
Under review as a conference paper at ICLR 2024

HALLE-SWITCH: RETHINKING AND CONTROLLING
OBJECT EXISTENCE HALLUCINATIONS IN LARGE
VISION-LANGUAGE MODELS FOR DETAILED CAP-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Current large vision-language models (LVLMs) achieve remarkable progress, yet
there remains significant uncertainty regarding their ability to accurately appre-
hend visual details, that is, in performing detailed captioning. To address this,
we introduce CCEval, a GPT-4 assisted evaluation method tailored for detailed
captioning. Interestingly, while LVLMs demonstrate minimal object existence
hallucination in existing VQA benchmarks, our proposed evaluation reveals con-
tinued susceptibility to such hallucinations. In this paper, we make the first attempt
to investigate such hallucination from different aspects, including image resolu-
tion, the language decoder size, and instruction data amount, quality, granularity.
Our findings underscore the unwarranted inference when the language descrip-
tion includes details at a finer object granularity than what the vision module can
ground or verify, thus inducing hallucination. To control such hallucinations, we
further attribute the reliability of captioning to contextual knowledge (involving
only contextually grounded objects) and parametric knowledge (containing in-
ferred objects by the model). Thus, we introduce HallE-Switch, a controllable
LVLM in terms of Hallucination in object Existence. HallE-Switch can condition
the captioning to shift between (i) exclusively depicting contextual knowledge for
grounded objects and (ii) blending it with parametric knowledge to imagine in-
ferred objects. Our method reduces hallucination by 44% compared to LLaVA7B

and maintains the same object coverage.

1 INTRODUCTION

Describe this image in detail.User

The image displays a bustling street
scene. There is an old-fashioned car
and a white bus. In the background, a
series of trees and overhead cables are
visible, suggesting an urban setting.

Model Output

trees bus
car

street

The image displays a bustling street scene
with many [people]. There is an old-
fashioned car and a white bus stopped by a
[traffic light]. In the background, a series of
trees and overhead cables. The sky above is
clear with [clouds].

trees bus
car

street

people

clouds

traffic light

No Imagination Max Imagination

Figure 1: The figure shows that HallE-Switch uses a single continuous parameter during inference
to control imagination in the outputted caption. A switch value of “−1” makes the model use solely
contextual knowledge (visually grounded objects) , such as trees, buses, cars, and streets. A switch
value of “+1”makes the model incorporate parametric knowledge (inferred objects) , such as people,
clouds, and traffic lights, with the [object] marker labeling those inferred objects.

In recent years, Large Vision-Language Models (LVLMs) (Liu et al., 2023d; Dai et al., 2023; Li
et al., 2023b; Zhu et al., 2023) have achieved significant progress, advancing tasks such as detailed
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captioning, visual conversations, and vision question-answering (VQA) (Goyal et al., 2017; Liu
et al., 2023e; Hudson & Manning, 2019; Fu et al., 2023). However, similar to Large Language Mod-
els (LLMs) (Touvron et al., 2023a; Team, 2023; OpenAI, 2022) in the NLP domain, LVLMs confront
the issue of hallucination. This is particularly severe in detailed image captioning, which hinders
the performance of downstream applications in robotics (Huang et al., 2023), visual search (Hu
et al., 2023), etc. To better understand and address this challenge, we first outline three types of
object hallucinations frequently observed in the detailed captions: (1) Object Existence Hallucina-
tion - The detailed image description references objects that are not present; (2) Object Attribute
Hallucination - The detailed image description inaccurately characterizes objects, misrepresenting
attributes such as color, shape, and size; (3) Object Relationship Hallucination - The detailed image
description inaccurately depicts the relationships or interactions among objects, including erroneous
relative positions, interaction states, and actions involving two or more objects. In this work, we
mainly focus on defining the metric, analyzing the cause, and addressing the the problem of object
existence hallucination.

Evaluating detailed captions is inherently complex. Some of the efforts, including benchmarks
like POPE (Li et al., 2023e), evaluate object hallucination using VQA. Such a bias towards VQA-
based evaluations might result in an incomplete assessment of detailed captions, which requires
obtaining a comprehensive view of visual details. To bridge this gap, we introduce CCEval, designed
specifically for object existence hallucination in detailed captions. To avoid the model gaining an
unfair advantage by favoring shorter descriptions, CCEval maintains consistency in metrics such
as average sentence length and the number of objects. Notably, even models that well-performed
on VQA-based object hallucination benchmarks showed substantial hallucinations when evaluated
with CCEval.

