

ODEBRAIN: CONTINUOUS-TIME EEG GRAPH FOR MODELING DYNAMIC BRAIN NETWORKS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Modeling neural population dynamics is crucial for foundational neuroscientific research and various clinical applications. Conventional latent variable methods typically model continuous brain dynamics through discretizing time with recurrent architecture, which necessarily results in compounded cumulative prediction errors and failure of capturing instantaneous, nonlinear characteristics of EEGs. We propose ODEBRAIN, a Neural ODE latent dynamic forecasting framework to overcome these challenges by integrating spatio-temporal-frequency features into spectral graph nodes, followed by a Neural ODE modeling the continuous latent dynamics. Our design ensures that the latent representations can capture stochastic variations of complex brain state at any given time point. Extensive experiments **verify** that ODEBRAIN can improve significantly over existing methods in forecasting EEG dynamics with enhanced robustness and generalization capabilities. Our design ensures that the latent representations can capture stochastic variations of complex brain state at any given time point. Extensive experiments verifies that ODEBRAIN can improve significantly over existing methods in forecasting EEG dynamics with enhanced robustness and generalization capabilities.

1 INTRODUCTION

Modeling dynamic activities in brain networks or connectivity using electroencephalograms (EEGs) is essential for biomarker discovery (Rolls et al., 2021; Jones et al., 2022) and supports a wide range of clinical applications (Kotoge et al., 2024; Pradeepkumar et al., 2025). Temporal graph networks (TGNs), which integrate temporally sequential models (such as RNNs) with graph neural networks (GNNs), have recently emerged as a promising approach (Tang et al., 2022; Ho & Armanfard, 2023; Delavari et al., 2024; Li et al., 2024). These methods represent multi-channel EEGs as graphs, where GNNs capture spatial dependencies and sequential models capture fine-grained temporal dynamics, thereby providing insights into how brain networks evolve over time.

However, a critical yet often overlooked problem remains: existing methods typically transform EEG signals into fixed discrete time steps, which *conflicts with the inherently continuous nature of dynamic brain networks*. Such discretization imposes rigid windowing assumptions and prevents models from capturing the unfolding time-course dynamics or irregular transitions in brain networks. This paper aims to tackle this issue by developing a novel method that models EEGs in an explicitly continuous manner, leveraging Neural Ordinary Differential Equations (NODEs) (Chen et al., 2018).

Different from RNN-based sequential models that discretize time into fixed steps, NODEs parameterize the derivative of the hidden state and integrate it over continuous time (Park et al., 2021). This formulation provides a principled way to model the dynamical evolution of neural activity (Hu et al., 2024) and has been studied across domains (Fang et al., 2021; Hwang et al., 2021), including brain imaging (Han et al., 2024). In this paper, we study a novel and critical problem: modeling dynamics brain networks with NODEs to learn informative continuous-time representations from EEGs. This remains a unexplored and non-trivial task, and we focus on two main challenges:

(i) *Effective spatiotemporal modeling for ODE initialization.* NODEs critically depend on the quality of their initial conditions, since the ODE solver propagates trajectories starting from this initialization. A poor initialization propagates errors and destabilizes long-term dynamics. However,

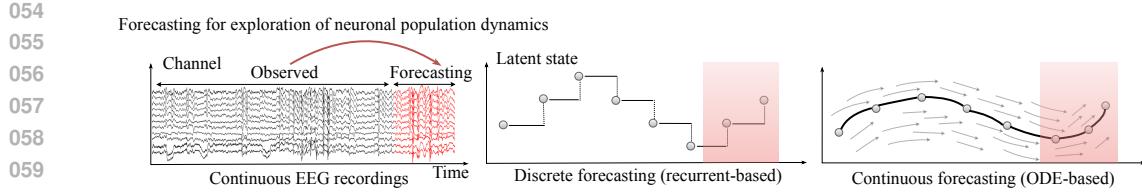


Figure 1: (Top) Continuous EEG real-time neuronal activity recordings. (Mid) Recurrent-based methods employ discrete modeling. (Bottom) ODE provides a continuous representation for forecasting neuronal population dynamics.

EEG signals are noisy and stochastic, making it challenging to learn robust spatiotemporal representations for brain networks. Designing an initialization that captures meaningful spatiotemporal structure is therefore essential for stable ODE integration and downstream learning.

(ii) *Accurate trajectory modeling.* Trajectory modeling is essential for NODEs, as their strength lies in learning continuous latent dynamics rather than discrete predictions. Unlike conventional time-series data that often exhibit stable patterns such as periodicity or long-term trends (Klötergens et al., 2025), EEG signals are highly variable, making trajectory learning particularly challenging. Therefore, a major challenge is to constrain and preserve meaningful trajectories in the latent space, so that NODEs can faithfully capture the continuous dynamics of EEGs.

In this paper, we introduce a new continuous-time EEG Graph method, ODEBRAIN, based on the NODE, for modeling dynamic brain networks. To address the above challenges, **firstly**, we propose a dual-encoder architecture to provide effective initialization for NODEs. One encoder captures deterministic frequency-domain observations to model brain networks, while the other integrates raw EEG representations to retain stochastic characteristics. This combination yields robust spatiotemporal features for initializing the ODE solver. **Second**, we propose a trajectory forecasting decoder that maps latent features from NODE solutions back into graph structures. A multi-step forecasting loss is then applied to explicitly predict future brain networks at different time steps. This design enables direct trajectory modeling of dynamic brain networks and enhancing accuracy. **Third**, beyond modeling, we are the first to propose using the gradient field of NODEs as a metric to quantify EEG brain network dynamics. We conduct a case study on seizure data to illustrate its clinical interpretability.

- **New problem Formulation.** To the best of our knowledge, we are the first to explicitly formulate EEG brain networks as a continuous-time dynamical system, where the brain network is represented as a sequence of time-varying graphs whose latent dynamics are governed by a NODE. This perspective is different from prior approaches based on recurrent models that models gradual state transitions in a principled continuous-time manner.

- **Novel Method.** We develop the ODEBRAIN framework that integrates three key components. It first combines deterministic graph-based features with stochastic EEG representations to produce a robust initial state. Then an explicit trajectory forecasting decoder with multi-step forecasting loss hat models temporal–spatial dynamics continuously, enabling principled forecasting of evolving brain networks.

- **Comprehensive Evaluation.** We demonstrate strong performance across benchmarks and provide retrospective clinical case studies highlighting the interpretability. Our ODEBRAIN outperforms all baselines on the TUSZ dataset, achieving 6.0% and 8.1% improvements in F1 and ACC, respectively. On the TUAB, ODEBRAIN consistently achieves best performance, such as 1.2% improved F1 and 2.4% improved AUROC. Moreover, we further evaluate the learned field and its clustering to reveal the dynamic behaviors (varying speed and direction) between seizure and normal states, and achieving 12.0% improvement for brain connectivity prediction.

2 RELATED WORKS

Temporal graph methods for modeling EEG dynamics. GNNs have emerged as powerful method for effectively capturing spatial dependencies and relational structures in the analysis of brain net-

108 works (Li, 2022; Yang & Hong, 2022; Kan et al., 2023). Specifically, EEG-GNN performs a learn-
 109 able mask to filter the graph structure of EEG for cognitive classification tasks (Demir et al., 2021).
 110 ST-GCN formulates the connectivity of spatio-temporal graphs to capture non-stationary changes
 111 (Gadgil et al., 2020). Tang et al. (2022) have introduced the DCRNN approach for graph model-
 112 ing, setting a new standard for SOTA in seizure detection and classification tasks. Following this,
 113 GRAPHS4MER (Tang et al., 2023) enhanced the graph structure and integrated it with the MAMBA
 114 framework to improve long-term modeling capabilities. AMAG (Li et al., 2024) forecasting method
 115 has been proposed to effectively capture the causal relationship between past and future neural activi-
 116 ties, demonstrating greater efficiency in modeling dynamics. More recently, EvoBrain investigates
 117 the expressive power of TGNs in integrating temporal and graph-based representations for modeling
 118 brain dynamics (Kotoge et al., 2025). However, these studies rely on discrete modeling, and may
 119 lead to suboptimal representation of continuous dynamics of brain networks.
 120

121 **Differential equations for brain modeling.** Modeling brain function as low-dimensional dynam-
 122 ical systems via differential equations has been a long-standing direction in neuroscience (Church-
 123 land et al., 2012; Mante et al., 2013; Vyas et al., 2020), and nonlinear EEG analysis for brain activity
 124 mining (Pijn et al., 1997; Xue et al., 2016; Lehnertz et al., 2003; Lehnertz, 2008; Mercier et al.,
 125 2024). Recently, Neural ODEs (NODEs) formulate dynamical systems by parameterizing deriva-
 126 tives with neural networks and have shown impressive achievements across diverse fields (Fang
 127 et al., 2021; Hwang et al., 2021; Park et al., 2021). In BCI and epilepsy modeling, controllable
 128 formulations and fractional dynamics provide important theoretical foundations for modeling brain
 129 dynamics (Gupta et al., 2018b; Tzoumas et al., 2018; Lu et al., 2021; Martis et al., 2015; Lepeu
 130 et al., 2024). In latent-variable dynamics models, the EEG and neuronal processes are described
 131 as fractional dynamics (Gupta et al., 2019; 2018a; Yang et al., 2019; 2025). In neuroscience, Kim
 132 et al. (2021) learn neural activities by modeling the latent evolution of nonlinear single-trial dy-
 133 namics with Gaussian processes from neural spiking data. Hu et al. (2024) propose using a smooth
 134 2D Gaussian kernel to represent spikes as latent variables and describe the path dynamics with lin-
 135 ear SDEs. Another study (Cai et al., 2023) demonstrates robust performance in neuroimaging by
 136 combining biophysical priors with NODEs, starting from predefined cognitive states. (Chen et al.,
 137 2024) have shown the advantage of graph ODE by modeling continuous-time propagation for EEG
 138 emotion task. Han et al. (2024) further illustrate that integrating spatial structure with NODEs can
 139 effectively facilitate the modeling of neuroimaging dynamics, even in the presence of missing data.
 140 However, these studies focus on imaging data or neuronal feature engineering, while data-driven
 141 modeling of brain networks with fractional dynamics from EEGs remains underexplored.
 142

