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ABSTRACT

Modeling neural population dynamics is crucial for foundational neuroscientific
research and various clinical applications. Conventional latent variable methods
typically model continuous brain dynamics through discretizing time with recur-
rent architecture, which necessarily results in compounded cumulative prediction
errors and failure of capturing instantaneous, nonlinear characteristics of EEGs.
We propose ODEBRATIN, a Neural ODE latent dynamic forecasting framework to
overcome these challenges by integrating spatio-temporal-frequency features into
spectral graph nodes, followed by a Neural ODE modeling the continuous latent
dynamics. Our design ensures that the latent representations can capture stochastic
variations of complex brain state at any given time point. Extensive experiments
verify that ODEBRAIN can improve significantly over existing methods in fore-
casting EEG dynamics with enhanced robustness and generalization capabilities.
Our design ensures that the latent representations can capture stochastic variations
of complex brain state at any given time point. Extensive experiments verifies that
ODEBRAIN can improve significantly over existing methods in forecasting EEG
dynamics with enhanced robustness and generalization capabilities.

1 INTRODUCTION

Modeling dynamic activities in brain networks or connectivity using electroencephalograms (EEGs)
is essential for biomarker discovery (Rolls et al., 2021; Jones et al., 2022) and supports a wide range
of clinical applications (Kotoge et al., 2024; Pradeepkumar et al., 2025). Temporal graph networks
(TGNs), which integrate temporally sequential models (such as RNNs) with graph neural networks
(GNNp5s), have recently emerged as a promising approach (Tang et al., 2022; Ho & Armanfard, 2023;
Delavari et al., 2024; Li et al., 2024). These methods represent multi-channel EEGs as graphs, where
GNNss capture spatial dependencies and sequential models capture fine-grained temporal dynamics,
thereby providing insights into how brain networks evolve over time.

However, a critical yet often overlooked problem remains: existing methods typically transform
EEG signals into fixed discrete time steps, which conflicts with the inherently continuous nature
of dynamic brain networks. Such discretization imposes rigid windowing assumptions and prevents
models from capturing the unfolding time-course dynamics or irregular transitions in brain networks.
This paper aims to tackle this issue by developing a novel method that models EEGs in an explicitly
continuous manner, leveraging Neural Ordinary Differential Equations (NODEs) (Chen et al., 2018).

Different from RNN-based sequential models that discretize time into fixed steps, NODEs param-
eterize the derivative of the hidden state and integrate it over continuous time (Park et al., 2021).
This formulation provides a principled way to model the dynamical evolution of neural activity (Hu
et al., 2024) and has been studied across domains (Fang et al., 2021; Hwang et al., 2021), including
brain imaging (Han et al., 2024). In this paper, we study a novel and critical problem: modeling
dynamics brain networks with NODE:s to learn informative continuous-time representations from
EEGs. This remains a unexplored and non-trivial task, and we focus on two main challenges:

(1) Effective spatiotemporal modeling for ODE initialization. NODEs critically depend on the
quality of their initial conditions, since the ODE solver propagates trajectories starting from this ini-
tialization. A poor initialization propagates errors and destabilizes long-term dynamics. However,
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Figure 1: (Top) Continuous EEG real-time neuronal activity recordings. (Mid) Recurrent-based
methods employ discrete modeling. (Bottom) ODE provides a continuous representation for fore-
casting neuronal population dynamics.

EEG signals are noisy and stochastic, making it challenging to learn robust spatiotemporal repre-
sentations for brain networks. Designing an initialization that captures meaningful spatiotemporal
structure is therefore essential for stable ODE integration and downstream learning.

(il ) Accurate trajectory modeling. Trajectory modeling is essential for NODEs, as their strength
lies in learning continuous latent dynamics rather than discrete predictions. Unlike conventional
time-series data that often exhibit stable patterns such as periodicity or long-term trends (Klotergens
et al., 2025), EEG signals are highly variable, making trajectory learning particularly challenging.
Therefore, a major challenge is to constrain and preserve meaningful trajectories in the latent space,
so that NODEs can faithfully capture the continuous dynamics of EEGs.

In this paper, we introduce a new continuous-time EEG Graph method, ODEBRAIN, based on the
NODE, for modeling dynamic brain networks. To address the above challenges, firstly, we propose
a dual-encoder architecture to provide effective initialization for NODEs. One encoder captures
deterministic frequency-domain observations to model brain networks, while the other integrates
raw EEG representations to retain stochastic characteristics. This combination yields robust spa-
tiotemporal features for initializing the ODE solver. Second, we propose a trajectory forecasting
decoder that maps latent features from NODE solutions back into graph structures. A multi-step
forecasting loss is then applied to explicitly predict future brain networks at different time steps.
This design enables direct trajectory modeling of dynamic brain networks and enhancing accuracy.
Third, beyond modeling, we are the first to propose using the gradient field of NODEs as a metric
to quantify EEG brain network dynamics. We conduct a case study on seizure data to illustrate its
clinical interpretability.

* New problem Formulation. To the best of our knowledge, we are the first to explicitly formulate
EEG brain networks as a continuous-time dynamical system, where the brain network is repre-
sented as a sequence of time-varying graphs whose latent dynamics are governed by a NODE.
This perspective is different from prior approaches based on recurrent models that models gradual
state transitions in a principled continuous-time manner.

* Novel Method. We develop the ODEBRAIN framework that integrates three key components. It
first combines deterministic graph-based features with stochastic EEG representations to produce
a robust initial state. Then an explicit trajectory forecasting decoder with multi-step forecast-
ing loss hat models temporal—spatial dynamics continuously, enabling principled forecasting of
evolving brain networks.

* Comprehensive Evaluation. We demonstrate strong performance across benchmarks and pro-
vide retrospective clinical case studies highlighting the interpretability. Our ODEBRAIN outper-
forms all baselines on the TUSZ dataset, achieving 6.0% and 8.1% improvements in F1 and ACC,
respectively. On the TUAB, ODEBRAIN consistently achieves best performance, such as 1.2%
improved F1 and 2.4% improved AUROC. Moreover, we further evaluate the learned field and
its clustering to reveal the dynamic behaviors (varying speed and direction) between seizure and
normal states, and achieving 12.0% improvement for brain connectivity prediction.

