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Abstract

Standard regularized training procedures correspond to maximizing a posterior
distribution over parameters, known as maximum a posteriori (MAP) estimation.
However, model parameters are of interest only insomuch as they combine with the
functional form of a model to provide a function that can make good predictions.
Moreover, the most likely parameters under the parameter posterior do not generally
correspond to the most likely function induced by the parameter posterior. In fact,
we can re-parametrize a model such that any setting of parameters can maximize the
parameter posterior. As an alternative, we investigate the benefits and drawbacks
of directly estimating the most likely function implied by the model and the data.
We show that this procedure leads to pathological solutions when using neural
networks and prove conditions under which the procedure is well-behaved, as well
as a scalable approximation. Under these conditions, we find that function-space
MAP estimation can lead to flatter minima, better generalization, and improved
robustness to overfitting.

1 Introduction

Machine learning has matured to the point where we often take key design decisions for granted. One
of the most fundamental such decisions is the loss function we use to train our models. Minimizing
standard regularized loss functions, including cross-entropy for classification and mean-squared or
mean-absolute error for regression, with ℓ1 or ℓ2 regularization, exactly corresponds to maximizing a
posterior distribution over model parameters [2, 19]. This standard procedure is known in probabilistic
modeling as maximum a posteriori (MAP) parameter estimation. However, parameters have no
meaning independent of the functional form of the models they parameterize. In particular, our
models fθ(x) are functions given parameters θ, which map inputs x (e.g., images, spatial locations,
etc.) to targets (e.g., softmax probabilities, regression outputs, etc.). We are typically only directly
interested in the function and its properties, such as smoothness, which we use to make predictions.

Alarmingly, the function corresponding to the most likely parameters under the parameter posterior
does not generally correspond to the most likely function under the function posterior. For example,
in Figure 1a, we visualize the posterior over a mixture coefficient θR in a Gaussian mixture regression
model in both parameter and function space, using the same Gaussian prior for the mixture coefficients
(corresponding to ℓ2 regularization in parameter space). We see that each distribution is maximized
by a different parameter θR, leading to very different learned functions in Figure 1b. Moreover, we
can re-parametrize the functional form of any model such that any arbitrary setting of parameters
maximizes the parameter posterior (we provide further discussion and an example in Appendix A).

Should we then be learning the most likely functions or parameters? As we will see, the nuanced
pros and cons of each approach are fascinating and often unexpected.
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Figure 1: Illustration of the Difference Between Most Likely Functions and Parameters. The function
that is most probable (denoted as FS-MAP) under the posterior distribution over functions can substantially
diverge from the function represented by the most probable parameters (denoted as PS-MAP) under the posterior
distribution over parameters. We illustrate this fact with a regression model with two parameters, θL and θR, both
with a prior N (0, 1.22). This model is used to learn a mixture of two Gaussians with fixed mean and variance,
where the mixture coefficients are given by exp(θL) and exp(θR). Both the most probable solution and the
posterior density show significant differences when analyzed in function-space versus parameter-space. Since
θL is well-determined, we only plot the posterior as a function of θR. We normalize the area under p(fθ|D) to 1.

On one hand, we might expect the answer to be a clear-cut “We should learn most likely functions!”.
In Section 3, we present a well-defined function-space MAP objective through a generalization of
the change of variables formula for probability densities. In addition to functions being the direct
quantity of interest and the function-space MAP objective being invariant to the parametrization of
our model, we show that optimization of the function-space MAP objective indeed results in more
probable functions than standard parameter-space MAP, and these functions often correspond to flat
minima [10, 12] that are more robust to overfitting.

On the other hand, function-space MAP is not without its own pathologies and practical limitations.
We show in Section 4 that the Jacobian term in the function-space MAP objective admits trivial
solutions with infinite posterior density and can require orders of magnitude more computation and
memory than parameter-space MAP, making it difficult to scale to modern neural networks. We
also show that function-space MAP will not necessarily be closer than parameter-space MAP to the
posterior expectation over functions, which in Bayesian inference forms the mean of the posterior
predictive distribution and has desirable generalization properties [2, 19, 29]. To help address the
computational limitations, we provide in Section 4 a scalable approximation to the function-space
MAP objective applicable to large neural networks using Laplacian regularization, which we refer
to as L-MAP. We show empirically that parameter-space MAP is often able to perform on par with
L-MAP in accuracy, although L-MAP tends to improve calibration.