3 PRELIMINARY AND PROBLEM FORMULATION

143 **Neural Ordinary Differential Equations.** NODEs (Chen et al., 2018) provide a framework for
 144 modeling continuous-time dynamics by parameterizing the derivative of a hidden state with a neural
 145 network. Intuitively, NODEs solve the trajectory of the hidden state continuously at any arbitrary
 146 time τ , rather than restricting updates to fixed discrete steps Δt in RNNs. Specifically, the hidden
 147 dynamics are computed via an adaptive numerical ODE solver:

$$z(t+1) \simeq \text{ODEsolver}(z_0, f_\theta) = z_0 + \int_t^{t+1} f_\theta(t, z_t) dt, \quad (1)$$

148 where f_θ is a continuous, differentiable function parameterized by a neural network. This formula-
 149 tion yields a unique continuous trajectory $z(t)$ over an interval $[t_0, t_0 + \tau]$.
 150

151 **Intuition in Modeling EEG Dynamics.** Conventional sequential models like RNNs have been
 152 a standard tool to model EEG. However, they implicitly assume that time can be discretized into
 153 fixed steps and that state transitions, such as the onset of a seizure, must occur exactly at those steps
 154 (Kotoge et al., 2025). While this simplifies computation, it poorly matches the reality of EEG, where
 155 brain activity evolves continuously and transitions can occur at arbitrary points in time. In contrast,
 156 NODEs address this issue by modeling EEG dynamics through a continuous function f_θ , whose
 157 integration yields smooth latent trajectories. In this framework, the discrete EEG signals recorded at
 158 sampling intervals are interpreted as observations sampled from an underlying continuous process
 159 $\int f_\theta(t) dt$. This perspective allows NODEs to capture both gradual oscillatory rhythms and abrupt
 160 transitions in neural activity, providing a more faithful representation of EEG brain dynamics.
 161

162 However, applying NODE to EEG is nontrivial, we recognize two questions needing to be answered:
 163

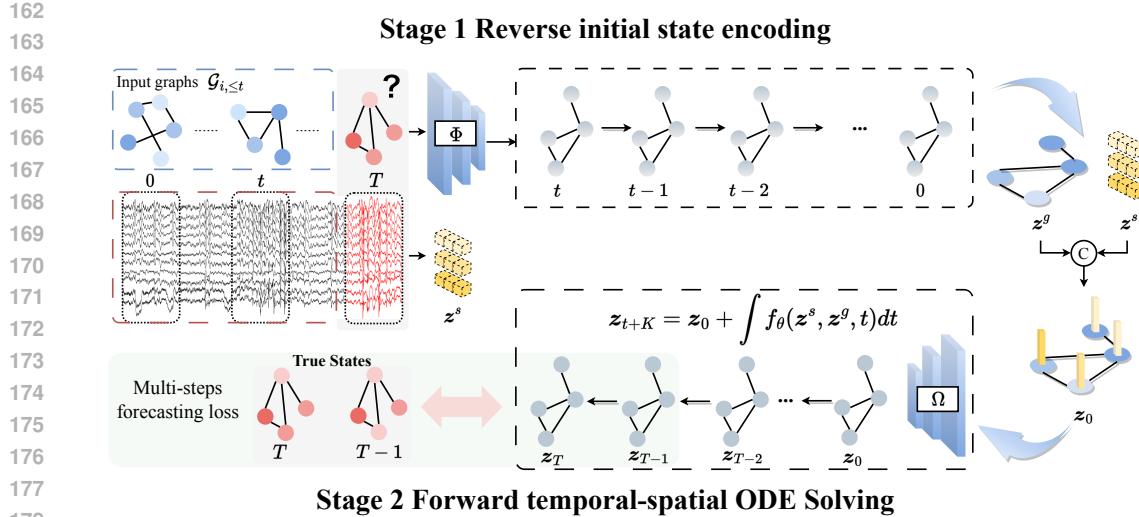


Figure 2: Continuous neural dynamics modeling via ODEBRAIN with graph forecasting. In stage 1, multi-channel EEG signals are encoded into spectral graph snapshots and fused with raw signal features to construct noise-robust initial states for ODE integration to predict the future spectral graphs. In stage 2, ODEBRAIN propagates latent states through time, generating dynamic field f that capture continuous trajectory. Lastly, future graph node embeddings are obtained by z_T , and measure with ground truth graph node.

1. *Robust initialization z_0 against transients and stochasticity in EEGs.* NODE requires a well-calibrated starting condition z_0 to effectively forecast future behavior. This is because EEGs are highly stochastic, or even chaotic to an extent. Their key features are transient and may appear without any preindicator (Chen et al., 2022). Without a proper initialization z_0 as guiding, integrating the model f_θ over time alone cannot accurately forecast future states.
2. *Meaningful objectives of $f_\theta(t, z_t)$ to capture underlying EEG dynamics.* Standard NODE training often relies on regression-like objectives aimed at forecasting future states. A key challenge lies in identifying which representations best capture the underlying neural dynamics, so that $f_\theta(t, z_t)$ is guided toward modeling the true evolution of brain networks rather than only surface-level predictions. For example, in seizure analysis, the model must also learn to discern not only seizure but also any leading states that herald a coming seizure (Li et al., 2021).

Problem Statement (Modeling Dynamic Brain Networks). Given the observed EEG up to time t , denoted as $\mathbf{X}_{\leq t}$, the goal is to model brain network dynamics and forecast their future evolution. The predicted dynamics act as representations of brain states, enabling the distinction between conditions such as seizure and non-seizure. Following prior work (Tang et al., 2022; Chen et al., 2025), we represent the brain as a graph and aim to develop an EEG-based NODE (Ω) to predict a sequence of time-varying graphs

$$\mathcal{G}_{t+1:t+K} = \{\mathbf{X}_{t+1}, \dots, \mathbf{X}_{t+K}\} = \Omega(z_0, f_\theta(\mathcal{G}_{1:t})). \quad (2)$$

over the next K steps. Here, $\mathcal{G}_{1:t}$ denotes the observed brain networks up to time t , and $\mathcal{G}_{t+1:t+K}$ represents the predicted future dynamic brain networks. These graphs characterize dynamic brain networks, and this problem poses two key challenges: (i) obtaining a robust initialization z_0 that can resist the transient and stochastic nature of EEGs; and (ii) defining an objective for f_θ that faithfully captures underlying neural dynamics.

4 METHODOLOGY

Figure 2 shows the system overview of ODEBRAIN. Specifically, graph representations are obtained from each EEG segment (Section A.2), entering stage 1: attaining reverse initial state encoding z^g and temporal encoding z^s (Section 4.1). Stage 2 consists of a Neural ODE that takes as input z^g, z^s (Section 4.2). Finally, forecasting loss between ODE output and ground truth is computed.

216
217

4.1 STAGE 1: REVERSE INITIAL STATE ENCODING

218
219
220
221
222
223
224
225

Spectral Node Embedding. Prior discrete forecasting work has shown the capacity to estimate future neural dynamics depending on past activities in (Li et al., 2024). We define this forecasting paradigm in our ODEBRAIN solver. Intuitively, the latent initial state z_0 and the field f , i.e., $\frac{dz(t)}{dt}$ will be described by encoding the past observation $\mathcal{G}_{i,\leq t}$ to govern the latent continuous evolution. The works of (Rubanova et al., 2019; Chen et al., 2018) suggest that the construction of an effective latent initial state requires an autoregressive model capable of extracting both the initial condition and the latent evolution. Therefore, we propose a graph state descriptor $\Phi : \mathbb{R}^d \mapsto \mathbb{R}^m$ to denote the latent graph state $z^g \in \mathbb{R}^m$ with the autoregressive and graph network module.

226
227
228
229
230
231
232
233

Specifically, given the observations until now $\mathcal{G}_{i,\leq t}$ as input, we respectively perform sequence representation for node and edge attributes. For node embeddings, node evolution is computed by $h_i^n = \text{GRU}^{\text{node}}(\mathcal{X}_{i,\leq t})$ where $\mathcal{V}_{i,\leq t}$ denote the spectral attribute sequences of node i and $\mathcal{X}_{i,\leq t}$ the spectral intensity. Similarly, for edge the attribute sequences are defined from adjacency matrices by $h_{ij}^e = \text{GRU}^{\text{edge}}(\mathcal{A}_{ij,\leq t})$. The resulting node and edge embeddings are integrated as an aggregated graph structure $\mathcal{G} = (h_{i,t}^n, h_{ij,t}^e)$ to be learned by a graph neural network (GNN) to capture spatial dependency across epochs: $z^g = \text{GNN}(h_i^n, h_{ij}^e)$. The forward process of Φ captures both the epoch variations between frequency bands and explicit channel correlations.

234
235
236
237
238

Temporal Embedding with Stochasticity. Accurately modeling the temporal evolution of EEG signals is crucial, as neural dynamics inherently exhibit nonuniform temporal fluctuations and asynchronous activations across channels. Although the graph descriptor Φ captures the evolution of the node and edge attributes effectively, STFT segments EEG signals by constant windows, inevitably disrupting the continuous temporal correlation between the raw EEG observations.

239
240
241
242
243
244
245
246
247
248
249
250
251

Moreover, fully deterministic latent representations lack the flexibility necessary to effectively represent *transient motions* of EEG as analyzed in Section 3. Conversely, introducing controlled randomness into temporal embeddings serves as a natural regularization strategy, effectively increasing the robustness and preventing premature convergence to suboptimal. Here, we apply the temporal descriptor Ψ : $\mathbb{R}^{T \times L} \mapsto \mathbb{R}^c, c \ll m$ to quantify the randomness of the raw EEG epochs across N channels into $z^s \in \mathbb{R}^c$. Given EEG segments \mathbf{X} from N channels within a sliding window length L , we define the stochastic temporal embedding as $z^s = \Psi(\mathbf{X}_{T \times L, \leq N})$. The controlled stochasticity further acts as a form of latent space regularization, improving generalization and robustness against noisy EEG data collection.

252
253
2544.2 STAGE 2:
FORWARD TEMPORAL-SPATIAL ODE SOLVING255
256
257
258

Depending on the above encoding process, we define the initial state $z_0 = [z^s, z^g]$ with $\Phi \circ \Psi \mapsto \mathbb{R}^{m+c}$, that summarizes the stochastic temporal variability and deterministic spectral connectivity, respectively.

