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Abstract

Although unsupervised sentence embedding
learning has achieved great success through the
construction of positive samples and instance-
level contrastive learning (ICL), the learned
sentence embeddings can be over-compressed
or suffer from dimensional pollution due to
noisy data augmentation and unconstrained ICL
learning processes. To address the above is-
sues, we design a novel sentence embedding
enhancement method, namely MSSE, where an
information compensation mechanism (ICM)
and a dimensional-level contrastive learning
mechanism (DCM) are proposed. ICM is moti-
vated by the information bottleneck principle
and can prevent excessive compression of rep-
resentation learning. DCM constrains the learn-
ing process of ICL and reduces information
contamination across different dimensions. Ex-
perimental results demonstrate that our method
outperforms the current competitive baselines
for 7 STS tasks across unsupervised, few-shot,
and supervised learning of sentence embed-
dings. The source code is available at https://
anonymous. 4open.science/r/MSSE-main.

1 Introduction

Learning sentence embeddings is a fundamental
problem in natural language processing, aiming to
map sentences into a unified representation space.
It can improve downstream tasks, such as semantic
textual similarity (STS) (Agirre et al., 2012), sen-
timent analysis (Tang et al., 2014; Yu et al., 2017)
and information retrieval (Ma et al., 2016; Xiong
et al., 2020), etc.

With the success of contrastive learning (Ye
et al., 2019; He et al., 2020) and pre-trained lan-
guage models (PLMs), such as BERT/RoBERTa
(Devlin et al., 2019; Liu et al., 2019), many studies
focus on learning sentence mutual information by
constructing positive and negative samples (Gao
et al., 2021; Zhou et al., 2022; Zhuo et al., 2023;
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Figure 1: (a) Instance-level contrastive learning aims to com-
press positive sentence pairs (s, s1) into their representation
spaces (h, ™) while maintaining the effectiveness for predict-
ing y. (b) The noise introduced by bad augmentation strategies
leads to over-compressed representation spaces of (h, h™) as
well as their mutual information (MI).

Chen et al., 2023). They use instance-level con-
trastive learning (ICL) losses (e.g., InfoNCE (Oord
et al., 2018)) to make the representations of posi-
tive samples similar and those of negative samples
dissimilar, aiming to capture the mutual informa-
tion (MI) present in sentences. In essence, this
mechanism guides the model to compress input
data, retaining key information while discarding
irrelevant information. This aligns with the goal of
the information bottleneck (IB) principle (Tishby
et al., 2000) to find an optimal representation h that
maximizes the following term:

‘CIB:I(hay)fﬁI(h’7s)76>0 (1)

where s and y respectively indicate the input (e.g.,
a sentence) and output (e.g., the label related to a
downstream task such as STS). Maximizing Lig is
equivalent to maximizing the mutual information
between h and y while minimizing the MI between
h and s. As a result, h provides the most useful
information for predicting y while discarding irrel-
evant information as much as possible.
Instance-level contrastive learning (ICL) utilizes
the InfoNCE loss as an optimization objective to
learn mutual information between different views
of sentences. It is noteworthy that the InfoNCE loss
has been proven to maximize mutual information
between in-batch samples (Hjelm et al., 2018; Belg-
hazi et al., 2018), i.e., maximizing the mutual infor-
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Figure 2: (a) Previous methods use various augmentations and instance-level contrastive learning to pull similar representations
closer and push dissimilar representations apart. (b) Our method utilizes a dimension-level contrastive mechanism to alleviate
the dimensional pollution and an information compensation mechanism to loosen the constraint of information bottleneck.

mation between positive pairs (h, h™) and minimiz-
ing the mutual information between negative pairs
(h,h™), which is denoted as I (h, ht) — I(h,h™).
Tsai et al. (2020) have shown that optimizing the
above term is equivalent to optimizing Eq. 1, in-
dicating that ICL is closely related to mutual in-
formation optimization and information bottleneck
principle.

Tian et al. (2020) have found that the mutual
information learned by ICL is minimally sufficient
for the output y, as shown in the orange part of
Figure 1(a). However, some augmentation strate-
gies used in ICL can introduce irrelevant noise and
even disrupt the semantic structure of sentences
(Wang and Isola, 2020; Gao et al., 2021), leading
to the reduction of the representation spaces of
h and h, as shown in Figure 1(b). This causes
over-compression of the learned mutual informa-
tion, which is detrimental to sentence embedding
learning and decreases the model’s generalization
ability. When the task changes, the performance
of the learned representation h can be adversely af-
fected in downstream tasks (Tsai et al., 2020; Wang
et al., 2021).

Besides over-compression, another shortage in
prior studies is that they mainly focus on how to
generate better positive or negative samples for
ICL, thus mapping each sentence into a multi-
dimension vector. The ideal situation is that each
dimension presents unique information, but in real-
ity, irrelevant information may propagate to other
dimensions (Locatello et al., 2019; Chen and He,
2021). We call this phenomenon dimensional pol-
lution, which is neglected in ICL and may weaken
the quality of sentence embeddings.

In this paper, we propose an intuitively simple
yet powerfully effective enhancement method in
Multi-Scenario settings for Sentence Embeddings,
termed MSSE. First, as depicted in Figure 2(b), to
tackle the issue of dimensional pollution, we pro-
pose a Dimensional-level Contrastive Learning

Mechanism (DCM). Specifically, DCM reduces in-
formation contamination between dimensions and
enhances the quality of sentence embeddings by
pulling the same dimensions (positives) closer and
pushing different dimensions (negatives) farther
apart. Second, to prevent the over-compression
of mutual information and enhance generalization,
we devise an Information Compensation Mecha-
nism (ICM). ICM loosens the constraint of the
IB principle by increasing the mutual informa-
tion I(h, s) between the original input s and the
representation h. This compensates for the over-
compressed mutual information, enhances the gen-
eralization ability, and further improves the perfor-
mance of sentence embeddings.