The aim of this paper is to improve our understanding of what it means to learn most likely functions
instead of parameters. Our analysis, which includes theoretical insights as well as experiments with
both carefully designed tractable models and neural networks, paints a complex picture and unearths
distinct benefits and drawbacks of learning most likely functions instead of parameters. We conclude
with a discussion of practical considerations around function-space MAP estimation, its relationship
to flat minima and generalization, and the practical relevance of parameterization invariance.

Our code is available at https://github.com/activatedgeek/function-space-map.

2 Preliminaries

We consider supervised learning problems with a training dataset D = (xD, yD) = {x(i)D , y
(i)
D }Ni=1 of

inputs x ∈ X and targets y ∈ Y with input space X ⊆ RD and output space Y ⊆ RK . For example,
the inputs x could correspond to times, spatial locations, tabular data, images, and the targets y to
regression values, class labels, etc.
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To create a model of the data D, one typically starts by specifying a function fθ : X → Y parametrized
by a vector θ ∈ RP which maps inputs to outputs. fθ could be a neural network, a polynomial model,
a Fourier series, and so on. Learning typically amounts to estimating model parameters θ. To this end,
we can relate the function fθ to the targets through an observation model, p(y|x, fθ). For example, in
regression, we could assume the outputs y = fθ(x) + ϵ, where ϵ ∼ N (0, σ2) is additive Gaussian
noise with variance σ2. Equivalently, p(y|x, θ) = N (y|fθ(x), σ2). Alternatively, in classification,
we could specify p(y|x, θ) = Categorical(softmax(fθ(x))). We then use this observation model to
form a likelihood over the whole dataset p(yD|xD, θ). In each of these example observation models,
the likelihood factorizes, as the data points are conditionally independent given model parameters
θ, p(yD|xD, θ) =

∏N
i=1 p(y

(i)
D |x(i)D , θ). We can further express a belief over values of parameters

through a prior p(θ), such as p(θ) = N (θ|µ,Σ). Finally, using Bayes rule, the log of the posterior
up to a constant c independent of θ is,

log

parameter posterior︷ ︸︸ ︷
p(θ|yD, xD) = log

likelihood︷ ︸︸ ︷
p(yD|xD, θ)+ log

prior︷︸︸︷
p(θ) + c. (1)

Notably, standard loss functions are negative log posteriors, such that maximizing this parameter pos-
terior, which we refer to as parameter-space maximum a posteriori (PS-MAP) estimation, corresponds
to minimizing standard loss functions [19]. For example, if the observation model is regression
with Gaussian noise or Laplace noise, the negative log likelihood is proportional to mean-square or
mean-absolute error functions, respectively. If the observation model is a categorical distribution
with a softmax link function, then the log likelihood is negative cross-entropy. If we use a zero-mean
Gaussian prior, we recover standard ℓ2 regularization, also known as weight-decay. If we use a
Laplace prior, we recover ℓ1 regularization, also known as LASSO [26].

Once we maximize the posterior to find

θ̂PS-MAP = argmaxθ p(θ|yD, xD), (2)

we can condition on these parameters to form our function fθ̂PS-MAP to make predictions. However, as
we saw in Figure 1, fθ̂PS-MAP is not in general the function that maximizes the posterior over functions,
p(fθ|yD, xD). In other words, if

θ̂FS-MAP = argmaxθ p(fθ|yD, xD) (3)

then generally fθ̂PS-MAP ̸= fθ̂FS-MAP . Naively, one can write the log posterior over fθ up to the same
constant c as above as

log

function posterior︷ ︸︸ ︷
p(fθ|yD, xD) = log

likelihood︷ ︸︸ ︷
p(yD|xD, fθ)+ log

function prior︷ ︸︸ ︷
p(fθ) + c, (4)

where p(yD|xD, fθ) = p(yD|xD, θ), but just written in terms of the function fθ. The prior p(fθ)
however is a different function from p(θ), because we incur an additional Jacobian factor in this
change of variables, making the posteriors also different.