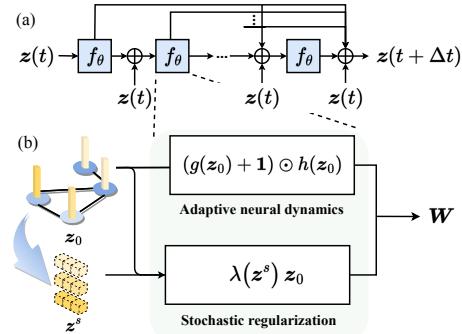
259
260
261
262

Given the initial state $z_0 \in \mathbb{R}^{m+c}$, general approaches model the ODE vector field following the classical neural network solution f_θ with residual connection as:

$$dz(t) \equiv f_\theta(z(t), t; \Theta)dt, \quad z_0 = [z^s, z^g], \quad t \in [t+1, t+K] \quad (3)$$

263
264
265
266
267
268
269

where $f_\theta : \mathbb{R}^{m+c} \mapsto \mathbb{R}^{m+c}$ represents a vector field to capture the complicated dynamics and its continuous evolution is governed by f_θ with the learnable Θ across the entire epoch sequences. However, this leads to the problem of optimizing the deep network-based f_θ on highly variable EEG states, making the large solver errors. Considering the deep architecture-based multi-step numerical solver design (Lu et al., 2018; Oh et al., 2024) and logic gating interaction of brain dynamics (Goldental et al., 2014), we design a temporal-spatial ODE solving to incorporate initial state z_0 for additive and gate operations as shown in Figure 3. In addition, we further introduce an adaptive



Proposed temporal-spatial ODE-RK4 function

Figure 3: The full structure of the temporal-spatial ODE solving. (a) RK-4 step numerical solver. (b) Procedure of temporal-spatial f_θ with the gate operation-based residual module and temporal adaptive decay.

270 decay component conditioned on the stochastic temporal state \mathbf{z}^s , to adjust the vector field f_θ , ac-
 271 counting for the complexity and dynamic nature of the brain as a system. As shown in the Figure
 272 3(b), the f_θ used in proposed ODE function is computed as follows:
 273

$$274 \quad f_\theta(\mathbf{z}_0) = (g(\mathbf{z}_0) + 1) \odot h(\mathbf{z}_0) - \lambda(\mathbf{z}^s) \mathbf{z}_0, \quad \mathbf{z}_0 = [\mathbf{z}^s, \mathbf{z}^g], \quad (4)$$

275 where \odot represents element-wise multiplication. Initially, the vector field is computed by the general
 276 residual block $h(\mathbf{z}_0)$ and updated by a gated vector field with sigmoid function σ as:
 277

$$278 \quad g(\mathbf{z}_0) = \sigma(W_g \mathbf{z}_0 + \mathbf{b}_g) \in (0, 1)^{m+c}, \quad (5)$$

279 which provides state-adaptive modulation of the dynamics. Finally, to regularize trajectories under
 280 noisy EEG inputs, we add an adaptive decay conditioned on the temporal stochastic state \mathbf{z}^s :
 281

$$282 \quad \lambda(\mathbf{z}^s) = \text{Softplus}(W_a^{(2)} \circ \tanh(W_s^{(1)} \mathbf{z}^s + \mathbf{b}^1) + \mathbf{b}^2) > 0. \quad (6)$$

283 The latent trajectory $\mathbf{z}(t)$ at arbitrary time t can be solved by:
 284

$$285 \quad \mathbf{z}_{t+K} = \begin{bmatrix} \mathbf{z}^s \\ \mathbf{z}^g \end{bmatrix} + \int_{t+1}^{t+K} f_\theta \left(\begin{bmatrix} \mathbf{z}^s \\ \mathbf{z}^g \end{bmatrix}, t \right) dt. \quad (7)$$

288 The state solutions are calculated by solving with efficient numerical solvers in Figure 3(a), such
 289 as Runge-Kutta (RK) (Schober et al., 2019). The latent state at the next timestamp is updated as
 290 follows:

$$291 \quad \mathbf{z}(t + \Delta t) = \mathbf{z}(t) + \frac{\Delta t}{6} (k_1 + 2k_2 + 2k_3 + k_4). \quad (8)$$

293 4.3 GRAPH EMBEDDING FORECASTING

295 Depending on the Eq. 7, the latent dynamic function and neural forecasting are presented as follow:
 296

$$297 \quad \{\mathbf{z}_{t+1}, \dots, \mathbf{z}_{t+K}\} = \text{ODESolver}(f_\theta, [\mathbf{z}^s, \mathbf{z}^g], [t+1, t+K]), \quad (9)$$

$$298 \quad \hat{\mathcal{G}}_{t+i} = \Omega(\mathbf{z}_{t+i}) \quad \forall i \in \{1, 2, \dots, K\}, \quad (10)$$

300 where the continuous latent trajectories $\{\mathbf{z}(t)\}_{t=1}^K$ are projected back to the future EEG node
 301 attributes with \mathcal{V} the set of all possible unique nodes in $\mathcal{G}_{t+1:t+K}$ via a predictive module
 302 $\Omega: \mathbb{R}^{m+c} \mapsto \mathbb{R}^d$, explicitly capturing spatial correlations across EEG channels over future K time
 303 steps. Here, $\mathcal{X}_{:, >t} = [\mathcal{X}_{:, t+1}, \dots, \mathcal{X}_{:, t+K}]$ integrate all future node attributes.
 304

305 Unlike the previous works, which focus on forecasting the temporal neural population dynamics.
 306 Our learning objective is to predict the graph structure rather than the simple temporal
 307 dynamics, since neuron firing generally activates in the asynchronous channels simultaneously
 308 $\mathcal{L}_G = \mathbb{E}_G \left\| \hat{\mathcal{G}}_{t+1:K} - \mathcal{G}_{t+1:K} \right\|_2$. We first train the model in an unsupervised manner using dy-
 309 namic graph forecasting loss to capture continuous neural dynamics via ODE solvers. Then we
 310 pooling the latent continuous trajectory $\mathbf{z}(t)$ extracted from the ODE solver with entire timesteps for
 311 downstream fine-tuning, like classification.

312 5 EXPERIMENTS

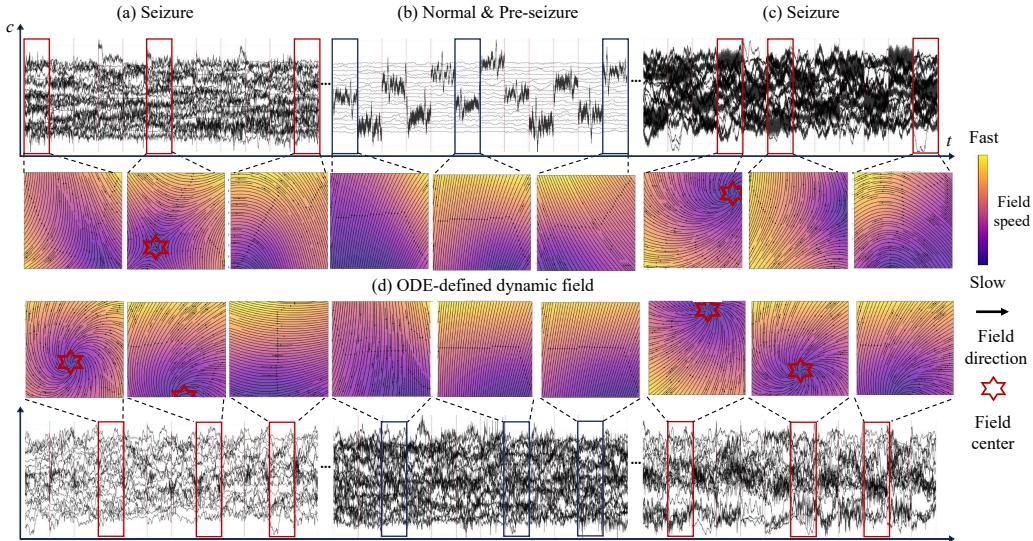
314 In this section, we conduct experiments to answer the following research questions: **RQ1.** Does
 315 ODEBRAIN strengthen seizure detection capability through continuous forecasting on EEGs? **RQ2.**
 316 How does the initial state \mathbf{z}_0 affect the development of latent neural trajectory? **RQ3.** Does our
 317 objective of Ω facilitate dynamic optimization? Detailed experimental can be found in Appendix A.
 318

319 5.1 EXPERIMENTAL SETUP

321 **Tasks.** In this study, we evaluate our ODEBRAIN for modeling the neuronal population dynamics
 322 with the seizure detection. Seizure detection is defined as a binary classification task that aims to dis-
 323 tinguish between seizure and non-seizure EEG segments known as epochs. This task is fundamental
 324 to automated seizure monitoring systems.

324
 325 Table 1: Main results on **TUSZ** (12s seizure detection) and **TUAB**. **Bold** and underline indicate best
 326 and second-best results. \star : The performance depends on the discrete multi-steps forecasting. \dagger : The
 327 performance depends on the *continuous* multi-steps forecasting. \ddagger : The performance depends on the
 328 *continuous* single-step forecasting.

Method	TUSZ			TUAB		
	Acc	F1	AUROC	Acc	F1	AUROC
CNN-LSTM	0.735 ± 0.003	0.347 ± 0.012	0.757 ± 0.003	0.741 ± 0.002	0.736 ± 0.007	0.813 ± 0.003
BIOT	0.702 ± 0.003	0.294 ± 0.006	0.772 ± 0.006	0.717 ± 0.002	0.713 ± 0.004	0.788 ± 0.002
EvolveGCN	0.769 ± 0.002	0.385 ± 0.005	0.791 ± 0.004	0.708 ± 0.003	0.707 ± 0.002	0.777 ± 0.003
DCRNN	0.816 ± 0.002	0.416 ± 0.009	0.825 ± 0.002	0.768 ± 0.004	0.769 ± 0.002	0.848 ± 0.002
latent-ODE	0.827 ± 0.004	0.470 ± 0.005	0.849 ± 0.004	0.749 ± 0.003	0.745 ± 0.002	0.829 ± 0.004
latent-ODE (RK4)	0.821 ± 0.003	0.465 ± 0.001	0.845 ± 0.004	0.746 ± 0.002	0.739 ± 0.002	0.823 ± 0.003
ODE-RNN	0.802 ± 0.002	0.455 ± 0.007	0.855 ± 0.003	0.751 ± 0.003	0.744 ± 0.004	0.838 ± 0.005
neural SDE	0.857 ± 0.002	0.467 ± 0.003	0.851 ± 0.002	0.768 ± 0.003	0.751 ± 0.003	0.834 ± 0.002
Graph ODE	0.849 ± 0.003	0.475 ± 0.005	0.841 ± 0.003	0.757 ± 0.003	0.737 ± 0.006	0.823 ± 0.004
ODEBRAIN †	0.869 ± 0.003	0.488 ± 0.015	0.875 ± 0.005	0.771 ± 0.005	0.770 ± 0.005	0.849 ± 0.003
ODEBRAIN ‡	0.877 ± 0.004	0.496 ± 0.017	0.881 ± 0.006	0.778 ± 0.003	0.774 ± 0.005	0.857 ± 0.005



360 Figure 4: Visualization results between the multichannel EEG signal (upper and lower) and its latent
 361 dynamic field f_θ (middle) obtained by ODEBRAIN. Local minima appearing in (a) and (c) indicate
 362 rapid changes and drastic changes, corresponding to seizure states. These centers do not appear in
 363 Normal and Pre-seizure states (b).

