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Abstract

Although unsupervised sentence embedding001
learning has achieved great success through the002
construction of positive samples and instance-003
level contrastive learning (ICL), the learned004
sentence embeddings can be over-compressed005
or suffer from dimensional pollution due to006
noisy data augmentation and unconstrained ICL007
learning processes. To address the above is-008
sues, we design a novel sentence embedding009
enhancement method, namely MSSE, where an010
information compensation mechanism (ICM)011
and a dimensional-level contrastive learning012
mechanism (DCM) are proposed. ICM is moti-013
vated by the information bottleneck principle014
and can prevent excessive compression of rep-015
resentation learning. DCM constrains the learn-016
ing process of ICL and reduces information017
contamination across different dimensions. Ex-018
perimental results demonstrate that our method019
outperforms the current competitive baselines020
for 7 STS tasks across unsupervised, few-shot,021
and supervised learning of sentence embed-022
dings. The source code is available at https://023
anonymous.4open.science/r/MSSE-main.024

1 Introduction025

Learning sentence embeddings is a fundamental026

problem in natural language processing, aiming to027

map sentences into a unified representation space.028

It can improve downstream tasks, such as semantic029

textual similarity (STS) (Agirre et al., 2012), sen-030

timent analysis (Tang et al., 2014; Yu et al., 2017)031

and information retrieval (Ma et al., 2016; Xiong032

et al., 2020), etc.033

With the success of contrastive learning (Ye034

et al., 2019; He et al., 2020) and pre-trained lan-035

guage models (PLMs), such as BERT/RoBERTa036

(Devlin et al., 2019; Liu et al., 2019), many studies037

focus on learning sentence mutual information by038

constructing positive and negative samples (Gao039

et al., 2021; Zhou et al., 2022; Zhuo et al., 2023;040
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Figure 1: (a) Instance-level contrastive learning aims to com-
press positive sentence pairs (s, s+) into their representation
spaces (h, h+) while maintaining the effectiveness for predict-
ing y. (b) The noise introduced by bad augmentation strategies
leads to over-compressed representation spaces of (h, h+) as
well as their mutual information (MI).

Chen et al., 2023). They use instance-level con- 041

trastive learning (ICL) losses (e.g., InfoNCE (Oord 042

et al., 2018)) to make the representations of posi- 043

tive samples similar and those of negative samples 044

dissimilar, aiming to capture the mutual informa- 045

tion (MI) present in sentences. In essence, this 046

mechanism guides the model to compress input 047

data, retaining key information while discarding 048

irrelevant information. This aligns with the goal of 049

the information bottleneck (IB) principle (Tishby 050

et al., 2000) to find an optimal representation h that 051

maximizes the following term: 052

LIB = I(h, y)− βI(h, s), β > 0 (1) 053

where s and y respectively indicate the input (e.g., 054

a sentence) and output (e.g., the label related to a 055

downstream task such as STS). Maximizing LIB is 056

equivalent to maximizing the mutual information 057

between h and y while minimizing the MI between 058

h and s. As a result, h provides the most useful 059

information for predicting y while discarding irrel- 060

evant information as much as possible. 061

Instance-level contrastive learning (ICL) utilizes 062

the InfoNCE loss as an optimization objective to 063

learn mutual information between different views 064

of sentences. It is noteworthy that the InfoNCE loss 065

has been proven to maximize mutual information 066

between in-batch samples (Hjelm et al., 2018; Belg- 067

hazi et al., 2018), i.e., maximizing the mutual infor- 068
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Figure 2: (a) Previous methods use various augmentations and instance-level contrastive learning to pull similar representations
closer and push dissimilar representations apart. (b) Our method utilizes a dimension-level contrastive mechanism to alleviate
the dimensional pollution and an information compensation mechanism to loosen the constraint of information bottleneck.