We conduct extensive experiments on the STS
tasks, the results demonstrate that our method sig-
nificantly improves the state-of-the-art (SOTA) ap-
proaches in unsupervised, few-shot, and super-
vised settings. In the unsupervised setting, com-
pared to SimCSE, our method using BERT},s
and BERT e achieves absolute gains of 3.90%
and 2.95% on average Spearman’s correlation, re-
spectively, significantly outperforming competitive
baselines. In the few-shot setting, with only 0.1%
of the data, MSSE-BERT},,. outperforms SimCSE-
BERT}, by 10.09%. Moreover, we conduct a set
of experimental analyses to demonstrate the effec-
tiveness of our approach. The contributions of our
work are as follows:

* We propose a dimension-level contrastive
learning mechanism to constrain the problem
of dimensional pollution.

* We devise an information compensation mech-
anism to loosen the constraint of the informa-
tion bottleneck, ensuring that mutual informa-
tion is not over-compressed.

* Our approach achieves the SOTA performance
in the widely-used STS task.
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Figure 3: The overall framework of MSSE consists of three components: (1) Instance-level contrastive learning based on
InfoNCE loss; (2) Dimension-level contrastive learning mechanism mitigates the impact of dimensional pollution; (3) Information
compensation mechanism loosens the constraints and compensates for the over-compressed mutual information. Solid circles
represent positive samples and dashed circles represent negative samples within the same batch.

2 Related Work

2.1 Contrastive Learning for Unsupervised
Sentence Embeddings (CSE)

Unsupervised sentence embedding learning is a
fundamental task in natural language processing.
With the development of PLMs (e.g., BERT (De-
vlin et al., 2019), Roberta (Liu et al., 2019)) and
the emergence of SImCSE (Gao et al., 2021), the
paradigm of "PLMs + contrastive learning” has
been widely used in sentence embedding learning.
In practice, these works (Gao et al., 2021; Wu et al.,
2022a; Jiang et al., 2022; Zhang et al., 2022a,b;
Zhuo et al., 2023) propose various data augmen-
tation methods to generate positive pairs and use
other in-batch sentences as negatives. Meanwhile,
the selection of negative sentences is also crucial.
DCLR (Zhou et al., 2022), ClusterNS (Deng et al.,
2023), CLSEP (Wang et al., 2023), SSCL (Chen
et al., 2023) are focused on utilizing different ap-
proaches to provide negative samples. Compared
to ICL, we propose a dimension-level contrastive
learning mechanism to reduce dimensional pollu-
tion. Moreover, we devise an information compen-
sation mechanism to compensate for the learned
mutual information. This approach is novel and
has not been considered in previous studies.

2.2 Information Bottleneck Principle

Information bottleneck (Tishby and Zaslavsky,
2015; Shwartz-Ziv and Tishby, 2017) divides deep
learning into two steps: the first step aims to maxi-
mize the mutual information between representa-
tions and tasks, while the second step aims to com-

press the input and representation information as
much as possible. InforMin-CL (Chen et al., 2022)
and InfoCSE (Wu et al., 2022b) propose contrastive
learning based on information minimization, min-
imizing the information entropy between positive
pairs. miCSE (Klein and Nabi, 2023) integrates
mutual information and incorporates the consis-
tency between attention from different views. How-
ever, the above works only consider inter-sentence
mutual information, which results in the mutual
information being over-compressed. To address
this gap, we devise an information compensation
mechanism to loosen the IB principle’s constraint.

3 Methodology

The sentence embedding task aims to learn high-
quality sentence vectors to achieve isotropy in the
representation space (Li et al., 2020; Su et al.,
2021). To address this task, we propose a novel
method, called MSSE, illustrated in Figure 3. Sub-
sequently, we elaborate on the specific techniques
in our framework.

3.1 Data Augmentation

Traditional data augmentation operations disrupt
key information and introduce a large amount of
noise, which weakens the model’s learning capa-
bility (Gao et al., 2021). Considering that the key
information of sentences lies in the semantic infor-
mation, we adopt an augmentation strategy (Xie
et al., 2020) that ensures consistency of informa-
tion by using back-translation to rewrite sentences
to obtain positive samples. In practice, we use pre-



trained translation models' to first translate English
into German, and then translate the German back
into English.

3.2 Dimension-level Contrastive Learning
Mechanism

Effective representation learning aims to capture
the semantic content of sentences (Scholkopf et al.,
2021). When the model maps sentences to vec-
tors, certain dimensions of these vectors consis-
tently represent specific types of information, such
as some dimensions encode tense, some encode
semantic information, etc (Tenney et al., 2019).
However, not all dimensions can perfectly separate
this information (Locatello et al., 2019; Wang et al.,
2022b). Key information and irrelevant informa-
tion often spread across multiple dimensions, lead-
ing to their confusion and resulting in dimensional
pollution . When irrelevant information contami-
nates the dimensions that are supposed to represent
key information, the key information gets diluted
(Chen and He, 2021), thereby reducing the qual-
ity of the sentence embeddings and undermining
downstream performance.