We must take care in interpreting the quantity p(fθ) since probability densities in infinite-dimensional
vector spaces are generally ill-defined. While prior work [14, 23, 24, 25, 30] avoids this problem by
considering a prior only over functions evaluated at a finite number of evaluation points, we provide
a more general objective that enables the use of infinitely many evaluation points to construct a more
informative prior and makes the relevant design choices of function-space MAP estimation more
interpretable.

3 Understanding Function-Space Maximum A Posteriori Estimation

Function-space MAP estimation seeks to answer a fundamentally different question than parameter-
space MAP estimation, namely, what is the most likely function under the posterior distribution over
functions implied by the posterior distribution over parameters, rather than the most likely parameters
under the parameter posterior.

To better understand the benefits and shortfalls of function-space MAP estimation, we derive a
function-space MAP objective that generalizes the objective considered by prior work and analyze its
properties both theoretically and empirically.
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3.1 The Finite Evaluation Point Objective

Starting from Equation (4), Wolpert [30] proposed to instead find the MAP estimate for fθ(x̂), the
function evaluated at a finite set of points x̂ = {x1, ..., xM}, where M < ∞ can be chosen to be
arbitrarily large so as to capture the behavior of the function to arbitrary resolution. This choice then
yields the FS-MAP optimization objective

Lfinite(θ; x̂) =
∑N

i=1
log p(y

(i)
D |x(i)D , fθ(x̂)) + log p(fθ(x̂)), (5)

where p(fθ(x̂)) is a well-defined but not in general analytically tractable probability density function.
(See Appendix B.1 for further discussion.) Let P be the number of parameters θ, and K the number
of function outputs. Assuming the set of evaluation points is sufficiently large so that MK ≥ P ,
using a generalization of the change of variable formula that only assumes injectivity rather than
bijectivity, Wolpert [30] showed that the prior density over f(x̂) is given by

p(fθ(x̂)) = p(θ) det−1/2(J (θ; x̂)), (6)

where J (θ; x̂) is a P -by-P matrix defined by
Jfinite(θ; x̂) =̇ Jθ(x̂)

⊤Jθ(x̂) (7)

and Jθ(x̂) =̇ ∂fθ(x̂)/∂θ is the MK-by-P Jacobian of fθ(x̂), viewed as an MK-dimensional vector,
with respect to the parameters θ. Substituting Equation (6) into Equation (5) the function-space MAP
objective as a function of the parameters θ can be expressed as

Lfinite(θ; x̂) =
∑N

i=1
log p(y

(i)
D |x(i)D , fθ) + log p(θ)− 1

2
log det(J (θ; x̂)), (8)

where we are allowed to condition directly on fθ instead of fθ(x̂) because by assumption x̂ is large
enough to uniquely determine the function. In addition to replacing the function, our true quantity of
interest, with its evaluations at a finite set of points x̂, this objective makes it unclear how we should
select x̂ and how that choice can be interpreted or justified in a principled way.

3.2 Deriving a More General Objective and its Interpretation

We now derive a more general class of function-space MAP objectives that allow us to use effectively
infinitely many evaluation points and meaningfully interpret the choice of those points.

In general, when performing a change of variables from v ∈ Rn to u ∈ Rm via an injective map
u = φ(v), their probability densities relate as p(u)dµ(u) = p(v)dν(v), where µ and ν define
respective volume measures. Suppose we let dµ(u) =

√
det(g(u))dmu, the volume induced by

an M ×M metric tensor g, and dν(v) = dnv, the Lebesgue measure, then we can write dµ(u) =√
det(g̃(v))dν(v), where the N ×N metric g̃(v) = J(v)⊤g(u)J(v) is known as the pullback of g

via φ and J is the Jacobian of φ [6]. As a result, we have p(u) = p(v)det−1/2(J(v)⊤g(u)J(v)).
Applying this argument and identifying u with fθ(x̂) and v with θ, Wolpert [30] thereby establishes
p(fθ(x̂)) = p(θ) det−1/2(Jθ(x̂)

⊤Jθ(x̂)).