2 RELATED WORKS

Temporal graph methods for modeling EEG dynamics. GNNs have emerged as powerful method
for effectively capturing spatial dependencies and relational structures in the analysis of brain net-
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works (Li, 2022; Yang & Hong, 2022; Kan et al., 2023). Specifically, EEG-GNN performs a learn-
able mask to filter the graph structure of EEG for cognitive classification tasks (Demir et al., 2021).
ST-GCN formulates the connectivity of spatio-temporal graphs to capture non-stationary changes
(Gadgil et al., 2020). Tang et al. (2022) have introduced the DCRNN approach for graph model-
ing, setting a new standard for SOTA in seizure detection and classification tasks. Following this,
GRAPHS4MER (Tang et al., 2023) enhanced the graph structure and integrated it with the MAMBA
framework to improve long-term modeling capabilities. AMAG (Li et al., 2024) forecasting method
has been proposed to effectively capture the causal relationship between past and future neural activ-
ities, demonstrating greater efficiency in modeling dynamics. More recently, EvoBrain investigates
the expressive power of TGN in integrating temporal and graph-based representations for modeling
brain dynamics (Kotoge et al., 2025). However, these studies rely on discrete modeling, and may
lead to suboptimal representation of continuous dynamics of brain networks.

Differential equations for brain modeling. Modeling brain function as low-dimensional dynam-
ical systems via differential equations has been a long-standing direction in neuroscience (Church-
land et al., 2012; Mante et al., 2013; Vyas et al., 2020), and nonlinear EEG analysis for brain activity
mining (Pijn et al., 1997; Xue et al., 2016; Lehnertz et al., 2003; Lehnertz, 2008; Mercier et al.,
2024). Recently, Neural ODEs (NODEs) formulate dynamical systems by parameterizing deriva-
tives with neural networks and have shown impressive achievements across diverse fields (Fang
et al., 2021; Hwang et al., 2021; Park et al., 2021). In BCI and epilepsy modeling, controllable
formulations and fractional dynamics provide important theoretical foundations for modeling brain
dynamics (Gupta et al., 2018b; Tzoumas et al., 2018; Lu et al., 2021; Martis et al., 2015; Lepeu
et al., 2024). In latent-variable dynamics models, the EEG and neuronal processes are described
as fractional dynamics (Gupta et al., 2019; 2018a; Yang et al., 2019; 2025). In neuroscience, Kim
et al. (2021) learn neural activities by modeling the latent evolution of nonlinear single-trial dy-
namics with Gaussian processes from neural spiking data. Hu et al. (2024) propose using a smooth
2D Gaussian kernel to represent spikes as latent variables and describe the path dynamics with lin-
ear SDEs. Another study (Cai et al., 2023) demonstrates robust performance in neuroimaging by
combining biophysical priors with NODE:s, starting from predefined cognitive states. (Chen et al.,
2024) have shown the advantage of graph ODE by modeling continuous-time propagation for EEG
emotion task. Han et al. (2024) further illustrate that integrating spatial structure with NODEs can
effectively facilitate the modeling of neuroimaging dynamics, even in the presence of missing data.
However, these studies focus on imaging data or neuronal feature engineering, while data-driven
modeling of brain networks with fractional dynamics from EEGs remains underexplored.

3 PRELIMINARY AND PROBLEM FORMULATION

Neural Ordinary Differential Equations. NODEs (Chen et al., 2018) provide a framework for
modeling continuous-time dynamics by parameterizing the derivative of a hidden state with a neural
network. Intuitively, NODEs solve the trajectory of the hidden state continuously at any arbitrary
time 7, rather than restricting updates to fixed discrete steps At in RNNs. Specifically, the hidden
dynamics are computed via an adaptive numerical ODE solver:
t+1
z(t+ 1) ~ ODEsolver(zg, fo) = 20 + fo(t, z¢) dt, (1)
t
where fy is a continuous, differentiable function parameterized by a neural network. This formula-
tion yields a unique continuous trajectory z(t) over an interval [to, to + 7).

Intuition in Modeling EEG Dynamics. Conventional sequential models like RNNs have been
a standard tool to model EEG. However, they implicitly assume that time can be discretized into
fixed steps and that state transitions, such as the onset of a seizure, must occur exactly at those steps
(Kotoge et al., 2025). While this simplifies computation, it poorly matches the reality of EEG, where
brain activity evolves continuously and transitions can occur at arbitrary points in time. In contrast,
NODEs address this issue by modeling EEG dynamics through a continuous function fy, whose
integration yields smooth latent trajectories. In this framework, the discrete EEG signals recorded at
sampling intervals are interpreted as observations sampled from an underlying continuous process
| fo(t) dt. This perspective allows NODEs to capture both gradual oscillatory rhythms and abrupt
transitions in neural activity, providing a more faithful representation of EEG brain dynamics.

However, applying NODE to EEG is nontrivial, we recognize two questions needing to be answered:
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Figure 2: Continuous neural dynamics modeling via ODEBRAIN with graph forecasting. In stage
1, multi-channel EEG signals are encoded into spectral graph snapshots and fused with raw signal
features to construct noise-robust initial states for ODE integration to predict the future spectral
graphs. In stage 2, ODEBRAIN propagates latent states through time, generating dynamic field f
that capture continuous trajectory. Lastly, future graph node embeddings are obtained by z7, and
measure with ground truth graph node.

1. Robust initialization zo against transients and stochasticity in EEGs. NODE requires a well-
cablibrated starting condition 2 to effectively forecast future behavior. This is because EEGs
are highly stochastic, or even chaotic to an extent. Their key features are transient and may
appear without any preindicator (Chen et al., 2022). Without a proper initialization zg as guiding,
integrating the model fy over time alone cannot accurately forecast future states.

2. Meaningful objectives of fy(t, z:) to capture underlying EEG dynamics. Standard NODE train-
ing often relies on regression-like objectives aimed at forecasting future states. A key challenge
lies in identifying which representations best capture the underlying neural dynamics, so that
fo(t, z¢) is guided toward modeling the true evolution of brain networks rather than only surface-
level predictions. For example, in seizure analysis, the model must also learn to discern not only
seizure but also any leading states that herald a coming seizure (Li et al., 2021).