To address the issue of dimensional pollution, we
propose a novel dimension-level contrastive learn-
ing mechanism (DCM). We denote the PLMs as
Jenc(), and the representation obtained by feeding
into the model as fgnc(s) € R'*P, where D is the
representation vector’s dimension. We have h; =
fenc(si) and b = fene(s;) fori € {1,2,...,N}.
To keep the key information invariant, we optimize

fenc():

D
IR:&X % Z fRela (Bu i’j) ) (2)
ne i=1

where fzi and fzj denote the normalized i-th column
T
of H=[(h)T, (h2)", ..., (hn)T]" € RV*P and
T .
HT=[(h))T, (h)T, ..., (h})T] ", respectively.
fRela(+) represents a function to measure the corre-
lation between representations after data augmenta-
tion. And then, we use frela (i, hj) to obtain the
final matrix factor Cj;:
o) P by e{1,2,....,D}, 3
ij = T~ 0] 9Ly ey )
T RIS
where ﬁj represent the normalized j-th column of
H™. We consider the same dimensions in H and
H™ as positive pairs (h; and h;r ), while different
dimensions regard as negative pairs (h; and h;r).

'We use En-De and De-En model to guild the process.

The dimension-level contrastive loss Lpcym needs
to maximize the positive pairs of correlation and
minimize the negative pairs of correlation. This
selective optimization helps constrain the propaga-
tion of information across dimensions and reduces
dimensional contamination. In the matrix C, since
the same dimensions are treated as positive pairs,
we need to maximize the values on the diagonal of
the matrix and minimize the off-diagonal values:

Lpcem = Z(Cz —6:)°, 4,7€{1,2,..,D}

%)

1
(Sl = ’
{5

where ¢;; represents the Kronecker delta function,
which equals 1 when ¢ = j and O otherwise. Cj;
denotes the entry in the i-th row and j-th column
of the matrix C.

i=j
4
oy @

3.3 Information Compensation Mechanism

Some augmentation strategies introduce irrelevant
noise and even disrupt the semantic information
of sentences (Gao et al., 2021). According to Eq.
1, during the information compression process in
contrastive learning, key information may be in-
appropriately compressed along with the noise, af-
fecting the quality of sentence embeddings. We
describe this as over-compression, which means
that the model accidentally loses some key infor-
mation while removing noise (Tian et al., 2020;
Wang et al., 2022a). Therefore, we devise an infor-
mation compensation mechanism (ICM) to loosen
the information bottleneck. This allows the model
to retain more original information while learning
representations. Hence, our optimization objective
is formulated as below:

max I(h,hT) + AI(h, s), (5)

where h = fgnc(s) and bt = fgne(s1). A is used
to control the increase in I(h,s). To maximize
I(h,h"), we utilize a commonly used form in ICL,
the InfoNCE loss (Oord et al., 2018). It has been
proven to be a lower bound for mutual information,
equivalent to maximizing Lig of the information
bottleneck principle in Eq. 1 (detailed in Appendix
F). The InfoNCE loss is defined as:

esim(hi JL;F)/T

[’NCE = — log (6)

; o )
Z;\f_l eszm(h“hj )/ T

where sim(-,-) is the similarity metric, N is the
batch size, 7 is a temperature hyper-parameter. In
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order to maximize the mutual information I(h, s),
it can be represented as:

I(h,s) = Dxi(p(h, s)||p(h)p(s))

=B | 5
p(S\h)]

p(s) ]’

where Dy (-) represents the KL divergence func-
tion, used to measure the distance between distri-
butions. p(h) and p(s) respectively represent the
marginal distributions of /& and s. p(s|h) is the con-
ditional distribution, which is difficult to estimate.
Instead of directly estimating it, we utilize varia-
tional approximation to train ¢(s|h) to approximate
the true probability distribution p(s|h). Thus, max-
imizing the lower bound on mutual information
leads to the maximization of I(h, s). We use the
BA bound (Barber and Agakov, 2004) to estimate
the lower bound on mutual information:

= Ep(h,s) |:10g (7)

I(h,s) = Epn,s [log

+ Epn [Dxe (p(s[R)[[a(sh))]
2 Ep(h,s)[logQ(Slh)}"_H(s)v (8)

o

where H (s) is the entropy of the original input s,
E4p(s) log p(s) is only related to the data genera-
tion process and is independent of the representa-
tion h obtained through model learning. Therefore,
we only need to maximize [, 4 [log ¢(s|h)], en-
couraging the model to learn more information
containing the original input s, i.e., learning a de-
coder ¢(s|h) to maximize the increased mutual in-
formation. Thus, we utilize the representation h
to reconstruct the original input s, by comparing
the difference between the original input and the
reconstructed sentence § generated by the decoder
q(s|h), This approach loosens the constraint of the
information bottleneck and compensates for the
mutual information. Our compensatory mutual in-
formation loss is as follows:

N s;
Liem = — Y Y _log P(x;|&1,22,..,25,),  (9)
s; j=1
where z; is the j-th word of the s;-th sentence in
the original inputs, and :z; is the corresponding part
in the reconstructed sentence s;.
According to Eq. 4, Eq. 6 and Eq. 9, the above
losses can be simply added to form the final loss:

L = LNcE + #L£peMm + YL1eMm: (10)

where 1 and +y are the hyper-parameters for weights
balance.

4 Experiments

4.1 Experiment Setup

We conduct a set of experiments to evaluate
our method on seven semantic textual similarity
(STS) tasks: STS 2012-2016 (Agirre et al., 2012,
2013, 2014, 2015, 2016), STS Benchmark (Cer
et al., 2017) and SICK-Relatedness (Marelli et al.,
2014). We preform experiments with backbones
of BERTp5e and BERT e (Devlin et al., 2019).
We also evaluate 7 transfer learning tasks and pro-
vide detailed results in Appendix E. Reimers and
Gurevych (2019) argue that the primary goal of
sentence embedding learning is to cluster semanti-
cally similar sentences. Therefore, we use the STS
tasks as the main results.