364
 365
 366
 367
 368
 369 **Baseline methods.** We select two baselines that study neural population dynamic studies: DCRNN
 370 (Li et al., 2017) that has a reconstruction objective. We also compare against the benchmark Trans-
 371 former BIOT (Yang et al., 2023) that captures temporal-spatial information for EEG tasks. Finally,
 372 we compare against a standard baseline CNN-LSTM (Ahmedt-Aristizabal et al., 2020).

373 **Metrics.** To answer **RQ1**, we evaluate the model using the Area Under the Receiver Operating
 374 Characteristic Curve (AUROC) and the F1 score. AUROC measures the ability of models across
 375 varying thresholds, while the F1 score highlights the balance between precision and recall at its
 376 optimal threshold for classification. For **RQ2**, we measure the predicted graph structural similarity
 377 using the Global Jaccard Index (GJI) $GJI(\mathcal{E}_{true}, \mathcal{E}_{Pred}) = \frac{|\mathcal{E}_{true} \cap \mathcal{E}_{Pred}|}{|\mathcal{E}_{true} \cup \mathcal{E}_{Pred}|}$ (Castrillo et al., 2018). For
 RQ3, We compute the cosine similarity of predicted node embeddings.

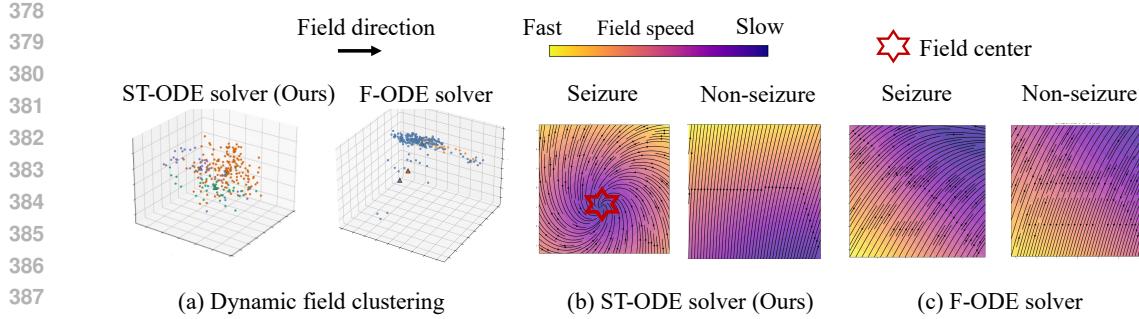


Figure 5: Visualizing learned dynamic fields between our spatial-temporal(ST)-ODE solver and the frequency (F)-ODE solver.

5.2 RESULTS

5.2.1 MAIN RESULT

RQ1 concerns the continuous forecasting capability on EEG. Table 1 summarize seizure detection accuracy across models on the TUSZ and TUAB datasets for a duration of 12 seconds. Our ODEBRAIN consistently outperforms all baselines on the AUROC and F1 score, demonstrating the superiority of continuous forecasting. Notably, our single-step forecasting achieves an AUROC of 0.881 ± 0.006 and an F1 score of 0.496 ± 0.017 , surpassing latent-ODE. Our multi-step forecasting attains a Recall of 0.563 ± 0.015 , balancing overall detection capability and positive-instance coverage. These results show that ODEBRAIN is more effective in capturing the transient dynamics of EEGs in contrast to the fixed-time-interval or reconstruction baselines.

To further illustrate this point, we visualize the dynamic field f_θ of the latent space in Fig. 4. This dynamic field characterizes the difference between seizure and normal states. This is most apparent from the centers in seizure figures Figure 4(a) and 4(c) while absent from normal & pre-seizure states 4(b). These centers depict an area where gradients point to it and eventually the flows converge. This aligns well with the corresponding EEGs that show wild oscillations featuring high frequency components. By contrast, for the normal & pre-seizure data, such centers are not present in the field, showing that the dynamics is driven mainly by low-frequency oscillations. It is worth noting that such visualization is only available to continuous dynamics modeling of our method.

In summary, we can answer **RQ1** as follows: through continuous forecasting, ODEBRAIN outperforms existing baselines in seizure detection capability by accurately depicting neural population dynamics. The learned field f_θ can clearly delineate the boundary between seizure and normal states via its vector field representation of neuronal activity. Unlike the discrete-time-interval and reconstruction-based baselines, ODEBRAIN provides arbitrary temporal resolution, and hence is sensitive to transient neural changes. We have verified that it helps capture the transition process of different brain states.

Table 2: Results (AUROC↑, F1↑) on **TUSZ** (12s and 60s seizure detection) against discrete and continuous baselines, with options on the gate and stochastic regularization. (-: w/o, +Random: gate with random coefficients for stochastic regularization.) **Bold = best.**

Model	Method	T(s)	AUROC	F1
BIOT	12	0.772 ± 0.006	0.294 ± 0.006	
	60	0.642 ± 0.009	0.256 ± 0.003	
DCRNN	12	0.816 ± 0.002	0.416 ± 0.009	
	60	0.802 ± 0.003	0.413 ± 0.005	
latent-ODE	12	0.791 ± 0.004	0.385 ± 0.005	
	60	0.745 ± 0.036	0.331 ± 0.031	
ODEBRAIN	12	0.881 ± 0.006	0.496 ± 0.017	
	60	0.828 ± 0.003	0.430 ± 0.021	
ODEBRAIN	- Gate	12	0.867 ± 0.004	0.488 ± 0.007
		60	0.821 ± 0.034	0.424 ± 0.003
ODEBRAIN	- Stochastic	12	0.848 ± 0.017	0.462 ± 0.013
		60	0.817 ± 0.029	0.414 ± 0.047
ODEBRAIN	+Random	12	0.860 ± 0.017	0.474 ± 0.033
		60	0.819 ± 0.026	0.418 ± 0.017

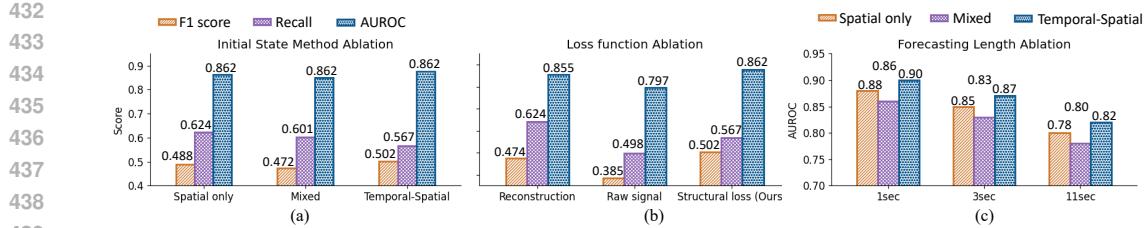


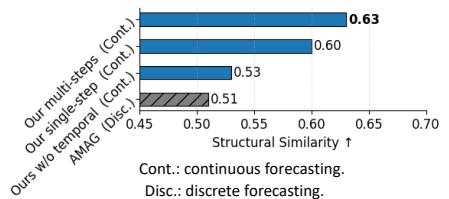
Figure 7: Summary of ablation study. (a) State initialization. We compare spatial-only, mixed, and temporal–spatial initialization and summarized results in F1, Recall and AUROC. Temporal–Spatial achieves the best F1 (0.502) with a competitive recall. (b) Loss function. Replacing our structural forecasting loss with reconstruction-only or raw-signal forecasting degrades performance on AUROC. (c) Forecast horizon. AUROC decreases as the horizon grows (1s → 3s → 11s), and Temporal–Spatial remains the best across all horizons over others.

5.2.2 DYNAMIC GRAPH FORECASTING EVALUATION

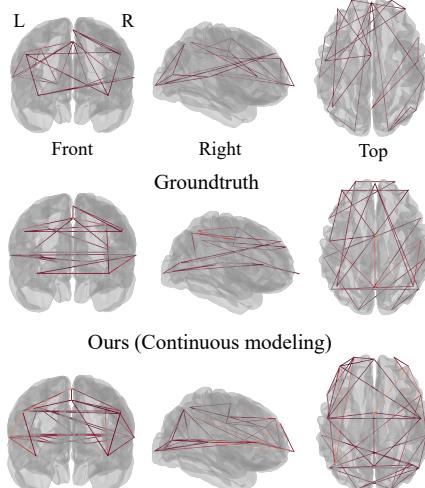
RQ2 concerns initial state z_0 . Fig. 6 depicts the predicted connectivity patterns and edge densities. It is visible that ODEBRAIN is closer to the ground truth than AMAG in showing a more consistent topology. Consistent structural features with small offsets are crucial for correctly modeling brain dynamics. ODEBRAIN utilizes stochasticity in the raw EEG signal as an implicit regularization term. This term helps enhance the generalization ability of continuous trajectory inference, as can be seen from Figure 6(a) going from 0.53 to 0.63 and maintains a consistent structure. We are ready to answer **RQ2**, given our z_0 , ODEBRAIN can generate latent trajectories that respect EEG dynamics and maintain continuous evolutionary properties.

Table 2 describes the seizure detection performance under 12s and 60s, comparing discrete and continuous baselines with ODEBRAIN. ODEBRAIN achieves the best or tied-best results at both horizons, indicating that adaptive vector field effectively strengthens stability. The ablations further validate our design by removing the gating mechanism leads to performance drop from 0.881 to 0.867, highlighting the adaptive vector field can achieve stable trajectory evolution. Removing stochastic regularization also degrades F1 from 0.496 to 0.462, proofing that stochastic regularization mitigates dynamics instability caused by noise. In contrast, using a gate with random coefficients for stochastic regularization still underperforms the full model, implying that our learnable regularization is more effective.

RQ3 concerns consistency in the graphs. Figure 6 shows the effectiveness of our objective Ω that helps predict dynamic graph structures. It is visible that ODEBRAIN achieves higher similarity scores (0.53 → 0.63) than the discrete predictor, indicating that ODEBRAIN more accurately captures the true graph structure with the help of Ω . The similarity matrices reveal that ours aligns more closely in terms of local correlation distribution, in which the discrete predictor exhibits notable discrepancies in certain block structures. Now we can answer **RQ3**: the explicit graph embedding target improves forecasting accuracy. This is achieved by guiding the vector field f_θ to learn continuous trajectories that align well with the neural activity, eventually leading to more reliable prediction.