In our exploration to uncover the underlying cause of object existence hallucination, we look into
various factors including the size of the language decoder, the quantity, quality, and granularity of
instruction data, and the input resolution to the vision encoder. We conclude the most crucial factor
to be the alignment between objects mentioned in training caption and those vision encoder can
perceive. During training of LVLMs, the goal is to establish a one-to-one correspondence between
objects mentioned in the caption and those present in the image. Objects successfully grounded by
the vision encoder form accurate associations, internalizing them as contextual knowledge. Con-
versely, objects in the language that the vision encoder fails to ground create word-word semantic
associations, which can be attributed to the generalization from the parametric knowledge within
the model’s parameters. During inference, when the model draws from such parametric knowl-
edge, any misalignment can manifest as hallucination, as the model attempts to “guess” details not
grounded by the vision module.

To address such hallucination, we are motivated by that not all hallucination is bad, and it is more de-
sirable to control the generalization rather than outright removal of all imagined objects. Recogniz-
ing the significance of both contextual and parametric knowledge in ensuring generation reliability,
we present HallE-Switch, a novel approach to control the extent of expressed hallucination or para-
metric knowledge. We curate a 33k dataset similar to LLaVA (Liu et al., 2023d), incorporating both
pure contextual knowledge and a blend of contextual knowledge with marked parametric knowl-
edge. Leveraging this dataset, we train a lightweighted single linear layer to control over the frozen
LVLM. As demonstrated in Figure 1, a singular continuous parameter adjustment (e.g. −1 → +1)
during inference enables the model to produce detailed captions with only contextual knowledge
(e.g., −1) or blend with parametric knowledge (e.g., +1). Furthermore, the inferred objects from
parametric knowledge are automatically highlighted with distinct tokens (e.g., [object]) for hu-
man reference. This method offers the advantage of preserving object count and coverage as well as
sentence length, while effectively control object existence hallucination.

Overall, our contributions are:

• A novel evaluation method for detailed caption object existence hallucination, with met-
rics such as object count, coverage, and average sentence length, alongside hallucination
assessment;

• A comprehensive analysis on LVLM components that influence hallucination, with a spe-
cific focus on alignment issues in the vision encoder and instruction data;

• A first approach to control object existence hallucination within detailed captions.
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Table 1: We evaluate LLaVA Vicuna7B , LLaVA Vicuna13B , Shikra7B , InstructBLIP Vicuna7B pub-
lic checkpoints on VQA-based benchmarks, including POPE and MME.

Benchmark Model Accuracy↑ Precision↑ Recall↑ F1↑ Yes (%)

POPE - Random

LLaVA7B 73.13 66.95 94.53 78.39 72.78
LLaVA13B 78.49 73.57 90.93 81.34 63.71
Shikra7B 86.99 94.77 79.13 86.25 43.04
InstructBLIP7B 86.60 80.74 96.13 87.77 59.53

POPE - Popular

LLaVA7B 59.87 55.88 93.80 70.03 83.93
LLaVA13B 70.80 64.73 91.40 75.79 70.60
Shikra7B 84.35 88.10 79.43 83.54 45.08
InstructBLIP7B 71.27 64.20 96.13 76.99 74.87

POPE - Adversarial

LLaVA7B 57.06 54.07 93.93 68.63 86.87
LLaVA13B 63.93 59.03 91.07 71.63 77.13
Shikra7B 82.88 85.32 79.43 82.27 46.55
InstructBLIP7B 72.10 65.13 95.13 77.32 73.03

Benchmark Model Existence↑ Count↑ Position↑ Color↑ Total↑

MME

LLaVA7B 150.00 48.33 50.00 55.00 303.33
LLaVA13B 180.00 113.33 55.00 95.00 443.33
Shikra7B 185.00 118.33 75.00 155.00 533.33
InstructBLIP7B 185.00 60.00 50.00 125.00 420.00

Table 2: Comparison between CHAIR and our evaluation method, CCEval.

Model CHAIR CCEval (Ours)
CHAIRi↓ CHAIRs↓ Avg. Length↑ Avg. Object↑ CHAIRi↓ CHAIRs↓ Coverage↑ Avg. Length↑ Avg. Object↑

LLaVA7B 24.1 9.1 42.5 3.7 72.00 19.7 32.74 92.27 9.19
LLaVA13B 60.6 18.4 90.2 7.6 79.00 23.80 33.56 108.02 9.28
Shikra7B 59.1 16.6 91.2 7.5 83.00 24.40 33.29 109.37 9.10
InstructBLIP7B 1.4 1.7 2.3 0.8 72.00 22.30 29.76 108.42 8.04

2 HALLUCINATION ANALYSIS

Object existence hallucination can be influenced by several factors, including the language de-
coder, instruction data, and vision encoder. In our analysis, we address each factor individually.
For a diverse methodological exploration, we select LLaVA, InstructBLIP (Dai et al., 2023), and
Shikra (Chen et al., 2023): LLaVA and Shikra share the same model structure; Shikra and In-
structBLIP use mixed-dataset and multi-task instruction data; InstructBLIP finetunes only Q-former,
while the other finetune projector and LLM. More details about models can be found in Appendix.