Training Details We evaluate the model every
125 training steps on the development set of STS-B
and keep the best checkpoint for the evaluation on
test sets of all STS tasks in unsupervised, few-shot,
and supervised scenarios. All the experiments are
conducted on 2 NVIDIA Tesla A100 GPUs (80GB
memory). More training details are in Appendix A.

Datasets Following SimCSE (Gao et al., 2021),
we use 1,000,000 (10%) sentences randomly sam-
pled from Wikipedia as our training corpus. Ad-
ditionally, we randomly sample fixed proportions
{0.1%,0.5%, 1%, 10%, 100%} from the dataset to
train our model in the few-shot learning setting.
Importantly, to eliminate variance in data sampling
during few-shot training, we repeat training for
each proportion of the dataset five times with dif-
ferent random seeds and report the average results
of the final results. For the supervised learning, we
use natural language inference (NLI) datasets (Con-
neau et al., 2017; Reimers and Gurevych, 2019) to
train our model. Following Gao et al. (2021), we
use the entailment as positive pairs and the contra-
diction as hard negative pairs.

Baselines To validate the effectiveness of our ap-
proach in different settings, we compare MSSE
with a range of competitive sentence embedding
learning methods.

In unsupervised setting, we compare MSSE with
various competitive methods, which include: Sim-
CSE (Gao et al., 2021), DiffCSE (Chuang et al.,
2022), DCLR (Zhou et al., 2022), ArcCSE (Zhang
et al.,, 2022b), PCL (Wu et al., 2022a), Com-
pCSE (Chanchani and Huang, 2023), Whitened-
CSE (Zhuo et al., 2023), miCSE (Klein and Nabi,



PLMs | Methods | STS12 STS13 STS14 STSI15 STS16 STS-B  SICK-R  Avg.
SimCSE 68.40 8241 7438 8091 7856 7685 7223 7625

DCLR 70.81 8373 7511 8256 7844 7831 7159  77.22

ArcCSE 7208 8427 7625 8232 7954 7992 7239  78.11

miCSE 7171 83.09 7546  83.13 8022 7970  73.62  78.13
CompCSE 72.14 8406 7538 83.82 8043 8029  71.12  78.18

PCL 7284 8381 7652 83.06 79.32 8001 7338 7842
BERTy. | DiffCSE 7228 8443 7647 8390 80.54 8059 7123  78.49
WhitenedCSE | 74.03 8490 7640 8340 8023 81.14 7133 7878
OssCSE 7178 8440 7771 8395  79.92 8057 7525  79.08
DistillCSE 7454 8451 7767 84.87 8070 8148  72.16  79.42
RankCSE 7521 8580 7745 84.17 8077 8121 7481  79.92
RankBncoder | 74.88 8559 78.61 83.50 80.56 81.55 7578  80.07

MSSE 7643 8492 7849 8547 80.11 8132 7430  80.15
SimCSE 70.88  84.16 7643 8450 7976 7926  73.88  78.41

DCLR 71.87 84.83 7737 8470 7981 7955 7419  78.90
ArcCSE 7317 86.19 7790  84.97 7943 8045 7350  79.37
CompCSE 75.10 86.57 7770 8472 8025 80.17 7321  79.67

BERT, WhitenedCSE | 74.65 8579 7749 8471 8033 8148 7534  79.97
age | pCL 7487  86.11 7829 8565 8052 81.62  73.94  80.14
RankCSE 7524  86.17 7867 8511 81.12 8130 7527  80.41

OssCSE 7264 8636  79.16 8504 80.80 82.61  76.65  80.47
DistillCSE 75.08 86.64 79.53 8645 8129 8272  76.17  81.13

MSSE 7695 8558 7971 8659 81.33 8296 7650 8136

Table 1: Sentence representations performance on STS tasks in unsupervised setting. We directly use the results from the
original papers except for . }: reproduce the results using publicly available code without two teacher models to ensure a fair
comparison. We mark the best (bold) and second-best (underlined) results among methods with the same PLMs.

2023), OssCSE (Shi et al., 2023), DistillCSE (Xu
et al., 2023), RankEncoder (Seonwoo et al., 2023)
and RankCSE (Seonwoo et al., 2023).

In the few-shot setting, only miCSE has the
same experimental settings as ours. Therefore,
we select some methods from the past three years’
works and reproduce them for evaluation: SimCSE,
PCL, ISCSE (He et al., 2023), RankEncoder, and
RankCSE.

In the supervised setting, due to the limited previ-
ous works considering this setting, we select some
models which have this experimental setting as
baselines, such as SimCSE, PromCSE (Jiang et al.,
2022) and CLSEP (Wang et al., 2023). Addition-
ally, we reproduce other works, such as PCL and
ISCSE, for comparison.

By comparing MSSE with these baselines, we
can more accurately assess its performance and
ensure its superiority in unsupervised, few-shot,
and supervised scenarios. We provide more details
of these baselines in Appendix B.

4.2 Main Results

Unsupervised Sentence Embeddings We con-
duct our experiments on 7 STS tasks and evalu-
ate them using the SentEval toolkit (Conneau and
Kiela, 2018). To ensure fairness, we follow the stan-

dards of Gao et al. (2021), using Spearman’s corre-
lation coefficient as the evaluation metric. Table 1
shows different methods’ performances, it is clear
that MSSE significantly outperforms the previous
SOTA methods on all PLMs, which demonstrates
the effectiveness of our method. What’s more, com-
pared to SIMCSE-BERT,se, MSSE-BERT . in-
creases the performance from 76.25% to 80.15%
(+3.90%), and compared to SImCSE-BERT;rge,
MSSE-BERT ¢ increases the performance from
78.41% to 81.36% (+2.95%). Specifically, MSSE-
BERT},,. achieves on average 1.74% absolute im-
provements in terms of Spearman’s correlation on
SimCSE-BERT g ge.