mation between positive pairs (h, h+) and minimiz-069

ing the mutual information between negative pairs070

(h, h−), which is denoted as I(h, h+)− I(h, h−).071

Tsai et al. (2020) have shown that optimizing the072

above term is equivalent to optimizing Eq. 1, in-073

dicating that ICL is closely related to mutual in-074

formation optimization and information bottleneck075

principle.076

Tian et al. (2020) have found that the mutual077

information learned by ICL is minimally sufficient078

for the output y, as shown in the orange part of079

Figure 1(a). However, some augmentation strate-080

gies used in ICL can introduce irrelevant noise and081

even disrupt the semantic structure of sentences082

(Wang and Isola, 2020; Gao et al., 2021), leading083

to the reduction of the representation spaces of084

h and h+, as shown in Figure 1(b). This causes085

over-compression of the learned mutual informa-086

tion, which is detrimental to sentence embedding087

learning and decreases the model’s generalization088

ability. When the task changes, the performance089

of the learned representation h can be adversely af-090

fected in downstream tasks (Tsai et al., 2020; Wang091

et al., 2021).092

Besides over-compression, another shortage in093

prior studies is that they mainly focus on how to094

generate better positive or negative samples for095

ICL, thus mapping each sentence into a multi-096

dimension vector. The ideal situation is that each097

dimension presents unique information, but in real-098

ity, irrelevant information may propagate to other099

dimensions (Locatello et al., 2019; Chen and He,100

2021). We call this phenomenon dimensional pol-101

lution, which is neglected in ICL and may weaken102

the quality of sentence embeddings.103

In this paper, we propose an intuitively simple104

yet powerfully effective enhancement method in105

Multi-Scenario settings for Sentence Embeddings,106

termed MSSE. First, as depicted in Figure 2(b), to107

tackle the issue of dimensional pollution, we pro-108

pose a Dimensional-level Contrastive Learning109

Mechanism (DCM). Specifically, DCM reduces in- 110

formation contamination between dimensions and 111

enhances the quality of sentence embeddings by 112

pulling the same dimensions (positives) closer and 113

pushing different dimensions (negatives) farther 114

apart. Second, to prevent the over-compression 115

of mutual information and enhance generalization, 116

we devise an Information Compensation Mecha- 117

nism (ICM). ICM loosens the constraint of the 118

IB principle by increasing the mutual informa- 119

tion I(h, s) between the original input s and the 120

representation h. This compensates for the over- 121

compressed mutual information, enhances the gen- 122

eralization ability, and further improves the perfor- 123

mance of sentence embeddings. 124

We conduct extensive experiments on the STS 125

tasks, the results demonstrate that our method sig- 126

nificantly improves the state-of-the-art (SOTA) ap- 127

proaches in unsupervised, few-shot, and super- 128

vised settings. In the unsupervised setting, com- 129

pared to SimCSE, our method using BERTbase 130

and BERTlarge achieves absolute gains of 3.90% 131

and 2.95% on average Spearman’s correlation, re- 132

spectively, significantly outperforming competitive 133

baselines. In the few-shot setting, with only 0.1% 134

of the data, MSSE-BERTbase outperforms SimCSE- 135

BERTbase by 10.09%. Moreover, we conduct a set 136

of experimental analyses to demonstrate the effec- 137

tiveness of our approach. The contributions of our 138

work are as follows: 139

• We propose a dimension-level contrastive 140

learning mechanism to constrain the problem 141

of dimensional pollution. 142

• We devise an information compensation mech- 143

anism to loosen the constraint of the informa- 144

tion bottleneck, ensuring that mutual informa- 145

tion is not over-compressed. 146

• Our approach achieves the SOTA performance 147

in the widely-used STS task. 148
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Figure 3: The overall framework of MSSE consists of three components: (1) Instance-level contrastive learning based on
InfoNCE loss; (2) Dimension-level contrastive learning mechanism mitigates the impact of dimensional pollution; (3) Information
compensation mechanism loosens the constraints and compensates for the over-compressed mutual information. Solid circles
represent positive samples and dashed circles represent negative samples within the same batch.

2 Related Work149

2.1 Contrastive Learning for Unsupervised150

Sentence Embeddings (CSE)151

Unsupervised sentence embedding learning is a152

fundamental task in natural language processing.153

With the development of PLMs (e.g., BERT (De-154

vlin et al., 2019), Roberta (Liu et al., 2019)) and155

the emergence of SimCSE (Gao et al., 2021), the156

paradigm of "PLMs + contrastive learning" has157

been widely used in sentence embedding learning.158

In practice, these works (Gao et al., 2021; Wu et al.,159

2022a; Jiang et al., 2022; Zhang et al., 2022a,b;160

Zhuo et al., 2023) propose various data augmen-161

tation methods to generate positive pairs and use162

other in-batch sentences as negatives. Meanwhile,163

the selection of negative sentences is also crucial.164

DCLR (Zhou et al., 2022), ClusterNS (Deng et al.,165

2023), CLSEP (Wang et al., 2023), SSCL (Chen166

et al., 2023) are focused on utilizing different ap-167

proaches to provide negative samples. Compared168

to ICL, we propose a dimension-level contrastive169

learning mechanism to reduce dimensional pollu-170

tion. Moreover, we devise an information compen-171

sation mechanism to compensate for the learned172

mutual information. This approach is novel and173

has not been considered in previous studies.174

2.2 Information Bottleneck Principle175

Information bottleneck (Tishby and Zaslavsky,176

2015; Shwartz-Ziv and Tishby, 2017) divides deep177

learning into two steps: the first step aims to maxi-178

mize the mutual information between representa-179

tions and tasks, while the second step aims to com-180

press the input and representation information as 181

much as possible. InforMin-CL (Chen et al., 2022) 182

and InfoCSE (Wu et al., 2022b) propose contrastive 183

learning based on information minimization, min- 184

imizing the information entropy between positive 185

pairs. miCSE (Klein and Nabi, 2023) integrates 186

mutual information and incorporates the consis- 187

tency between attention from different views. How- 188

ever, the above works only consider inter-sentence 189

mutual information, which results in the mutual 190

information being over-compressed. To address 191

this gap, we devise an information compensation 192

mechanism to loosen the IB principle’s constraint. 193

3 Methodology 194

The sentence embedding task aims to learn high- 195

quality sentence vectors to achieve isotropy in the 196

representation space (Li et al., 2020; Su et al., 197

2021). To address this task, we propose a novel 198

method, called MSSE, illustrated in Figure 3. Sub- 199

sequently, we elaborate on the specific techniques 200

in our framework. 201

3.1 Data Augmentation 202

Traditional data augmentation operations disrupt 203

key information and introduce a large amount of 204

noise, which weakens the model’s learning capa- 205

bility (Gao et al., 2021). Considering that the key 206

information of sentences lies in the semantic infor- 207

mation, we adopt an augmentation strategy (Xie 208

et al., 2020) that ensures consistency of informa- 209

tion by using back-translation to rewrite sentences 210

to obtain positive samples. In practice, we use pre- 211
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trained translation models1 to first translate English212

into German, and then translate the German back213

into English.214

3.2 Dimension-level Contrastive Learning215

Mechanism216

Effective representation learning aims to capture217

the semantic content of sentences (Schölkopf et al.,218

2021). When the model maps sentences to vec-219

tors, certain dimensions of these vectors consis-220

tently represent specific types of information, such221

as some dimensions encode tense, some encode222

semantic information, etc (Tenney et al., 2019).223

However, not all dimensions can perfectly separate224

this information (Locatello et al., 2019; Wang et al.,225

2022b). Key information and irrelevant informa-226

tion often spread across multiple dimensions, lead-227

ing to their confusion and resulting in dimensional228

pollution . When irrelevant information contami-229

nates the dimensions that are supposed to represent230

key information, the key information gets diluted231

(Chen and He, 2021), thereby reducing the qual-232

ity of the sentence embeddings and undermining233

downstream performance.234

To address the issue of dimensional pollution, we235

propose a novel dimension-level contrastive learn-236

ing mechanism (DCM). We denote the PLMs as237

fEnc(), and the representation obtained by feeding238

into the model as fEnc(s) ∈ R1×D, where D is the239

representation vector’s dimension. We have hi =240

fEnc(si) and h+i = fEnc(s
+
i ) for i ∈ {1, 2, ..., N}.241

To keep the key information invariant, we optimize242

fEnc():243

max
fEnc

1

D

D∑
i=1

fRela

(
h̃i, h̃

+
i

)
, (2)244

where h̃i and h̃+i denote the normalized i-th column245

of H=
[
(h1)

T , (h2)
T , . . . , (hN )T

]T ∈RN×D and246

H+=
[
(h+1 )

T , (h+2 )
T , . . . , (h+N )T

]T , respectively.247

fRela(·) represents a function to measure the corre-248

lation between representations after data augmenta-249

tion. And then, we use fRela(h̃i, h̃
+
j ) to obtain the250

final matrix factor Cij :251

Cij =
h̃i · h̃+

j

∥ h̃i ∥∥ h̃+
j ∥

, i, j ∈ {1, 2, . . . , D}, (3)252

where h̃+j represent the normalized j-th column of253

H+. We consider the same dimensions in H and254

H+ as positive pairs (h̃i and h̃+i ), while different255

dimensions regard as negative pairs (h̃i and h̃+j ).256

1We use En-De and De-En model to guild the process.

