
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FLDmamba: INTEGRATING FOURIER AND LAPLACE
TRANSFORM DECOMPOSITION WITH MAMBA FOR EN-
HANCED TIME SERIES PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series prediction, a crucial task across various domains, faces signifi-
cant challenges due to the inherent complexities of time series data, includ-
ing non-stationarity, multi-scale periodicity, and transient dynamics, particularly
when tackling long-term predictions. While Transformer-based architectures have
shown promise, their quadratic complexity with sequence length hinders their ef-
ficiency for long-term predictions. Recent advancements in State-Space Mod-
els, such as Mamba, offer a more efficient alternative for long-term modeling,
but they lack the capability to capture multi-scale periodicity and transient dy-
namics effectively. Meanwhile, they are susceptible to the data noise issue in
time series. This paper proposes a novel framework, FLDmamba (Fourier and
Laplace Transform Decomposition Mamba), addressing these limitations. FLD-
mamba leverages the strengths of both Fourier and Laplace transforms to effec-
tively capture both multi-scale periodicity, transient dynamics within time series
data, and improve the robustness of the model to the data noise issue. Our ex-
tensive experiments demonstrate that FLDmamba achieves superior performance
on time series prediction benchmarks, outperforming both Transformer-based and
other Mamba-based architectures. This work offers a computationally efficient
and effective solution for long-term time series prediction, paving the way for
its application in real-world scenarios. To promote the reproducibility of our
method, we have made both the code and data accessible via the following URL:
https://anonymous.4open.science/r/FLDmamba.

1 INTRODUCTION

Time series prediction, which forecasts the future values of a (multivariate) variable based on its
historical values, finds its application across a wide range of fields. Examples include weather
prediction (Lorenc, 1986; Bauer et al., 2015), power grid management (Tang, 2011), traffic predic-
tion (Yu et al., 2017; Bai et al., 2020), and stock market (Fama, 1970), to name just a few. Despite
significant advancements in this domain, the inherent complexities of time series data, such as non-
stationarity, multi-scale periodicity, intrinsic stochasticity, and noise, pose substantial challenges to
existing predictive models in long-term prediction.

Transformer-based architectures (Vaswani et al., 2017), successful in NLP and computer vision,
have been explored extensively in time series prediction. Although they demonstrate impressive
performance, they face degraded accuracy and efficiency in long-term time series prediction due to
their quadratic complexity w.r.t. sequence length. iTransformer (Liu et al., 2023) addresses inter-
series dependencies by inverting attention layers, but its tokenization approach, which uses a simple
MLP layer, fails to capture intricate evolutionary patterns in the data, as shown in Figure 1. Thus,
Transformer-based models face challenges in computational efficiency and predictive performance.
This can be explained by that the computational cost of self-attention mechanism, which is at the
heart of Transformer-based model, is O(L2), where L is the sequence length. Meanwhile, the self-
attention mechanism leads to point-wise treatment independently and failure to capture intricate
evolutionary patterns in time series data.
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Recently, architectures based on State-Space Models (Gu et al., 2021a; Smith et al., 2022) have
emerged as a promising alternative due to the computational efficiency inherent in linear models to
address the long-term prediction challenge. A notable example is Mamba (Gu & Dao, 2023), which
employs a linear state space with input-dependent selection. The linear state space allows efficient
and parallelized long-sequence modeling, while the input-dependent selection allows propagating
and forgetting information in long sequences, facilitating in-context learning. Mamba’s design is
a good start. However, there are three challenges that Mamba-based methods for time-series pre-
diction cannot address. (1) Multi-scale periodicity. Time series data typically consists of patterns
that occur periodically, such as in traffic, electricity, and weather. In addition, the periodic patterns
typically exist in multiple time scales and are superimposed together. For example, in weather data,
the temperature can fluctuate both in the time scale of a day and a year. Mamba lacks frequency
modeling to capture such multi-scale periodicity. (2) Transient dynamics. In addition to peri-
odicity, time series data often shows complex transient dynamics, which can be characterized as
time-varying patterns, short-term fluctuations, or event-driven variations. These transient dynam-
ics pose significant challenges for Mamba, as Mamba exhibits a tendency to prioritize point-wise
temporal dynamics over neighboring transient dynamics. Figure 1 presents a comparative analysis
of the time series predicted by S-Mamba against the ground truth values on the real-world datasets
ETTm1 and ETTm2 (Zhou et al., 2021). A visual inspection reveals a distinct disparity in the dis-
tribution of the predicted time series compared to the ground truth. This discrepancy is due to that
S-Mamba fails to effectively capture multi-scale periodicity and transient dynamics inherent within
the time series data. (3) Data noise. Noise in time series data introduces random fluctuations into
the data, increasing the uncertainty in predictions. Models trained on noisy data may produce less
reliable forecasts with wider prediction intervals, making it harder to make accurate predictions.

To address the limitations of existing methods, this paper proposes two key technical advancements
to enhance Mamba in time series prediction: (1) Incorporating Fourier analysis into Mamba:
Mamba primarily focuses on capturing temporal dynamics in the temporal domain, lacking the abil-
ity to model long-term dynamics in the frequency domain, such as multi-scale patterns overlooked
in the temporal domain. To address this, we propose integrating Fourier analysis into Mamba, en-
abling it to capture long-term properties, such as multi-scale patterns, in the frequency domain.
In addition, the Fourier Transform can help in separating the underlying patterns or trends from
noise in the time series data by highlighting dominant frequency components. By focusing on these
dominant frequencies, the model can reduce the impact of noise that might otherwise affect the
accuracy of predictions, thereby enhancing the model’s robustness to noisy data. (2) Integrating
Laplace analysis into Mamba: To improve Mamba’s ability to capture transient dynamics, such
as short-term fluctuations, we introduce Laplace analysis into Mamba. This integration allows the
model to better understand the relationships between neighboring data points and capture transient
changes. Based on these two advancements, we propose a novel framework, FLDmamba (Fourier
and Laplace Transform Decomposition Mamba), specifically designed for long-term time series
prediction. FLDmamba leverages the strengths of both Fourier and Laplace analysis, enabling it to
effectively capture both multi-scale periodicity and transient dynamics within time series data.

The core innovation of FLDmamba lies in its strategic integration of frequency analysis and Laplace
analysis within the Mamba framework. By representing time series data in the frequency domain
through Fourier analysis, FLDmamba effectively captures multi-scale periodicity, improving the
ability to conduct long-term prediction. Simultaneously, the incorporation of Laplace analysis im-
proves the model’s capacity to capture local correlations between neighboring data points, leading
to a more accurate representation of transient dynamics. As shown in Figure 1, FLDmamba sig-
nificantly outperforms S-Mamba. In addition, as the backbone of our framework FLDmamba is
Mamba, it is highly efficient and well-suited for deployment in large-scale real-world applications.

We summarize our contributions as follows:

• An Efficient Unified Framework for Long-term Time Series Prediction. We present
an efficient and unified framework for long-term time series prediction that eliminates the
need for feature engineering.

• Enhanced by Fourier and Laplace Transformations, Decomposed Mamba excels in
capturing multi-scale periodicity, transient dynamics, and mitigating noise. Through
the integration of the Fourier and Laplace Transforms into Mamba, our proposed model,
FLDmamba, adeptly captures intricate multi-scale periodic patterns and dynamic fluctua-
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tions present in time series data. This approach not only diminishes the impact of noise but
also fortifies the model’s resilience, culminating in a substantial enhancement in long-term
time series prediction accuracy.

• Extensive Experiments. Evaluated on time series prediction benchmarks and comparing
with strong baselines including transformer-based and other Mamba-based architectures,
our FLDmamba achieves state-of-the-art (SOTA) performance on of tasks.

2 RELATED WORK

Time of Two Days

R#8Y8C-
W6

Figure 1: Time Series
Distributions of ground
truth, S-Mamba, iTrans-
former and Ours.

Time Series Prediction. Time series prediction, forecasting future
values based on historical data (Lim & Zohren, 2021; Torres et al.,
2021), has witnessed a surge in advancements driven by deep neural
network techniques. Notably, Mamba (Gu & Dao, 2023) and Trans-
former (Vaswani et al., 2017) have emerged as prominent players in
this domain, achieving notable successes in time series prediction (Pa-
tro & Agneeswaran, 2024; Liang et al., 2024; Vaswani et al., 2017).
Transformer-based methods, in particular, have garnered significant at-
tention due to their self-attention mechanism (Vaswani et al., 2017),
which enables the capture of long-range dependencies within time series
data. However, the quadratic complexity inherent in the Transformer
architecture presents a formidable challenge for long-term time series
prediction. The computational burden associated with processing lengthy sequences significantly
hinders the model’s performance, particularly when dealing with extended time horizons. This chal-
lenge has spurred researchers to explore innovative approaches that balance computational efficiency
with predictive accuracy. One such approach, proposed by (Liu et al., 2021), introduces a pyrami-
dal attention module that effectively summarizes features at different resolutions. FEDformer (Zhou
et al., 2022) leverages a frequency domain enhanced Transformer architecture to enhance both ef-
ficiency and effectiveness. Zhang & Yan (2022) further contribute to this field with Crossformer,
which incorporates a patching operation, similar to other models, but also employs Cross-Dimension
attention to capture dependencies between different time series. While patching reduces the number
of elements to be processed and extracts comprehensive semantic information, these models still
face limitations in performance when handling exceptionally long sequences. A recent work pro-

R#RZwJ-
Q1

poses Moirai (Woo et al., 2024), which pretrains a model with large-scale datasets. It has different
settings from other existing full-shot studies. Thus, It is out-of-scope for our baselines.