Problem Statement (Modeling Dynamic Brain Networks). Given the observed EEG up to
time ¢, denoted as X<, the goal is to model brain network dynamics and forecast their future
evolution. The predicted dynamics act as representations of brain states, enabling the distinction
between conditions such as seizure and non-seizure. Following prior work (Tang et al., 2022; Chen
et al., 2025), we represent the brain as a graph and aim to develop an EEG-based NODE ({2) to
predict a sequence of time-varying graphs

Giqlitr K = {Xt+1, s Xt+K} = Q(Zm fe(gu))' (2

over the next K steps graph Here, G;.; denotes the observed brain networks up to time ¢, and
Gi+1.++ Kk represents the predicted future dynamic brain networks. These graphs characterize dy-
namic brain networks, and this problem poses two key challenges: (i) obtaining a robust initializa-
tion z that can resist the transient and stochastic nature of EEGs; and (ii) defining an objective for
fo that faithfully captures underlying neural dynamics.

4 METHODOLOGY

Figure 2 shows the system overview of ODEBRAIN. Specifically, graph representations are obtained
from each EEG segment (Section A.2), entering stage 1: attaining reverse initial state encoding z9
and temporal encoding z® (Section 4.1). Stage 2 consists of a Neural ODE that takes as input 29, z2°
(Section 4.2). Finally, forecasting loss between ODE output and ground truth is computed.
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4.1 STAGE 1: REVERSE INITIAL STATE ENCODING

Spectral Node Embedding. Prior discrete forecasting work has shown the capacity to estimate
future neural dynamics depending on past activities in (Li et al., 2024). We define this forecasting

paradigm in our ODEBRAIN solver. Intuitively, the latent initial state zy and the field f, i.e., dz(tt)
will be described by encoding the past observation G; <; to govern the latent continuous evolution.
The works of (Rubanova et al., 2019; Chen et al., 2018) suggest that the construction of an effective
latent initial state requires an autoregressive model capable of extracting both the initial condition
and the latent evolution. Therefore, we propose a graph state descriptor ® : R% — R™ to denote the

latent graph state z9 € R™ with the autoregressive and graph network module.

Specifically, given the observations until now §; <; as input, we respectively perform sequence
representation for node and edge attributes. For node embeddings, node evolution is computed by
h = GRU™®(X; <;) where V; <; denote the spectral attribute sequences of node i and X; <; the
spectral intensity. Similarly, for edge the attribute sequences are defined from adjacency matrices by
h{; = GRU*#*(A;; ;). The resulting node and edge embeddings are integrated as an aggregated
graph structure G = (h(',, hfj’t) to be learned by a graph neural network (GNN) to capture spatial

dependency across epochs: z9 = GNN (h?7 hfj). The forward process of ® captures both the
epoch variations between frequency bands and explicit channel correlations.

Temporal Embedding with Stochasticity. Accurately modeling the temporal evolution of EEG
signals is crucial, as neural dynamics inherently exhibit nonuniform temporal fluctuations and asyn-
chronous activations across channels. Although the graph descriptor ® captures the evolution of the
node and edge attributes effectively, STFT segments EEG signals by constant windows, inevitably
disrupting the continuous temporal correlation between the raw EEG observations.

Moreover, fully deterministic latent representations lack the flexibility necessary to effec-
tively represent transient motions of EEG as analyzed in Section 3. Conversely, introduc-
ing controlled randomness into temporal embeddings serves as a natural regularization strat-
egy, effectively increasing the robustness and preventing premature convergence to suboptimal.
Here, we apply the temporal descriptor W
RT*L s R¢ ¢ < m to quantify the randomness (@ :
of the raw EEG epochs across IV channels into z° € 2(t) O SR B 2(t + At)
Re. Given EEG segments X from /N channels within R

a sliding window length L, we define the stochastic =(®); =) =)
temporal embedding as z° = U(Xpxy <n). The : o
controlled stochasticity further acts as a form of la-

(9(20) + 1) ® h(2z0)

tent space regularization, improving generalization FeT———

and robustness against noisy EEG data collection. w
NEREN

4.2 STAGE 2: (=)

FORWARD TEMPORAL-SPATIAL ODE SOLVING Stochastic regularization

Depending on the above encoding process, we define Proposed temporal-spatial ODE-RK4 function

the initial state zg = [2°, 29] with ® o ¥ s R™F¢,
that summarizes the stochastic temporal variability
and deterministic spectral connectivity, respectively.

Figure 3: The full structure of the temporal-
spatial ODE solving. (a) RK-4 step numeri-
cal solver. (b) Procedure of temporal-spatial
Given the initial state zo € R™T¢, general ap- fo with the gate operation-based residual
proaches model the ODE vector field following the module and temporal adaptive decay.
classical neural network solution fy with residual connection as:

dz(t) = fo(z(t),t;©)dt, =zo=[2°29], te[t+1,t+ K] 3)

where fp : R™T¢ s R™*¢ represents a vector field to capture the complicated dynamics and its
continuous evolution is governed by fp with the learnable ® across the entire epoch sequences.
However, this leads to the problem of optimizing the deep network-based fy on highly variable EEG
states, making the large solver errors. Considering the deep architecture-based multi-step numeri-
cal solver design (Lu et al., 2018; Oh et al., 2024) and logic gating interaction of brain dynamics
(Goldental et al., 2014), we design a temporal-spatial ODE solving to incorporate initial state zg
for additive and gate operations as shown in Figure 3. In addition, we further introduce an adaptive
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decay component conditioned on the stochastic temporal state z*, to adjust the vector field fy, ac-
counting for the complexity and dynamic nature of the brain as a system. As shown in the Figure
3(b), the fy used in proposed ODE function is computed as follows:

fo(z0) = (9(2z0) +1) ® h(zo) — /\(z‘“) zo, =z =[2°,29], 4)

where © represents element-wise multiplication. Initially, the vector field is computed by the general
residual block h(z() and updated by a gated vector field with sigmoid function o as:

g(z0) = c(Wyzo + by) € (0,1)™F¢, (5)

which provides state-adaptive modulation of the dynamics. Finally, to regularize trajectories under
noisy EEG inputs, we add an adaptive decay conditioned on the temporal stochastic state z°:

Az*) = softplus(W? o tanh(WM2® + bt) + b%) > 0. (6)

The latent trajectory z(t) at arbitrary time ¢ can be solved by:

z° K z5
24K = | g +/t+1 Jo 27 0] dt . (7N

The state solutions are calculated by solving with efficient numerical solvers in Figure 3(a), such
as Runge-Kutta (RK) (Schober et al., 2019). The latent state at the next timestamp is updated as
follows:

At
z(t + At) :Z(t)-i-?(kj + 2ko + 2k3 + ky). ®)

4.3 GRAPH EMBEDDING FORECASTING

Depending on the Eq. 7, the latent dynamic function and neural forecasting are presented as follow:

{Zt4+1,...,2t+Kx} = ODESolver (fp, [2°,27],[t + 1,t + K]), 9)
Givi =Uzpi) Vie{l,2,... K}, (10)

where the continuous latent trajectories {z(¢)}{£, are projected back to the future EEG node
attributes with V the set of all possible unique nodes in G;i1.++x via a predictive module
Q : R™+¢ 5 RY, explicitly capturing spatial correlations across EEG channels over future K time
steps. Here, X. >t = [X. 441, .., X 1+ k| integrate all future node attributes.