The dimension-level contrastive loss LDCM needs 257

to maximize the positive pairs of correlation and 258

minimize the negative pairs of correlation. This 259

selective optimization helps constrain the propaga- 260

tion of information across dimensions and reduces 261

dimensional contamination. In the matrix C, since 262

the same dimensions are treated as positive pairs, 263

we need to maximize the values on the diagonal of 264

the matrix and minimize the off-diagonal values: 265

LDCM =
∑
i,j

(Cij − δij)
2 , i, j ∈ {1, 2, ..., D} 266

δij =

{
1, i = j

0, i ̸= j
(4) 267

where δij represents the Kronecker delta function, 268

which equals 1 when i = j and 0 otherwise. Cij 269

denotes the entry in the i-th row and j-th column 270

of the matrix C. 271

3.3 Information Compensation Mechanism 272

Some augmentation strategies introduce irrelevant 273

noise and even disrupt the semantic information 274

of sentences (Gao et al., 2021). According to Eq. 275

1, during the information compression process in 276

contrastive learning, key information may be in- 277

appropriately compressed along with the noise, af- 278

fecting the quality of sentence embeddings. We 279

describe this as over-compression, which means 280

that the model accidentally loses some key infor- 281

mation while removing noise (Tian et al., 2020; 282

Wang et al., 2022a). Therefore, we devise an infor- 283

mation compensation mechanism (ICM) to loosen 284

the information bottleneck. This allows the model 285

to retain more original information while learning 286

representations. Hence, our optimization objective 287

is formulated as below: 288

max I(h, h+) + λI(h, s), (5) 289

where h = fEnc(s) and h+ = fEnc(s
+). λ is used 290

to control the increase in I(h, s). To maximize 291

I(h, h+), we utilize a commonly used form in ICL, 292

the InfoNCE loss (Oord et al., 2018). It has been 293

proven to be a lower bound for mutual information, 294

equivalent to maximizing LIB of the information 295

bottleneck principle in Eq. 1 (detailed in Appendix 296

F). The InfoNCE loss is defined as: 297

LNCE = − log
esim(hi,h

+
i )/τ∑N

j=1 e
sim(hi,h

+
j )/τ

, (6) 298

where sim(·, ·) is the similarity metric, N is the 299

batch size, τ is a temperature hyper-parameter. In 300
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order to maximize the mutual information I(h, s),301

it can be represented as:302

I(h, s) = DKL(p(h, s)||p(h)p(s))303

= Ep(h,s)

[
log

p(h, s)

p(h)p(s)

]
304

= Ep(h,s)

[
log

p(s|h)
p(s)

]
, (7)305

where DKL(·) represents the KL divergence func-306

tion, used to measure the distance between distri-307

butions. p(h) and p(s) respectively represent the308

marginal distributions of h and s. p(s|h) is the con-309

ditional distribution, which is difficult to estimate.310

Instead of directly estimating it, we utilize varia-311

tional approximation to train q(s|h) to approximate312

the true probability distribution p(s|h). Thus, max-313

imizing the lower bound on mutual information314

leads to the maximization of I(h, s). We use the315

BA bound (Barber and Agakov, 2004) to estimate316

the lower bound on mutual information:317

I(h, s) = Ep(h,s)

[
log

q(s|h)
p(s)

]
318

+Ep(h)[DKL
(
p(s|h)