To address this persistent challenge, iTransformer (Liu et al., 2023) introduces an innovative ap-
proach that inverts the attention layers, enabling the model to effectively capture inter-series depen-
dencies. However, iTransformer’s tokenization strategy, which simply passes the entire sequence
through a Multilayer Perceptron (MLP) layer, fails to adequately capture the intricate evolutionary
patterns inherent in time series data. This limitation underscores the ongoing need for more sophisti-
cated techniques that can effectively model the complex dynamics of time series data. More related

R#vEmK-
W6

work on mamba-based methods for time series prediction is shown in Appendix 6.3.

In conclusion, while Transformer-based models have demonstrated significant promise in time series
prediction, they still grapple with challenges related to computational efficiency and performance
when dealing with long sequences. Continued research efforts are crucial to developing more effi-
cient and effective architectures that can effectively model the intricate complexities of time series
data, ultimately paving the way for more accurate and reliable long-term predictions.

Models based on SSMs (State-Space Models). Previous approaches to time series prediction, such
as those found in AGCRN (Bai et al., 2020), DCRNN (Li et al., 2018), and ASTGCN (Guo et al.,
2019), primarily relied on recurrent neural networks (RNNs) (Sutskever et al., 2014) or convolu-
tional neural networks (CNNs) (Krizhevsky et al., 2017). RNN-based methods process sequential
data in a step-by-step manner, propagating gradients cell-by-cell, which can hinder training speed
and limit the retention of long-term information. Conversely, CNN-based methods employ con-
volutional kernels to capture local information, resulting in reduced inference speed and overlook-
ing long-term global information. To address these limitations, a novel state-space model called
Mamba was introduced in Gu & Dao (2023). Mamba aims to capture long-term information while
maintaining computational efficiency. Building upon the foundation laid by Mamba (Gu & Dao,
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Figure 2: This diagram illustrates the architecture of FLDmamba, showcasing the individual compo-
nents and their integration. Left: This section provides a detailed view of the FMamba architecture,
highlighting its key components and their interactions. Middle: The central section presents the
overall architecture of FLDmamba, demonstrating how FMamba, the Fourier and Laplace Trans-
form modules, and Mamba are interconnected to form the complete framework. Right: The right-
most section focuses on the architecture of Mamba, providing a visual representation of its internal
structure and operation.

2023), we propose FLDmamba, which leverages the power of Fourier and Laplace transforms. The
incorporation of the Fourier transform in Mamba’s input-selection stage facilitates the capture of
multi-scale periodicity, while the Laplace transform-powered output module explicitly models peri-
odic and transient dynamics. This strategic integration enhances the model’s ability to capture both
long-term dependencies and complex temporal patterns. The integration of Fourier and Laplace
transforms into the Mamba framework in FLDmamba represents a significant advancement in time
series prediction. By leveraging these powerful mathematical tools, our model surpasses the limita-
tions of previous RNN and Trasformer-based approaches, enabling more accurate and efficient time
series forecasting performance.

3 METHODOLOGY

This section details the FLDmamba framework (illustrated in Figure 14), which comprises five com-
ponents: (1) data smoothing using a radial basis function kernel; (2) an FMamba encoder layer (us-
ing Fast Fourier Transform for multi-scale periodic pattern extraction); (3) a Mamba encoder layer
for modeling long-term dependencies; (4) an integrated FMamba-Mamba block capturing both pe-
riodic and transient dynamics and separating data noise; (5) and an inverse Laplace transform to
produce time-domain predictions. The preliminary background (Mamba, Fourier/Laplace Trans-
forms) is shown in Appendix 6.2. Then FLDmamba’s computational complexity is analyzed (shown
in Appendix 6.4). Subsequent sections offer a detailed breakdown of each component. Firstly, the
problem definition is shown as follows:

Problem Statement. Given the input with the long-term time series data X = (x1, ...xL) ∈ RL×V ,
where L is the size of history window and V is number of variates, the ground truth of the predicted
output is Y(1) = (xL+1, ...xL+H) ∈ RH×V , where H is the prediction size of future time steps. We

aim to learn a mapping function F to satisfy Ŷ = F(X) and minimize the loss 1
|Y(1)|

∑|Y(1)|
i=1 (ŷi−

y
(1)
i )2, where temporal dependencies are preserved.

3.1 FLDMAMBA

Our proposed approach, FLDmamba, is illustrated as follows: the Radial Basis Function (RBF) ker-
nel, the FMamba encoder layer enhanced by the Fast Fourier transform (FFT), the Mamba encoder
layer, the FMM block, and the inverse Laplace transform (ILT) module for FLDmamba. Each serves
a specific purpose in the overall framework. In the following sections, we provide comprehensive
explanations and illustrations for each of these components, outlining their respective functionali-
ties and contributions within the FLDmamba framework. For a comprehensive understanding of the
algorithm’s steps, please refer to Algorithm 1 in Appendix 6.1.
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3.1.1 DATA SMOOTHING VIA THE RADIAL BASIS FUNCTION KERNEL

To achieve data smoothing on the input data matrix X, we propose the utilization of the radial basis
function (RBF) kernel. The RBF kernel is a widely employed mathematical function in machine
learning algorithms, specifically for tasks such as prediction. Its primary purpose is to facilitate the
effective capture of intricate temporal relationships and patterns within time series data. The RBF
kernel for the data point xo is mathematically defined as follows:

x′
o := K(xo, xp) = exp(−γ||xo − xp||2) = ⟨φ(xo), φ(xp)⟩

≈ ⟨z(xo), z(xp)⟩; o ̸= p (1)

In this equation, x′
o is the output of the RBF kernel on xo. K denotes the kernel function, xo and xp

represent input data points, γ = 1
2σ′2 is a hyperparameter that controls the width of the kernel, and

|| · || denotes the Euclidean distance between the points, and we suppose σ′ = 1 in this paper. Ad-
ditionally, φ(xo) is defined as exp(− 1

2 ||xo||2)(a(0)q−0, ..., a
(j)
1 , ..., a

(j)
qj , ...), where qj =

(
k+j−1

j

)
and

a
(j)
q =

x
n1
1 ...x

nk
k√

n1!...nk!
, with n1+n2+ ...+nk = j and 1 ≤ q ≤ qj . The symbol ∧ represents the exterior

product. Moreover, the function z maps a single vector to a high-dimensional vector that approx-
imates the RBF kernel. To construct this function z, we randomly sample from the Fourier trans-
form of the kernel, denoted as ϕ(xo) =

1√
r
[cos⟨w1, xo⟩, sin⟨w1, xo⟩, ..., cos⟨wr, xo⟩, sin⟨wr, xo⟩]T ,

where w1, ..., wr are independent samples drawn from the Gaussian distribution N (0, σ′−2I).

3.1.2 FMAMBA ENCODER LAYER POWERED BY THE FAST FOURIER TRANSFORM (FFT)

To capture multi-scale periodicity, e.g., daily and monthly patterns, and alleviation data noise, we
propose to adopt the Fourier transform to endow state space models on the step size ∆ ∈ R2L×V

to filter different periodic patterns out from noise, which is hard to address by existing time-series
methods like S-Mamba (Wang et al., 2024) and iTransformer (Liu et al., 2023). In this section, we
aim to illustrate the Fourier transform-powered FMamba encoder. As we know from the preliminary
in Section 6.2 in Appendix, an important input-dependent selection mechanism is how the step size
∆ is dependent on the input. However, all information of the input is passed through ∆ at each
time step without filtering, which has three drawbacks. Firstly, not all information obtained by
this selective mechanisms is important. Secondly, after projection via this selective mechanism,
the periodic patterns in time series data are hard to capture. Thirdly, noise in data is hard to be
distinguished by ∆. Motivated by the above reasons, we propose to adopt the Fourier transform
on the ∆ to identify important frequency information and further capture the multi-scale periodic
patterns in time series data. Firstly, we define a kernel integral operator, which aims to identify
relevant information by convolving the input signal x from the previous layer with a kernel K̃(∆t;ϕ)
with time difference ∆t and parameter ϕ:

R#Xe6T-
O1Definition 1: (Kernel integral operator) We define the kernel integral operator I(x;ϕ) as follows:

I(x;ϕ)(t) =
∫
D

K̃(t− s;ϕ)xsds (2)

Here t, s denote time. The convolution theorem states that the Fourier transform F applied to the
above kernel integral operator, can be expressed as the product of the Fourier transform of the kernel
and the Fourier transform of the input signal. Therefore,

I(x;ϕ)(t) = F−1(W̃ · F(x)) (3)

