluation results (%) on five commonsense question answering benchmarks by models trained
on the CWWV dataset. CWWVC refers to the augmented CWWV dataset using generated conceptualizations from
a trained GPT2 generator and ChatGPT.

automatic construction methods for conceptualiza-
tion resources in other CSKBs and investigating
their potential benefits for general commonsense
reasoning.

C Case Study

In this section, we present case studies to demon-
strate the effectiveness of CAR. First, we discuss
cases that illustrate the power of conceptualization
augmentation, as shown in Table 12. By transform-
ing triples into abstract commonsense knowledge,
we can introduce more general knowledge into the
CSKB and improve its coverage. Moreover, the
newly introduced triples were missing from the
original CSKB. For instance, conceptualizing “Per-
sonX plays the games together” as an “entertain-
ment activity” introduces higher-level knowledge
that cannot be simply represented by the original
triple. Additionally, by synthesizing both types
of triples into QA pairs, the QA model can learn
both types of knowledge, which can help the model
perform more generalizable reasoning on out-of-
distribution commonsense QA benchmarks.

Next, in Table 13, we present QA pairs con-
sisting of false negative options generated using
keyword constraints during their synthesis from
both the original ATOMIC and ATOMIC-10X. We
also demonstrate how our concept constraint re-
solves this issue. Through these case studies, we
observe that the original distractors may contain
one or even both plausible options, which is sub-
optimal when training a QA model. Specifically,
for distractors sampled from ATOMIC-10X, we ob-
serve that several distractors are vague and general
(denoted as “?”), which can be plausible in many
contexts. For example, in various triples, adjectives
like “happy” and verb phrases such as “do it” are
easy to be plausible and do not serve as significant
distractions. This is not desirable when training a
QA model. However, by using conceptualizations

as a constraint, the newly sampled distractors are
all strong negatives, allowing the model to learn
from such negative commonsense knowledge. This
is because the distractors are sourced from triples
that are more likely to be irrelevant to the original
triple’s context and, thus, more likely to be truly
negative distractors.
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Figure 7: The change of training dynamics on various commonsense QA benchmarks by a DeBERTa-v3-Large
model trained on abstract commonsense knowledge injected ATOMIC (ours) compared with the one trained only on
ATOMIC (Ma et al., 2021).

Model CSKB a-NLI CSQA PIQA SIQA WG Avg.

Random - 50.0 20.0 50.0 33.3 50.0 40.7
Majority - 50.8 20.9 50.5 33.6 50.4 41.2
GPT2-L (Radford et al., 2019) - 56.5 41.4 68.9 44.6 53.2 52.9
RoBERTa-L (Liu et al., 2019) - 65.5 45.0 67.6 47.3 57.5 56.6
DeBERTa-v3-L (He et al., 2023) - 59.9 25.4 44.8 47.8 50.3 45.6
Self-talk (Shwartz et al., 2020) - - 32.4 70.2 46.2 54.7 -
COMET-DynGen (Bosselut et al., 2021) ATOMIC - - - 50.1 - -
SMLM (Banerjee and Baral, 2020) * 65.3 38.8 - 48.5 - -

Backbone: RoBERTa-Large 340M
RoBERTa-L (Vanilla) (Liu et al., 2019) - 65.5 45.0 67.6 47.3 57.5 56.6
MICO (Su et al., 2022) ATOMIC - 44.2 - 56.0 - -
RoBERTa-L (MR) (Ma et al., 2021) ATM10X 70.8 64.2 71.7 61.0 60.7 65.7
RoBERTa-L (MR) (Ma et al., 2021) ATOMIC 70.8 64.2 72.1 63.1 59.2 65.9
RoBERTa-L (MR) (Ma et al., 2021) CWWV 70.0 67.9 72.0 54.8 59.4 64.8
RoBERTa-L (MR) (Ma et al., 2021) CSKG 70.5 67.4 72.4 63.2 60.9 66.8
STL-PLM (Kim et al., 2022) ATOMIC 71.6 64.0 72.2 63.2 60.5 66.3
MTL (Kim et al., 2022) CWWV 69.6 67.3 72.5 52.0 57.2 63.7
MTL (Kim et al., 2022) CSKG 69.8 67.1 72.0 61.9 59.3 66.0
STL-Adapter (Kim et al., 2022) ATOMIC 71.3 66.5 71.1 64.4 60.3 66.7
STL-Adapter (Kim et al., 2022) CSKG 71.5 66.7 72.1 64.7 59.0 66.8
ZS-Fusion (Kim et al., 2022) CWWV 69.6 67.6 73.1 53.7 59.5 64.7
ZS-Fusion (Kim et al., 2022) CSKG 72.4 68.3 73.0 66.7 60.9 68.3
MKIF (Guan et al., 2023) CSKG 72.5 71.0 73.1 - 61.0 -
CAR-RoBERTa-L (Ours) ATOMIC 72.3 64.8 73.2 64.8 61.3 67.3
CAR-RoBERTa-L (Ours) ATMC 72.7 66.3 73.2 64.0 62.0 67.6