Few-shot Sentence Embeddings In the few-shot
setting, we utilize BERT},4 to retrain methods and
meticulously evaluate their performance. With the
increase in dataset size, the model’s average per-
formance consistently improves and MSSE consis-
tently outperforms other methods. As shown in Ta-
ble 2, on a dataset containing only 0.1% of the data
volume, MSSE achieves outstanding performance,
with an average performance of 75.81%. Com-
pared to the SimCSE (65.72%), MSSE achieves
an absolute performance gain of 10.09%. This pre-
cisely reflects how MSSE efficiently learns mutual
information during training. It utilizes a dimension-



Methods 0.1% 0.5% 1% 10% 100 %
SimCSE" 65.72+0.25 73.67£1.99 74.72+1.41 75.08£0.40 76.13
ISCSE' 67.30+1.15 75.69£0.56 76.27+£0.37 76.46+£0.52 78.07
PCL' 70.33+£0.78  74.08£0.53 75.46+1.17 76.53+£0.92 78.21
miCSE* 73.68+£0.89  75.15£0.63 76.40£0.48 76.38+0.35 78.13
RankEncoder' 72.61£0.72  75.66£0.90 76.94£0.39 77.84£0.69  79.81
RankCSE' 74.39£1.09 76.02£0.46 77.91£0.86 78.67£0.27 79.92
MSSE 75.81+0.41 77.89+0.37 78.78+0.34 79.11+0.22  80.15

Table 2: Few-shot sentence representations average performance on 7 STS tasks (Spearman’s correlation) based on BERTpse.
&: results from the original papers; T: reproduce the results based on publicly available code. In addition, the results provided by
miCSE lack the result of 0.5%, we only reproduce the result of 0.5%.

Methods STS12 STS13 STS14 STS15 STS16 STS-B SICK-R  Avg.
CT-SBERT® 7484 8320 78.07 83.84 7793 8146 7642  79.39
SimCSEY 7530  84.67 80.19 8540 80.82 8425 8039  81.57
PromCSE* 7558 8433  79.67 8579 8124 8425 8079  81.81
PCL! 7621 8438 79.64 8598 81.18 8497  81.00 8191
ISCSE' 7622 8397 79.82 86.18 81.67 8543  81.05  82.05
CLSEP* 7576  84.82 8030 8629 8143 8558 8099  82.17
MSSE 7682 8532 80.61 8733 8245 8550 8193  82.85

Table 3: Supervised sentence representations performance on STS tasks of different methods. ©: results from Gao et al. (2021);
&: results from the original papers; T: reproduced by ourselves. All methods are based on BERThase.

level contrastive learning mechanism to reduce di-
mensional pollution and compensates for the over-
compressed mutual information learned by con-
trastive learning. This also demonstrates the excel-
lent performance of our approach.

Supervised Sentence Embeddings As shown in
Table 3, compared to the previous methods, our
supervised MSSE-BERT, further improves the
SOTA results from 82.17% to 82.85% (+0.68%).

4.3 Analysis and Discussion

Ablation Study We conduct a set of ablation
studies to investigate the impact of Lncg, Lpem
and Licym from Eq. 10. Table 4 reports the average
results of the STS tasks. After only removing LncE,
Lpem or Licm, the average performance of MSSE
decreases by 4.01%, 1.43%, or 2.05%, respectively.
This indicates that the proposed two novel mecha-
nisms both contribute to learning sentence embed-
dings, while traditional instance-level contrastive
learning can capture mutual information between
different views. If both Lpcm and Licm are re-
moved simultaneously, the average performance
drops by 3.27%, demonstrating the complemen-
tary nature of the two modules in advancing the
learning of sentence embeddings. More ablation
studies(Pooler methods, Augmentation strategies,
Hyper-parameters) are provided in Appendix D due
to the page limit.

STS(Avg.)
MSSE 80.15
w/o Lpem 78.72 (-1.43)
w/o Licm 78.10 (-2.05)
w/0 LNCE 76.14 (-4.01)
w/0 Lpem~+ Licm 76.88 (-3.27)

Table 4: Ablation studies of different loss functions using
BERTp.. NCE, DCM and ICM denote the InfoNCE loss
used in the instance-level contrastive learning, the Dimension-
level Contrastive Learning Mechanism and the Information
Compensation Mechanism, respectively.

Impact of the DCM The t-SNE (Reif et al.,
2019) plot in Figure 4 demonstrates the advantages
of the dimension-level contrastive learning mecha-
nism. We evaluate sentence embeddings using the
original BERT},., RankCSE, and MSSE on 20,000
sentences from the Stackoverflow (Xu et al., 2017)
dataset. We apply K-Means clustering to group
similar sentence embeddings. The results in Figure
4 show that when we remove the DCM module, the
resulting similar sentence pairs (marked with the
same color) do not cluster, reflecting that dimen-
sional pollution indeed affects the performance of
sentence embeddings. However, when we add the
DCM module, the resulting similar sentence pairs
are better aligned and more clustered.