Here F−1 is the inverse Fourier transform, W̃ is the Fourier transform of the kernel K̃, and we
directly treat W̃ as a learnable parameter matrix. The functionality of the kernel K̃ is to identify
relevant signals and filter out noise. In addition, to improve the efficiency of operation, Fast Fourier
Transform (FFT) is adopted for the above F . For the Fourier transform of the input signal x, we
define D = F(x) ∈ R2L×V for each feature j of x as:

Dj [k] = Fj(k) =

L∑
n=1

xnj · e−î 2π
L kn; j ∈ [1, 2, ..V ]; î =

√
−1 (4)

Dj [k] ∈ Cdf is the Fourier transform of the j-th variable at frequency index k and df represents
the sequence length after FFT in frequency domain. And î denotes the imaginary unit. Then we

5
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transform it into temporal domain via Inverse FFT (IFFT), producing ∆F , which is the filtered
version of ∆, via the kernel integral operator I(x;ϕ) defined above:

∆F (n, j) := I(xj ;ϕ)(n) =
1

L

L∑
k=1

W̃ ·Dj [k] · eî
2π
L kn; j ∈ [1, 2, ..V ]; î =

√
−1

ĀF = exp(∆FA); B̄F = ∆FA
−1exp(∆FA) ·∆FB

(5)

The filtered ∆F replaces the ∆ in the original Mamba, and can better capture relevant and periodic
information in the presence of noise. Based on the output X′ of the RBF kernel, we can obtain the
final output as follows:

u
(1)
i ← SSM(ĀF , B̄F ,C)(x′

i); u
(2)
i ← u

(1)
i ⊗ SiLU(Linear(x′

i)); ui ← Linear(u(2)
i ) (6)

Where x′
i ∈ RV denotes the output via the RBF at the time step i. SiLU denotes the activation

function. And Linear represents the linear layer. And u
(1)
i ∈ RV , u(2)

i ∈ RV and ui ∈ RV are three
outputs. A detailed algorithm is shown in Algorithm 2 in Appendix 6.1.

3.1.3 MAMBA ENCODER LAYER

To capture long-term dependencies in time-series sequences, we incorporate Mamba into our frame-
work, working in parallel with FMamba. Unlike the multi-head attention mechanism in Transformer,
Mamba employs a selective mechanism to model feature interactions. The core concept of Mamba
is to map the input sequence X′ = (x′

1, x
′
2, . . . , x

′
L) to the output U ′ through a hidden state h(i),

which acts as a linear time-invariant system. More specifically, given the input sequence x′
i ∈ RV ,

where V represents the number of variables in the time series data, we utilize Mamba to model
it (Gu et al., 2021b). The process of Mamba can be outlined as h′(i) = Ah(i) + Bx′

i, i ∈ [1, L].
Here, x′

i ∈ RV . The discretized process, represented by ∆, can be illustrated as follows:

Ā = exp(∆A); B̄ = ∆A−1exp(∆A) ·∆B (7)

Then, we can obtain the output via the Mamba encoder layer U ′ ∈ RL×V as follows:

u
′(1)
i ← SSM(Ā, B̄,C)(x′

i); u
′(2)
i ← u

′(1)
i ⊗ SiLU(Linear(x′

i)); u′
i ← Linear(u′(2)

i ) (8)

Where u
′(1)
i ∈ RV , u′(2)

i ∈ RV and u′
i ∈ RV are three outputs at the time step i. A detailed

algorithm is shown in Algorithm 3 in Appendix 6.1.

3.1.4 THE FMAMBA-MAMBA (FMM) BLOCK FOR FLDMAMBA

Based on the concepts of FMamba and Mamba, we propose the integration of these two components
into a single block, which we refer to as the FMamba-Mamba (FMM) block. Drawing inspiration
from the ResNet mechanism (He et al., 2016), an FMM block consists of a FMamba encoder and
a Mamba encoder in parallel, both sharing the same input and whose outputs are summed together,
producing the output of the FMM block. In this way, it can effectively capture the intricate temporal
and periodic dependencies present in the data. Subsequently, the output of the first FMM block is
passed to a second FMM block (whose output of the second FMamba is y′ and output of second
Mamba is denoted as y′′ in Figure 14). The process is illustrated as follows:

u′′
i = u′

i + ui; y′i ← FMamba encoder layer(u′′
i ); y′′i ← Mamba encoder layer(u′′

i );

Yi ← Linear(FFT(y′i + y′′i ));
(9)

Where ui ∈ RV and u′
i ∈ RV denote outputs of the time step i of the first-layer FMamba and the

first-layer Mamba respectively. y′′i ∈ RV , y′i ∈ RV and Yi ∈ RV . A detailed description of this
process can be found in Figure 14 and Algorithm 1. To assess the impact and effectiveness of the
FMM block, we conducted experiments and present the results in the ablation study.

3.1.5 INVERSE LAPLACE TRANSFORM FOR FLDMAMBA

There are many transient dynamics factors in time series data that hamper the performance of exist-
ing methods. Meanwhile, we also aim to capture long-term periodic patterns that are hard to capture

6
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in time series data by existing methods. Due to the success of Laplace transform on many do-
mains (Camacho et al., 2019), we propose to adopt the inverse Laplace transform (ILT) on them,
which is able to capture transient dynamics and long-term periodic patterns. It is shown as:

Ŷ (t) = 1
2πî

limT→∞
∫ γ−îT

γ−îT
Kϕ(s)Y (s)estds; î =

√
−1, where Y (s) is the Laplace transform

R#6yv6-
W1of Y (t) from the previous layer. And Kϕ(s) is a kernel in the Laplace domain. By stipulating

first-order singularities as Kϕ(s) =
∑N

n=1
βn

s−µn
, we derive in Appendix 6.2 that

Ŷ (t) =

M∑
n=1

Ane
−σnt cos(wnt+ φn) (10)

where An, ξn, wn, and ϕn are all functions of Y (t) and the {βn} and {µn}. Thus in our work,
we directly parameterize An, ξn, wn, and ϕn as learnable functions of Y (t) from the previous layer
to improve efficiency and stability. We see in Eq. 10, the cosine term cos(wnt) plays a crucial
role in capturing the periodicity inherent in the data. It is capable of effectively identifying and
modeling recurring patterns or cycles within the time series. On the other hand, the term eσnt

is responsible for capturing the transient dynamics exhibited by the data. It enables the model to
capture and represent the short-lived variations or irregularities in the time series. Besides, the
combined use of exponential eσnt and cos(wnt) terms ensures that the reconstructed time-domain
data accurately reflects both transient dynamics and long-term periodic trends, making it suitable
for forecasting future behaviors based on historical data. This, in turn, contributes to improved
accuracy and predictive capabilities, allowing the model to make more reliable forecasts and capture
the nuances of the data more effectively. Model complexity is shown in Appendix 6.4.

4 EVALUATION

In this section, we aim to conduct experiments to answer the following questions: Q1: What is
the effectiveness of FLDmamba compared with other state-of-the-art baselines? Q2: How each
component of FLDmamba affect the final performance? Q3: How is the robustness of FLDmamba
compared with state-of-the-art methods like S-Mamba and iTransfomrer? Q4: How is the advantage
of FLDmamba on long-term prediction with increasing lookback length compared to other state-of-
the-art methods? Q5: How is the performance of FLDmamba on capturing multi-scale periodicity
and transient dynamics compared to state-of-the-art baselines? Q6: How is the efficiency of FLD-
mamba compared to state-of-the-art baselines? (in Appendix 6.5) Q7: How do hyperparameters of
FLDmamba affect the performance (in Appendix 6.5)?

4.1 EXPERIMENTAL SETUP

Datasets. To rigorously evaluate the effectiveness of our proposed model, we selected a diverse set
of 9 real-world datasets (Zhou et al., 2023; 2021) for evaluation. These datasets encompass a range
of domains, including Electricity, 4 ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2), and others.
These datasets are extensively utilized in research and span various fields, such as transportation
analysis and energy management. Detailed statistics for each dataset can be found in Table 2 in
Appendix 6.5.

Baselines. We compare our method FLDmamba with 10 state-of-the-art methods including 6
Transformer-based models, 3 MLP-based methods and 1 SSM-based method. The detailed illus-
trations and experiment settings are shown in Appendix 6.5.

4.2 OVERALL COMPARISON (Q1)

We present evaluation results using two metrics: Mean Squared Error (MSE) and Mean Absolute
Error (MAE) (Table 1). Based on results, we make the following observations:

Outstanding Performance. Our proposed framework, FLDmamba, demonstrates exceptional per-
formance across a range of time series prediction tasks. As shown in Table 1, FLDmamba achieves
state-of-the-art results in the majority of scenarios (60 out of 72, or 83.3%), and consistently ranks
among the top performers in the remaining cases across nine real-world datasets. This outstanding
performance can be attributed to several key design elements: (1) Data Smoothing via the Radial
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Basis Function (RBF) Kernel: FLDmamba incorporates an RBF kernel, which effectively smooths
the input data, reducing noise and enabling more accurate capture of underlying temporal patterns.
This data preprocessing step significantly contributes to the model’s improved prediction accuracy.
(2) Multi-Scale Periodicity Capture with the Fast Fourier Transform (FFT): Our framework
incorporates the FFT on the parameter ∆. This transformation enables the identification and ex-
traction of multi-scale periodic patterns present in the time series data. By effectively capturing
these periodic patterns, FLDmamba significantly enhances its predictive capabilities. (3) Enhanced
Long-Term Prediction and Transient Dynamics Capture with the Inverse Laplace Transform:
To further improve long-term predictions and capture transient dynamics, FLDmamba incorporates
the inverse Laplace transform on the combined outputs of FMamba and Mamba. This innovative
approach proves advantageous in capturing both transient dynamics and periodic patterns, further
boosting the accuracy of our prediction outputs. (4) Integration of FMamba and Mamba via the
FMM Block: The FMM block within FLDmamba facilitates the capture of complex temporal at-
tributes and dependencies between the FMamba and Mamba components. This integration enhances
the model’s ability to capture intricate temporal relationships, improving overall performance.