However, an important implicit assumption in the last step is that the metric in function space
is Euclidean. That is, g = I and the squared distance between fθ(x̂) and fθ(x̂) + dfθ(x̂) is
ds2 =

∑M
i=1 dfθ(xi)

2, rather than the general case ds2 =
∑M
i=1

∑M
j=1 gijdfθ(xi)dfθ(xj). To

account for a generic metric g, we therefore replace Jθ(x̂)⊤Jθ(x̂) with Jθ(x̂)⊤gJθ(x̂). For simplicity,
we assume the function output is univariate (K = 1) and only consider g that is constant i.e.,
independent of fθ(x̂) and diagonal, with gii = g(xi) for some function g : X → R+. For a
discussion of the general case, see Appendix B.2. To better interpret the choice of g, we rewrite

Jθ(x̂)
⊤gJθ(x̂) =

∑M

j=1
p̃X(xj)Jθ(xj)

⊤Jθ(xj), (9)

where we suggestively defined the alias p̃X(x) =̇ g(x) and Jθ(xj) is the K-by-P -dimensional Jaco-
bian evaluated at the point xj . Generalizing from the finite and discrete set x̂ to the possibly infinite
entire domain X ⊆ RD and further dividing by an unimportant normalization constant Z, we obtain

J (θ; pX) =̇
1

Z

∫
X
p̃X(x)Jθ(x)

⊤Jθ(x) dx = EpX
[
Jθ(X)⊤Jθ(X)

]
, (10)
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where pX = p̃X/Z is a normalized probability density function, with normalization Z—which is
independent of θ—only appearing as an additive constant in log detJ (θ; pX). We include a further
discussion about this limit in Appendix B.4.

Under this limit, we can identify log p(θ)− 1
2 log detJ (θ; pX) with log p(fθ) up to a constant, and

thereby express log p(fθ|D), the function-space MAP objective in Equation (4) as

L(θ; pX) =
∑N

i=1
log p(y

(i)
D |x(i)D , fθ) + log p(θ)− 1

2
log detJ (θ; pX), (11)

where the choice of pX corresponds to a choice of the metric g in function space. Equation (11) (and
approximations thereof) will be the primary object of interest in the remainder of this paper.

Evaluation Distribution as Function-Space Geometry. From this discussion and Equations (10)
and (11), it is now clear that the role of the metric tensor g is to impose a distribution pX over the
evaluation points. Or conversely, a given distribution over evaluation points implies a metric tensor,
and as such, specifies the geometry of the function space. This correspondence is intuitive: points x
with higher values of g(x) contribute more to defining the geometry in function space and therefore
should be assigned higher weights under the evaluation distribution when maximizing function space
posterior density. Suppose, for example, fθ is an image classifier for which we only care about its
outputs on set of natural images I when comparing it to another image classifier. The metric g(·) and
therefore the evaluation distribution pX only needs support in I , and the FS-MAP objective is defined
only in terms of the Jacobians evaluated at natural images x ∈ I.

Finite Evaluation Point Objective as a Special Case. Consequently, the finite evaluation point
objective in Equation (8) can be arrived at by specifying the evaluation distribution pX(x) to be
p̂X(x) =̇ 1

M

∑
x′∈x̂ δ(x − x′), where δ is the Dirac delta function and x̂ = {x1, ..., xM} with

M <∞, as before. It is easy to see that Jfinite(θ; x̂) ∝ J (θ; p̂X). Therefore, the objective proposed
by Wolpert [30] is a special case of the more general class of objectives.