Unlike the previous works, which focus on forecasting the temporal neural population dynam-
ics. Our learning objective is to predict the graph structure rather than the simple temporal
dynamics, since neuron firing generally activates in the asynchronous channels simultaneously

Lo = Eg|
namic graph forecasting loss to capture continuous neural dynamics via ODE solvers. Then we

pooling the latent continuous trajectory z(t) extracted from the ODE solver with entire timesteps for
downstream fine-tuning, like classification.

QAHL Kk — Gy1. KH . We first train the model in an unsupervised manner using dy-
2

5 EXPERIMENTS

In this section, we conduct experiments to answer the following research questions: RQ1. Does
ODEBRAIN strengthen seizure detection capability through continuous forecasting on EEGs? RQ2.
How does the initial state z, affect the development of latent neural trajectory? RQ3. Does our
objective of () facilitate dynamic optimization? Detailed experimental can be found in Appendix A.

5.1 EXPERIMENTAL SETUP

Tasks. In this study, we evaluate our ODEBRAIN for modeling the neuronal population dynamics
with the seizure detection. Seizure detection is defined as a binary classification task that aims to dis-
tinguish between seizure and non-seizure EEG segments known as epochs. This task is fundamental
to automated seizure monitoring systems.
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Table 1: Main results on TUSZ (12s seizure detection) and TUAB. Bold and underline indicate best
and second-best results. x: The performance depends on the discrete multi-steps forecasting. t: The
performance depends on the continuous multi-steps forecasting. 1: The performance depends on the
continuous single-step forecasting.

Method TUSZ TUAB
Acc F1 AUROC Acc F1 AUROC

CNN-LSTM 0.735£0.003  0.347+0.012  0.7574+0.003  0.7414+£0.002  0.736 £0.007  0.813 £ 0.003
BIOT 0.702 £0.003  0.294 £0.006  0.7724+0.006  0.7174+0.002  0.713+£0.004  0.788 £ 0.002
EvolveGCN 0.769 £0.002  0.385+0.005  0.7914+0.004  0.708 +0.003  0.707 £0.002  0.777 £ 0.003
DCRNN 0.816 £0.002  0.416 £0.009  0.8254+0.002  0.768 +0.004  0.769 £0.002  0.848 £ 0.002
latent-ODE 0.827 £0.004  0.470+0.005  0.8494+0.004  0.7494+0.003  0.745+£0.002  0.829 £ 0.004
latent-ODE (RK4)  0.821 £0.003  0.465+£0.001  0.845+£0.004  0.746 £0.002  0.7394+0.002  0.823 4 0.003
ODE-RNN 0.802£0.002  0.455+0.007  0.8554+0.003  0.7514+0.003  0.744 £0.004  0.838 £ 0.005
neural SDE 0.857 £0.002  0.467 £0.003  0.85140.002  0.768 £0.003  0.751£0.003  0.834 £ 0.002
Graph ODE 0.849 £0.003  0.475£0.005  0.8414+0.003  0.757+£0.003  0.737 £0.006  0.823 £ 0.004
ODEBRAIN' 0.869 £0.003  0.488 £0.015  0.8754+0.005  0.7714+0.005  0.770£0.005  0.849 £ 0.003
ODEBRAIN? 0.877 £0.004 0.496 +0.017 0.881+0.006 0.778+0.003 0.774+0.005 0.857 +0.005

(a) Seizure

(b) Normal & Pre-seizure (c) Seizure

direction

2

Field
center

Figure 4: Visualization results between the multichannel EEG signal (upper and lower) and its latent
dynamic field fy (middle) obtained by ODEBRAIN. Local minima appearing in (a) and (c) indicate
rapid changes and drastic changes, corresponding to seizure states. These centers do not appear in
Normal and Pre-seizure states (b).

Baseline methods. We select two baselines that study neural population dynamic studies: DCRNN
(Liet al., 2017) that has a reconstruction objective. We also compare against the benchmark Trans-
former BIOT (Yang et al., 2023) that captures temporal-spatial information for EEG tasks. Finally,
we compare against a standard baseline CNN-LSTM (Ahmedt-Aristizabal et al., 2020).

Metrics. To answer RQ1, we evaluate the model using the Area Under the Receiver Operating
Characteristic Curve (AUROC) and the F1 score. AUROC measures the ability of models across
varying thresholds, while the F1 score highlights the balance between precision and recall at its
optimal threshold for classification. For RQ2, we measure the predicted graph structural similarity

using the Global Jaccard Index (GJI) GII(Erue, Epred) = % (Castrillo et al., 2018). For

RQ3, We compute the cosine similarity of predicted node embeddings.
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Figure 5: Visualizing learned dynamic fileds between our spatial-temporal(ST)-ODE solver and the

frequency (F)-ODE solver.

5.2 RESULTS

5.2.1 MAIN RESULT

RQ1 concerns the continuous forecasting capability on EEG. Table 1 summarize seizure detec-
tion accuracy across models on the TUSZ and TUAB datasets for a duration of 12 seconds. Our
ODEBRAIN consistently outperforms all baselines on the AUROC and F1 score, demonstrating the
superiorty of continuous forecasting. Notably, our single-step forecasting achieves an AUROC of
0.881 £ 0.006 and an F1 score of 0.496 4= 0.017, surpassing latent-ODE. Our multi-step forecasting
attains a Recall of 0.563 % 0.015, balancing overall detection capability and positive-instance cov-
erage. These results show that ODEBRAIN is more effective in capturing the transient dynamics of
EEGs in contrast to the fixed-time-interval or reconstruction baselines.