(a) Predicted graph structural similarity scores result



(b) Predicted graph structures

Figure 6: Results on (a) graph similarity and (b) functional connections.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
Table 3: Computational cost results on Wall-clock (s), and NFEs.

Type	Model	Param.	Wall	NFEs
Discrete	CNN-LSTM	5976K	0.586±0.004	-
	BIOT	3174K	0.508±0.003	-
	DCRNN	281K	0.418±0.006	-
Continuous	latent-ODE	386k	0.421±0.002	102
	ODE-RNN	675k	0.601±0.005	189
	neural SDE	346k	0.482 ±0.003	153
	ODEBRAIN	459K	0.516±0.002	164

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
5.2.3 ABLATION STUDY

We perform ablation study on the following factors of ODEBRAIN: initialization z_0 , loss objective Ω and forecasting horizon, the results are summarized in Figure 7.

Initial state. Temporal–spatial initial state option yields the best performance, achieving the highest AUROC (0.877) and surpassing Spatial-only (0.862) and Mix up (0.851). It mitigates sensitivity to initial conditions and delivers the largest gains at the longest horizon (11s). **Loss objective.** Our structural multi-step forecasting consistently outperforms reconstruction-only and raw-signal forecasting across F1/Recall/AUROC, indicating that geometry-aware regularization improves dynamical modeling. We attribute the gains to ODEBRAIN that couples spectral–spatial structure with EEG dynamics, enabling more stable integration and stronger generalization.

Table 3 shows single-batch inference cost for discrete vs. continuous baselines, including parameters, wall-clock time, and NFEs (only for solver-based models). Discrete methods have fixed-depth computation, so latency mainly follows model size/sequence length. NFEs are shown only for the ODE solver-based models. ODEBRAIN contains 459k parameters with 164 NFEs (lower than ODE-RNN 189 and comparable to other continuous baselines), and 0.516s per batch, which falls in the same latency band as discrete models with fixed-depth computation. These results indicate that our continuous solver does not introduce prohibitive cost in practice, and the reduced NFEs suggest a more stable integration than other complicated continuous baselines.

Table 4 evaluates sensitivity to top- τ sparsity and graph regularizers for both latent-ODE and ODEBRAIN. Adding regularization improves Recall, confirming that norm correlation graphs are noisy and susceptible to volume conduction, while regularized connectivity is more reliable. The performance of different τ sparsity is stable across regularizers. Concretely, an ODE solver can achieve better performance with sparser, regularized graphs. Graphical lasso or Norm with 3 sparsity yields the best in both AUROC and Recall. For ODEBRAIN, Norm with 3 sparsity achieves the best AUROC (0.881), and Graphical lasso gets the highest Recall (0.613), demonstrating robust dependence on graph-construction choices.

6 CONCLUSION

In this work, we introduced ODEBRAIN, a novel continuous-time dynamic modeling framework for modeling EEGs, designed explicitly to overcome critical limitations associated with discrete-time recurrent approaches. By adopting a neural ODE-based approach with adaptive vector field strategy, our model effectively captures the continuous neural dynamics and spatial interactions in EEG data. Although ODEBRAIN models latent dynamics in continuous time, the inputs and supervision are still based on epoched segments, which limits long-term continuous modeling. And the generalization to other neurological disorders or cognitive tasks remains to be explored.

540 REPRODUCIBILITY STATEMENT
541542 All the results presented in the paper were run with the settings detailed in Appendix A, and the
543 corresponding code is available at [this anonymous repository](#).
544545 THE USE OF LARGE LANGUAGE MODELS
546547 We clarify that no LLM was used in any part of the paper.
548549 REFERENCES
550551 David Ahmedt-Aristizabal, Tharindu Fernando, Simon Denman, Lars Petersson, Matthew J. Aburn,
552 and Clinton Fookes. Neural memory networks for seizure type classification. In *2020 42nd Annual*
553 *International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)*, pp.
554 569–575, 2020. doi: 10.1109/EMBC44109.2020.9175641.
555556 Hongmin Cai, Tingting Dan, Zhuobin Huang, and Guorong Wu. Osr-net: Ordinary differential
557 equation-based brain state recognition neural network. In *2023 IEEE 20th International Symposium*
558 *on Biomedical Imaging (ISBI)*, pp. 1–5, 2023. doi: 10.1109/ISBI53787.2023.10230734.559 Eduar Castrillo, Elizabeth León, and Jonatan Gómez. Dynamic structural similarity on graphs. *arXiv*
560 *preprint arXiv:1805.01419*, 2018.
561562 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
563 differential equations. *Advances in neural information processing systems*, 31, 2018.
564565 Yiyuan Chen, Xiaodong Xu, Xiaoyi Bian, and Xiaowei Qin. Eeg emotion recognition based on
566 ordinary differential equation graph convolutional networks and dynamic time wrapping. *Applied*
567 *Soft Computing*, 152:111181, 2024.
568569 Zheng Chen, Lingwei Zhu, Ziwei Yang, and Renyuan Zhang. Multi-tier platform for cognizing
570 massive electroencephalogram. In *IJCAI-22*, pp. 2464–2470, 2022.
571572 Zheng Chen, Lingwei Zhu, Haohui Jia, and Takashi Matsubara. A two-view eeg representation for
573 brain cognition by composite temporal-spatial contrastive learning. In *Proceedings of the 2023*
574 *SIAM International Conference on Data Mining (SDM)*, pp. 334–342. SIAM, 2023.
575576 Zheng Chen, Yasuko Matsubara, Yasushi Sakurai, and Jimeng Sun. Long-term eeg partitioning for
577 seizure onset detection, 2025.
578579 Mark M Churchland, John P Cunningham, Matthew T Kaufman, Justin D Foster, Paul Nuyujukian,
580 Stephen I Ryu, and Krishna V Shenoy. Neural population dynamics during reaching. *Nature*, 487
581 (7405):51–56, 2012.
582583 Parsa Delavari, Ipek Oruc, and Timothy H Murphy. Synapsnet: Enhancing neuronal population
584 dynamics modeling via learning functional connectivity. In *The First Workshop on NeuroAI @*
585 *NeurIPS2024*, 2024.
586587 Andac Demir, Toshiaki Koike-Akino, Ye Wang, Masaki Haruna, and Deniz Erdogmus. Eeg-gnn:
588 Graph neural networks for classification of electroencephalogram (eeg) signals. In *2021 43rd An-*
589 *nual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)*,
590 pp. 1061–1067, 2021. doi: 10.1109/EMBC46164.2021.9630194.
591592 Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-temporal graph ode networks
593 for traffic flow forecasting. In *Proceedings of the 27th ACM SIGKDD conference on knowledge*
594 *discovery & data mining*, pp. 364–373, 2021.
595596 Soham Gadgil, Qingyu Zhao, Adolf Pfefferbaum, Edith V Sullivan, Ehsan Adeli, and Kilian M Pohl.
597 Spatio-temporal graph convolution for resting-state fmri analysis. In *Medical Image Computing*
598 *and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru,*
599 *October 4–8, 2020, Proceedings, Part VII 23*, pp. 528–538. Springer, 2020.
600

594 Amir Goldental, Shoshana Guberman, Roni Vardi, and Ido Kanter. A computational paradigm for
 595 dynamic logic-gates in neuronal activity. *Frontiers in computational neuroscience*, 8:52, 2014.
 596

597 Gaurav Gupta, Sérgio Pequito, and Paul Bogdan. Dealing with unknown unknowns: Identification
 598 and selection of minimal sensing for fractional dynamics with unknown inputs. In *2018 Annual
 599 American Control Conference (ACC)*, pp. 2814–2820. IEEE, 2018a.

600 Gaurav Gupta, Sérgio Pequito, and Paul Bogdan. Re-thinking eeg-based non-invasive brain in-
 601 terfaces: Modeling and analysis. In *2018 ACM/IEEE 9th International Conference on Cyber-
 602 Physical Systems (ICCPs)*, pp. 275–286. IEEE, 2018b.
 603

604 Gaurav Gupta, Sérgio Pequito, and Paul Bogdan. Learning latent fractional dynamics with unknown
 605 unknowns. In *2019 American Control Conference (ACC)*, pp. 217–222. IEEE, 2019.

606 Kaiqiao Han, Yi Yang, Zijie Huang, Xuan Kan, Ying Guo, Yang Yang, Lifang He, Liang Zhan,
 607 Yizhou Sun, Wei Wang, et al. Brainode: Dynamic brain signal analysis via graph-aided neural
 608 ordinary differential equations. In *2024 IEEE EMBS International Conference on Biomedical and
 609 Health Informatics (BHI)*, pp. 1–8. IEEE, 2024.
 610

611 Thi Kieu Khanh Ho and Narges Armanfard. Self-supervised learning for anomalous channel detec-
 612 tion in eeg graphs: Application to seizure analysis. In *Proceedings of the AAAI Conference on
 613 Artificial Intelligence*, pp. 7866–7874, 2023.

614 Amber Hu, David Zoltowski, Aditya Nair, David Anderson, Lea Duncker, and Scott Linderman.
 615 Modeling latent neural dynamics with gaussian process switching linear dynamical systems. *Ad-
 616 vances in Neural Information Processing Systems*, 37:33805–33835, 2024.
 617

618 Jeehyun Hwang, Jeongwhan Choi, Hwangyong Choi, Kookjin Lee, Dongeun Lee, and Noseong
 619 Park. Climate modeling with neural diffusion equations. In *2021 IEEE International Conference
 620 on Data Mining (ICDM)*, pp. 230–239. IEEE, 2021.

621 David Jones, V. Lowe, J. Graff-Radford, Hugo Botha, L. Barnard, D. Wiepert, Matthew Murphy,
 622 Melissa Murray, Matthew Senjem, Jeffrey Gunter, H. Wiste, B. Boeve, D. Knopman, Ronald Pe-
 623 tersen, and C. Jack. A computational model of neurodegeneration in alzheimer’s disease. *Nature
 624 Communications*, pp. 1643, 2022.
 625

626 Xuan Kan, Zimu Li, Hejie Cui, Yue Yu, Ran Xu, Shaojun Yu, Zilong Zhang, Ying Guo, and Carl
 627 Yang. R-mixup: Riemannian mixup for biological networks. In *Proceedings of the 29th ACM
 628 SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1073–1085, 2023.