∣∣∣∣q(s|h))]319

≥ Ep(h,s)[log q(s|h)]+H(s), (8)320

where H(s) is the entropy of the original input s,321

Es∼p(s) log p(s) is only related to the data genera-322

tion process and is independent of the representa-323

tion h obtained through model learning. Therefore,324

we only need to maximize Ep(h,s)[log q(s|h)], en-325

couraging the model to learn more information326

containing the original input s, i.e., learning a de-327

coder q(s|h) to maximize the increased mutual in-328

formation. Thus, we utilize the representation h329

to reconstruct the original input s, by comparing330

the difference between the original input and the331

reconstructed sentence ŝ generated by the decoder332

q(s|h), This approach loosens the constraint of the333

information bottleneck and compensates for the334

mutual information. Our compensatory mutual in-335

formation loss is as follows:336

LICM = −
N∑
si

si∑
j=1

logP (xj |x̂1, x̂2, ..., x̂si), (9)337

where xj is the j-th word of the si-th sentence in338

the original inputs, and x̂j is the corresponding part339

in the reconstructed sentence ŝi.340

According to Eq. 4, Eq. 6 and Eq. 9, the above341

losses can be simply added to form the final loss:342

L = LNCE + µLDCM + γLICM, (10)343

where µ and γ are the hyper-parameters for weights344

balance.345

4 Experiments 346

4.1 Experiment Setup 347

We conduct a set of experiments to evaluate 348

our method on seven semantic textual similarity 349

(STS) tasks: STS 2012-2016 (Agirre et al., 2012, 350

2013, 2014, 2015, 2016), STS Benchmark (Cer 351

et al., 2017) and SICK-Relatedness (Marelli et al., 352

2014). We preform experiments with backbones 353

of BERTbase and BERTlarge (Devlin et al., 2019). 354

We also evaluate 7 transfer learning tasks and pro- 355

vide detailed results in Appendix E. Reimers and 356

Gurevych (2019) argue that the primary goal of 357

sentence embedding learning is to cluster semanti- 358

cally similar sentences. Therefore, we use the STS 359

tasks as the main results. 360

Training Details We evaluate the model every 361

125 training steps on the development set of STS-B 362

and keep the best checkpoint for the evaluation on 363

test sets of all STS tasks in unsupervised, few-shot, 364

and supervised scenarios. All the experiments are 365

conducted on 2 NVIDIA Tesla A100 GPUs (80GB 366

memory). More training details are in Appendix A. 367

Datasets Following SimCSE (Gao et al., 2021), 368

we use 1,000,000 (106) sentences randomly sam- 369

pled from Wikipedia as our training corpus. Ad- 370

ditionally, we randomly sample fixed proportions 371

{0.1%, 0.5%, 1%, 10%, 100%} from the dataset to 372

train our model in the few-shot learning setting. 373

Importantly, to eliminate variance in data sampling 374

during few-shot training, we repeat training for 375

each proportion of the dataset five times with dif- 376

ferent random seeds and report the average results 377

of the final results. For the supervised learning, we 378

use natural language inference (NLI) datasets (Con- 379

neau et al., 2017; Reimers and Gurevych, 2019) to 380

train our model. Following Gao et al. (2021), we 381

use the entailment as positive pairs and the contra- 382

diction as hard negative pairs. 383

Baselines To validate the effectiveness of our ap- 384

proach in different settings, we compare MSSE 385

with a range of competitive sentence embedding 386

learning methods. 387

In unsupervised setting, we compare MSSE with 388

various competitive methods, which include: Sim- 389

CSE (Gao et al., 2021), DiffCSE (Chuang et al., 390

2022), DCLR (Zhou et al., 2022), ArcCSE (Zhang 391

et al., 2022b), PCL (Wu et al., 2022a), Com- 392

pCSE (Chanchani and Huang, 2023), Whitened- 393

CSE (Zhuo et al., 2023), miCSE (Klein and Nabi, 394
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PLMs Methods STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

BERTbase

SimCSE 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
DCLR 70.81 83.73 75.11 82.56 78.44 78.31 71.59 77.22
ArcCSE 72.08 84.27 76.25 82.32 79.54 79.92 72.39 78.11
miCSE 71.71 83.09 75.46 83.13 80.22 79.70 73.62 78.13
CompCSE 72.14 84.06 75.38 83.82 80.43 80.29 71.12 78.18
PCL 72.84 83.81 76.52 83.06 79.32 80.01 73.38 78.42
DiffCSE 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49
WhitenedCSE 74.03 84.90 76.40 83.40 80.23 81.14 71.33 78.78
OssCSE 71.78 84.40 77.71 83.95 79.92 80.57 75.25 79.08
DistillCSE 74.54 84.51 77.67 84.87 80.70 81.48 72.16 79.42
RankCSE † 75.21 85.80 77.45 84.17 80.77 81.21 74.81 79.92
RankEncoder 74.88 85.59 78.61 83.50 80.56 81.55 75.78 80.07
MSSE 76.43 84.92 78.49 85.47 80.11 81.32 74.30 80.15

BERTlarge

SimCSE 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
DCLR 71.87 84.83 77.37 84.70 79.81 79.55 74.19 78.90
ArcCSE 73.17 86.19 77.90 84.97 79.43 80.45 73.50 79.37
CompCSE 75.10 86.57 77.70 84.72 80.25 80.17 73.21 79.67
WhitenedCSE 74.65 85.79 77.49 84.71 80.33 81.48 75.34 79.97
PCL 74.87 86.11 78.29 85.65 80.52 81.62 73.94 80.14
RankCSE † 75.24 86.17 78.67 85.11 81.12 81.30 75.27 80.41
OssCSE 72.64 86.36 79.16 85.04 80.80 82.61 76.65 80.47
DistillCSE 75.08 86.64 79.53 86.45 81.29 82.72 76.17 81.13
MSSE 76.95 85.58 79.71 86.59 81.33 82.96 76.50 81.36

Table 1: Sentence representations performance on STS tasks in unsupervised setting. We directly use the results from the
original papers except for †. †: reproduce the results using publicly available code without two teacher models to ensure a fair
comparison. We mark the best (bold) and second-best (underlined) results among methods with the same PLMs.

2023), OssCSE (Shi et al., 2023), DistillCSE (Xu395

et al., 2023), RankEncoder (Seonwoo et al., 2023)396

and RankCSE (Seonwoo et al., 2023).397

In the few-shot setting, only miCSE has the398

same experimental settings as ours. Therefore,399

we select some methods from the past three years’400

works and reproduce them for evaluation: SimCSE,401

PCL, ISCSE (He et al., 2023), RankEncoder, and402

RankCSE.403

In the supervised setting, due to the limited previ-404

ous works considering this setting, we select some405

models which have this experimental setting as406

baselines, such as SimCSE, PromCSE (Jiang et al.,407

2022) and CLSEP (Wang et al., 2023). Addition-408

ally, we reproduce other works, such as PCL and409

ISCSE, for comparison.410

By comparing MSSE with these baselines, we411

can more accurately assess its performance and412

ensure its superiority in unsupervised, few-shot,413

and supervised scenarios. We provide more details414

of these baselines in Appendix B.415

4.2 Main Results416

Unsupervised Sentence Embeddings We con-417

duct our experiments on 7 STS tasks and evalu-418

ate them using the SentEval toolkit (Conneau and419

Kiela, 2018). To ensure fairness, we follow the stan-420

dards of Gao et al. (2021), using Spearman’s corre- 421

lation coefficient as the evaluation metric. Table 1 422

shows different methods’ performances, it is clear 423

that MSSE significantly outperforms the previous 424

SOTA methods on all PLMs, which demonstrates 425

the effectiveness of our method. What’s more, com- 426

pared to SimCSE-BERTbase, MSSE-BERTbase in- 427

creases the performance from 76.25% to 80.15% 428

(+3.90%), and compared to SimCSE-BERTlarge, 429

MSSE-BERTlarge increases the performance from 430

78.41% to 81.36% (+2.95%). Specifically, MSSE- 431

BERTbase achieves on average 1.74% absolute im- 432

provements in terms of Spearman’s correlation on 433

SimCSE-BERTlarge. 434

Few-shot Sentence Embeddings In the few-shot 435

setting, we utilize BERTbase to retrain methods and 436

meticulously evaluate their performance. With the 437

increase in dataset size, the model’s average per- 438

formance consistently improves and MSSE consis- 439

tently outperforms other methods. As shown in Ta- 440

ble 2, on a dataset containing only 0.1% of the data 441

volume, MSSE achieves outstanding performance, 442

with an average performance of 75.81%. Com- 443

pared to the SimCSE (65.72%), MSSE achieves 444

an absolute performance gain of 10.09%. This pre- 445

cisely reflects how MSSE efficiently learns mutual 446

information during training. It utilizes a dimension- 447
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Methods 0.1% 0.5% 1% 10% 100%