2.1 BENCHMARKS

There are two primary approach, VQA-based and caption-based benchmarks, for evaluating object
existence hallucination in LVLMs.

VQA-based benchmarks pose questions about objects within images. For a model to be considered
hallucination-free, it should address these visual questions accurately. Notably, a large proportion
of questions are simply binary, typically asking about the presence or attributes of objects.

The POPE benchmark evaluates object existence hallucination by a polling-based query method,
consisting of a series of yes/no questions on sampled objects from visual instructions. POPE con-
tains three sets: random, popular, and adversarial. These subsets respectively focus on randomly
selected objects, frequently occurring objects, and those objects that co-occur in training sets. We
choose POPE evaluation on MSCOCO (Lin et al., 2014) dataset. MME (Fu et al., 2023) coarse-
grained recognition construct yes/no questions similarly but selects objects at random. This bench-
mark has 30 images, with each image paired with two questions: one positive and one negative.

In Table 1, LLaVA7B exhibits the greatest degree of hallucination, whereas Shikra outperforms other
models in both POPE and MME. Specifically, Shikra shows a significantly higher F1 score in both
POPE-popular and POPE-adversarial categories, while LLaVA7B displays the lowest. Additionally,
Shikra’s ”Yes” ratio is closer to a balanced 50% compared to other models. However, in subsequent
sections, we demonstrate that these observations from VQA-based benchmarks are not consistent
with those from caption-based benchmarks.
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Table 3: Performance of LLaVA and InstructBLIP with different sizes of language decoder. LLaVA
are trained on CC-595k for stage one and Instruction-150k for stage two.

Benchmark Model Accuracy↑ Precision↑ Recall↑ F1↑ Yes (%)

POPE - Random

LLaVA7B 75.77 69.79 93.47 79.91 69.04
LLaVA13B 78.49 73.57 90.93 81.34 63.71
LLaVA33B 78.14 73.18 90.93 81.09 64.05
InstructBLIP7B 86.60 80.74 96.13 87.77 59.53
InstructBLIP13B 88.73 86.67 92.33 89.41 54.91

POPE - Popular

LLaVA7B 65.07 59.60 93.53 72.81 78.47
LLaVA13B 70.80 64.73 91.40 75.79 70.60
LLaVA33B 72.43 66.45 90.60 76.67 68.17
InstructBLIP7B 71.27 64.20 96.13 76.99 74.87
InstructBLIP13B 80.53 74.70 92.33 82.59 61.80

POPE - Adversarial

LLaVA7B 57.07 54.07 93.93 68.63 86.87
LLaVA13B 63.93 59.03 91.07 71.63 77.13
LLaVA33B 66.30 60.91 91.00 72.98 74.70
InstructBLIP7B 72.10 65.13 95.13 77.32 73.03
InstructBLIP13B 73.97 67.53 92.33 78.01 68.37

Benchmark Model CHAIRs↓ CHAIRi↓ Coverage↑ Avg. Length↑ Avg. Object↑

CCEval (Ours)

LLaVA7B 82.00 25.30 33.58 109.89 9.31
LLaVA13B 79.00 23.80 33.56 108.02 9.28
LLaVA33B 82.00 21.80 31.26 106.85 9.07
InstructBLIP7B 72.00 22.30 29.76 108.42 8.04
InstructBLIP13B 64.00 16.70 33.60 101.63 8.06

Caption-based benchmarks, like CHAIR, begin by splitting the sentence and extracting nouns.
Subsequently, it augments the ground truth objects by incorporating hard-coded synonyms and
phrases, forming a ground truth set. The benchmark then identifies hallucinated objects by compar-
ing the objects in the caption with this ground truth set. CHAIR computes CHAIRi and CHAIRs

as follows:

CHAIRi =
|{hallucinated objects}|
|{all objects mentioned}|

CHAIRs =
|{sentences with hallucinated object}|

|{all sentences}|

Table 2(left) reveals that while InstructBLIP exhibits minimal object existence hallucination, it aver-
ages a mere 0.8 objects per sentence. In contrast, LLaVA13B and Shikra manifest a higher degree of
hallucination, but they also generate more detailed captions, outputting as many as 7.6 and 7.5 ob-
jects per sentence, respectively. We find comparing object hallucinations is impractical when there
is a significant disparity in average sentence length and the number of objects.