The superior performance FLDmamba in time series prediction arises from the synergistic combina-
tion of an RBF kernel, Fast Fourier and inverse Laplace transforms, and the integrated FMamba and
Mamba components. This approach effectively captures temporal patterns, multi-scale periodicity,
transient dynamics, and mitigates noise.

4.3 ABLATION STUDY (Q2)
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Figure 3: Ablation study of FLDmamba with L =
96.

R#7Gt7-
Q6

This section aims to evaluate the individual
contributions of each component within our
proposed framework, FLDmamba, as illus-
trated in Figure 3 and Figure 8 (Appendix 6.5).
We conduct an ablation study by considering
five variants: “w/o FT”: This variant excludes
the Fourier transform for the parameter ∆, al-
lowing us to assess the impact of frequency
domain analysis. “w/o FM”: This variant re-
moves the FMamba component, leaving only the Mamba architecture, enabling us to evaluate the
contribution of the frequency-domain enhanced Mamba. “w/o Ma”: This variant eliminates the
Mamba component, retaining only FMamba, allowing us to assess the impact of the frequency-
domain modeling. “w/o RBF”: This variant omits the Radial Basis Function (RBF) kernel, enabling
us to evaluate the impact of data smoothing on performance. “w/o ILT”: This variant disregards the
inverse Laplace transform, allowing us to assess the impact of the time-domain conversion.

By comparing the performance of these variants against our full method, FLDmamba, we can iso-
late the individual contribution of each component to overall performance. The results presented in
Figure 3 and Figure 8 demonstrate that each component of FLDmamba positively influences per-
formance, confirming the effectiveness of our approach. Notably, the inverse Laplace transform
exhibits the most significant impact on the overall effectiveness of our method FLDmamba.

4.4 ROBUSTNESS (Q3)
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Figure 4: Performance comparison of robustness.

This study investigates the robustness of our
proposed method, FLDmamba, in comparison
to S-Mamba and iTransformer, under condi-
tions of noisy time-series data. The experi-
ments were conducted on the ETTm1 dataset,
where varying levels of noise (specifically, 10%
and 15%) were systematically introduced into
the test datasets. The results, visualized in Fig-
ure 4, reveal a clear performance advantage for
FLDmamba across both noise levels. Further-
more, a key finding is that the performance decrement observed in FLDmamba is significantly
smaller than that of the competing methods as the noise intensity increases. This empirically vali-
dates the inherent robustness of our method in mitigating the adverse effects of noise. The superior
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R#vEmK-
W5,
R#6yv6-
W2

Table 1: We present comprehensive results of FLDmamba and baselines on the ETTh1, ETTh2,
Electricity, Exchange, Weather, and Solar-Energy datasets. The lookback length L is fixed at 96,
and the forecast length T varies across 96, 192, 336, and 720. Bold font denotes the best model and
underline denotes the second best.

Models FLDmamba (Ours) S-Mamba SST Bi-Mamba+ iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear FEDformer Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.318 0.360 0.333 0.368 0.337 0.374 0.355 0.386 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.379 0.419 0.505 0.475
192 0.365 0.384 0.376 0.390 0.377 0.392 0.415 0.419 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.426 0.441 0.553 0.496
336 0.404 0.409 0.408 0.413 0.401 0.412 0.450 0.442 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.445 0.459 0.621 0.537
720 0.464 0.441 0.475 0.448 0.498 0.464 0.497 0.476 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.543 0.490 0.671 0.561

Avg 0.389 0.399 0.398 0.405 0.413 0.411 0.429 0.431 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.448 0.452 0.588 0.517

E
T

T
m

2

96 0.173 0.253 0.179 0.263 0.185 0.274 0.186 0.278 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.203 0.287 0.255 0.339
192 0.240 0.299 0.250 0.309 0.248 0.313 0.257 0.324 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.269 0.328 0.281 0.340
336 0.301 0.307 0.312 0.349 0.309 0.351 0.318 0.362 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.325 0.366 0.339 0.372
720 0.401 0.397 0.411 0.406 0.406 0.405 0.412 0.416 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.421 0.415 0.433 0.432

Avg 0.279 0.314 0.288 0.332 0.287 0.333 0.293 0.347 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.305 0.349 0.327 0.371

E
T

T
h1

96 0.374 0.393 0.386 0.405 0.390 0.403 0.398 0.416 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.376 0.419 0.449 0.459
192 0.427 0.422 0.443 0.437 0.451 0.438 0.451 0.446 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.420 0.448 0.500 0.482
336 0.447 0.441 0.489 0.468 0.496 0.458 0.497 0.473 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.459 0.465 0.521 0.496
720 0.469 0.463 0.502 0.489 0.520 0.493 0.526 0.509 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.506 0.507 0.514 0.512

Avg 0.434 0.430 0.455 0.450 0.439 0.448 0.468 0.461 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.440 0.460 0.496 0.487

E
T

T
h2

96 0.287 0.337 0.296 0.348 0.298 0.351 0.307 0.363 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.358 0.397 0.346 0.388
192 0.370 0.388 0.376 0.396 0.393 0.407 0.394 0.414 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.429 0.439 0.456 0.452
336 0.412 0.425 0.424 0.431 0.436 0.441 0.437 0.447 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 0.496 0.487 0.482 0.486
720 0.419 0.438 0.426 0.444 0.431 0.449 0.445 0.462 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 0.463 0.474 0.515 0.511

Avg 0.372 0.396 0.381 0.405 0.390 0.412 0.396 0.422 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.437 0.449 0.450 0.459

E
le

ct
ri

ci
ty 96 0.137 0.234 0.139 0.235 0.192 0.280 0.146 0.246 0.148 0.240 0.201 0.281 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.193 0.308 0.201 0.317

192 0.158 0.251 0.159 0.255 0.191 0.280 0.167 0.265 0.162 0.253 0.201 0.283 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.201 0.315 0.222 0.334
336 0.182 0.173 0.176 0.272 0.211 0.299 0.182 0.281 0.178 0.269 0.215 0.298 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.214 0.329 0.231 0.338
720 0.200 0.292 0.204 0.298 0.264 0.340 0.208 0.304 0.225 0.317 0.257 0.331 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.246 0.355 0.254 0.361

Avg 0.170 0.238 0.170 0.265 0.215 0.300 0.176 0.274 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.214 0.327 0.227 0.338

E
xc

ha
ng

e 96 0.085 0.205 0.086 0.207 0.091 0.216 0.103 0.233 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.148 0.278 0.197 0.323
192 0.175 0.297 0.182 0.304 0.189 0.313 0.214 0.337 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.271 0.315 0.300 0.369
336 0.317 0.407 0.332 0.418 0.333 0.421 0.366 0.445 0.331 0.417 0.351 0.432 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 0.460 0.427 0.509 0.524
720 0.825 0.683 0.867 0.703 0.916 0.729 0.931 0.738 0.847 0.691 0.886 0.714 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.195 0.695 1.447 0.941

Avg 0.351 0.400 0.367 0.408 0.382 0.420 0.404 0.428 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.519 0.429 0.613 0.539

So
la

r-
E

ne
rg

y 96 0.202 0.233 0.205 0.244 0.238 0.277 0.231 0.286 0.203 0.237 0.322 0.339 0.234 0.286 0.310 0.331 0.312 0.399 0.250 0.292 0.290 0.378 0.242 0.342 0.884 0.711
192 0.230 0.254 0.237 0.270 0.299 0.319 0.257 0.285 0.233 0.261 0.359 0.356 0.267 0.310 0.734 0.725 0.339 0.416 0.296 0.318 0.320 0.398 0.285 0.380 0.834 0.692
336 0.254 0.265 0.258 0.288 0.310 0.327 0.256 0.293 0.248 0.273 0.397 0.369 0.290 0.315 0.750 0.735 0.368 0.430 0.319 0.330 0.353 0.415 0.282 0.376 0.941 0.723
720 0.252 0.271 0.260 0.288 0.310 0.330 0.252 0.295 0.249 0.275 0.397 0.356 0.289 0.317 0.769 0.765 0.370 0.425 0.338 0.337 0.356 0.413 0.357 0.427 0.882 0.717

Avg 0.235 0.256 0.240 0.273 0.289 0.313 0.249 0.290 0.233 0.262 0.369 0.356 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.291 0.381 0.885 0.711

PE
M

S0
4 12 0.075 0.182 0.076 0.180 0.110 0.226 0.082 0.193 0.078 0.183 0.138 0.252 0.105 0.224 0.098 0.218 0.219 0.340 0.087 0.195 0.148 0.272 0.138 0.262 0.424 0.491