SimCSE† 65.72±0.25 73.67±1.99 74.72±1.41 75.08±0.40 76.13
ISCSE† 67.30±1.15 75.69±0.56 76.27±0.37 76.46±0.52 78.07
PCL† 70.33±0.78 74.08±0.53 75.46±1.17 76.53±0.92 78.21
miCSE♣ 73.68±0.89 75.15±0.63 76.40±0.48 76.38±0.35 78.13
RankEncoder† 72.61±0.72 75.66±0.90 76.94±0.39 77.84±0.69 79.81
RankCSE† 74.39±1.09 76.02±0.46 77.91±0.86 78.67±0.27 79.92
MSSE 75.81±0.41 77.89±0.37 78.78±0.34 79.11±0.22 80.15

Table 2: Few-shot sentence representations average performance on 7 STS tasks (Spearman’s correlation) based on BERTbase.
♣: results from the original papers; †: reproduce the results based on publicly available code. In addition, the results provided by
miCSE lack the result of 0.5%, we only reproduce the result of 0.5%.

Methods STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

CT-SBERT♡ 74.84 83.20 78.07 83.84 77.93 81.46 76.42 79.39
SimCSE♡ 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
PromCSE♣ 75.58 84.33 79.67 85.79 81.24 84.25 80.79 81.81
PCL† 76.21 84.38 79.64 85.98 81.18 84.97 81.00 81.91
ISCSE† 76.22 83.97 79.82 86.18 81.67 85.43 81.05 82.05
CLSEP♣ 75.76 84.82 80.30 86.29 81.43 85.58 80.99 82.17
MSSE 76.82 85.32 80.61 87.33 82.45 85.50 81.93 82.85

Table 3: Supervised sentence representations performance on STS tasks of different methods. ♡: results from Gao et al. (2021);
♣: results from the original papers; †: reproduced by ourselves. All methods are based on BERTbase.

level contrastive learning mechanism to reduce di-448

mensional pollution and compensates for the over-449

compressed mutual information learned by con-450

trastive learning. This also demonstrates the excel-451

lent performance of our approach.452

Supervised Sentence Embeddings As shown in453

Table 3, compared to the previous methods, our454

supervised MSSE-BERTbase further improves the455

SOTA results from 82.17% to 82.85% (+0.68%).456

4.3 Analysis and Discussion457

Ablation Study We conduct a set of ablation458

studies to investigate the impact of LNCE, LDCM459

and LICM from Eq. 10. Table 4 reports the average460

results of the STS tasks. After only removing LNCE,461

LDCM or LICM, the average performance of MSSE462

decreases by 4.01%, 1.43%, or 2.05%, respectively.463

This indicates that the proposed two novel mecha-464

nisms both contribute to learning sentence embed-465

dings, while traditional instance-level contrastive466

learning can capture mutual information between467

different views. If both LDCM and LICM are re-468

moved simultaneously, the average performance469

drops by 3.27%, demonstrating the complemen-470

tary nature of the two modules in advancing the471

learning of sentence embeddings. More ablation472

studies(Pooler methods, Augmentation strategies,473

Hyper-parameters) are provided in Appendix D due474

to the page limit.475

STS(Avg.)

MSSE 80.15
w/o LDCM 78.72 (-1.43)
w/o LICM 78.10 (-2.05)
w/o LNCE 76.14 (-4.01)
w/o LDCM+LICM 76.88 (-3.27)

Table 4: Ablation studies of different loss functions using
BERTbase. NCE, DCM and ICM denote the InfoNCE loss
used in the instance-level contrastive learning, the Dimension-
level Contrastive Learning Mechanism and the Information
Compensation Mechanism, respectively.

Impact of the DCM The t-SNE (Reif et al., 476

2019) plot in Figure 4 demonstrates the advantages 477

of the dimension-level contrastive learning mecha- 478

nism. We evaluate sentence embeddings using the 479

original BERTbase, RankCSE, and MSSE on 20,000 480

sentences from the Stackoverflow (Xu et al., 2017) 481

dataset. We apply K-Means clustering to group 482

similar sentence embeddings. The results in Figure 483

4 show that when we remove the DCM module, the 484

resulting similar sentence pairs (marked with the 485

same color) do not cluster, reflecting that dimen- 486

sional pollution indeed affects the performance of 487

sentence embeddings. However, when we add the 488

DCM module, the resulting similar sentence pairs 489

are better aligned and more clustered. 490

Impact of the ICM To validate the effectiveness 491

of the information compensation mechanism, we 492
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Figure 4: The t-SNE of sentence representations learned with BERT, RankCSE and our method using BERTbase. The points are
embeddings of sentences sampled from the Stackoverflow (Xu et al., 2017) dataset. We use K-Means clustering to group similar
sentence embeddings and form 30 clusters. (Best viewed in color)
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Figure 5: Absolute performance difference on classification,
reranking and retrieval tasks compared to SimCSE based on
BERTbase. ACC, BC, MIC, QR and AUDQ denote Amazon
Counterfactual Classification (O’Neill et al., 2021), Banking77
Classification (Casanueva et al., 2020), Massive Intent Clas-
sification (FitzGerald et al., 2023), Quora Retrieval (Sharma
et al., 2019), AskUbuntu DupQuestions (Lei et al., 2016).