629 Timothy D Kim, Thomas Z Luo, Jonathan W Pillow, and Carlos D Brody. Inferring latent dy-
 630 namics underlying neural population activity via neural differential equations. In *International
 631 Conference on Machine Learning*, pp. 5551–5561. PMLR, 2021.
 632

633 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 634 2014.

635 Christian Klötergens, Vijaya Krishna Yalavarthi, Randolph Scholz, Maximilian Stubbemann, Stefan
 636 Born, and Lars Schmidt-Thieme. Physiome-ODE: A benchmark for irregularly sampled multi-
 637 variate time-series forecasting based on biological ODEs. In *The Thirteenth International Con-
 638 ference on Learning Representations*, 2025.
 639

640 Rikuto Kotoge, Zheng Chen, Tasuku Kimura, Yasuko Matsubara, Takufumi Yanagisawa, Haruhiko
 641 Kishima, and Yasushi Sakurai. Splitsee: A splittable self-supervised framework for single-
 642 channel eeg representation learning. *arXiv preprint arXiv:2410.11200*, 2024.

643 Rikuto Kotoge, Zheng Chen, Tasuku Kimura, Yasuko Matsubara, Takufumi Yanagisawa, Haruhiko
 644 Kishima, and Yasushi Sakurai. Evobrain: Dynamic multi-channel eeg graph modeling for time-
 645 evolving brain network, 2025.
 646

647 Klaus Lehnertz. Epilepsy and nonlinear dynamics. *Journal of biological physics*, 34(3):253–266,
 2008.

648 Klaus Lehnertz, Florian Mormann, Thomas Kreuz, Ralph G Andrzejak, Christoph Rieke, Peter
 649 David, and Christian E Elger. Seizure prediction by nonlinear eeg analysis. *IEEE Engineering in*
 650 *Medicine and Biology Magazine*, 22(1):57–63, 2003.

651

652 Gregory Lepeu, Ellen van Maren, Kristina Slabeva, Cecilia Friedrichs-Maeder, Markus Fuchs,
 653 Werner J Z'Graggen, Claudio Pollo, Kaspar A Schindler, Antoine Adamantidis, Timothée Proix,
 654 et al. The critical dynamics of hippocampal seizures. *Nature communications*, 15(1):6945, 2024.

655 Adam Li, Chester Huynh, Zachary Fitzgerald, Iahn Cajigas, Damian Brusko, Jonathan Jagid, Angel
 656 Claudio, Andres Kanner, Jennifer Hopp, Stephanie Chen, Jennifer Haagensen, Emily Johnson,
 657 William Anderson, Nathan Crone, Sara Inati, Kareem Zaghloul, Juan Bulacio, Jorge Gonzalez-
 658 Martinez, and Sridevi Sarma. Neural fragility as an eeg marker of the seizure onset zone. *Nature*
 659 *Neuroscience*, 24:1–10, 2021.

660

661 Alexis Li. Brainmixup: Data augmentation for gnn-based functional brain network analysis. In
 662 *2022 IEEE International Conference on Big Data (Big Data)*, pp. 4988–4992, 2022. doi: 10.
 663 1109/BigData55660.2022.10020662.

664 Jingyuan Li, Leo Scholl, Trung Le, Pavithra Rajeswaran, Amy Orsborn, and Eli Shlizerman. Amag:
 665 Additive, multiplicative and adaptive graph neural network for forecasting neuron activity. *Ad-*
 666 *vances in Neural Information Processing Systems*, 36, 2024.

667 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
 668 work: Data-driven traffic forecasting. *arXiv preprint arXiv:1707.01926*, 2017.

669

670 XiaoJie Lu, JiQian Zhang, ShouFang Huang, Jun Lu, MingQuan Ye, and MaoSheng Wang. De-
 671 tection and classification of epileptic eeg signals by the methods of nonlinear dynamics. *Chaos,*
 672 *Solitons & Fractals*, 151:111032, 2021.

673 Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
 674 Bridging deep architectures and numerical differential equations. In *International conference on*
 675 *machine learning*, pp. 3276–3285. PMLR, 2018.

676

677 Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent
 678 computation by recurrent dynamics in prefrontal cortex. *nature*, 503(7474):78–84, 2013.

679

680 Roshan Joy Martis, Jen Hong Tan, Chua Kuang Chua, Too Cheah Loon, SHARON WAN JIE YEO,
 681 and Louis Tong. Epileptic eeg classification using nonlinear parameters on different frequency
 682 bands. *Journal of Mechanics in Medicine and Biology*, 15(03):1550040, 2015.

683

684 Mattia Mercier, Chiara Pepi, Giusy Carfi-Pavia, Alessandro De Benedictis, Maria Camilla Rossi
 685 Espagnet, Greta Pirani, Federico Vigevano, Carlo Efisio Marras, Nicola Specchio, and Luca
 686 De Palma. The value of linear and non-linear quantitative eeg analysis in paediatric epilepsy
 687 surgery: a machine learning approach. *Scientific reports*, 14(1):10887, 2024.

688

689 YongKyung Oh, Dong-Young Lim, and Sungil Kim. Stable neural stochastic differential equations
 690 in analyzing irregular time series data. *arXiv preprint arXiv:2402.14989*, 2024.

691

692 Sunghyun Park, Kangyeol Kim, Junsoo Lee, Jaegul Choo, Joonseok Lee, Sookkyung Kim, and Ed-
 693 ward Choi. Vid-ode: Continuous-time video generation with neural ordinary differential equa-
 694 tion. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 2412–2422,
 695 2021.

696

697 Jan Pieter M Pijn, Demetrios N Velis, Marcel J van der Heyden, Jaap DeGoede, Cees WM van
 698 Veelen, and Fernando H Lopes da Silva. Nonlinear dynamics of epileptic seizures on basis of
 699 intracranial eeg recordings. *Brain topography*, 9(4):249–270, 1997.

700

701 Jathurshan Pradeepkumar, Xihao Piao, Zheng Chen, and Jimeng Sun. Single-channel eeg tok-
 702 enization through time-frequency modeling, 2025. URL <https://arxiv.org/abs/2502.16060>.

702

703 Edmund T. Rolls, Wei Cheng, and Jianfeng Feng. Brain dynamics: Synchronous peaks, functional
 704 connectivity, and its temporal variability. *Human Brain Mapping*, pp. 2790–2801, 2021.

702 Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
 703 irregularly-sampled time series. *Advances in neural information processing systems*, 32, 2019.
 704

705 Michael Schober, Simo Särkkä, and Philipp Hennig. A probabilistic model for the numerical solu-
 706 tion of initial value problems. *Statistics and Computing*, 29(1):99–122, 2019.
 707

708 Vinit Shah, Eva Von Weltin, Silvia Lopez, James Riley McHugh, Lillian Veloso, Meysam Gol-
 709 mohammadi, Iyad Obeid, and Joseph Picone. The temple university hospital seizure detection
 710 corpus. *Frontiers in neuroinformatics*, 12:83, 2018.
 711

712 Siyi Tang, Jared Dunnmon, Khaled Kamal Saab, Xuan Zhang, Qianying Huang, Florian Dubost,
 713 Daniel Rubin, and Christopher Lee-Messer. Self-supervised graph neural networks for improved
 714 electroencephalographic seizure analysis. In *International Conference on Learning Representa-
 715 tions*, 2022.
 716

717 Siyi Tang, Jared A Dunnmon, Qu Liangqiong, Khaled K Saab, Tina Baykaner, Christopher Lee-
 718 Messer, and Daniel L Rubin. Modeling multivariate biosignals with graph neural networks and
 719 structured state space models. In *Proceedings of the Conference on Health, Inference, and Learn-
 720 ing*, pp. 50–71, 2023.
 721

722 Vasileios Tzoumas, Yuankun Xue, Sérgio Pequito, Paul Bogdan, and George J Pappas. Selecting
 723 sensors in biological fractional-order systems. *IEEE Transactions on Control of Network Systems*,
 724 5(2):709–721, 2018.
 725

726 Saurabh Vyas, Matthew D Golub, David Sussillo, and Krishna V Shenoy. Computation through
 727 neural population dynamics. *Annual review of neuroscience*, 43(1):249–275, 2020.
 728

729 Yuankun Xue, Sergio Pequito, Joana R Coelho, Paul Bogdan, and George J Pappas. Minimum
 730 number of sensors to ensure observability of physiological systems: A case study. In *2016 54th
 731 Annual Allerton Conference on Communication, Control, and Computing (Allerton)*, pp. 1181–
 732 1188. IEEE, 2016.
 733

734 Chaoqi Yang, M Brandon Westover, and Jimeng Sun. Biot: Biosignal transformer for cross-data
 735 learning in the wild. In *Thirty-seventh Conference on Neural Information Processing Systems*,
 736 2023. URL <https://openreview.net/forum?id=c2LZyTyddi>.
 737

738 Ling Yang and Shenda Hong. Unsupervised time-series representation learning with iterative bilin-
 739 ear temporal-spectral fusion. In *International conference on machine learning*, pp. 25038–25054.
 740 PMLR, 2022.
 741

742 Ruochen Yang, Gaurav Gupta, and Paul Bogdan. Data-driven perception of neuron point process
 743 with unknown unknowns. In *Proceedings of the 10th ACM/IEEE International Conference on
 744 Cyber-Physical Systems*, pp. 259–269, 2019.
 745

746 Ruochen Yang, Heng Ping, Xiongye Xiao, Roozbeh Kiani, and Paul Bogdan. Spiking dynamics
 747 of individual neurons reflect changes in the structure and function of neuronal networks. *Nature
 748 Communications*, 16(1):6994, 2025.
 749

750

751

752

753

754

755

756 **A EXPERIMENTAL SETTINGS**
757758 **A.1 DISCUSSION: KEY INSIGHTS OF ODEBRAIN**
759

760 Conceptually, the major gain of our work comes from explicitly modeling continuous dynamics over
761 graph structures. By capturing the dynamic evolution of EEG signals, the model can effectively
762 handle substantial noise, randomness, and fluctuations. Our comparison with the baseline without
763 continuous dynamics (i.e., using only a temporal GNN backbone) clearly supports this observation.
764 Methodologically, our improvements arise from two key aspects: (i) obtaining a high-quality initiali-
765 zation \mathbf{z}_0 , and (ii) formulating a vector field f_θ that captures informative and stable dynamics.
766 First, the reverse initial encoding provides a high-quality continuous representation that enables the
767 model to unfold temporal information embedded in EEGs. This is achieved through a dual-encoder
768 architecture that integrates spectral graph features with stochastic temporal signals. Second, the
769 temporal-spatial ODE solver f_θ incorporates the initialization into additive and gating operations,
770 enabling adaptive emphasis on informative EEG connectivity patterns that encode richer dynamics
771 (new Figure xx in the revised manuscript). Furthermore, the stochastic regularizer mitigates the
772 classical error-accumulation problem of ODEs by modeling stochasticity in the EEG time domain,
773 thereby improving long-term stability. We also include a new ablation table (Table 2) to validate the
774 contribution of each component and support the above points.