24 0.084 0.193 0.084 0.193 0.161 0.275 0.099 0.214 0.095 0.205 0.258 0.348 0.153 0.275 0.131 0.256 0.292 0.398 0.103 0.215 0.224 0.340 0.177 0.293 0.459 0.509
48 0.105 0.217 0.115 0.224 0.345 0.403 0.123 0.240 0.120 0.233 0.572 0.544 0.229 0.339 0.205 0.326 0.409 0.478 0.136 0.250 0.355 0.437 0.270 0.368 0.646 0.610
96 0.130 0.243 0.137 0.248 0.588 0.553 0.151 0.267 0.150 0.262 1.137 0.820 0.291 0.389 0.402 0.457 0.492 0.532 0.190 0.303 0.452 0.504 0.341 0.427 0.912 0.748

Avg 0.099 0.209 0.103 0.211 0.301 0.364 0.114 0.229 0.111 0.221 0.526 0.491 0.195 0.307 0.209 0.314 0.353 0.437 0.129 0.241 0.295 0.388 0.231 0.337 0.610 0.590

PE
M

S0
8 12 0.075 0.177 0.076 0.178 0.099 0.214 0.080 0.190 0.079 0.182 0.133 0.247 0.168 0.232 0.165 0.214 0.227 0.343 0.112 0.212 0.154 0.276 0.173 0.273 0.436 0.485

24 0.102 0.207 0.104 0.209 0.169 0.277 0.114 0.223 0.115 0.219 0.249 0.343 0.224 0.281 0.215 0.260 0.318 0.409 0.141 0.238 0.248 0.353 0.210 0.301 0.467 0.502
48 0.154 0.226 0.167 0.228 0.274 0.360 0.175 0.271 0.186 0.235 0.569 0.544 0.321 0.354 0.315 0.355 0.497 0.510 0.198 0.283 0.440 0.470 0.320 0.394 0.966 0.733
96 0.243 0.305 0.245 0.280 0.522 0.499 0.298 0.348 0.221 0.267 1.166 0.814 0.408 0.417 0.377 0.397 0.721 0.592 0.320 0.351 0.674 0.565 0.442 0.465 1.385 0.915

Avg 0.145 0.228 0.148 0.223 0.266 0.338 0.167 0.258 0.150 0.226 0.529 0.487 0.280 0.321 0.268 0.307 0.441 0.464 0.193 0.271 0.379 0.416 0.286 0.358 0.814 0.659

performance of FLDmamba compared to S-Mamba directly demonstrates the efficacy of integrating
Fourier and Laplace transforms within our framework, leading to enhanced resilience against noise.
Conversely, the iTransformer model exhibits the most substantial performance degradation in these
robustness tests, indicating a lower tolerance to noisy input data.

4.5 LONG-TERM PREDICTION COMPARISON (Q4)
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Figure 5: Long-term prediction with the lookback
length from the range [96, 192, 336, 720].

This section investigates the effectiveness of
our proposed framework, FLDmamba, in
long-term time series prediction compared to
other state-of-the-art methods. We conduct
a comparative analysis against Transformer-
based baselines (iTransformer, Rlinear, Auto-
former) and a related Mamba-based method (S-
Mamba). The results, presented in Figure 5 and
Figure 11 (Appendix 6.5), reveal the following
key observations: Superior Long-Term Per-
formance of Mamba-Based Methods: Com-
pared to Transformer-based baselines, both S-
Mamba and our method, FLDmamba, which are based on the Mamba architecture, demonstrate
superior performance in terms of MAE and MSE. Furthermore, both methods exhibit a reduced
or stable performance trend as the lookback window size increases from 96 to 720. This indi-
cates that Mamba-based methods are more adept at capturing temporal patterns and dependencies,
effectively preserving sequential features in long-term time series data. Enhanced Long-Term Pre-
diction with FLDmamba: Comparing FLDmamba to S-Mamba, our method shows a clear trend
of reduced or maintained performance with increasing lookback window size. We attribute this im-
provement to the incorporation of the Fourier transform and the inverse Laplace transform, which
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R#8Y8C-
W6

Figure 7: Case study of FLDmamba in terms of transient dynamics like short-term fluctuations.

effectively capture periodic dependencies and further enhance the ability to handle long-term pre-
diction. These findings highlight the effectiveness of FLDmamba in capturing complex temporal
dynamics and maintaining performance even with extended lookback windows, demonstrating its
significant advantage for long-term time series prediction.

4.6 CASE STUDY (Q5)

This section examines the efficacy of our proposed framework, FLDmamba, in capturing multi-
scale periodicity and transient dynamics, particularly short-term fluctuations, within time series
data. To illustrate its capabilities, we present case studies based on the ETTm1 and ETTm2
datasets, as depicted in Figure 6, Figure 13 (Appendix 6.5) and Figure 7. These figures show-
case the variations in the datasets over two consecutive days and 12 hours, respectively. For
comparative analysis, we include the predicted results of two state-of-the-art baselines, S-Mamba
and iTransformer. Each plot displays four curves: the ground truth values, the predictions gen-
erated by S-Mamba, the predictions from iTransformer, and the predictions obtained using our
FLDmamba. We have the following observations: Enhanced Multi-Scale Periodicity Capture:

Time of Two Days

R#8Y8C-
W6

Figure 6: Case study of
FLDmamba in terms of
multi-scale periodicity.

As illustrated in Figure 6 and Figure 13 (Appendix 6.5), our proposed
framework, FLDmamba, demonstrates a distinct advantage in capturing
multi-scale periodicity within time series data when compared to both
S-Mamba and iTransformer. This enhanced ability to model periodic
patterns, which are often characteristic of time series data, contributes
significantly to its improved accuracy in time series prediction, further
validating the effectiveness of our approach. Notably, the comparison
with S-Mamba predictions reinforces the significant contribution of the
Fourier Transform and Laplace Transform in capturing multi-scale peri-
odicity and, subsequently, improving prediction performance. The inclu-
sion of these transforms within our framework allows for a more compre-
hensive and nuanced understanding of the underlying periodic patterns
present in the data, leading to more accurate predictions. Improved Transient Dynamics Capture:
Figure 7 showcases the effectiveness of our method, FLDmamba, in capturing transient dynamics,
particularly short-term fluctuations, compared to S-Mamba and iTransformer. The Laplace Trans-
form within our framework significantly enhances its ability to model these dynamics, leading to
improved performance. While S-Mamba demonstrates some capability in capturing transient dy-
namics, our method exhibits a more pronounced advantage. Conversely, iTransformer shows limited
effectiveness in capturing these short-term fluctuations.

5 CONCLUSION

In conclusion, this paper addresses the limitations of existing time series prediction models, particu-
larly in capturing multi-scale periodicity, transient dynamics and noise alleviation within long-term
predictions. We propose a novel framework, FLDmamba, which leverages the strengths of both
Fourier and Laplace transforms to effectively address these challenges. By integrating Fourier anal-
ysis into Mamba, FLDmamba enhances its ability to capture global-scale properties, such as multi-
scale patterns, in the frequency domain. Our extensive experiments demonstrate that FLDmamba
achieves state-of-the-art performance in most of cases on 9 datasets on time series prediction bench-

R#7Gt7-
W2

marks. This work offers a effective and robust solution for long-term time series prediction, paving
the way for its application in real-world scenarios. Future investigations will further enhance the
model’s adaptability to dynamic data environments. Detailed limitations and future work discussion
of our paper are shown in Appendix 6.8.
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Christopher Ré. S4nd: Modeling images and videos as multidimensional signals with state spaces.
Advances in neural information processing systems, 35:2846–2861, 2022.

Badri N Patro and Vijay S Agneeswaran. Simba: Simplified mamba-based architecture for vision
and multivariate time series. arXiv preprint arXiv:2403.15360, 2024.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

Grace Q Tang. Smart grid management & visualization: Smart power management system. In 2011
8th International Conference & Expo on Emerging Technologies for a Smarter World, pp. 1–6.
IEEE, 2011.