Impact of the ICM To validate the effectiveness
of the information compensation mechanism, we
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Figure 4: The t-SNE of sentence representations learned with BERT, RankCSE and our method using BERTy4e. The points are
embeddings of sentences sampled from the Stackoverflow (Xu et al., 2017) dataset. We use K-Means clustering to group similar
sentence embeddings and form 30 clusters. (Best viewed in color)
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Figure 5: Absolute performance difference on classification,
reranking and retrieval tasks compared to SimCSE based on
BERTh.e. ACC, BC, MIC, QR and AUDQ denote Amazon
Counterfactual Classification (O’Neill et al., 2021), Banking77
Classification (Casanueva et al., 2020), Massive Intent Clas-
sification (FitzGerald et al., 2023), Quora Retrieval (Sharma
et al., 2019), AskUbuntu DupQuestions (Lei et al., 2016).

conduct a comprehensive set of experiments on
classification, retrieval and reranking tasks from
Massive Text Embedding Benchmark (MTEB)
(Muennighoff et al., 2023). As shown in Figure
5, our approach consistently outperforms SimCSE
across the five tasks. Compared to the current
SOTA methods, such as RankEncoder (Seonwoo
et al., 2023) and RankCSE (Liu et al., 2023), our
method demonstrates superior performance and ro-
bustness across various tasks and domains, further
validating the effectiveness of the ICM in loosen-
ing the constraint of the information bottleneck
and introducing more information. Additionally,
we also conduct experiments on retrieval tasks for
qualitative analysis and the results are provided in
Appendix G.

Alignment and Uniformity Prior work (Wang
and Isola, 2020) has demonstrated that models with
better alignment and uniformity can achieve bet-
ter performance (detailed in Appendix C). We cal-
culate the alignment and uniformity loss on the
STS-B development set every 125 training steps.
Figure 6 shows that compared with SimCSE, our
approach performs better both on the alignment
measure and the uniformity measure. This con-
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Figure 6: Luign and Luniorm Of our method and SimCSE based
on BERT},... For both measures, lower number are better.

firms that our method can improve the quality of
sentence representation more effectively. MSSE
promotes alignment and uniformity of information
through the dimension-level contrastive learning
mechanism to alleviate the dimensional pollution,
while the information compensation mechanism
utilizes the final representations to guide the re-
construction of inputs, loosening the IB principle
and compensating for the over-compressed mutual
information learned by sentence embeddings.

5 Conclusion

In this work, we propose MSSE, a novel sentence
embedding approach, which is applicable to un-
supervised, few-shot, and supervised learning set-
tings. MSSE enhances the model’s ability to learn
mutual information by utilizing the dimension-
level contrastive learning mechanism and the in-
formation compensation mechanism based on in-
formation bottleneck. Experimental results demon-
strate that MSSE outperforms previous SOTA meth-
ods in all settings. Additionally, we conduct com-
prehensive ablation experiments and analyses to
demonstrate the effectiveness of each component
and the rationale behind our approach.

Limitations

In this paper, the limitations of our work are as
follows. Firstly, this work follows the standard ex-
perimental settings used in previous unsupervised



sentence representation learning works (Gao et al.,
2021), but it does not consider the multi-modal sce-
nario. We plan to extend MSSE to multi-modal
datasets, such as Flickr30k (Young et al., 2014a),
and MS-COCO (Lin et al., 2014), to obtain more
new discoveries in the future. Secondly, the perfor-
mance of sentence embeddings needs to be evalu-
ated through downstream tasks such as STS, which
lacks a certain degree of interpretability. Providing
interpretability for sentence embeddings is also our
next research direction.

Ethics Statement

We focuse on sentence embedding learning and pro-
pose a novel multi-scenario sentence embedding
enhancement method. What’s more, the training
corpus and benchmark datasets are open-source,
containing no personal sensitive information and
no potential malicious content. In practice, we use
back-translation for augmentation to obtain posi-
tive samples, which has no impact on social and
does not involve any ethical issues. Furthermore,
we are willing to open-source our code and data to
promote better research in this field.
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A Training Details

We preform experiments with backbones of
BERT}ase and BERT)ype. We implement all experi-
ments with the deep learning framework PyTorch
on 2 NVIDIA Tesla A100 GPUs (80GB memory).
In the unsupervised scenario, as shown in Table 5,
the learning rate for BERTpase and BERT e are
set to 3e-5 and le-5. The batch size for BERTpaqe
and BERT)ye are both set to 256. We use AdamW
as the optimizer with a warm-up step of 500. 7
is set to 0.05, pu and «y are set to 0.8 and 0.2, re-
spectively. We train our model for 1 epoch and
evaluate the model every 125 steps. In the few-
shot scenario, we adopt the same training method
as miCSE (Klein and Nabi, 2023), keeping the
total number of optimization steps unchanged for
training different dataset sizes. For the training set
of size 108 (100%), we train for 1 epoch; for the
size 10° (10%), we train for 10 epochs, etc. In the
supervised learning scenario, we follow the setup
of SimCSE (Gao et al., 2021) and utilize natural
language inference (NLI) dataset (Conneau et al.,
2017; Reimers and Gurevych, 2019) as the train-
ing corpus, with the batch size set to 512 and the
learning rate set to 5e-5.

B Baselines Details

We compare MSSE with the following SOTA sen-
tence embedding methods:

¢ SimCSE (Gao et al., 2021) conducts thor-
ough experiments in both unsupervised,few-
shot, and supervised settings using different
dropout encodings to obtain positive pairs.
The results are from the original paper. We re-
run SimCSE with the same settings, but its per-
formance (76.13) is worse than the reported
number in the original paper.

* DiffCSE (Chuang et al., 2022) learns the dif-
ferences between original and fake sentences
by generating fake samples using the ELEC-
TRA model and Replaced Token Detection
(RTD) task to enhance the effectiveness of
sentence vector representation models.

* DCLR (Zhou et al., 2022) designs an instance-
weighting method to penalize false negatives
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BERTpase BERTlarge
PLMs Unsup. Sup. Unsup. Sup.
Batch size 256 512 256 512
Learning rate  3e-5 5e-5 le-5  Se-5

Table 5: Batch sizes and learning rates for DEMI.

and generate noise-based negatives to ensure
the uniformity of the representation space.