To further illustrate this point, we visualize the
dynamic field fy of the latent space in Fig. 4.
This dynamic field characterizes the difference
between seizure and normal states. This is most
apparent from the centers in seizure figures Fig-
ure 4(a) and 4(c) while absent from normal &
pre-seizure states 4(b). These centers depict
an area where gradients point to it and even-
tually the flows converge. This aligns well with
the corresponding EEGs that show wild oscil-
lations featuring high frequency components.
By contrast, for the normal & pre-seizure data,
such centers are not present in the field, show-
ing that the dynamics is driven mainly by low-
frequency oscillations. It is worth noting that
such visualization is only available to continu-
ous dynamics modeling of our method.

In summary, we can answer RQ1 as follows:
through continuous forecasting, ODEBRAIN
outperforms existing baselines in seizure de-
tection capability by accurately depicting neu-
ral population dynamics. The learned field
fo can clearly delineate the boundary between
seizure and normal states via its vector field
representation of neuronal activity. Unlike the
discrete-time-interval and reconstruction-based

Table 2: Results (AUROCT, F11) on TUSZ (12s
and 60s seizure detection) against discrete and
continuous baselines, with options on the gate and
stochastic regularization. (-: w/o, +Random: gate
with random coefficients for stochastic regulariza-
tion.) Bold = best.

Method T(s) AUROC F1
Model
% BIOT 12 0.772+0.006 0.29440.006
§ 60 0.64240.009 0.2561+0.003
g DCRNN 12 0.816+0.002 0.416+0.009
@} 60 0.802+0.003 0.413+0.005
<
o latent-ODE 12 0.791£0.004 0.3854-0.005
g 60 0.745+0.036 0.331+0.031
A ODEBRAIN 12 0.88140.006 0.496+-0.017
60 0.828-+0.003 0.430+0.021
z - Gate 12 0.867+0.004 0.48840.007
5 60 0.821£0.034 0.424+0.003
ﬁ - Stochastic 12 0.848+0.017 0.462+0.013
o) 60 0.81740.029 0.41440.047

+Random 12 0.860+0.017 0.47440.033
60 0.819+0.026 0.418+0.017

baselines, ODEBRAIN provides arbitrary temporal resolution, and hence is sensitive to transient
neural changes. We have verified that it helps capture the transition process of different brain states.
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Figure 7: Summary of ablation study. (a) State initialization. We compare spatial-only, mixed, and
temporal—spatial initialization and summarized results in F1, Recall and AUROC. Temporal-Spatial
achieves the best F1 (0.502) with a competitive recall. (b) Loss funtion. Replacing our struc-
tural forecasting loss with reconstruction-only or raw-signal forecasting degrades performance on
AUROLC. (c) Forecast horizon. AUROC decreases as the horizon grows (1s — 3s — 11s), and Tem-
poral-Spatial remains the best across all horizons over others.

5.2.2 DYNAMIC GRAPH FORECASTING EVALUATION

RQ2 concerns initial state zo. Fig. 6 depicts the predicted connectivity patterns and edge den-
sities. It is visible that ODEBRAIN is closer to the ground truth than AMAG in showing a
more consistent topology. Consistent structural features with small offsets are crucial for cor-
rectly modeling brain dynamics. ODEBRAIN utilizes stocasticity in the raw EEG signal as an
implicit regularization term. This term helps enhance the generalization ability of continuous
trajectory inference, as can be seen from Figure 6(a) going from 0.53 to 0.63 and maintains
a consistent structure. We are ready to answer RQ2, given our z;, ODEBRAIN can generate
latent trajectories that respect EEG dynamics and maintain continuous evolutionary properties.
Table 2 describes the seizure detection performance

under 12s and 60s, comparing discrete and con- o 0.63

tinuous baselines with ODEBRAIN. ODEBRAIN 9\0";\ 0.60

achieves the best or tied-best results at both hori- \,‘\,e@;\“:@ 0.53

zons, indicating that adaptive vector field effectively Sase 2051 j ; :
age . . O . & Q7045 0.50 0.55 0.60 0.65 0.70

strengthens stability. The ablations further validate 00“’@“1@ Structural Similarity 1

our design by removing the gating mechanism leads ST Cont.: continuous forecasting.

to performance drop from 0.881 to 0.867, highlight- & Disc.: discrete forecasting.

ing the adaptive vector field can achieve stable tra-  (a) Predicted graph structural similarity scores result

jectory evolution. Removing stochastic regulariza-
tion also degrades F1 from 0.496 to 0.462, proofing
that stochastic regularization mitigates dynamics in-
stability caused by noise. In contrast, using a gate
with random coefficients for stochastic regulariza-
tion still underperforms the full model, implying that
our learnable regularization is more effective.

RQ3 concerns consistency in the graphs. Figure 6
shows the effectiveness of our objective €2 that helps
predict dynamic graph structures. It is visible that
ODEBRAIN achieves higher similarity scores (0.53
— 0.63) than the discrete predictor, indicating that
ODEBRAIN more accurately captures the true graph
structure with the help of €. The similarity matrices
reveal that ours aligns more closely in terms of lo-
cal correlation distribution, in which the discrete pre-
dictor exhibits notable discrepancies in certain block
structures. Now we can answer RQ3: the explicit Discrete modeling
graph embedding target improves forecasting accu- (b) Predicted graph structures
racy. This is achieved by guiding the vector field fy
to learn continuous trajectories that align well with
the neural activity, eventually leading to more reli-
able prediction.

Figure 6: Results on (a) graph similarity and
(b) functional connections.
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Table 3: Computational cost results on Wall-Table 4: Ablation study on Top-7 and differ-

clock (s), and NFEs.

ent regularizer options.
mean-+std). Bold = best.