3.3 Investigating the Properties of Function-Space MAP Estimation

To illustrate the properties of FS-MAP, we consider the class of models fθ(x) =
∑P
i=1 σ(θi)φi(x)

with domain X = [−1, 1], where {φi}Pi=1 is a fixed set of basis functions and σ is a non-linear
function to introduce a difference between function-space and parameter-space MAP. The advantage
of working with this class of models is that J (θ; pX) has a simple closed form, such that

Jij(θ; pX) = EpX
[
∂θifθ(X)∂θjfθ(X)

]
= σ′(θi)σ

′(θj)Φij , (12)

where Φ is a constant matrix with elements Φij = EpX [φi(X)φj(X)]. Therefore, Φ can be precom-
puted once and reused throughout training. In this experiment, we use the set of Fourier features
{cos(ki·), sin(ki·)}100i=1 where ki = iπ and set σ = tanh. We generate training data by sampling
xtrain ∼ Uniform(−1, 1), θi ∼ N (0, α2) with α = 10, evaluating fθ(xtrain), and adding Gaussian
noise with standard deviation σ∗ = 0.1 to each observation. We use 1,000 test points sampled
from Uniform(−1, 1). To train the model, we set the prior p(θ) and the likelihood to correspond
to the data-generating process. For FS-MAP, we specify pX = Uniform(−1, 1), the ground-truth
distribution of test inputs, which conveniently results in Φ = I/2.

FS-MAP Finds More Probable Functions. Figure 2a shows the improvement in log p(fθ|D) when
using FS-MAP over PS-MAP. As expected, FS-MAP consistently finds functions with much higher
posterior probability p(fθ|D).
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Figure 2: FS-MAP exhibits desirable properties. On a non-linear regression problem, FS-MAP empirically (a)
learns more probable functions, (b) finds flatter minima, (c) improves generalization, and (d) is less prone to
overfitting. The plot shows means and standard deviations computed from 3 random seeds.
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Figure 3: Effect of important hyperparameters in FS-MAP. FS-MAP improves with the number of evaluation
points and requires carefully specifying the evaluation distribution and the probabilistic model.

FS-MAP Prefers Flat Minima. In Figure 2b, we compare the curvature of the minima found by
FS-MAP and PS-MAP, as measured by the average eigenvalue of the Hessian of the mean squared error
loss, showing that FS-MAP consistently finds flatter minima. As the objective of FS-MAP favors small
singular values for the Jacobian Jθ, when multiple functions can fit the data, the FS-MAP objective will
generically prefer functions that are less sensitive to perturbations of the parameters, leading to flatter
minima. To make this connection more precise, consider the Hessian ∇2L(θ). If the model fits the
training data well, we can apply the Gauss-Newton approximation: ∇2

θL(θ) ≈ 1
|D| Jθ(xD)

⊤Jθ(xD),
which is identical to J (θ; pX) if pX is chosen to be the empirical distribution of the training inputs.
More generally, a distribution pX with high density over likely inputs will assign high density to
the training inputs, and hence minimizing J (θ; pX) will similarly reduces the magnitude of Jθ(xD).
Therefore, the FS-MAP objective explicitly encourages finding flatter minima, which have been found
to correlate with generalization [10, 17, 18], robustness to data perturbations and noisy activations
[3, 12] for neural networks.

FS-MAP can Achieve Better Generalization. Figure 2c shows that FS-MAP achieves lower test
RMSE across a wide range of sample sizes. It’s worth noting that this synthetic example satisfies
two important criteria such that FS-MAP is likely to improve generalization over PS-MAP. First, the
condition outlined in Section 4 for a well-behaved FS-MAP objective is met, namely that the set
of partial derivatives {∂θif jθ (·)}Pi=1 are linearly independent. Specifically, the partial derivatives
are given by {sech(θi) sin(ki·), sech(θi) cos(ki·)}Pi=1. Since sech is non-zero everywhere, the linear
independence follows from the linear independence of the Fourier basis. As a result, the function
space prior has no singularities and FS-MAP is thus able to learn from data. The second important
criterion is the well-specification of the probabilistic model, which we have defined to precisely
match the true data-generating process. Therefore, FS-MAP seeks the most likely function according
to its true probability, without incorrect modeling assumptions.