José F Torres, Dalil Hadjout, Abderrazak Sebaa, Francisco Martı́nez-Álvarez, and Alicia Troncoso.
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6 APPENDIX

6.1 ALGORITHMS

Algorithm 1: The FLDmamba Algorithm
Input: X: (B, L, V);
Output: Ŷ: (B, L, V);

1 U ← FMamba(X); // Step into FMamba algorithm 2
2 U ′ ←Mamba(X); // Step into the Mamba algorithm 3
3 U ′′ ← U ′ + U ;
4 y′ ← FMamba(U ′′); // Step into FMamba algorithm 2;
5 y′′ ←Mamba(U ′′); // Step into Mamba algorithm 3;
6 Y ← FFT(y′ + y′′);
7 Y ← Linear(Y );
8 Ŷ ← ILT(Y ); // Inverse Laplace Transform module
9 return Ŷ;

Algorithm 2: The FMamba Algorithm
Input: X: (B, L, V);
Output: U :(B, L, V);

1 X′ ← RBF(X);
2 for p = 1, 2, ..., FMamba layers do
3 A: (V, N)← Parameter
4 B: (V, L, N)← sB(X

′)
5 C: (B, L, N)← sC(X

′)
6 ∆: (B, L, N)← τ∆(Parameter + s∆(X

′))
7 ∆′ = FFT(∆)

8 ∆F = IFFT(W̃ ·∆′)

9 ĀF , B̄F : (B, L, V, N)← discretize(∆F ,A,B)
10 U (1)← SSM (ĀF , B̄F ,C)(X′)
11 U (2)← U (1) ⊗ SiLU(Linear(X′))

12 U ← Linear(U (2))
13 end
14 return U ;

Algorithm 3: The Mamba Algorithm
Input: X: (B, L, V);
Output: U ′:(B, L, V);

1 X′ ← RBF(X);
2 for p = 1, 2, ...,Mamba layers do
3 A: (V, N)← Parameter
4 B: (B, L, N)← sB(X

′)
5 C: (B, L, N)← sC(X

′)
6 ∆: (B, L, N)← τ∆(Parameter + s∆(X

′))
7 Ā, B̄ : (B, L, V, N)← discretize(∆,A,B)
8 U ′(1)← SSM (Ā, B̄,C)(X′)
9 U ′(2)← U ′(1) ⊗ SiLU(Linear(X′))

10 U ′ ← Linear(U ′(2))
11 end
12 return U ′;
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6.2 PRELIMINARY

Mamba. Mamba is proposed in (Gu & Dao, 2023). With four parameters A,B,C,∆, Mamba is
defined based on a sequence-to-sequence transformation via the following equations:

h′(t) = Ah(t) +Bx(t);

y(t) = Ch(t);

ht = Āht−1 + B̄xt (11)

where h(t) denotes the hidden state, x(t) is the input sequence, y(t) is the output sequence, and A ∈
RN×N ,B ∈ RL×N ,C ∈ RN×L. In addition, N and L are the dimension factor and the sequence
length, respectively. The discretization process of parameters (A,B) is shown as follows:

Ā = exp(∆A); B̄ = ∆A−1exp(∆A) ·∆B (12)

Here the discretization is closely related to continuous-time systems, providing them with addi-
tional properties such as resolution invariance (Nguyen et al., 2022) and automatic normalization,
ensuring the model’s proper calibration. Mamba achieves input-dependent selection by making B,
C, and ∆ functions of the input x. In this way, Mamba is able to dynamically adjust its opera-
tions, computations, and information flow based on the specific characteristics of the input data.
This input-dependent selection allows Mamba to effectively adapt its behavior and capture the rel-
evant patterns and dynamics present in the input, resulting in enhanced modeling capabilities and
improved performance for various tasks. Then a state-space model (SSM) utilize Ā, B̄, and C to
process the input x:

K̄ = (CB̄,CĀB̄, ...CĀkB̄, ...)T , y = K̄Tx (13)

Finally, the output y of the SSM is multiplied with a non-linear activation-transformed input. This
result is then passed through a final linear layer to produce Mamba’s output. For a complete overview
of Mamba’s architecture, refer to Algorithm 3.

Fourier Transform. Given the input function f(x), we can obtain the frequency domain conversion
function F(k) via the Discrete Fourier Transform (DFT), where F denotes the Fourier transform of
the function f(x). The process is shown as follows:

F(k) =

∫
d

f(x)e−j2πkxdx

=

∫
d

f(x)cos(2πkx)dx+ j

∫
d

f(x)sin(2πkx)dx (14)

In this context, we have the frequency variable denoted as k, the spatial variable as x, and the
imaginary unit as j. The real part of F is represented as Re(F), while the imaginary part is denoted
as Im(F). The complete conversion is expressed as F = Re(F) + jIm(F). The Fourier transform
is employed to decompose the input signal into its constituent frequencies. This process facilitates
the identification and detection of periodic or aperiodic patterns, which are crucial for tasks such as
image recognition.

Laplace Analysis. The Laplace analysis is a powerful mathematical tool used in various fields,
particularly in engineering, physics, and applied mathematics. It allows us to convert functions of
time into functions of complex variables, providing a useful way to analyze and solve differential
equations. Below, we provide preliminaries for the Laplace analysis, and also show how our inverse
Laplace transform can capture transient dynamics.

The Laplace transform of a function, denoted as F (s), is defined as follows:

F (s) = L{f(t)} =
∫ ∞

0

e−stf(t) dt (15)

In this equation, f(t) is the original function in the time domain, s is a complex variable, and
F (s) is the transformed function in the complex frequency domain. The Laplace transform has
several important properties that make it a versatile tool for analysis. For example, it enables us
to simplify differential equations into algebraic equations, making it easier to solve for unknown
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functions. Additionally, the Laplace transform allows us to study system behavior, stability, and
response to different inputs. By applying the inverse Laplace transform, we can obtain the original
function back from its transformed representation. This transformation provides a valuable method
for understanding and manipulating functions in the frequency domain, facilitating analysis and
design in various scientific and engineering disciplines.

The inverse Laplace transform is defined as follows:

f(t) = L−1{F (s)} = lim
T→∞

∫ γ+iT

γ−iT

estF (s) ds (16)

Here Re(s) = γ and γ is greater than the real part of all singularities of F (s). For general functions,
the inverse Laplace transform may not have analytical solution.

To allow analytical solution for inverse Laplace transform, we follow (Cao et al., 2023) and consider
a neural operator which maps a function v(t) to the function u(t):

u(t) = (κ(ϕ) ∗ v)(t) =
∫
D

κϕ(t− τ)v(τ)dτ (17)

where κ is a kernel integral transformation. Imposing κϕ(t, τ) = κϕ(t − τ), in the Laplace space
we have

U(s) = Kϕ(s)V (s) (18)

where Kϕ(s) = L{κϕ(t)} and V (s) = L{v(t)}, U(s) = L{u(t)}.

Here we assume that the kernel integral operator has the form of Kϕ(s) =
∑N

n=1
βn

s−µn
in the

Laplace space, where βn ∈ R and µn ∈ C are learnable parameters. Also, performing Fourier
transform on v(t), we have v(t) =

∑∞
l=−∞ αl exp iωlt, which results in V (s) =

∑∞
l=−∞

αl

s−iωl
.

We make the assumption so that the singularities are first-order, and the inverse Laplace transform
has analytical solution. After some derivation, we have that the resulting form for u(t) in the original
space is

u(t) =

N∑
n=1

γn exp(µnt) +

∞∑
l=−∞

λl exp(iωlt) (19)

Here ωl are frequencies by decomposing v(t) via Fourier series, and γn, λl are derived parameters
from βn, ωl and µn. For detailed derivation, see (Cao et al., 2023). If we truncate the number of

R#6yv6-
W1

Fourier series terms l, the above Eq. 19 reduces to

u(t) =

M∑
n=1

Ane
−σnt cos(wnt+ φn) (20)

In our work, we directly parameterize the above An, σn, wn, and φn as learnable functions of the
output of the previous layer, which in turn are functions of the history time series.

Here we see that equation 20 exactly describes transient dynamics, characterized by decay rate σn

and periods wn. Therefore, our parameterization of the inverse Laplace transform via Eq. 20 can
learn transient dynamics accurately.

Furthermore, in contrast to performing inverse Laplace transform which involves integration in the
complex plane where the integrand has poles, we see that our parameterization in Eq. 20 has better
efficiency and stability.
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6.3 MORE RELATED WORK

R#vEmK-
W6While several Mamba-based methods exist for time series prediction, such as those by Wang et al.

( Wang et al. (2024)), Xu et al. ( Xu et al.), and Liang et al. ( Liang et al. (2024)), our approach
distinctly differs in its focus and methodology. For instance, Wang et al. (2024) independently
tokenize time points for each variable using a linear layer, employ a bidirectional Mamba layer
to capture inter-variable correlations, and utilize a Feed-Forward network for learning temporal
dependencies, ultimately producing forecasts through a linear mapping layer. In contrast, Xu et al.
( Xu et al. leverage Mamba to identify global patterns in coarse-grained long-range time series,
while the Local Window Transformer (LWT) focuses on local variations in fine-grained short-range
time series. Liang et al. (2024) introduce a patching technique aimed at enhancing local information
and capturing evolving patterns to address sparse time series semantics, primarily targeting long-
term predictions with high efficiency. In contrast to these studies, our method not only handles
long-term prediction efficiency but also emphasizes capturing multi-scale periodicity and addressing
transient dynamics through the integration of Fourier and Laplace transforms. By incorporating
these transforms, we also tackle the issue of data noise in time series, setting our approach apart
from existing methods that primarily focus on long-term prediction efficiency.

6.4 MODEL COMPLEXITY

This section presents a complexity analysis of our proposed model, FLDmamba. The computational
complexity of the base Mamba model is O(BLV N), where B represents the batch size, L de-
notes the sequence length, V signifies the number of variables, and N indicates the state expansion
factor. The Fast Fourier Transform (FFT) in FLDmamba has time complexity of O(BLN logL),
and the inverse Laplace transform has time complexity of O(BLN), both significantly smaller than
O(BLV N). Therefore, the total time complexity is still O(BLV N). In other words, FLDmamba
maintains a comparable computational time complexity to the base Mamba model, making it a
promising framework for large-scale real-world applications in time series prediction. This compu-
tational efficiency allows FLDmamba to handle extensive datasets and complex time series scenarios
without significant performance degradation.