Apart from these disparities, the use of a hard-coded ground truth set is another challenge. To
counter these challenges, we introduce CCEval, a GPT-4 assisted evaluation for detailed captions.
We first prompt LVLMs to generate detailed captions on 100 randomly sampled images from Visual
Genome (Krishna et al., 2017). Subsequently, utilizing GPT-4’s in-context learning capabilities,
we extract individual objects from these captions and identify hallucinated ones by referencing the
provided ground truth objects. On top of CHAIR Rohrbach et al. (2018), we introduce ”coverage”
metric to ensure that the captions are detailed enough. This metric computes the ratio of objects in
the caption that match the ground truth to the total number of ground truth objects. We additionally
record and balance the average number of objects as well as the average length of captions across
all cases. More details on prompts of CCEval can be found in Appendix.

As reflected in Table 2(right), when subjected to consistent constraints—average sentence length
approximately 100 words and around 9 objects per sentence—all models exhibit comparably sub-
optimal results. Interestingly, while Shikra surpass other models in VQA-based benchmarks, espe-
cially in the POPE , it under-performs in CCEval. This suggests that object existence hallucination
in detailed captions is not consistently captured by VQA-based evaluations.

2.2 LANGUAGE DECODER

We investigate if expanding the size of the language backbone can mitigate object existence halluci-
nation. As detailed in Table 3, the language decoder of LLaVA is increased from 7B to 33B, and for
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Table 4: Performance of LLaVA7B with different sizes of data. 80K and 158K contains 80K and
158K data respectively, and SVIT contains 2.4M.

Benchmark Finetune Data Accuracy↑ Precision↑ Recall↑ F1↑ Yes (%)

POPE - Random
80K 73.13 66.95 94.53 78.39 72.78
158K 75.77 69.79 93.47 79.91 69.04
SVIT 52.34 52.00 97.87 67.92 97.01

POPE - Popular
80K 59.87 55.88 93.80 70.03 83.93
158K 65.07 59.60 93.53 72.81 78.47
SVIT 50.77 50.43 90.47 64.76 89.70

POPE - Adversarial
80K 57.07 54.07 93.93 68.63 86.87
158K 58.47 55.00 93.07 69.14 84.6
SVIT 51.37 50.77 90.33 65.00 88.97

Benchmark Finetune Data CHAIRi↓ CHAIRs↓ Coverage↑ Avg. Length↑ Avg. Object↑

CCEval (Ours)
80K 72.00 19.70 32.74 92.27 9.19
158K 82.00 25.30 33.58 109.89 9.31
SVIT 87.00 23.30 47.46 296.63 18.14

Table 5: Performance of LLaVA with Llama 213B language decoder and CLIP-Large vision encoder
with different input resolutions.

Benchmark Vision Encoder CHAIRs↓ CHAIRi↓ Coverage↑ Avg. Length↑ Avg. Object↑

CCEval (Ours)
CLIP-L-112x 79.00 21.70 32.04 110.36 9.12
CLIP-L-224x 74.00 19.30 32.83 113.03 9.18
CLIP-L-336x 64.00 16.00 33.37 108.52 8.92

InstructBLIP, it is increased from 7B to 13B. The result shows that hallucination for LLaVA reduced
for POPE but not for CCEval. For InstructBLIP, CHAIRi and CHAIRs is reduced by 8 and 5.6 on
CCEval, respectively. However, although there is a gain for scaling up language backbone, it is not
consistent or salient from the observation, suggesting language decoder is not a primary factor in
reducing hallucination.

2.3 DATA

Similar to our approach with the language decoder, we begin by scaling up the volume of instruction
finetuning data, ranging from 80K to 2.4M. As illustrated in Table 4, the LLaVA7B model, finetuned
on 80K instruction data, exhibits fewer object existence hallucinations compared to the models
finetuned on 150K and SVIT (Zhao et al., 2023a). The result suggests extra data without quality
guarantee may increase hallucination for both VQA-based and caption-based evaluations. Given
that all three datasets are generated by GPT-4, we question the quality of the data. LRV also raises
this concern, suggesting that the training data itself might contain hallucinations. Some examples
of training data are presented in the Appendix. Interestingly, our examination shows no object
existence hallucination: the objects in the captions are contained the ground truth objects from
MSCOCO. However, we identify certain ground truth objects are challenging for human observers
to ground, due to factors like size, resolution, and occlusion. This led us to hypothesize that the
vision encoder might also struggle to ground these objects effectively.

2.4 VISION ENCODER

Intuitively, increasing image resolution enhances model’s perception of finer details, thus making
the grounding of objects mentioned in the caption easier. To verify our hypothesis from the previous
section, we increase the input image resolution for the vision encoder. Specifically, for our eval-
uation, the resolution for LLaVA7B was incremented from 224x to full resolution using a sliding

Table 6: Performance of LLaVA7B and with sliding window technique (SW).