FS-MAP is Less Prone to Overfitting. As shown in Figure 2d, FS-MAP tends to have a higher
train RMSE than PS-MAP as a result of the additional log determinant regularization. While PS-MAP
achieves near-zero train RMSE with a small number of samples by overfitting to the noise, FS-MAP’s
train RMSE is consistently around σ∗ = 0.1, the true standard deviation of the observation noise.

Performance Improves with Number of Evaluation Points. We compare FS-MAP estimation
with pX = Uniform(−1, 1) and with a finite number of equidistant evaluation points in [−1, 1],
where the former corresponds to the latter with infinitely many points. In Figure 3a, we show that the
test RMSE of the FS-MAP estimate (evaluated at 400 training samples) decreases monotonically until
the number of evaluation points reaches 200. The more evaluation points, the more the finite-point
FS-MAP objective approximates its infinite limit and the better it captures the behavior of the function.
Indeed, 200 points is the minimum sampling rate required such that the Nyquist frequency reaches
the maximum frequency in the Fourier basis, explaining the saturation of the performance.

Choice of Evaluation Distribution is Important. In Figure 3b, we compare test RMSE for 400
training samples for the default choice of pX = Uniform(−1, 1), pX = Uniform(−0.1, 0.1)—a
distribution that does not reflect inputs at test time—and PS-MAP (pX = N/A) for reference. The
result shows that specifying the evaluation distribution to correctly reflect the distribution of inputs at
test time is required for FS-MAP to achieve optimal performance in this case.
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4 Limitations and Practical Considerations

We now discuss the limitations of function-space MAP estimation and propose partial remedies,
including a scalable approximation that improves its applicability to modern deep learning.

4.1 FS-MAP Does not Necessarily Generalize Better than PS-MAP
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Figure 4: FS-MAP can underper-
form PS-MAP with a misspecified
probabilistic model.

There is no guarantee that the most likely function is the one that
generalizes the best, especially since our prior can be arbitrary. For
example, FS-MAP can under-fit the data if the log determinant intro-
duces excessive regularization, which can happen if our probabilistic
model is misspecified by overestimating the observation noise. Re-
turning to the setup in Section 3.3, in Figure 4, we find that FS-MAP
(with 400 training samples) is sensitive to the observation noise scale
σ in the likelihood. As σ deviates from the true noise scale σ∗, the
test RMSE of FS-MAP can change dramatically. At σ/σ∗ = 1/3,
the likelihood dominates in both the FS-MAP and PS-MAP objectives,
resulting in similar test RMSEs. At σ/σ∗ = 10, the likelihood is
overpowered by the log determinant regularization in FS-MAP and causes the model to under-fit the
data and achieve a high test error. By contrast, the performance of the PS-MAP estimate is relatively
stable. Finally, even if our prior exactly describes the data-generating process, the function that best
generalizes won’t necessarily be the most likely under the posterior.

4.2 Pathological Solutions

In order for function-space MAP estimation to be useful in practice, the prior “density”
p(fθ) = p(θ) det−

1
2 (J (θ; pX)) must not be infinite for any allowed values of θ, since if it were,

those values would constitute global optima of the objective function independent of the actual
data. To ensure that there are no such pathological solutions, we require the matrix J (θ; pX) to be
non-singular for any allowed θ. We present two results that help determine if this requirement is met.