(AUROC, Recall T,

Type Model Param. Wall NFEs Model Regularizer Top-  AUROC Recall
o CNN-LSTM 5976K 0.58640.004 - Shrinkage 3 0.833+0.032 0.567+0.021
s m
§ BIOT 3174K 0.508+0.003 _ 8 7 0.829+0.039 0.554+0.032
A _ & Graphicallasso 3 0.846+0.025 0.557£0.022
DCRNN 281K 0.418+0.006 E) 7  0.841£0.036 0.531+0.031
72} <
g latent-ODE 386k  0.421:£0.002 102 =~ Norm 3 0.84940.004 0.575+0.005
£ ODE-RNN 675k 0.6014+0.005 189 7 0.83840.034 0.545+0.043
é neural SDE 346k 0.482 £0.003 153 Shrinkage 3 0.872+0.023 0.606+0.035
z
ODEBRATN 459K 0.516+0.002 164 5 7 0.86840.034 0.594+0.043
% Graphical lasso 3 0.8724+0.017 0.61340.033
E 7 0.874+0.029 0.607+0.004
©  Norm 3 0.881+0.006 0.605+0.003
7 0870£0.004 0.602+0.004

5.2.3 ABLATION STUDY

We perform ablation study on the following factors of ODEBRAIN: initialization 2, loss objective
) and forecasting horizon, the results are summarized in Figure 7.

Initial state. Temporal-spatial initial state option yields the best performance, achieving the highest
AUROC (0.877) and surpassing Spatial-only (0.862) and Mix up (0.851). It mitigates sensitiv-
ity to initial conditions and delivers the largest gains at the longest horizon (11s). Loss objective.
Our structural multi-step forecasting consistently outperforms reconstruction-only and raw-signal
forecasting across F1/Recall/AUROC, indicating that geometry-aware regularization improves dy-
namical modeling. We attribute the gains to ODEBRAIN that couples spectral-spatial structure with
EEG dynamics, enabling more stable integration and stronger generalization.

Table 3 shows single-batch inference cost for discrete vs. continuous baselines, including parame-
ters, wall-clock time, and NFEs (only for solver-based models). Discrete methods have fixed-depth
computation, so latency mainly follows model size/sequence length. NFEs are shown only for the
ODE solver-based models. ODEBRAIN contains 459k parameters with 164 NFEs (lower than ODE-
RNN 189 and comparable to other continuous baselines), and 0.516s per batch, which falls in the
same latency band as discrete models with fixed-depth computation. These results indicate that our
continuous solver does not introduce prohibitive cost in practice, and the reduced NFEs suggest a
more stable integration than other complicated continuous baselines.

Table 4 evaluates sensitivity to top-7 sparsity and graph regularizers for both latent-ODE and
ODEBRAIN. Adding regularization improves Recall, confirming that norm correlation graphs are
noisy and susceptible to volume conduction, while regularized connectivity is more reliable. The
performance of different 7 sparsity is stable across regularizers. Concretely, an ODE solver can
achieve better performance with sparser, regularized graphs. Graphical lasso or Norm with 3 spar-
sity yields the best in both AUROC and Recall. For ODEBRAIN, Norm with 3 sparsity achieves
the best AUROC (0.881), and Graphical lasso gets the highest Recall (0.613), demonstrating robust
dependence on graph-construction choices.

6 CONCLUSION

In this work, we introduced ODEBRAIN, a novel continuous-time dynamic modeling framework for
modeling EEGs, designed explicitly to overcome critical limitations associated with discrete-time
recurrent approaches. By adopting a neural ODE-based approach with adaptive vector field strategy,
our model effectively captures the continuous neural dynamics and spatial interactions in EEG data.
Although ODEBRATIN models latent dynamics in continuous time, the inputs and supervision are still
based on epoched segments, which limits long-term continuous modeling. And the generalization
to other neurological disorders or cognitive tasks remains to be explored.
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REPRODUCIBILITY STATEMENT

All the results presented in the paper were run with the settings detailed in Appendix A, and the
corresponding code is available at this anonymous repository.

THE USE OF LARGE LANGUAGE MODELS

We clarify that no LLM was used in any part of the paper.
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A  EXPERIMENTAL SETTINGS

A.1 DISCUSSION: KEY INSIGHTS OF ODEBRAIN

Conceptually, the major gain of our work comes from explicitly modeling continuous dynamics over
graph structures. By capturing the dynamic evolution of EEG signals, the model can effectively
handle substantial noise, randomness, and fluctuations. Our comparison with the baseline without
continuous dynamics (i.e., using only a temporal GNN backbone) clearly supports this observation.
Methodologically, our improvements arise from two key aspects: (i) obtaining a high-quality ini-
tialization zg, and (ii) formulating a vector field fy that captures informative and stable dynamics.
First, the reverse initial encoding provides a high-quality continuous representation that enables the
model to unfold temporal information embedded in EEGs. This is achieved through a dual-encoder
architecture that integrates spectral graph features with stochastic temporal signals. Second, the
temporal-spatial ODE solver fy incorporates the initialization into additive and gating operations,
enabling adaptive emphasis on informative EEG connectivity patterns that encode richer dynamics
(new Figure xx in the revised manuscript). Furthermore, the stochastic regularizer mitigates the
classical error-accumulation problem of ODEs by modeling stochasticity in the EEG time domain,
thereby improving long-term stability. We also include a new ablation table (Table 2) to validate the
contribution of each component and support the above points.

A.2 DYNAMIC SPECTRAL GRAPH STRUCTURE

Raw EEG signals consist of complicated neural activities overlapping in multiple frequency bands,
each potentially encoding different functional neural dynamics. Directly analyzing EEG signals in
the time domain often misses subtle state transitions occurring uniquely within specific frequency
bands (Yang & Hong, 2022; Chen et al., 2023). Hence, it is beneficial to represent the intensity
variations of frequency bands and waveforms by decomposing raw EEG signals into frequency
components. To effectively provide detailed insights for subtle state transitions, we perform the
short-time Fourier transform (STFT) to each EEG epoch, preserving their non-negative log-spectral.
Consequently, the multi-channel EEG recordings are processed as:

— 0o

X = Z z[t]w[t — mle™ ™, (11)

t=o00
and a sequence of EEG epochs with their spectral representation is formulated as X € RV xd4xT

We then apply a graph representation by measuring the similarity among spectral representation
X across EEG channels. Specifically, we define an adjacency matrix .4,(¢, j) at each epoch ¢ as
follows: A, (7, 7) = sim(X; ¢, X, ;) and compute the normalized correlation between nodes v; and
v;, where the graph structure and its associated edge weight matrix A; ; are inferred from X, on
for each t-th epoch. We only preserve the top-7 highest correlations to construct the evident graphs
without redundancy. To avoid redundant connections and clearly represent dominant spatial struc-
tures, we retain only the top-7 strongest connections at each epoch for sparse and meaningful graph
representations. Thus, we obtain a temporal sequence of EEG spectral graphs {G; = (Vy, Ay) Y.