conduct a comprehensive set of experiments on493

classification, retrieval and reranking tasks from494

Massive Text Embedding Benchmark (MTEB)495

(Muennighoff et al., 2023). As shown in Figure496

5, our approach consistently outperforms SimCSE497

across the five tasks. Compared to the current498

SOTA methods, such as RankEncoder (Seonwoo499

et al., 2023) and RankCSE (Liu et al., 2023), our500

method demonstrates superior performance and ro-501

bustness across various tasks and domains, further502

validating the effectiveness of the ICM in loosen-503

ing the constraint of the information bottleneck504

and introducing more information. Additionally,505

we also conduct experiments on retrieval tasks for506

qualitative analysis and the results are provided in507

Appendix G.508

Alignment and Uniformity Prior work (Wang509

and Isola, 2020) has demonstrated that models with510

better alignment and uniformity can achieve bet-511

ter performance (detailed in Appendix C). We cal-512

culate the alignment and uniformity loss on the513

STS-B development set every 125 training steps.514

Figure 6 shows that compared with SimCSE, our515

approach performs better both on the alignment516

measure and the uniformity measure. This con-517
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
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rm
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Figure 6: ℓalign and ℓuniform of our method and SimCSE based
on BERTbase. For both measures, lower number are better.

firms that our method can improve the quality of 518

sentence representation more effectively. MSSE 519

promotes alignment and uniformity of information 520

through the dimension-level contrastive learning 521

mechanism to alleviate the dimensional pollution, 522

while the information compensation mechanism 523

utilizes the final representations to guide the re- 524

construction of inputs, loosening the IB principle 525

and compensating for the over-compressed mutual 526

information learned by sentence embeddings. 527

5 Conclusion 528

In this work, we propose MSSE, a novel sentence 529

embedding approach, which is applicable to un- 530

supervised, few-shot, and supervised learning set- 531

tings. MSSE enhances the model’s ability to learn 532

mutual information by utilizing the dimension- 533

level contrastive learning mechanism and the in- 534

formation compensation mechanism based on in- 535

formation bottleneck. Experimental results demon- 536

strate that MSSE outperforms previous SOTA meth- 537

ods in all settings. Additionally, we conduct com- 538

prehensive ablation experiments and analyses to 539

demonstrate the effectiveness of each component 540

and the rationale behind our approach. 541

Limitations 542

In this paper, the limitations of our work are as 543

follows. Firstly, this work follows the standard ex- 544

perimental settings used in previous unsupervised 545
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sentence representation learning works (Gao et al.,546

2021), but it does not consider the multi-modal sce-547

nario. We plan to extend MSSE to multi-modal548

datasets, such as Flickr30k (Young et al., 2014a),549

and MS-COCO (Lin et al., 2014), to obtain more550

new discoveries in the future. Secondly, the perfor-551

mance of sentence embeddings needs to be evalu-552

ated through downstream tasks such as STS, which553

lacks a certain degree of interpretability. Providing554

interpretability for sentence embeddings is also our555

next research direction.556

Ethics Statement557

We focuse on sentence embedding learning and pro-558

pose a novel multi-scenario sentence embedding559

enhancement method. What’s more, the training560

corpus and benchmark datasets are open-source,561

containing no personal sensitive information and562

no potential malicious content. In practice, we use563

back-translation for augmentation to obtain posi-564

tive samples, which has no impact on social and565

does not involve any ethical issues. Furthermore,566

we are willing to open-source our code and data to567

promote better research in this field.568
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A Training Details987

We preform experiments with backbones of988

BERTbase and BERTlarge. We implement all experi-989

ments with the deep learning framework PyTorch990

on 2 NVIDIA Tesla A100 GPUs (80GB memory).991

In the unsupervised scenario, as shown in Table 5,992

the learning rate for BERTbase and BERTlarge are993

set to 3e-5 and 1e-5. The batch size for BERTbase994

and BERTlarge are both set to 256. We use AdamW995

as the optimizer with a warm-up step of 500. τ996

is set to 0.05, µ and γ are set to 0.8 and 0.2, re-997

spectively. We train our model for 1 epoch and998

evaluate the model every 125 steps. In the few-999

shot scenario, we adopt the same training method1000

as miCSE (Klein and Nabi, 2023), keeping the1001

total number of optimization steps unchanged for1002

training different dataset sizes. For the training set1003

of size 106 (100%), we train for 1 epoch; for the1004

size 105 (10%), we train for 10 epochs, etc. In the1005

supervised learning scenario, we follow the setup1006

of SimCSE (Gao et al., 2021) and utilize natural1007

language inference (NLI) dataset (Conneau et al.,1008

2017; Reimers and Gurevych, 2019) as the train-1009

ing corpus, with the batch size set to 512 and the1010

learning rate set to 5e-5.1011

B Baselines Details1012

We compare MSSE with the following SOTA sen-1013

tence embedding methods:1014

• SimCSE (Gao et al., 2021) conducts thor-1015

ough experiments in both unsupervised,few-1016

shot, and supervised settings using different1017

dropout encodings to obtain positive pairs.1018

The results are from the original paper. We re-1019

run SimCSE with the same settings, but its per-1020

formance (76.13) is worse than the reported1021

number in the original paper.1022

• DiffCSE (Chuang et al., 2022) learns the dif-1023

ferences between original and fake sentences1024

by generating fake samples using the ELEC-1025

TRA model and Replaced Token Detection1026

(RTD) task to enhance the effectiveness of1027

sentence vector representation models.1028

• DCLR (Zhou et al., 2022) designs an instance-1029

weighting method to penalize false negatives1030

PLMs BERTbase BERTlarge
Unsup. Sup. Unsup. Sup.