Benchmark Vision Encoder CHAIRs↓ CHAIRi↓ Coverage↑ Avg. Length↑ Avg. Object↑

CCEval (Ours)
CLIP-L-224x 79.00 21.70 32.04 110.36 9.12
CLIP-L-336x 79.00 18.90 36.00 111.55 9.19
CLIP-L-224x (SW) 72.00 18.70 36.89 110.43 8.65
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window approach for efficiency, as detailed in the Appendix. Table 6 shows a constant decrease
in hallucination and increase in object coverage. Additionally, we assess LLaVA with Llama 213B ,
varying the resolution from 112x to 336x. For the 112x112 resolution, the original image was down-
scaled to 112x and subsequently upscaled to 224x before being input to CLIP-Large-224x. Table 5
gives a consistent observation that larger input resolution can reduce hallucination.

Conclusion. Through our systematic analysis of object existence hallucination, we summarize sev-
eral insights: (1) Enlarging the language decoder does mitigate hallucination, but improvements are
not huge. (2) Expanding the volume of instruction data actually increases hallucination. Upon in-
spection of training data, we find certain objects described in the captions might not be grounded by
the vision encoder. (3) To validate our hypothesis in (2), we show improving input image resolution
significantly reduces hallucination by enhancing model grounding ability.

Reflecting on these findings, we attempt to provide an explanation for the reason of object existence
hallucination in detailed captions. The process of image captioning in LVLMs can be perceived as
a form of information mapping or translation. Ideally, the goal is to have a direct one-to-one cor-
respondence between objects identified in the image and those mentioned in the captions. Objects
successfully grounded by the vision encoder form accurate correspondence, making this as contex-
tual knowledge in the model, following (Neeman et al., 2023). When objects in training caption fail
to ground by the vision encoder, the model learns parametric knowledge, the knowledge encoded
in the model’s parameter. This kind of knowledge is the association of objects in the language with
other words instead of with corresponding image object feature. During inference, when the model
draws from parametric knowledge, it attempts to “guess” details not grounded by the vision module
and is perceived as object existence hallucination.

3 HALLUCINATION CONTROLLING

Step 1: Data Generation

Step 2: Switch Training

RAM

spoon, fork, plates,
cups, table, chairs

GT Objects

spoon, plates,
cups, table

Grounded Objects

fork, chairs

Omitted Objects

CLIP

Describe this image in detail.

Projector
𝑊

Ɛ *
LM-

Backbone
𝐵

Ɛ=+1

Ɛ=-1
This image features a prepared 

dining table, with plates,
a spoon, and cups on it.

This image features a prepared 
dining table, with plates, a spoon 
and [fork], as well as cups on it. 
There are also [chairs] around it.

LM-
Head
𝐻

Loss

Baseline

Indication
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Figure 2: (a) shows the overall training pipeline of HallE-Switch. When generating data, we use
RAM to separate ground truth objects to visually grounded and omitted objects. Then, we utilize
GPT-4 to convert this existing list of grounded objects into a caption as contextual data, and we
assign ε as −1. We put bracket around omitted objects in the original LLaVA caption as parametric
joint data and assign ε as +1. During training, we supervise using contextual only data and paramet-
ric joint data, pass in ε as −1 or +1, respectively. (b) shows our methods consistently outperforms
LLaVA baselines and InstructBLIP13B . Indication is w/ ind. in Table 7, and Switch is -1 in Table 8.

Following our previous explanation that parametric knowledge leads to hallucination, we can elimi-
nate the parametric knowledge and refrain the resulting model from guessing related objects. How-
ever, such guessing is necessary depending the details required by the downstream task, as shown in
Appendix. Therefore, our approach work towards controlling and balancing parametric knowledge
rather than eliminating.

We introduce HallE-Switch, a LVLM designed to control the extent of parametric knowledge within
detailed captions. For this purpose, we developed two datasets: the first captures solely contex-
tual knowledge, while the second merges both contextual and parametric knowledge. Using these
datasets, we integrated a control projector into the model to control parametric knowledge.
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3.1 DATA GENERATION

Grouping using RAM. We begin by passing MSCOCO’s ground truth objects to the open vocabu-
lary detector RAM (Zhang et al., 2023b). RAM categorizes the objects into two groups: “grounded”
(contextual group) and “omitted” (parametric group). This step aims to simulate the maximum
visual granularity achievable by a vision encoder in LVLMs.

Contextual Data Generation. Our first dataset involves generating detailed captions using only
objects from the contextual group. To do this, we feed MSCOCO source labels (including object
classes, bounding boxes, and short captions) into GPT-4. We adhere to LLaVA’s caption creation
pipeline and provide prompt in Appendix.

Parametric Joint Data Generation. The second dataset incorporates both contextual and paramet-
ric knowledge. Here, we begin with LLaVA’s original detailed captions and annotate objects from
the parametric group with special tokens. Specifically, we enclose the “omitted” objects with brack-
ets. Formally, if S denotes the original image caption sentence and X = {x1, ..., xn} represents a
set of undetected objects, our data processing can be represented as:

Snew = replace(S, xi, [xi])

The purpose of bracketing the parametric objects is twofold: it serves as an indicator during infer-
ence and provides a hint during training.