ArcCSE (Zhang et al., 2022b) enhances the
discriminability of positive and negative sam-
ples by maximizing the decision margin in the
angular space. It also models the semantic
partial order between sentences by automati-
cally constructing ternary sentences and their
entailment relationships.

PCL (Wu et al., 2022a) introduces a novel
companion contrastive learning with various
enhancement functions to construct different
positive and negative pairs for unsupervised
sentence embeddings.

ISCSE (He et al., 2023) retrieves embeddings
from a dynamic memory buffer based on se-
mantic similarity to obtain positive embed-
ding groups, then aggregates embeddings in
the group through self-attention operations to
generate smooth instance embeddings.

CompCSE (Chanchani and Huang, 2023) ex-
tracts atomic semantic units using a discourse
parser, then maximizes the alignment between
text and its phrase components to enhance per-
formance.

miCSE (Klein and Nabi, 2023) proposes a
contrastive learning framework based on mu-
tual information to improve the efficiency of
unsupervised learning by enhancing the con-
sistency between attention across different
views.

OssCSE (Shi et al., 2023) considers surface
structural deviations and balances learning ob-
jectives and word semantics by using a data
offsetting bias and recall loss.

DistillCSE (Xu et al., 2023) provides addi-
tional supervised signals using the base model
and proposes two knowledge distillation solu-
tions to learn stronger representations.



* CLSEP (Wang et al., 2023) employs a prompt-
ing mechanism to provide effective sentence
embeddings and introduces Partial Word Vec-
tor Augmentation (PWVA), a text data aug-
mentation strategy. This strategy enhances the
data in the word embedding space, preserving
more semantic information.

RankEncoder (Seonwoo et al., 2023) intro-
duces a novel unsupervised sentence encoder
that predicts the semantic vectors of input sen-
tences based on their relationships with other
sentences in an external corpus and the input
sentences themselves.

RankCSE (Liu et al., 2023) addresses the
inability of previous works to obtain fine-
grained ranking information, proposes rank-
ing consistency and ranking distillation meth-
ods, and integrates them with contrastive
learning into one framework. RankCSE uti-
lizes pre-trained ranking models, SimCSE and
DiffCSE, as teacher models during training,
providing a certain level of supervision. To
ensure a fair comparison, we reproduce the re-
sults by removing the two pre-trained teacher
models.

C Alignment and Uniformity

Contrastive representation learning has two key
properties: (1) alignment of positive pairs; (2) uni-
formity on the hypersphere. Wang and Isola (2020)
argues that directly optimizing these two metrics
can lead to representations with performance com-
parable to or better than contrastive learning in
downstream tasks. Alignment measures the ex-
pected distance between normalized representa-
tions of positive pairs ppos:

A

Kalign —

E

(z,zF)~ppos

I1f(z) — faD)I, (11)

while uniformity measures the uniform distribution
of normalized representations:

E

i.i.d.
Z,Y ~ Pdata

e*ﬂ\f(”v‘)*f(:u)HQ7 (12)

Luniform = log
where pgata represents the distribution of sentence
pairs. Smaller values for both metrics are better,
which aligns closely with the objectives of con-
trastive learning: positive instances should be as
close as possible, indicating smaller alignment,
while random instances should be scattered on the
hypersphere, indicating smaller uniformity.
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Figure 7: Ablation studies of different pooling methods in
unsupervised MSSE based on BERTpgse.

D Ablation Studies

We also investigate the impact of different pooling
methods, data augmentation strategies, and hyper-
parameters. We use the average results of the 7
STS tasks as our final report results.

Pooling Methods Most previous works use the
[CLS] representation as the final sentence embed-
ding. However, Reimers and Gurevych (2019);
Gao et al. (2021) demonstrate that using the first-
last-average embedding of a pre-trained model (par-
ticularly the first and last layers) can yield bet-
ter performance than [CLS]. To evaluate the im-
pact of different pooling strategies on performance,
we conduct comparative experiments with various
pooling methods under unsupervised settings.

As shown in Figure 7, using the [MASK] em-
beddings, our approach outperforms both [CLS]
and first-last-average embeddings. Considering the
characteristics of our approach, the information
compensation mechanism loosens the IB principle
and compensates for the over-compressed mutual
information by reconstructing the original sentence
through the final representation. Therefore, the
[MASK] representation can obtain better perfor-
mance than [CLS] and first-last-average embed-
dings.

Augmentation Strategies To investigate the im-
pact of different augmentation strategies on the per-
formance of MSSE in generating positive samples,
we also conduct a set of comparative experiments
using some traditional augmentation strategies ac-
cording to PCL (Wu et al., 2022a): shuffled Sen-
tence (SS), word deletion (WD), word repetition
(WR), dropout (DP) and back-translation (BT).
Figure 8 shows the average Spearman’s correla-
tion performance for the 7 STS tasks using different
augmentation strategies. The experimental results
indicate that back-translation indeed outperforms
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Figure 8: The average performance of Spearman’s correla-
tion on 7 STS tasks obtained using different augmentation
strategies based on BERTy.se. MSSEgT is the augmentation
strategy used in our approach.

Batch Size 32 64 128 256 512

STS(Avg.) 78.80 79.37 7996 80.15 80.01
T 0.01 0.02  0.05 0.10 0.20
STS(Avg.) 79.62 79.94 80.15 79.97 79.43

Table 6: Comparisons of different batch sizes and temperature
parameters. Results of MSSE are average STS performance
based on BERTasc-

traditional augmentation strategies. As mentioned
in the main text, the aforementioned strategies in-
troduce noise and irrelevant information, disrupting
the sentence structure and semantic information,
thereby limiting the model’s performance. What’s
more, back-translation not only avoids introducing
more noise but also enriches sentence information,
which complements our proposed dimension-level
contrastive learning mechanism.