6.5 EXPERIMENTS

6.5.1 EXPERIMENT SETTINGS

To ensure a fair comparison, we modify the hidden dimensionality of all compared algorithms within
the range of [128, 256, 512, 1024, 2048] to achieve their reported best performance, which is con-
sistently observed at 1024. The learning rate (η) is initialized to 5 × 10−6, and we set the number
of FLDmamba layers to 2. Consistent with the existing settings of time series datasets, we utilize
historical data with 96, 192, 336, or 720 time steps. The time steps are defined as 5 minutes, 1 hour,
10 minutes, or 1 day intervals to predict the corresponding future 96, 192, 336, or 720 time steps
in these time series datasets. All baseline methods are evaluated using their predefined settings as
described in their respective publications. We conduct testing for all tasks on a single NVIDIA L40
GPU equipped with 128 CPUs.

Table 2: The statistics of 9 public datasets.
Datasets Variates Timesteps Granularity

ETTh1&ETTh2 7 69,680 1 hour
PEMS04 307 16,992 5 minutes
PEMS08 170 17,856 5 minutes
Exchange 8 7,588 1 day
Electricity 321 26,304 1 hour

Solar-Energy 137 52,560 10 minutes
ETTm1&ETTm2 7 17,420 15min
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Figure 8: Ablation study of FLDmamba on prediction performance on Node 9 and Node 18 instances
of ETTm 1 dataset.

6.5.2 BASELINE DESCRIPTIONS

Transformer-based methods:

• Autoformer (Wu et al., 2021) employs a series decomposition technique along with an
Auto-Correlation mechanism to effectively capture cross-time dependencies.

• FEDformer (Zhou et al., 2022) introduces an enhanced Transformer operating in the fre-
quency domain, aiming to improve both efficiency and effectiveness.

• Crossformer (Zhang & Yan, 2022) incorporates a patching operation like other models but
distinguishes itself by employing Cross-Dimension attention to capture dependencies be-
tween different series. While patching reduces the elements to process and extracts seman-
tic information comprehensively, these models encounter performance limitations when
handling longer.

• DLinear (Zeng et al., 2023) introduced DLinear, a method that decomposes time series
into two distinct components and generates a single Linear layer for each component.
This straightforward design has outperformed all previously proposed complex transformer
models.

• PatchTST (Huang et al., 2024) leverages patching and channel-independent techniques to
facilitate the extraction of semantic information from single time steps to multiple time
steps within time series data.

• iTransFormer (Liu et al., 2023) employs inverted attention layers to effectively capture
inter-series dependencies. However, its tokenization approach, which involves passing the
entire sequence through a Multilayer Perceptron (MLP) layer, falls short in capturing the
complex evolutionary patterns inherent in time series data.

MLP-based methods:

• TimesNet (Wu et al., 2022) expands the examination of temporal fluctuations by extending
the 1-D time series into a collection of 2-D tensors across multiple periods.

• RLinear (Li et al., 2023), the state-of-the-art linear model, incorporates reversible normal-
ization and channel independence into a purely linear structure.

• TiDE (Das et al., 2023) is an encoder-decoder model that employs a Multi-layer Perceptron
(MLP) architecture.

SSM-based methods:

•
R#vEmK-
W5,
R#RZwJ-
W1,
R#6yv6-
W2

S-Mamba (Wang et al., 2024) independently tokenizes the time points for each variate
using a linear layer. This allows for the extraction of correlations between variates using a
bidirectional Mamba layer, while a Feed-Forward Network is employed to learn temporal
dependencies.

• SST (Xu et al.) leverages Mamba to identify global patterns in coarse-grained long-range
time series, while the Local Window Transformer (LWT) focuses on local variations in
fine-grained short-range time series.
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Figure 9: Ablation study of FLDmamba on four datasets with L = 96.
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Figure 10: Hyperparameter study of FLDmamba.

• Bi-mamba+ Liang et al. (2024) introduces a patching technique aimed at enhancing lo-
cal information and capturing evolving patterns to address sparse time series semantics,
primarily targeting long-term predictions with high efficiency.

6.6 PEARSON CORRELATION

R#RZwJ-
W1

We also calculated Pearson correlation and show results in Table 3. The results indicate that our
method consistently outperforms other baselines across most cases and all datasets, further confirm-
ing its superior performance.

R#RZwJ-
W1

Table 3: Performance comparison in terms of Pearson correlation
Models Metric ETTm1 ETTm2 ETTh1 ETTh2 Electricity Exchange Solar-Energy Metric PEMS04 PEMS08

FLDmamba (ours)

96 0.857 0.950 0.892 0.920 0.929 0.978 0.818 12 0.793 0.839
192 0.830 0.935 0.799 0.898 0.920 0.958 0.856 24 0.768 0.802
336 0.812 0.920 0.776 0.882 0.912 0.926 0.839 48 0.765 0.775
720 0.781 0.896 0.766 0.886 0.890 0.844 0.820 96 0.815 0.777

Avg 0.820 0.925 0.793 0.897 0.913 0.927 0.833 Avg 0.785 0.798

S-Mamba

96 0.853 0.947 0.825 0.909 0.930 0.970 0.814 12 0.792 0.836
192 0.825 0.932 0.796 0.898 0.920 0.946 0.85 24 0.767 0.796
336 0.808 0.916 0.768 0.874 0.910 0.915 0.841 48 0.768 0.768
720 0.755 0.895 0.756 0.867 0.888 0.827 0.827 96 0.813 0.774

Avg 0.810 0.922 0.786 0.887 0.912 0.914 0.833 Avg 0.785 0.793

iTransformer

96 0.851 0.947 0.826 0.909 0.925 0.970 0.816 12 0.785 0.829
192 0.827 0.930 0.799 0.877 0.918 0.946 0.851 24 0.748 0.780
336 0.806 0.915 0.769 0.875 0.910 0.916 0.840 48 0.733 0.725
720 0.781 0.892 0.755 0.869 0.887 0.826 0.821 96 0.787 0.696

Avg 0.816 0.921 0.787 0.855 0.910 0.914 0.832 Avg 0.763 0.757

6.7 EFFICIENCY (Q6)

This section evaluates the computational efficiency of our proposed framework, FLDmamba, in
comparison to several state-of-the-art baselines, including AutoFormer, RLinear, iTransformer, and
S-Mamba. We assess efficiency on the ETTh1 and ETTh2 datasets, considering both training time
per epoch and GPU memory consumption. The results, presented in Figure 12, demonstrate the fol-
lowing: Comparative Efficiency of FLDmamba: Our method, FLDmamba, exhibits a favorable
balance between performance and computational efficiency, achieving comparable training times
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and GPU memory costs to baselines. Efficiency of Mamba-Based Methods: Mamba-based meth-
ods, including FLDmamba and S-Mamba, demonstrate a compelling advantage in terms of training
time and GPU memory consumption compared to Transformer-based baselines such as AutoFormer.
This suggests that Mamba-based architectures offer a more efficient approach for handling time se-
ries data. These findings highlight the computational efficiency of our proposed framework, FLD-
mamba, while also emphasizing the potential benefits of Mamba-based architectures for addressing
computational resource constraints in time series modeling.

6.7.1 HYPERPARAMETER STUDY (Q7)

In this section, we aim to conduct a parameter study to evaluate the impact of impor-
tant parameters on the performance of our model, FLDmamba. The results are presented
in Figure 10. Specifically, we vary the number of FLDmamba layers within the range of
{1, 2, 3, 4, 5}, the hidden size from {128, 256, 512, 1024, 2048}, and the learning rate from{
5× 10−4, 5× 10−5, 5× 10−6, 5× 10−7, 5× 10−8

}
. Based on the results, we provide a sum-

mary of observations regarding these three parameters and their effects on performance, measured
by MSE and MAE metrics, as follows: (1) We examine the impact of FLDmamba layers on the
performance of FLDmamba. We observe that FLDmamba achieves the best performance when the
number of layers is set to 2. However, as we increase the number of FLDmamba layers, the per-
formance starts to diminish. This suggests that additional layers may introduce an over-smoothing
effect, which negatively affects the performance of FLDmamba. (2) We also conducted experiments
to investigate the effect of hidden sizes on FLDmamba performance. We find that our model FLD-
mamba achieves the highest performance when the hidden size is set to 1024. This indicates that
smaller hidden sizes may not provide sufficient information, while larger hidden sizes may introduce
redundant information that hampers the performance of FLDmamba. (3) Furthermore, we examine
the impact of the learning rate on performance and observe that our method FLDmamba achieves
the best performance when the learning rate is set to 5× 10−6. Smaller or larger learning rates may
result in insufficient convergence or overfitting, which adversely affects the performance.
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Figure 11: Long-term prediction with the lookback length from the range [96, 192, 336, 720].