3.2 HALLUCINATION SWITCH

Inspired by LM-Switch (Han et al., 2023), we address hallucination by adding a control parameter ε
that serves as a “switching value”, e.g., +1 for permitted imagination and −1 for restricting imagi-
nation, as depicted in Figure 2(a). Let M represent the LLM with fixed parameters: M(x) = H(ev)
where H stands for LM-head and ev = B(x) is the output word embedding from LM-backbone.
We modify M ′ = M(εW ), thus making output word embedding e′v = ev + εWev , leading to the
derived model M ′ as:

M ′(x) = H(B(x) + εW (B(x))).

The learned projector W can be regarded as the transformation from a generic word space to the
object sensitive word space, where word-word semantic correspondence is optimized to object cor-
respondence, and ε governs the intensity of imagining related objects.

Training. To train such a controlling parameter, we leverage the contrastive training data covering
both contextual and parametric datasets in Sec 3.1. For data with only contextual knowledge, we
assign ε = −1 when inputting into the model. In contrast, for data with both contextual and para-
metric knowledge, we use ε = 1. Notably, only the linear layer W is fine-tuning throughout the
training phase.

Inference. At the inference stage, ε can adopt any value within the interval [−1, 1]. Specifically,
an ε value of −1 corresponds to minimal reliance on parametric knowledge, whereas a value of
1 indicates a strong inclination towards such knowledge. Detailed theoretical explanation on why
HallE-Switch works are elaborated upon in the Appendix.

4 EXPERIMENT

4.1 FINETUNE ON PARAMETRIC JOINT DATA

Before we present experiments on HallE-Switch, we show the upper-bound experiment results on
how well the model can indicate parametric knowledge. We directly finetune the LLaVA model
on parametric joint data. Intuitively, the model is trained on data indicating parametric knowledge.
Its output should identify parametric knowledge accurately. Specifically, the model should put a
bracket around every ”guessed” objects for indication of hallucination.

Therefore, we evaluate the object hallucination in three different settings: 1. Evaluation only on
indicated objects: We do CCEval only on objects inside the bracket. The result should reflect a high
level of hallucination. 2. Evaluation without indicated objects: We disregard objects in bracket and
calculate CCEval. The result should reflect a low level of hallucination. 3. Evaluation with indicated
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Table 7: Comparison between baselines and the effect of indication on CCEval. ’Only ind’ means
evaluation only on indicated objects; ’w/o ind’ means evaluation without indicated objects; ’w/ ind’
means evaluation with indicated objects.

Setting LLM Resolution CHAIRs↓ CHAIRi↓ Coverage↑ Avg. Length↑ Avg. Object↑
158K baseline LLaVA7B 224x 82.00 25.30 33.58 109.89 9.31
only ind. LLaVA7B 224x 53.00 63.90 12.01 – 1.66
w/o ind. LLaVA7B 224x 57.00 17.10 37.60 108.94 7.63
w/ ind. LLaVA7B 224x 57.00 14.00 37.62 108.94 9.22

158K baseline LLaVA Llama 213B 336x 64.00 16.00 33.37 108.52 8.92
only ind. LLaVA Llama 213B 336x 52.00 62.31 19.90 – 1.3
w/o ind. LLaVA Llama 213B 336x 52.00 11.62 34.70 106.94 7.23
w/ ind. LLaVA Llama 213B 336x 52.00 9.86 39.31 106.94 8.52

Table 8: Performance of HallE-Switch.
Switch LLM Resolution CHAIRs↓ CHAIRi↓ Coverage↑ Avg. Length↑ Avg. Object↑
1 LLaVA7B 224x 89.00 26.60 32.80 108.54 9.72
0.5 LLaVA7B 224x 85.00 27.92 34.02 109.33 8.81
-0.5 LLaVA7B 224x 81.00 24.88 35.87 118.08 8.04
-1 LLaVA7B 224x 76.00 20.90 33.88 133.79 8.02

1 LLaVA Llama 213B 336x 65.00 14.58 36.14 102.18 8.37
0.5 LLaVA Llama 213B 336x 65.00 14.44 32.32 103.51 8.45
-0.5 LLaVA Llama 213B 336x 66.00 13.79 33.07 105.57 8.41
-1 LLaVA Llama 213B 336x 43.00 6.37 34.37 136.28 8.79

objects: We calculate CCEval on all objects. Due to modification of the settings, we slightly change
definition of CHAIR scores in CCEval as detailed in Appendix.