Hyper-parameters To study the influence of
hyper-parameters on STS average performance, we
conduct experiments by setting different batch sizes
and different temperature hyper-parameters. As
shown in Table 6, the optimal batch size is 256.
With the increase in batch size, the average perfor-
mance of the model improves, but when the batch
size exceeds 256, the average performance of the
model significantly decreases. It also shows that
the temperature setting for MSSE should be mod-
erate, with the optimal temperature for BERT5q
being 0.05.

E Transfer Tasks

For the transfer learning (TR) task, we evalu-
ate 7 datasets using SentEval’s default configura-
tion: MR (Pang and Lee, 2005), CR (Hu and Liu,
2004), SUBJ (Pang and Lee, 2004), MPQA (Wiebe
et al., 2005), SST-2 (Socher et al., 2013), TREC

(Voorhees and Tice, 2000) and MRPC (Dolan and
Brockett, 2005). For each task, we train a logistic
regression classifier on the frozen sentence embed-
dings and test the classification accuracy.

As shown in Table 7, the results demonstrate that
MSSE outperforms other competitive SOTA base-
lines, both on BERTy55e and BERTypge. Compared
to SINCSE-BERTy,54 (85.81%), MSSE-BERT 56
(87.43%) achieves an absolute improvement of
1.62%. On BERT)yge, MSSE achieves the best
performance across five transfer tasks and also sig-
nificantly outperforms the previous SOTA methods.

F Estimating the Mutual Information
with InfoNCE

For the expression I(h, h), we have:

p(h*|h)

I(h,h™) = > p(h,h*)log R

h,ht

13)

where is the density ratio defined by Oord

p(nt1n)
P h*)
et al. (2018). The definition of the InfoNCE loss is:

LNcE = — Z lp(h, h+) log

H

fe(h*,h)
Eh;’eH fk(hj—? h)

+
=—Exy |:log Fi(h™, h) ] ) (14)

Z}L;reH fk(h;_7h)

where fi(h*, h) represents the quantification of
the similarity between the predicted result ™ and
the ground truth A. Oord et al. (2018) demonstrated
that fi,(h*, h) is positively correlated with the den-
sity ratio. Therefore, we have:

fe(h™h) o

15)

Based on the above Eq.13, Eq.14, Eq.15, we
partition the data into H = {Hpos + Hyeg }, Hieg
includes N — 1 negative samples from the same



PLMs | Methods | MR CR SUBJ MPQA SST TREC MRPC Avg.
SimCSE 81.18 86.46 94.45 88.88  85.50  8§9.80 7443  85.81

ArcCSE 7991 8525 99.58  89.21 84.90  89.20 7478  86.12

BERTp.e | PCL 80.11 8525 9422 89.15 8512 87.40 76.12  85.34
RankCSE! 83.07 8791 9498 89.65 8891 89.60 76.02  87.16

MSSE 84.10 88.54 94.17 89.07  88.67 91.60 75.81 87.43

SimCSE 8536 89.38 95.39 89.63  90.44 91.80 76.41  88.34

ArcCSE 84.34 88.82 9958 89.79 90.50 92.00 7478  88.54

BERTuge | PCL 8247 87.87 9504 8959 8775 93.00 76.00  87.39
RankCSE ' 8547 89.15 94.93 9042 90.56 93.00 76.81  88.62

MSSE 85.84 90.10 94.73 90.69 91.05 92.30 77.04  88.82

Table 7: Sentence representations performance on seven transfer tasks. We report the accuracy results based on BERTpyse
and BERT . The results are imported from the original papers except for f. We also mark the best (bold) and second-best

(underlined) results among methods with the same PLMs.

batch. We reformulate Lncg as follows:

p(tﬁy)l)
Lxce = —Exl Bl
NCE H108 p(h+|h) +Z ;D(h;rlh)
p(hT) nf€Hues p(nT)
+
p(h*) p(hf|h)
= EHlog 1+ Z
+ +
(i), o, P0)
r (16)
p(h*) p(hf|h)
~ Eglog |1+ N -1 E————=
o8 |1 iy Y VR
[, p(h")
= 1 1 N -1
IEHog_ +p(h+|h)( )
[ p(h™)
> N T
> Eglog _p(h+|h)N

= log (N) — I(h*, h),

where p(h) represents the marginal distribution of
h*, and p(hT|h) is the conditional distribution of
h* given h. N reprensentes the batch size. Based
on the above Eq. 16, we can infer:

I(h*,h) =log (N) — LNCE- (17

Thus, Lxcg can be regarded as a lower bound
of I(h*,h) , and its tightness increases with the
growth of V.

In practice, we establish a connection between
fr(h*,h) and adopot cosine similarity sim(-,-)
for measure metric with a temperature hyper-
parameter. Hence, we have:
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fk(h+7h)
ZhTeH fk(hj_7h)

esim(hi B /T

ENCE = —EH [log

|

esim(hi ,h;r)/f

N
j=1

—En, [log

] (18)

sim(hi,hj')/f

1 esim(hi,hr)/f

n

N

>
H
Zlog

hy Z]‘:l €

esim(hi,hj)/f

= —log ~

) esim(hi,h;)/f
=1

>
G Qualitative Analysis

We conduct small-scale retrieval experiments us-
ing RankCSE and MSSE based on BERT,s.. We
use 30k captions from the Flickr30k (Young et al.,
2014b) dataset as the retrieval data and randomly
select any sentence from them as a query to re-
trieve the Top-3 similar sentences (based on cosine
similarity). As shown in Table 8, the retrieval re-
sults demonstrate that sentences retrieved by MSSE
are semantically closer to the query sentences and
of higher quality compared to those retrieved by
RankCSE, further demonstrating the effectiveness
of MSSE.
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