Temporal Graph Representation. Consider an EEG X consisting of N channels and 7" time
points, we represent X as a graph, denoted as G = {V, A, X}, where V = {v1,...,vx} represents
the set of nodes. Each node corresponds to an EEG channel. The adjacency matrix A € RV*NxT
encodes the connectivity between these nodes over time, with each element a; ;; indicating the
strength of connectivity between nodes v; and v; at the time point . Here, we redefine T" as a
sequence of EEG segments, termed “epochs”, obtained using a moving window approach. The
embedding of node v; at the ¢-th epoch is represented as h; ; € R™. Specifically, we perform the
short-time Fourier transform (STFT) to each EEG epoch, referring to (Tang et al., 2022). Then we
measure the similarity among the spectral representation of the EEG channels to initial the .A4;(3, j)
for each epoch ¢.

A.3 DATASETS AND EVALUATION PROTOCOLS

Tasks. In this study, we evaluate our ODEBRAIN for modeling the neuronal population dynamics
with the seizure detection. Seizure detection is defined as a binary classification task that aims to
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distinguish between seizure and non-seizure EEG segments known as epochs. This task is funda-
mental to automated seizure monitoring systems.

Baseline methods. We select two baselines that study neural population dynamic studies: DCRNN
(Li et al., 2017) that has a reconstruction objective; AMAG (Li et al., 2024) that has a discrete
forecasting objective. We also compare against the benchmark Transformer BIOT (Yang et al.,
2023) that captures temporal-spatial information for EEG tasks. Finally, we compare against a
standard baseline CNN-LSTM (Ahmedt-Aristizabal et al., 2020).

Datasets. We use the Temple University Hospital EEG Seizure dataset v1.5.2 (TUSZ) and the
TUH Abnormal EEG Corpus v2.0.0 (TUAB) (Shah et al., 2018), the largest publicly available EEG
seizure database. TUSZ contains 5,612 EEG recordings with 3,050 annotated seizures. Each record-
ing consists of 19 EEG channels following the 10-20 system, ensuring clinical relevance. A key
strength of TUSZ lies in its diversity, as the dataset includes data collected over different time pe-
riods, using various equipment, and covering a wide age range of subjects. To provide normal
controls, we sample studies from the “normal” subset of TUAB. Unless stated otherwise, recordings
are processed with the same pipeline across corpora (canonical 10-20 montage with 19 channels
and unified resampling), ensuring consistent preprocessing for cross-dataset evaluation.

Metrics. To answer RQ1, we evaluate the model using the Area Under the Receiver Operating
Characteristic Curve (AUROC) and the F1 score. AUROC measures the ability of models across
varying thresholds, while the F1 score highlights the balance between precision and recall at its
optimal threshold for classification. For RQ2, we measure the predicted graph structural similarity
using the Global Jaccard Index (GJI) (Castrillo et al., 2018):

_ |gtrue N gPred‘

GJI(gtruea 8P”'€d) - |gt U gP d‘
rue re

12)

Model training. All models are optimized using the Adam optimizer (Kingma, 2014) with an initial
learning rate of 1 x 1072 in the PyTorch and PyTorch Geometric libraries on NVIDIA A6000 GPU
and AMD EPYC 7302 CPU. We adopt the adaptive Runge-Kutta NODE integration solver (RK45)
with relative tolerance set to 1 x 10~ for training.

A.4 HYPERPARAMETERS

All experiments are conducted on the TUSZ and TUAB dataset using CUDA devices and a fixed
random seed of 123. EEG signals are preprocessed via Fourier transform, segmented into 12-second
sequences with a 1-second step size, and represented as dynamic graphs comprising 19 nodes (EEG
channels). Graph sparsification is achieved with Top-k = 3 neighbors. Both dynamic and individual
graphs use dual random-walk filters, whereas the combined graph employs a Laplacian filter. The
default backbone is GRU-GCN for reverse initial state encoding, consisting of 2-layer GRU with 64
hidden units per layer. We also apply a CNN encoder with 3 hidden layers to extract the stochastic
feature z° to obtain the final initial value zy. The convolution adopts a 2 x 2 kernel size with batch
normalization and max pooling . Input and output feature dimensions are both 100, with the number
of classes set to 1 for detection/classification tasks.

We train models using an initial learning rate of 3e-4, weight decay Se-4, dropout rate 0.0, batch
sizes of 128 (training) and 256 (validation/test), and a maximum of 100 epochs. Gradient clipping
with a maximum norm of 5.0 and early stopping with a patience of 5 epochs are applied. Model
checkpoints are selected by maximizing AUROC on the validation set (weighted averaging). When
the metric is loss, we instead minimize it; all other metrics (e.g., F1, ACC) are maximized. Data
augmentation is enabled by default, while curriculum learning is disabled unless otherwise stated.

B ADDITIONAL RESULTS

Fig. 8 shows the visualization of the dynamic field fy of the latent space. It reveals distinct neural ac-
tivity patterns: during synchronous low-frequency oscillations, dynamic field appears steady state,
while high-frequency bursts trigger localized positive gradients, driving system activation. Asyn-
chronous cross-channel interactions manifest as vortex-like flows, reflecting dynamic balance. No-
tably, continuous dynamic evolution offers finer temporal resolution at arbitrate time. ODEBRAIN
enables early detection of neural transitions, better than discrete-time methods.
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Figure 8: Visualization results between the multichannel EEG signal (upper) and its latent dynamic
field fo (lower) in our temporal-spatial neural ODE.

Fig. 9(a) depicts the predicted connectivity patterns and edge densities from ODEBRAIN closer to
the true connectivity than discrete predictor-based AMAG, leading to a significant topology con-
sistency. These structural features are crucial for modeling consistent brain dynamics, as small
topological offsets lead to correct brain activity for downstream tasks. The stochastic components
of the raw EEG signal can be regard as an implicit regularity term, which helps to enhance the gener-
alization ability of continuous trajectory inference and maintains consistency with the structure. The
latent variable trajectories generated by ODEBRAIN not only maintain the continuous evolutionary
properties, but also enhance the predictive ability of spatial consistency.