Evaluation only on indicated objects. The hallucination level for indicated objects, denoted as
CHAIRi, is 63.90 for LLaVA7B and 62.31 for LLaVA13B . It is considerably higher than the base-
lines all other models. Concurrently, their coverage is 12.01 and 19.09 for LLaVA7B and LLaVA13B ,
respectively, which both of them significantly lower than the coverage of 33.58 for LLaVA7B base-
line model. The experiment results show the object within special tokens has significantly higher
hallucination rate and lower coverage rate which support our assumption that the object inside the
indication tokens are objects from parametric knowledge.

Evaluation without indicated objects. For objects outside of the special token scope, we found
that hallucination is markedly reduced, CHAIRs decreased from 82 to 57 which is 30.5% percent
improvement and CHAIRi decrease 32.4%, from 25.3 to 17.10, compared to the baseline. This
suggests that the model is less prone to make erroneous assumptions for objects not marked by
brackets. This is interesting because the model perfectly capture the intention of marking parametric
objects in training data and replicate the behavior during inference.

Evaluation with indicated objects.: We observe a significant decline in the hallucination with-
out any reduce in object coverage. LLaVA7B CHAIRi improved from 25.30 to 14.00 which has
44.66% improvements. For LLaVA13B CHAIRi improved from 16 to 9.86 which also has 38.38%
improvements.

4.2 HALLUCINATION CONTROLLING

During model inference, we select 4 different ε , ranging from −1 to +1. As shown in Table 8, we
evaluate HallE-Switch7B and HallE-Switch13B model, which use LLaVA as backbone. For the 7B
model, we train it by removing the special token in parametric joint data, showing that indication is
not a necessary condition for switch to work. ε = −1 means the switch trained purely on contextual
only data, which try to minimize the hallucination, where ε = +1 switch to maximize parametric
knowledge output. The results show that as ε increase, CHAIRi increase from 20.90 to 26.6, the
coverage keeps at a similar level.

For the 13B model, we keep the indication inside the parametric joint data. The HallE-Switch13B

achieves the best in object existence hallucination metric. With switch set to -1 and indication, we
have CHAIRs = 43 versus baseline’s 64 and CHAIRi = 6.37 vs baseline’s 16, and the coverage
of the model is not decreasing.
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5 RELATED WORK

Large Vision-Language Models (LVLMs). The rapid advancements in Large Language Models
(LLMs) (Touvron et al., 2023a; Chung et al., 2022; Touvron et al., 2023b; Anil et al., 2023; Driess
et al., 2023; Scao et al., 2022; OpenAI, 2023) combined with a surge in open-source initiatives, have
paved the way for the emergence of extensive vision-language models (Liu et al., 2023d; Goyal
et al., 2017; Zhu et al., 2023; Sun et al., 2023; Ye et al., 2023; Bai et al., 2023; Chen et al., 2023;
Peng et al., 2023). LLaVA introduced the concept of integrating a simple projector during LLM
fine-tuning. Chatspot (Zhao et al., 2023b) follow LLaVA’s model structure, but embed region of
interest into instruction data. GPT4RoI (Zhang et al., 2023a) and Shikra (Chen et al., 2023) add
grounding tasks to LLaVA structure models, and achieve great performance on various tasks. Instead
of using detector to provide region information to the model, we use detector to filter objects for
alignment between vision and language information. Concurrently, BLIP2 (Li et al., 2023d) and
InstructBLIP (Dai et al., 2023) presented Q-former-based LVLMs. Multimodal-GPT (Gong et al.,
2023) and Otter (Li et al., 2023b) aims to improve OpenFlamingo’s (Alayrac et al.; Awadalla et al.,
2023) directive adherence. mPLUG-Owl (Ye et al., 2023) suggests a two-step method: first train
vision models, then refining the language model using techniques like LoRA. Our work utilize a
linear layer to control object existence hallucination within LVLMs.

Evaluation on LVLMs. The evaluation of large vision-and-language models (LVLMs) (Yu et al.,
2023; Liu et al., 2023b;c) is notably challenging due to the intricate nature of generation tasks they
undertake. Some of the VQA-based benchmarks (Antol et al., 2015; Hudson & Manning, 2019;
Gurari et al., 2018) require models to identify objects, colors, or quantities, while others (Liu et al.,
2023e; Li et al., 2023c; Lu et al., 2022) offer multiple-choice questions. POPE (Li et al., 2023e) and
MME (Fu et al., 2023) include object hallucination evaluation like paired yes/no questions on object
existence, color, counting, OCR, and etc. While VQA-based benchmarks are cheap and straight-
forward, we find them cannot accurately reflect object hallucination for detailed captions. Besides
VQA benchmarks, ROUGE (Lin, 2004; Elliott & Keller, 2014) use n-gram to evaluate similarity
between ground truth and model inferences. CIDr (Vedantam et al., 2015) is a triplet-based method
of collecting human annotations to measure consensus. CHAIR (Rohrbach et al., 2018) evaluate
caption hallucination based on object concept. These methods are constraint by ground truth length
or word variance and cannot clearly reflect hallucination with object coverage information. Wang
et al. (2023) try use a language model to predict whether the caption exist hallucination, which
is cheaper than GPT-4. Our work introduces CCEval, including CHAIR metrics, object coverage,
average sentence length and number of objects to overcome limitations of previous evaluations.