Batch size 256 512 256 512
Learning rate 3e-5 5e-5 1e-5 5e-5

Table 5: Batch sizes and learning rates for DEMI.

and generate noise-based negatives to ensure 1031

the uniformity of the representation space. 1032

• ArcCSE (Zhang et al., 2022b) enhances the 1033

discriminability of positive and negative sam- 1034

ples by maximizing the decision margin in the 1035

angular space. It also models the semantic 1036

partial order between sentences by automati- 1037

cally constructing ternary sentences and their 1038

entailment relationships. 1039

• PCL (Wu et al., 2022a) introduces a novel 1040

companion contrastive learning with various 1041

enhancement functions to construct different 1042

positive and negative pairs for unsupervised 1043

sentence embeddings. 1044

• ISCSE (He et al., 2023) retrieves embeddings 1045

from a dynamic memory buffer based on se- 1046

mantic similarity to obtain positive embed- 1047

ding groups, then aggregates embeddings in 1048

the group through self-attention operations to 1049

generate smooth instance embeddings. 1050

• CompCSE (Chanchani and Huang, 2023) ex- 1051

tracts atomic semantic units using a discourse 1052

parser, then maximizes the alignment between 1053

text and its phrase components to enhance per- 1054

formance. 1055

• miCSE (Klein and Nabi, 2023) proposes a 1056

contrastive learning framework based on mu- 1057

tual information to improve the efficiency of 1058

unsupervised learning by enhancing the con- 1059

sistency between attention across different 1060

views. 1061

• OssCSE (Shi et al., 2023) considers surface 1062

structural deviations and balances learning ob- 1063

jectives and word semantics by using a data 1064

offsetting bias and recall loss. 1065

• DistillCSE (Xu et al., 2023) provides addi- 1066

tional supervised signals using the base model 1067

and proposes two knowledge distillation solu- 1068

tions to learn stronger representations. 1069
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• CLSEP (Wang et al., 2023) employs a prompt-1070

ing mechanism to provide effective sentence1071

embeddings and introduces Partial Word Vec-1072

tor Augmentation (PWVA), a text data aug-1073

mentation strategy. This strategy enhances the1074

data in the word embedding space, preserving1075

more semantic information.1076

• RankEncoder (Seonwoo et al., 2023) intro-1077

duces a novel unsupervised sentence encoder1078

that predicts the semantic vectors of input sen-1079

tences based on their relationships with other1080

sentences in an external corpus and the input1081

sentences themselves.1082

• RankCSE (Liu et al., 2023) addresses the1083

inability of previous works to obtain fine-1084

grained ranking information, proposes rank-1085

ing consistency and ranking distillation meth-1086

ods, and integrates them with contrastive1087

learning into one framework. RankCSE uti-1088

lizes pre-trained ranking models, SimCSE and1089

DiffCSE, as teacher models during training,1090

providing a certain level of supervision. To1091

ensure a fair comparison, we reproduce the re-1092

sults by removing the two pre-trained teacher1093

models.1094

C Alignment and Uniformity1095

Contrastive representation learning has two key1096

properties: (1) alignment of positive pairs; (2) uni-1097

formity on the hypersphere. Wang and Isola (2020)1098

argues that directly optimizing these two metrics1099

can lead to representations with performance com-1100

parable to or better than contrastive learning in1101

downstream tasks. Alignment measures the ex-1102

pected distance between normalized representa-1103

tions of positive pairs ppos:1104

ℓalign ≜ E
(x,x+)∼ppos

∥f(x)− f(x+)∥2, (11)1105

while uniformity measures the uniform distribution1106

of normalized representations:1107

ℓuniform ≜ log E
x,y

i.i.d.∼ pdata

e−2∥f(x)−f(y)∥2 , (12)1108

where pdata represents the distribution of sentence1109

pairs. Smaller values for both metrics are better,1110

which aligns closely with the objectives of con-1111

trastive learning: positive instances should be as1112

close as possible, indicating smaller alignment,1113

while random instances should be scattered on the1114

hypersphere, indicating smaller uniformity.1115
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Figure 7: Ablation studies of different pooling methods in
unsupervised MSSE based on BERTbase.

D Ablation Studies 1116

We also investigate the impact of different pooling 1117

methods, data augmentation strategies, and hyper- 1118

parameters. We use the average results of the 7 1119

STS tasks as our final report results. 1120

Pooling Methods Most previous works use the 1121

[CLS] representation as the final sentence embed- 1122

ding. However, Reimers and Gurevych (2019); 1123

Gao et al. (2021) demonstrate that using the first- 1124

last-average embedding of a pre-trained model (par- 1125

ticularly the first and last layers) can yield bet- 1126

ter performance than [CLS]. To evaluate the im- 1127

pact of different pooling strategies on performance, 1128

we conduct comparative experiments with various 1129

pooling methods under unsupervised settings. 1130

As shown in Figure 7, using the [MASK] em- 1131

beddings, our approach outperforms both [CLS] 1132

and first-last-average embeddings. Considering the 1133

characteristics of our approach, the information 1134

compensation mechanism loosens the IB principle 1135

and compensates for the over-compressed mutual 1136

information by reconstructing the original sentence 1137

through the final representation. Therefore, the 1138

[MASK] representation can obtain better perfor- 1139

mance than [CLS] and first-last-average embed- 1140

dings. 1141

Augmentation Strategies To investigate the im- 1142

pact of different augmentation strategies on the per- 1143

formance of MSSE in generating positive samples, 1144

we also conduct a set of comparative experiments 1145

using some traditional augmentation strategies ac- 1146

cording to PCL (Wu et al., 2022a): shuffled Sen- 1147

tence (SS), word deletion (WD), word repetition 1148

(WR), dropout (DP) and back-translation (BT). 1149

Figure 8 shows the average Spearman’s correla- 1150

tion performance for the 7 STS tasks using different 1151

augmentation strategies. The experimental results 1152

indicate that back-translation indeed outperforms 1153
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Figure 8: The average performance of Spearman’s correla-
tion on 7 STS tasks obtained using different augmentation
strategies based on BERTbase. MSSEBT is the augmentation
strategy used in our approach.

Batch Size 32 64 128 256 512
STS(Avg.) 78.80 79.37 79.96 80.15 80.01

τ 0.01 0.02 0.05 0.10 0.20
STS(Avg.) 79.62 79.94 80.15 79.97 79.43

Table 6: Comparisons of different batch sizes and temperature
parameters. Results of MSSE are average STS performance
based on BERTbase.