Backbone: DeBERTa-v3-Large 435M
DeBERTa-v3-L (MR) (Ma et al., 2021) ATM10X 74.0 65.4 73.8 59.5 73.9 69.3
DeBERTa-v3-L (MR) (Ma et al., 2021) ATOMIC 76.0 67.0 78.0 62.1 76.0 71.8
CAR-DeBERTa-v3-L (Ours) ATOMIC 78.9 67.2 78.6 63.8 78.1 73.3
CAR-DeBERTa-v3-L (Ours) ATMC 79.6 69.3 78.6 64.0 78.2 73.9

Large Language Models
GPT-3.5 (text-davinci-003) - 61.8 68.9 67.8 68.0 60.7 65.4
ChatGPT (gpt-3.5-turbo) - 69.3 74.5 75.1 69.5 62.8 70.2

Supervised Learning & Human Performance
RoBERTa-L (Supervised) - 85.6 78.5 79.2 76.6 79.3 79.8
DeBERTa-v3-L (Supervised) - 89.0 82.1 84.5 80.1 84.1 84.0
Human Performance - 91.4 88.9 94.9 86.9 94.1 91.2

Table 11: Zero-shot evaluation results (%) on five commonsense question answering benchmarks with baselines
trained on multiple CSKBs. The best results are bold-faced, and the second-best ones are underlined. ATMC stands
for the ATOMIC with abstract commonsense knowledge injected and ATM10X stands for ATOMIC-10X (West
et al., 2022). All baseline results are consistent with their original papers. CWWV refers to the combination of
ConceptNet (Speer et al., 2017), VisualGenome (Krishna et al., 2017), WikiData (Vrandecic and Krötzsch, 2014),
and WordNet (Miller, 1995). CSKG (Ilievski et al., 2021) consists of ATOMIC (Sap et al., 2019a) and CWWV.



Original Triple Original Synthetic QA Conceptualized Triple Conceptualized Synthetic QA

PersonX looks cute,
oWant, asks PersonX
on a date.

Wynne looks cute. As a result,
others wanted to?
A: thank him.
B∗: ask Wynne on a date.
C: thank Wynne.

PersonX [pretty],
oWant, asks PersonX on
a date.

Wynne [pretty]. As a result, oth-
ers wanted to?
A: thank him.
B∗: ask Wynne on a date.
C: thank Wynne.

PersonX
sets a new record,
xWant, accept the prize.

Ray sets a new record. As a
result, Ray wanted to?
A: get to safety.
B∗: accept the prize.
C: send the email.

PersonX [achievement],
xWant, accept the prize.

Ray [achievement]. As a result,
Ray wanted to?
A: get to safety.
B∗: accept the prize.
C: send the email.

PersonX plays
the games together,
xNeed, find someone to
play with.

Logan plays the game together.
Before, Logan needed to?
A: know the framework.
B∗: find someone to play with.
C: wash the clothes.

[entertaiment activity],
xNeed, find someone to
play with.

[entertaiment activity]. Before,
Logan needed to?
A: know the framework.
B∗: find someone to play with.
C: wash the clothes.

Table 12: Case study of conceptualized triples and their synthesized QA pairs. Given an original triple from
ATOMIC, we conceptualize the triple by replacing an instance with its [plausible conceptualization] to form a
conceptualized triple. The conceptualized triples are then synthesized into QA pairs using the same ground-truth
answer and distractors, sampled for the original triple, to train the QA model. ∗ indicates the ground-truth answer.

Question Distractor Sampling Strategy Distractor F.Neg.

Jamie makes Alex’s breakfast.
As a result, Jamie wanted to?
(eat with Alex.)

Keyword (ATOMIC) show off the food. ✓
take them home. ×

Keyword (ATOMIC-10X) be a good person. ✓
do it. ?

Keyword + Concept discuss the question. ×
get warm. ×

Berkeley joins Aspen’s party.
As a result, others felt?
(looked up to, admired.)

Keyword (ATOMIC) enjoyed. ✓
good. ✓

Keyword (ATOMIC-10X) happy. ✓
good. ✓

Keyword + Concept upset for having to give up their keys. ×
sad. ×

Cody builds Logan house.
Before, Cody needed to?
(have construction material.)

Keyword (ATOMIC) have the knowledge. ✓
help with preparation. ✓

Keyword (ATOMIC-10X) start. ?
eat well. ×

Keyword + Concept have been smoking weed. ×
be with others. ×

Ash is at the mall with West’s friends.
Before, Ash needed to?
(drive his car.)

Keyword (ATOMIC) decide to go. ✓
buy apple seeds. ×

Keyword (ATOMIC-10X) get prepared. ?
study the situation. ×

Keyword + Concept tries to do it but can’t. ×
fail the test. ×

Table 13: Case study of the false negative options in the original QA synthesis and how our proposed
conceptualization-constraint resolves such an issue. The (ground truth answer) is appended below each question.
Keyword represents only using keywords as the constraint for sampling distractor, while Concept refers to using
both the keywords and conceptualizations. F.Neg. refers to whether the distractor is a false negative one or not.