Fig. 9 shows the effectiveness of predicting the dynamic graph structure depending on our meaning-
ful forecasting objective 2. Fig. 9(b) present that ODEBRAIN can achieve higher similarity than the
discrete predictor, indicating that the continuous prediction model more accurately captures the true
graph structure. The similarity matrices reveal that ours aligns more closely in terms of local cor-
relation distribution, in which the discrete predictor exhibits notable discrepancies in certain block
structures. The explicit graph embedding target improves the forecasting accuracy, while effectively
guides the vector field f6 to learn continuous trajectories aligned with the neural activity, leading to
more reliable prediction.

Table 5 concerns the sensitivity with Top-K options (K=3/7) and different graph regularizers, eval-
uated under both latent-ODE and ODEBRAIN. Overall, regularized graph construction consistently
improves both metrics for the two frameworks, indicating that raw correlation graphs can be vul-
nerable to noise and volume conduction, while statistical regularization yields more reliable func-
tional connectivity. Specifically, for latent-ODE, Graphical lasso and Norm regularization with K=3
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Figure 9: Comparison of the predicted graph output between our continuous predictor and discrete

predictor.

Table 5: Ablation of pooling options over ODE-trajectory on TUSZ (12s seizure detection) and

TUAB. Bold indicates best result.

Method TUSZ

TUAB

Acc F1 AUROC Acc

F1 AUROC

Max pooling  0.877 £0.004 0.496 +0.017 0.881+0.006 0.778+0.003 0.774+0.005 0.857+0.005
Mean pooling  0.842+0.002  0.3854+0.005  0.827 £0.003  0.748 £0.002  0.635+0.002  0.827 & 0.004
Sum pooling 0.851+0.002  0.466 £0.005  0.867+£0.004 0.7534+0.003  0.755+0.002  0.831 £ 0.004

achieve the strongest AUROC/Recall, suggesting that a sparser, regularized partial-correlation struc-
ture is preferable for continuous dynamics modeling. For ODEBRAIN, Norm with K=3 gives the best
AUROC (0.881), whereas Graphical lasso with K=3 attains the highest Recall (0.613); the perfor-
mance gap is small across K and regularizers, demonstrating robust behavior to graph-construction

choices.

Table 6 shows the effects of GNN backbones
on TUSZ under 12s and 60s forecasting hori-
zons. We find that the GNN choice has a non-
trivial impact on continuous seizure forecast-
ing. GRU-GCN yields the best overall perfor-
mance, reaching 0.881 AUROC / 0.496 F1 at
12s and 0.828 AUROC / 0.430 F1 at 60s. This
indicates that recurrent gating over graph mes-
sages better captures fast and non-stationary ic-
tal dynamics, especially for short-term predic-
tion. DCRNN performs competitively but con-
sistently below GRU-GCN (0.823/0.433 at 12s;
0.818/0.417 at 60s), suggesting diffusion-based
spatiotemporal propagation is effective yet less

Table 6: Ablation of GNN options on TUSZ (12s
and 60s seizure detection) (AUROCT, F17) Bold

AUROC F1

0.791£0.003 0.401£0.002
0.729£0.002 0.378+0.003

0.823£0.005 0.433£0.005
0.818+0.004 0.417£0.007

= best.

ODE Method T(Sec.)
= EvolveGCN 12
g 60
= DCRNN 12
3 60
§ GRU-GCN 12

60

0.881+0.006 0.496+0.017
0.828+0.003 0.430+0.021

expressive without explicit gating. In contrast, EvolveGCN degrades substantially, particularly for
long-horizon forecasting (0.729 AUROC / 0.378 F1 at 60s), implying that merely evolving GCN
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Table 8: Ablation on TUSZ dataset for 12s seizure detection with different top-7 options. Bold and
underline indicate best and second-best results.

Top-1 AUROC Recall F1
2 0.867 £0.003 0.5754+0.003 0.484+0.009
3 0.881+0.006 0.605+0.003 0.496+0.017
7 0.8704+0.004  0.602+0.004 0.4884+0.013
9 0.868+0.004  0.589+0.004 0.487+0.011
11 0.866+0.004  0.571+£0.002 0.4914-0.003
13 0.8654+0.003  0.562+0.004 0.47440.003

parameters is insufficient under noisy epoch-wise correlation graphs. Overall, these results address
Q4/W3 by demonstrating that ODEBRAIN’s continuous latent dynamics benefit most from tempo-
rally gated graph modeling, and the superiority is consistent across horizons.

Table 7 illustrates the robustness of ODEBRAIN
when 30% of EEG segments are randomly
masked, comparing it with latent-ODE.
When 30% segments are randomly masked,
ODEBRAIN exhibits smaller AUROC drops
from 0.881 to 0.845, and F1 from 0.496 to

Table 7: Ablation of missing value (MV) on
TUSZ (12s seizure detection) with AUROCT,
F11, and predicted missing graph structural simi-
larity (Sim.)T (Bold = best).

0.464; exceeding the AUROC and FI of ., Method Sim.  AUROC F1
latent-ODE by 0.124 and 0.067, respectively. " |aent-ODE 0.53 0.79120.003 0.40140.002
This demonstrates that ODEBRAIN maintains N

ODEBRAIN 0.63 0.881+0.006 0.496+0.017
latent-ODE 0.41 0.72140.004 0.377+0.003
ODEBRAIN 0.55 0.845+0.002 0.464+0.007

stable vector fields and detection performance
under incomplete observations by leveraging
adaptive gating operations within the vector
field and stochastic regularization to suppress
irregular time step jumps. The results indicate
that ODEBRAIN achieves robustness to trajectory uncertainty under the effects of missing values,
enhancing the capacity of ODE solvers.

30%

Table 8 shows the effects of the sparsity level of the correlation graph, controlled by the top-7 neigh-
bors per node. Overall, AUROC remains stable performance across 7 from 2 to 13 (0.865-0.881),
indicating that ODEBRATIN is not overly sensitive to top-7 options. 7 = 3 achieves the best AU-
ROC (0.881) and F1 (0.496), while both too sparse (7 = 2) and too dense graphs (7 > 9) lead to
slight degradation. When the values of 7 is small, the graph becomes too sparse making the edge
GRU forward stage affect the quality of the graph descriptor. As 7 increases, edges become much
denser and correlation-based connectivity contains propagated noise, which makes the edge GRU
forward more over-smoothing and injects noise structure into the initial state zy. The denser top-7
reduces the robustness of the vector field fy. Therefore, we adopt 7 = 3 as a good trade-off between
predictive performance, robustness of the ODE dynamics.
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