Hallucination Hallucinations (Ji et al., 2023a; Shi et al., 2023; Lin et al., 2021) have been widely
studied in traditional NLG (Ji et al., 2023b) tasks, including machine translation (Zhou et al., 2020;
Lee et al., 2019), data-to-text (Rebuffel et al., 2021; Kasner & Dušek, 2022; Lee et al., 2022),
summarization (Cao et al., 2022), dialogue (Dziri et al., 2022) and QA (Shuster et al., 2021). For
LVLMs, previous studies have been mainly focusing on object hallucination (Marino et al., 2019;
MacLeod et al., 2017; Li et al., 2023a;e). POPE (Li et al., 2023e) reveals object existence halluci-
nation may related with label distributions, such as object co-occurance. Earlier than POPE, Biten
et al. (2022) balance object co-occurance to decrease hallucination. LRV (Liu et al., 2023a) finds
the cause of hallucination in VQA benchmarks, especially unbalanced answer distribution and lack
of negation information. Our work raise another important cause: misalignment between the vision
and language information captured by models. More interestingly, we can explain balancing labels
in Biten et al. (2022) as trying to weaken the parametric knowledge caused by the misalignment.

6 CONCLUSION

In summary, this study delves deep into the object hallucination phenomena within the detailed cap-
tions of LVLMs, advancing understanding of the accuracy and unwarranted inference in describing
visual details. We introduce a novel and comprehensive evaluation method for object existence hal-
lucination in detailed captions. We conduct an in-depth and component-wise analysis of LVLMs,
meticulously examining each element that might result in hallucination. We further identify an
alignment issue between the vision encoder and the instruction data. To alleviate such hallucination,
we introduce controlling parameters over LVLMs to condition the inference of objects.
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Ali Furkan Biten, Lluı́s Gómez, and Dimosthenis Karatzas. Let there be a clock on the beach:
Reducing object hallucination in image captioning. In 2022 IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), pp. 2473–2482, 2022. doi: 10.1109/WACV51458.
2022.00253.

Meng Cao, Yue Dong, and Jackie Cheung. Hallucinated but factual! inspecting the factuality of
hallucinations in abstractive summarization. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 3340–3354, Dublin,
Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.
236. URL https://aclanthology.org/2022.acl-long.236.

Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing
multimodal llm’s referential dialogue magic. arXiv preprint arXiv:2306.15195, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning, 2023.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Nouha Dziri, Ehsan Kamalloo, Sivan Milton, Osmar Zaiane, Mo Yu, Edoardo M Ponti, and Siva
Reddy. FaithDial: A Faithful Benchmark for Information-Seeking Dialogue. Transactions of the
Association for Computational Linguistics, 10:1473–1490, 12 2022. doi: 10.1162/tacl a 00529.

Desmond Elliott and Frank Keller. Comparing automatic evaluation measures for image descrip-
tion. In Kristina Toutanova and Hua Wu (eds.), Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 452–457, Baltimore,
Maryland, June 2014. Association for Computational Linguistics. doi: 10.3115/v1/P14-2074.
URL https://aclanthology.org/P14-2074.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei
Lin, Jinrui Yang, Xiawu Zheng, et al. Mme: A comprehensive evaluation benchmark for multi-
modal large language models. arXiv preprint arXiv:2306.13394, 2023.

10

https://aclanthology.org/2022.acl-long.236
https://aclanthology.org/P14-2074


Under review as a conference paper at ICLR 2024

Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang, Miao Zheng, Qian Zhao, Kuikun Liu,
Wenwei Zhang, Ping Luo, and Kai Chen. Multimodal-gpt: A vision and language model for
dialogue with humans, 2023.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V
in VQA matter: Elevating the role of image understanding in Visual Question Answering. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. CVPR,
2018.

Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai Sun, Nan Jiang, Tarek Abdelzaher, and Heng Ji.
Lm-switch: Lightweight language model conditioning in word embedding space. arXiv preprint
arXiv:2305.12798, 2023.

Ziniu Hu, Ahmet Iscen, Chen Sun, Kai-Wei Chang, Yizhou Sun, David A Ross, Cordelia Schmid,
and Alireza Fathi. Avis: Autonomous visual information seeking with large language models.
arXiv preprint arXiv:2306.08129, 2023.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Comput. Surv., 55(12), mar 2023a. ISSN 0360-0300. doi: 10.1145/3571730. URL https:
//doi.org/10.1145/3571730.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38, 2023b.
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