775 **A.2 DYNAMIC SPECTRAL GRAPH STRUCTURE**
776

777 Raw EEG signals consist of complicated neural activities overlapping in multiple frequency bands,
778 each potentially encoding different functional neural dynamics. Directly analyzing EEG signals in
779 the time domain often misses subtle state transitions occurring uniquely within specific frequency
780 bands (Yang & Hong, 2022; Chen et al., 2023). Hence, it is beneficial to represent the intensity
781 variations of frequency bands and waveforms by decomposing raw EEG signals into frequency
782 components. To effectively provide detailed insights for subtle state transitions, we perform the
783 short-time Fourier transform (STFT) to each EEG epoch, preserving their non-negative log-spectral.
784 Consequently, the multi-channel EEG recordings are processed as:

$$785 \mathbf{X}_t = \sum_{t=-\infty}^{\infty} x[t] \omega[t-m] e^{-j\omega t}, \quad (11)$$

786 and a sequence of EEG epochs with their spectral representation is formulated as $\mathbf{X} \in \mathbb{R}^{N \times d \times T}$.
787

788 We then apply a graph representation by measuring the similarity among spectral representation
789 \mathbf{X} across EEG channels. Specifically, we define an adjacency matrix $\mathcal{A}_t(i, j)$ at each epoch t as
790 follows: $\mathcal{A}_t(i, j) = \text{sim}(\mathbf{X}_{i,t}, \mathbf{X}_{j,t})$ and compute the normalized correlation between nodes v_i and
791 v_j , where the graph structure and its associated edge weight matrix $A_{i,j}$ are inferred from X_t on
792 for each t -th epoch. We only preserve the top- τ highest correlations to construct the evident graphs
793 without redundancy. To avoid redundant connections and clearly represent dominant spatial struc-
794 tures, we retain only the top- τ strongest connections at each epoch for sparse and meaningful graph
795 representations. Thus, we obtain a temporal sequence of EEG spectral graphs $\{G_t = (\mathcal{V}_t, \mathcal{A}_t)\}_{t=0}^T$.
796

797 **Temporal Graph Representation.** Consider an EEG \mathbf{X} consisting of N channels and T time
798 points, we represent \mathbf{X} as a graph, denoted as $\mathcal{G} = \{\mathcal{V}, \mathcal{A}, \mathbf{X}\}$, where $\mathcal{V} = \{v_1, \dots, v_N\}$ represents
799 the set of nodes. Each node corresponds to an EEG channel. The adjacency matrix $\mathcal{A} \in \mathbb{R}^{N \times N \times T}$
800 encodes the connectivity between these nodes over time, with each element $a_{i,j,t}$ indicating the
801 strength of connectivity between nodes v_i and v_j at the time point t . Here, we redefine T as a
802 sequence of EEG segments, termed “epochs”, obtained using a moving window approach. The
803 embedding of node v_i at the t -th epoch is represented as $h_{i,t} \in \mathbb{R}^m$. Specifically, we perform the
804 short-time Fourier transform (STFT) to each EEG epoch, referring to (Tang et al., 2022). Then we
805 measure the similarity among the spectral representation of the EEG channels to initial the $\mathcal{A}_t(i, j)$
806 for each epoch t .

807 **A.3 DATASETS AND EVALUATION PROTOCOLS**
808

809 **Tasks.** In this study, we evaluate our ODEBRAIN for modeling the neuronal population dynamics
with the **seizure detection**. Seizure detection is defined as a binary classification task that aims to

810 distinguish between seizure and non-seizure EEG segments known as epochs. This task is fundamental
 811 to automated seizure monitoring systems.

812 **Baseline methods.** We select two baselines that study neural population dynamic studies: DCRNN
 813 (Li et al., 2017) that has a reconstruction objective; AMAG (Li et al., 2024) that has a discrete
 814 forecasting objective. We also compare against the benchmark Transformer BIOT (Yang et al.,
 815 2023) that captures temporal-spatial information for EEG tasks. Finally, we compare against a
 816 standard baseline CNN-LSTM (Ahmedt-Aristizabal et al., 2020).

817 **Datasets.** We use the Temple University Hospital EEG Seizure dataset v1.5.2 (TUSZ) and the
 818 TUH Abnormal EEG Corpus v2.0.0 (TUAB) (Shah et al., 2018), the largest publicly available EEG
 819 seizure database. TUSZ contains 5,612 EEG recordings with 3,050 annotated seizures. Each recording
 820 consists of 19 EEG channels following the 10-20 system, ensuring clinical relevance. A key
 821 strength of TUSZ lies in its diversity, as the dataset includes data collected over different time
 822 periods, using various equipment, and covering a wide age range of subjects. To provide normal
 823 controls, we sample studies from the “normal” subset of TUAB. Unless stated otherwise, recordings
 824 are processed with the same pipeline across corpora (canonical 10–20 montage with 19 channels
 825 and unified resampling), ensuring consistent preprocessing for cross-dataset evaluation.

826 **Metrics.** To answer **RQ1**, we evaluate the model using the Area Under the Receiver Operating
 827 Characteristic Curve (AUROC) and the F1 score. AUROC measures the ability of models across
 828 varying thresholds, while the F1 score highlights the balance between precision and recall at its
 829 optimal threshold for classification. For **RQ2**, we measure the predicted graph structural similarity
 830 using the Global Jaccard Index (GJI) (Castrillo et al., 2018):

$$831 \quad \text{GJI}(\mathcal{E}_{true}, \mathcal{E}_{Pred}) = \frac{|\mathcal{E}_{true} \cap \mathcal{E}_{Pred}|}{|\mathcal{E}_{true} \cup \mathcal{E}_{Pred}|} \quad . \quad (12)$$

832 **Model training.** All models are optimized using the Adam optimizer (Kingma, 2014) with an initial
 833 learning rate of 1×10^{-3} in the PyTorch and PyTorch Geometric libraries on NVIDIA A6000 GPU
 834 and AMD EPYC 7302 CPU. We adopt the adaptive Runge-Kutta NODE integration solver (RK45)
 835 with relative tolerance set to 1×10^{-5} for training.

836 A.4 HYPERPARAMETERS

837 All experiments are conducted on the TUSZ and TUAB dataset using CUDA devices and a fixed
 838 random seed of 123. EEG signals are preprocessed via Fourier transform, segmented into 12-second
 839 sequences with a 1-second step size, and represented as dynamic graphs comprising 19 nodes (EEG
 840 channels). Graph sparsification is achieved with $Top-k = 3$ neighbors. Both dynamic and individual
 841 graphs use dual random-walk filters, whereas the combined graph employs a Laplacian filter. The
 842 default backbone is GRU-GCN for reverse initial state encoding, consisting of 2-layer GRU with 64
 843 hidden units per layer. We also apply a CNN encoder with 3 hidden layers to extract the stochastic
 844 feature z^s to obtain the final initial value z_0 . The convolution adopts a 2×2 kernel size with batch
 845 normalization and max pooling. Input and output feature dimensions are both 100, with the number
 846 of classes set to 1 for detection/classification tasks.

847 We train models using an initial learning rate of 3e-4, weight decay 5e-4, dropout rate 0.0, batch
 848 sizes of 128 (training) and 256 (validation/test), and a maximum of 100 epochs. Gradient clipping
 849 with a maximum norm of 5.0 and early stopping with a patience of 5 epochs are applied. Model
 850 checkpoints are selected by maximizing AUROC on the validation set (weighted averaging). When
 851 the metric is loss, we instead minimize it; all other metrics (e.g., F1, ACC) are maximized. Data
 852 augmentation is enabled by default, while curriculum learning is disabled unless otherwise stated.

853 B ADDITIONAL RESULTS

854 Fig. 8 shows the visualization of the dynamic field f_θ of the latent space. It reveals distinct neural ac-
 855 tivity patterns: during synchronous low-frequency oscillations, dynamic field appears steady state,
 856 while high-frequency bursts trigger localized positive gradients, driving system activation. Asyn-
 857 chronous cross-channel interactions manifest as vortex-like flows, reflecting dynamic balance. No-
 858 tably, continuous dynamic evolution offers finer temporal resolution at arbitrate time. ODEBRAIN
 859 enables early detection of neural transitions, better than discrete-time methods.