Au
to

Fo
rm

er
RL

in
ea

r
iTr

an
sfo

rm
er

S-
Ma

m
ba

Ou
rs

0.35

0.40

0.45

0.50

M
SE

ETTh1

0

20

40

60

80

Tr
ai

ni
ng

 T
im

e

Au
to

Fo
rm

er
RL

in
ea

r
iTr

an
sfo

rm
er

S-
Ma

m
ba

Ou
rs

0.35

0.40

0.45

0.50

M
SE

ETTh1

0

1000

2000

3000

4000

5000

GP
U 

M
em

or
y 

(M
B)

Au
to

Fo
rm

er
RL

in
ea

r
iTr

an
sfo

rm
er

S-
Ma

m
ba

Ou
rs

0.16

0.18

0.20

0.22

0.24

0.26

M
SE

ETTh2

0

20

40

60

80

Tr
ai

ni
ng

 T
im

e

Au
to

Fo
rm

er
RL

in
ea

r
iTr

an
sfo

rm
er

S-
Ma

m
ba

Ou
rs

0.16

0.18

0.20

0.22

0.24

0.26

M
SE

ETTh2

0

1000

2000

3000

4000

5000

GP
U 

M
em

or
y 

(M
B)

Figure 12: Model efficiency comparison on ETTh1 and ETTh2. The batch size is 32.

6.8 LIMITATIONS AND FUTURE WORK

The limitation of our work involves potential challenges in scaling the proposed model to extremely
large datasets. Future efforts will focus on improving the model’s adaptability to dynamic data
environments and assessing its performance across diverse time series datasets. Furthermore, the
exploration of alternative kernel functions beyond the RBF and a thorough scalability analysis will
be pursued. Lastly, extending the model to accommodate missing data and integrating uncertainty
quantification in predictions will bolster its practical utility.

6.9 LONG LOOKBACK COMPARISON
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Figure 13: Case study of FLDmamba in terms of multi-scale periodicity.
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To evaluate the performance of various models on long lookback, we conducted experiments using a
lookback length of 1500 on the ETTh1 and ETTh2 datasets. Table 4 shows the MSE and MAE met-
rics for our proposed FLDmamba method, as well as other baseline models like S-Mamba, iTrans-
former, Rlinear, and AutoFormer. The results demonstrate that our FLDmamba method outperforms
the other baselines across both datasets, highlighting its superior predictive capabilities.

R#RZwJ-
W2

Table 4: Performance of comparison when lookback length is set as 1500.
ETTh1 ETTh2

MSE MAE MSE MAE

FLDmamba (ours) 0.664 0.570 0.517 0.504
S-Mamba 0.715 0.603 0.539 0.522

iTransformer 0.787 0.634 0.549 0.528

Rlinear 1.281 0.884 3.015 1.366

AutoFormer 0.687 0.614 0.648 0.575

6.10 IMPACT OF RBF AND ILT

R#Xe6T-
W1,
R#vEmK-
W1,R#vEmK-
W3

Table 5 presents comprehensive results of the Autoformer, Autoformer+RBF, and Autoformer+ILT
models on the ETTh1 and ETTh2 datasets. The lookback length is fixed at 96, and the forecast
length T varies across 96, 192, 336, and 720. The bold font denotes the best model, and the under-
line denotes the second-best model. The results demonstrate that combination RBF and ILT with
AutoFormer does not have positive impact on performance. This can be attributed to the redundant
attention mechanism, which fails to demonstrate its advantages in the frequency domain.

Table 5: We present comprehensive results of Autoformer, Autoformer+RBF, and Autoformer+ILT
on the ETTh1 and ETTh2 datasets. The lookback length L is fixed at 96, and the forecast length
T varies across 96, 192, 336, and 720. Bold font denotes the best model and underline denotes the
second best.

Models Autoformer Autoformer+RBF Autoformer+ILT

Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.449 0.459 0.427 0.443 0.457 0.469
192 0.500 0.482 0.501 0.484 0.522 0.503
336 0.521 0.496 0.548 0.509 0.559 0.546
720 0.514 0.512 0.537 0.526 0.543 0.534

Avg 0.496 0.487 0.503 0.490 0.520 0.513

E
T

T
h2

96 0.358 0.397 0.360 0.401 0.454 0.473
192 0.429 0.439 0.429 0.439 0.577 0.543
336 0.496 0.487 0.467 0.474 0.668 0.596
720 0.463 0.474 0.465 0.479 0.902 0.693

Avg 0.437 0.449 0.430 0.448 0.650 0.576

6.11 COMPUTATIONAL OVERHEAD COMPARISON

Table 8 compares the time and memory consumption of different models on Electricity dataset.
Specifically, it shows the runtime in seconds and the required RAM in MiB for Mamba+FFT,
Mamba+ILT, our proposed method, S-Mamba, iTransformer, Autoformer, and Rlinear. The results
demonstrate the computational efficiency of the proposed method, which achieves a good balance
between inference time and memory usage compared to the other models.

6.12 OTHER KERNEL EXPERIMENTS
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R#Xe6T-
Q1

Table 6: Comprehensive results of PatchTST, PatchTST+RBF, and PatchTST+ILT on the ETTh1
and ETTh2 datasets. The lookback length L is fixed at 96, and the forecast length T varies across
96, 192, 336, and 720. Bold font denotes the best model and underline denotes the second best.

Models PatchTST PatchTST+RBF PatchTST+ILT

Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.414 0.419 0.780 0.677 0.399 0.428
192 0.460 0.445 0.913 0.743 0.465 0.461
336 0.501 0.446 0.860 0.711 0.510 0.480
720 0.500 0.488 0.883 0.726 0.568 0.535

Avg 0.469 0.450 0.859 0.714 0.485 0.476
E

T
T

h2

96 0.302 0.348 1.338 0.874 0.359 0.394
192 0.388 0.400 1.383 0.883 0.486 0.526
336 0.426 0.433 1.415 0.892 0.538 0.499
720 0.431 0.446 1.401 0.890 0.912 0.673

Avg 0.387 0.407 1.384 0.885 0.574 0.523

R#Xe6T-
Q1

Table 7: Comprehensive results of RLinear, RLinear+RBF, and RLinear+ILT on the ETTh1 and
ETTh2 datasets. The lookback length L is fixed at 96, and the forecast length T varies across 96,
192, 336, and 720. Bold font denotes the best model and underline denotes the second best.

Models RLinear RLinear+RBF RLinear+ILT

Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.386 0.395 0.501 0.469 0.384 0.402
192 0.437 0.424 0.537 0.490 0.429 0.426
336 0.479 0.446 0.567 0.507 0.462 0.445
720 0.481 0.470 0.565 0.528 0.463 0.463

Avg 0.446 0.434 0.543 0.499 0.435 0.434

E
T

T
h2

96 0.288 0.338 0.359 0.393 0.307 0.355
192 0.374 0.390 0.434 0.435 0.387 0.402
336 0.415 0.461 0.462 0.460 0.424 0.434
720 0.420 0.440 0.459 0.466 0.424 0.443

Avg 0.374 0.407 0.428 0.438 0.385 0.409

From the results presented in Table 9, we observe that the RBF (Radial Basis Function) kernel
achieves the best performance on time series prediction compared to the Laplacian and Sigmoid
kernels. This can be attributed to the inherent ability of the RBF kernel to capture the nonlinear and
complex patterns in the time series data more effectively.

6.13 VISUALIZATION

R#vEmK-
W4

We show visualization of ∆A and ∆FA as follows. This figure visualizes the differences between
∆A and ∆FA over time on ETTm1. ∆A represents the change in absorbance, while ∆FA repre-
sents the change in fluorescence absorbance. The figure shows the fluctuations in these two mea-
sures, highlighting their distinct patterns over the duration of the experiment.

6.14 ADDITIONAL TABLE OF ABLATION STUDY
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R#vEmK-
W2,R#7Gt7-
W1,R#7Gt7-
Q7,R#RZwJ-
Q2,
R#8Y8C-
W4

Table 8: Comparison of different models in terms of time and memory consumption on Electricity.
Mamba+FFT Mamba+ILT Ours S-Mamba iTransformer AutoFormer Rlinear

Time (Seconds) 2.565e-3 2.274e-3 2.984e-3 2.999e-3 1.869e-3 8.975e-3 5.345e-3

RAM (MiB) 564 562 568 566 560 596 588

R#8Y8C-
W1,
R#6yv6-
Q2

Table 9: Performance comparison of different kernels with MSE and MAE.
RBF Laplacian Sigmoid

MSE MAE MSE MAE MSE MAE
96 0.374 0.393 0.383 0.402 0.384 0.402

192 0.427 0.422 0.446 0.434 0.445 0.434

336 0.447 0.441 0.488 0.460 0.486 0.459

720 0.469 0.463 0.504 0.484 0.502 0.483

Avg 0.434 0.430 0.45525 0.445 0.454 0.445
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Figure 14: Visualization of ∆A and ∆FA

R#vEmK-
Q2

Table 10: Ablation study PeMS08 and Exchange datasets.
PeMS08 -FT -FM -Ma -RBF -ILT Ours

MSE 0.291 0.306 0.353 0.277 0.314 0.243
MAE 0.341 0.351 0.382 0.332 0.358 0.305

Exchange -FT -FM -Ma -RBF -ILT Ours

MSE 0.090 0.090 0.089 0.092 0.098 0.085
MAE 0.216 0.217 0.214 0.219 0.223 0.205
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