traditional augmentation strategies. As mentioned1154

in the main text, the aforementioned strategies in-1155

troduce noise and irrelevant information, disrupting1156

the sentence structure and semantic information,1157

thereby limiting the model’s performance. What’s1158

more, back-translation not only avoids introducing1159

more noise but also enriches sentence information,1160

which complements our proposed dimension-level1161

contrastive learning mechanism.1162

Hyper-parameters To study the influence of1163

hyper-parameters on STS average performance, we1164

conduct experiments by setting different batch sizes1165

and different temperature hyper-parameters. As1166

shown in Table 6, the optimal batch size is 256.1167

With the increase in batch size, the average perfor-1168

mance of the model improves, but when the batch1169

size exceeds 256, the average performance of the1170

model significantly decreases. It also shows that1171

the temperature setting for MSSE should be mod-1172

erate, with the optimal temperature for BERTbase1173

being 0.05.1174

E Transfer Tasks1175

For the transfer learning (TR) task, we evalu-1176

ate 7 datasets using SentEval’s default configura-1177

tion: MR (Pang and Lee, 2005), CR (Hu and Liu,1178

2004), SUBJ (Pang and Lee, 2004), MPQA (Wiebe1179

et al., 2005), SST-2 (Socher et al., 2013), TREC1180

(Voorhees and Tice, 2000) and MRPC (Dolan and 1181

Brockett, 2005). For each task, we train a logistic 1182

regression classifier on the frozen sentence embed- 1183

dings and test the classification accuracy. 1184

As shown in Table 7, the results demonstrate that 1185

MSSE outperforms other competitive SOTA base- 1186

lines, both on BERTbase and BERTlarge. Compared 1187

to SimCSE-BERTbase (85.81%), MSSE-BERTbase 1188

(87.43%) achieves an absolute improvement of 1189

1.62%. On BERTlarge, MSSE achieves the best 1190

performance across five transfer tasks and also sig- 1191

nificantly outperforms the previous SOTA methods. 1192

F Estimating the Mutual Information 1193

with InfoNCE 1194

For the expression I(h, h+), we have: 1195

I(h, h+) =
∑
h,h+

p(h, h+)log
p(h+|h)
p(h+)

, (13) 1196

where
p
(
h+|h

)
p
(
h+

) is the density ratio defined by Oord 1197

et al. (2018). The definition of the InfoNCE loss is: 1198

LNCE = −
∑
H

p(h, h+) log
fk(h

+, h)∑
h+
j ∈H

fk(h
+
j , h)

 1199

= −EH

log fk(h
+, h)∑

h+
j ∈H

fk(h
+
j , h)

 , (14) 1200

where fk(h
+, h) represents the quantification of 1201

the similarity between the predicted result h+ and 1202

the ground truth h. Oord et al. (2018) demonstrated 1203

that fk(h+, h) is positively correlated with the den- 1204

sity ratio. Therefore, we have: 1205

fk(h
+, h) ∝ p(h+|h)

p(h+)
. (15) 1206

Based on the above Eq.13, Eq.14, Eq.15, we 1207

partition the data into H = {Hpos +Hneg}, Hneg 1208

includes N − 1 negative samples from the same 1209
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PLMs Methods MR CR SUBJ MPQA SST TREC MRPC Avg.

BERTbase

SimCSE 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81
ArcCSE 79.91 85.25 99.58 89.21 84.90 89.20 74.78 86.12
PCL 80.11 85.25 94.22 89.15 85.12 87.40 76.12 85.34
RankCSE† 83.07 87.91 94.98 89.65 88.91 89.60 76.02 87.16
MSSE 84.10 88.54 94.17 89.07 88.67 91.60 75.81 87.43

BERTlarge

SimCSE 85.36 89.38 95.39 89.63 90.44 91.80 76.41 88.34
ArcCSE 84.34 88.82 99.58 89.79 90.50 92.00 74.78 88.54
PCL 82.47 87.87 95.04 89.59 87.75 93.00 76.00 87.39
RankCSE † 85.47 89.15 94.93 90.42 90.56 93.00 76.81 88.62
MSSE 85.84 90.10 94.73 90.69 91.05 92.30 77.04 88.82

Table 7: Sentence representations performance on seven transfer tasks. We report the accuracy results based on BERTbase
and BERTlarge. The results are imported from the original papers except for †. We also mark the best (bold) and second-best
(underlined) results among methods with the same PLMs.

batch. We reformulate LNCE as follows:1210

LNCE = −EH log

 p(h+|h)
p(h+)

p(h+|h)
p(h+)

+
∑

h+
j ∈Hneg

p(h+
j |h)

p(h+
j )


= EH log

1 + p(h+)

p
(
h+|h

) ∑
h+
j ∈Hneg

p
(
h+
j |h

)
p
(
h+
j

)


≈ EH log

[
1 +

p(h+)

p(h+|h) (N − 1)E
p(h+

j |h)
p(h+

j )

]

= EH log

[
1 +

p(h+)

p(h+|h) (N − 1)

]
≥ EH log

[
p(h+)

p(h+|h)N
]

= log (N)− I(h+, h),

(16)1211

where p(h+) represents the marginal distribution of1212

h+, and p
(
h+|h

)
is the conditional distribution of1213

h+ given h. N reprensentes the batch size. Based1214

on the above Eq. 16 , we can infer:1215

I(h+, h) = log (N)− LNCE. (17)1216

Thus, LNCE can be regarded as a lower bound1217

of I(h+, h) , and its tightness increases with the1218

growth of N .1219

In practice, we establish a connection between1220

fk(h
+, h) and adopot cosine similarity sim(·, ·)1221

for measure metric with a temperature hyper-1222

parameter. Hence, we have:1223

LNCE = −EH

log fk(h
+, h)∑

h+
j ∈H

fk(h
+
j , h)


= −Ehi

log esim(hi,h
+
i )/τ∑N

j=1 e
sim(hi,h

+
j )/τ


= − 1

n

H∑
hi

log
esim(hi,h

+
i )/τ∑N

j=1 e
sim(hi,h

+
j )/τ

= − log
esim(hi,h

+
i )/τ∑N

j=1 e
sim(hi,h

+
j )/τ

.

(18) 1224

G Qualitative Analysis 1225

We conduct small-scale retrieval experiments us- 1226

ing RankCSE and MSSE based on BERTbase. We 1227

use 30k captions from the Flickr30k (Young et al., 1228

2014b) dataset as the retrieval data and randomly 1229

select any sentence from them as a query to re- 1230

trieve the Top-3 similar sentences (based on cosine 1231

similarity). As shown in Table 8, the retrieval re- 1232

sults demonstrate that sentences retrieved by MSSE 1233

are semantically closer to the query sentences and 1234

of higher quality compared to those retrieved by 1235

RankCSE, further demonstrating the effectiveness 1236

of MSSE. 1237
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