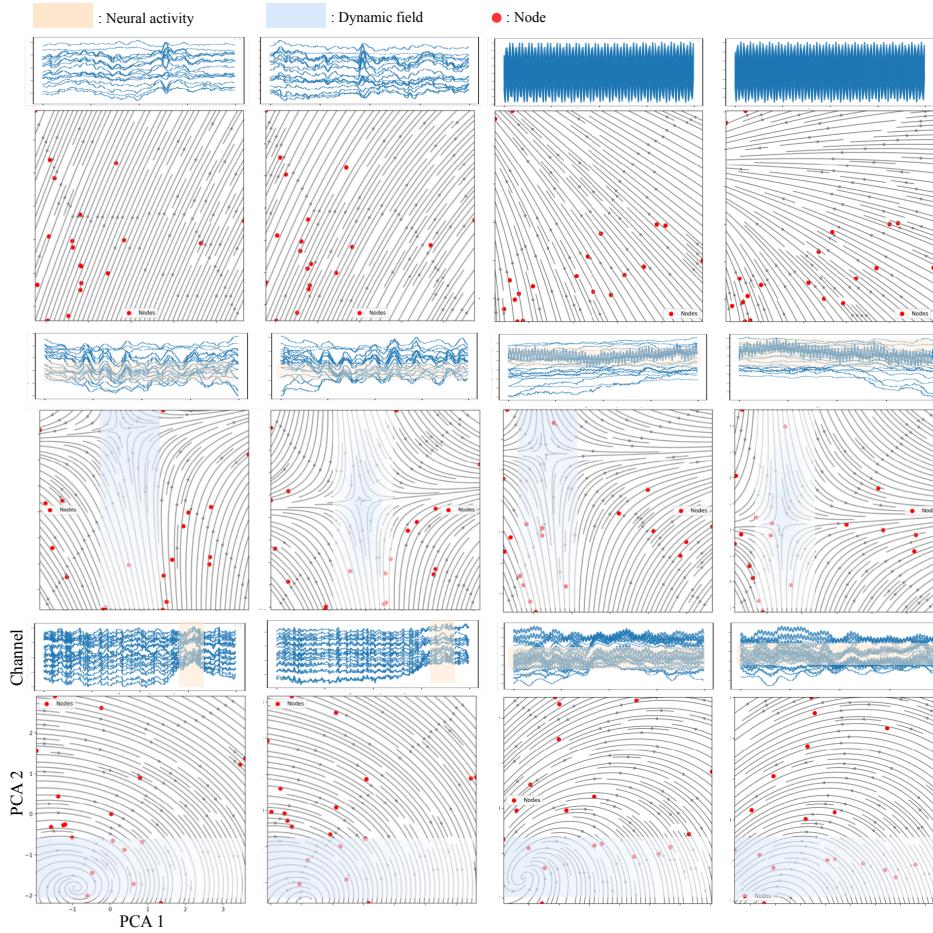
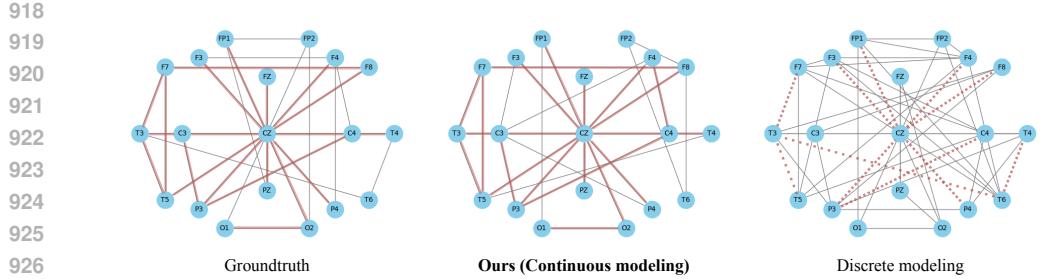


Figure 8: Visualization results between the multichannel EEG signal (upper) and its latent dynamic field f_θ (lower) in our temporal-spatial neural ODE.

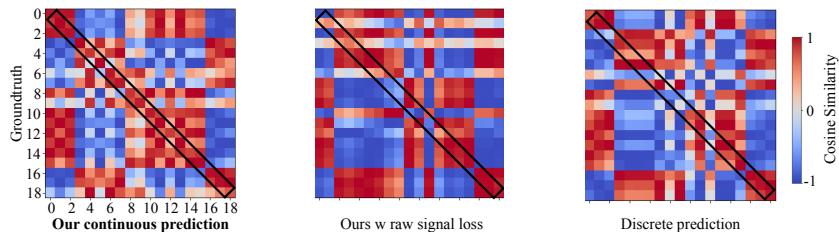
Fig. 9(a) depicts the predicted connectivity patterns and edge densities from ODEBRAIN closer to the true connectivity than discrete predictor-based AMAG, leading to a significant topology consistency. These structural features are crucial for modeling consistent brain dynamics, as small topological offsets lead to correct brain activity for downstream tasks. The stochastic components of the raw EEG signal can be regard as an implicit regularity term, which helps to enhance the generalization ability of continuous trajectory inference and maintains consistency with the structure. The latent variable trajectories generated by ODEBRAIN not only maintain the continuous evolutionary properties, but also enhance the predictive ability of spatial consistency.

Fig. 9 shows the effectiveness of predicting the dynamic graph structure depending on our meaningful forecasting objective Ω . Fig. 9(b) present that ODEBRAIN can achieve higher similarity than the discrete predictor, indicating that the continuous prediction model more accurately captures the true graph structure. The similarity matrices reveal that ours aligns more closely in terms of local correlation distribution, in which the discrete predictor exhibits notable discrepancies in certain block structures. The explicit graph embedding target improves the forecasting accuracy, while effectively guides the vector field $f\theta$ to learn continuous trajectories aligned with the neural activity, leading to more reliable prediction.

Table 5 concerns the sensitivity with Top-K options (K=3/7) and different graph regularizers, evaluated under both latent-ODE and ODEBRAIN. Overall, regularized graph construction consistently improves both metrics for the two frameworks, indicating that raw correlation graphs can be vulnerable to noise and volume conduction, while statistical regularization yields more reliable functional connectivity. Specifically, for latent-ODE, Graphical lasso and Norm regularization with K=3



(a) Comparison among groundtruth, graph output of our continuous predictor, graph output of discrete predictor.



(b) Comparison of correlation scores between graph output of our continuous predictor, and graph output of discrete predictor.

Figure 9: Comparison of the predicted graph output between our continuous predictor and discrete predictor.

Table 5: **Ablation of pooling options over ODE-trajectory on TUSZ (12s seizure detection) and TUAB. Bold indicates best result.**

Method	TUSZ			TUAB		
	Acc	F1	AUROC	Acc	F1	AUROC
Max pooling	0.877 ± 0.004	0.496 ± 0.017	0.881 ± 0.006	0.778 ± 0.003	0.774 ± 0.005	0.857 ± 0.005
Mean pooling	0.842 ± 0.002	0.385 ± 0.005	0.827 ± 0.003	0.748 ± 0.002	0.635 ± 0.002	0.827 ± 0.004
Sum pooling	0.851 ± 0.002	0.466 ± 0.005	0.867 ± 0.004	0.753 ± 0.003	0.755 ± 0.002	0.831 ± 0.004

achieve the strongest AUROC/Recall, suggesting that a sparser, regularized partial-correlation structure is preferable for continuous dynamics modeling. For ODEBRAIN, Norm with K=3 gives the best AUROC (0.881), whereas Graphical lasso with K=3 attains the highest Recall (0.613); the performance gap is small across K and regularizers, demonstrating robust behavior to graph-construction choices.

Table 6 shows the effects of GNN backbones on TUSZ under 12s and 60s forecasting horizons. We find that the GNN choice has a non-trivial impact on continuous seizure forecasting. GRU-GCN yields the best overall performance, reaching 0.881 AUROC / 0.496 F1 at 12s and 0.828 AUROC / 0.430 F1 at 60s. This indicates that recurrent gating over graph messages better captures fast and non-stationary ictal dynamics, especially for short-term prediction. DCRNN performs competitively but consistently below GRU-GCN (0.823/0.433 at 12s; 0.818/0.417 at 60s), suggesting diffusion-based spatiotemporal propagation is effective yet less expressive without explicit gating. In contrast, EvolveGCN degrades substantially, particularly for long-horizon forecasting (0.729 AUROC / 0.378 F1 at 60s), implying that merely evolving GCN

Table 6: **Ablation of GNN options on TUSZ (12s and 60s seizure detection) (AUROC↑, F1↑) Bold = best.**

ODE	Method	T(Sec.)	AUROC	F1
Temporal-spatial	EvolveGCN	12	0.791±0.003	0.401±0.002
		60	0.729±0.002	0.378±0.003
DCRNN		12	0.823±0.005	0.433±0.005
		60	0.818±0.004	0.417±0.007
GRU-GCN		12	0.881±0.006	0.496±0.017
		60	0.828±0.003	0.430±0.021

972 Table 8: **Ablation on TUSZ dataset for 12s seizure detection with different top- τ options. Bold and**

973 underline indicate best and second-best results.

Top- τ	AUROC	Recall	F1
2	0.867 ± 0.003	0.575 ± 0.003	0.484 ± 0.009
3	0.881 ± 0.006	0.605 ± 0.003	0.496 ± 0.017
7	0.870 ± 0.004	0.602 ± 0.004	0.488 ± 0.013
9	0.868 ± 0.004	0.589 ± 0.004	0.487 ± 0.011
11	0.866 ± 0.004	0.571 ± 0.002	0.491 ± 0.003
13	0.865 ± 0.003	0.562 ± 0.004	0.474 ± 0.003

982
983 parameters is insufficient under noisy epoch-wise correlation graphs. Overall, these results address
984 Q4/W3 by demonstrating that ODEBRAIN’s continuous latent dynamics benefit most from tempo-
985 rally gated graph modeling, and the superiority is consistent across horizons.

986 Table 7 illustrates the robustness of ODEBRAIN
987 when 30% of EEG segments are randomly
988 masked, comparing it with latent-ODE.
989 When 30% segments are randomly masked,
990 ODEBRAIN exhibits smaller AUROC drops
991 from 0.881 to 0.845, and F1 from 0.496 to
992 0.464; exceeding the AUROC and F1 of
993 latent-ODE by 0.124 and 0.067, respectively.
994 This demonstrates that ODEBRAIN maintains
995 stable vector fields and detection performance
996 under incomplete observations by leveraging
997 adaptive gating operations within the vector
998 field and stochastic regularization to suppress
999 irregular time step jumps. The results indicate
1000 that ODEBRAIN achieves robustness to trajectory uncertainty under the effects of missing values,
1001 enhancing the capacity of ODE solvers.

1002 Table 8 shows the effects of the sparsity level of the correlation graph, controlled by the top- τ neigh-
1003 bors per node. Overall, AUROC remains stable performance across τ from 2 to 13 (0.865–0.881),
1004 indicating that ODEBRAIN is not overly sensitive to top- τ options. $\tau = 3$ achieves the best AU-
1005 ROC (0.881) and F1 (0.496), while both too sparse ($\tau = 2$) and too dense graphs ($\tau \geq 9$) lead to
1006 slight degradation. When the values of τ is small, the graph becomes too sparse making the edge
1007 GRU forward stage affect the quality of the graph descriptor. As τ increases, edges become much
1008 denser and correlation-based connectivity contains propagated noise, which makes the edge GRU
1009 forward more over-smoothing and injects noise structure into the initial state z_0 . The denser top- τ
1010 reduces the robustness of the vector field f_θ . Therefore, we adopt $\tau = 3$ as a good trade-off between
1011 predictive performance, robustness of the ODE dynamics.

Table 7: **Ablation of missing value (MV) on TUSZ (12s seizure detection) with AUROC↑, F1↑, and predicted missing graph structural similarity (Sim.)↑ (Bold = best).**

MV	Method	Sim.	AUROC	F1
0%	latent-ODE	0.53	0.791 ± 0.003	0.401 ± 0.002
0%	ODEBRAIN	0.63	0.881 ± 0.006	0.496 ± 0.017
30%	latent-ODE	0.41	0.721 ± 0.004	0.377 ± 0.003
30%	ODEBRAIN	0.55	0.845 ± 0.002	0.464 ± 0.007