Theorem 1. Assuming pX and Jθ = ∂θfθ are continuous, J (θ; pX) is non-singular if and only if
the partial derivatives {∂θifθ(·)}Pi=1 are linearly independent functions over the support of pX .
Proof. See Appendix B.5 ■

Theorem 2. If there exists a non-trivial symmetry S ∈ RP×P with S ̸= I such that fθ = fSθ for all
θ, then J (θ∗; pX) is singular for all fixed points θ∗ where Sθ∗ = θ∗.
Proof. See Appendix B.6 ■

Theorem 1 is analogous to A⊤A having the same null space as A for any matrix A. It suggests
that to avoid pathological optima the effect of small changes to each parameter must be linearly
independent. Theorem 2 builds on this observation to show that if the model exhibits symmetries in
its parameterization, FS-MAP will necessarily have pathological optima. Since most neural networks
at least possess permutation symmetries of the hidden units, we show that these pathological FS-MAP
solutions are almost universally present, generalizing the specific cases observed by Wolpert [30].

A Simple Remedy to Remove Singularities. Instead of finding a point approximation of the
function space posterior, we can perform variational inference under a variational family {q(·|θ)}θ,
where q(·|θ) is localized around θ with a small and constant function-space entropy h. Ignoring
constants and O(h) terms, the variational lower bound is given by

LVLB(θ; pX) =
∑N

i=1
log p(y

(i)
D |x(i)D , fθ) + log p(θ)− 1

2
Eq(θ′|θ) [log detJ (θ′; pX)] . (13)

Similar to how convolving an image with a localized Gaussian filter removes high-frequency compo-
nents, the expectation Eq(θ′|θ) removes potential singularities in log detJ (θ′; pX). This effect can
be approximated by simply adding a small diagonal jitter ϵ to J (θ; pX) :

L̂(θ; pX) =̇
∑N

i=1
log p(y

(i)
D |x(i)D , fθ) + log p(θ)− 1

2
log det (J (θ; pX) + ϵI). (14)

Alternatively, we know Eq(θ′|θ) [log detJ (θ′; pX)] must be finite because the variational lower bound
cannot exceed the log marginal likelihood. L̂(θ; pX) can be used as a minimal modification of FS-MAP
that eliminates pathological optima. We provide full derivation for these results in Appendix B.7.
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4.3 Does the Function-Space MAP Better Approximate the Bayesian Model Average?

The Bayesian model average (BMA), fBMA, of the function fθ is given by the posterior mean, that is:

fBMA(·) =̇Ep(θ|D)[fθ(·)] = Ep(fθ|D)[fθ(·)].
This expectation is the same when computed in parameter or function space, and has theoretically
desirable generalization properties [19, 29]. Both PS-MAP and FS-MAP provide point approximations
of fBMA. However, FS-MAP seeks the mode of the distribution p(fθ|D), the mean of which we
aim to compute. By contrast PS-MAP finds the mode of a distinct distribution, p(θ|D), which can
markedly diverge from p(fθ|D), depending on the parameterization. Consequently, it is reasonable
to anticipate that the FS-MAP objective generally encourages finding a superior estimate of the BMA.

Consider the large data regime where the posterior in both parameter and function space follows a
Gaussian distribution, in line with the Bernstein-von Mises theorem [27]. In Gaussian distributions,
the mode and mean coincide, and therefore fθ̂FS-MAP = fBMA. However, even in this setting, where
θ̂PS-MAP = Ep(θ|D)[θ], generally fθ̂PS-MAP ̸= fBMA, because the expectation does not distribute across a
function f that is non-linear in its parameters θ: fEp(θ|D)[θ](·) ̸= Ep(θ|D)[fθ(·)].
However, we find that whether FS-MAP better approximates the BMA depends strongly on the
problem setting. Returning to the setup in Figure 1, where we have a Gaussian mixture regression
model, we compare the BMA function with functions learned by FS-MAP and PS-MAP under the prior
p(θ) = N (0, α2) with several settings of α. We observe in Figure 5 that FS-MAP only approximates
the BMA function better than PS-MAP at larger α values. To understand this behavior, recall the
height hR for the right Gaussian bump is given by exp(θR), which has a lognormal(0, α2) prior. As
we increase α, more prior mass is assigned to hR with near-zero value and therefore to functions with
small values within x ∈ [0, 1]. While the lognormal distribution also has a heavy tail at large hR, the
likelihood constrains the posterior p(hR|D) to only place high mass for small hR. These two effects
combine to make the posterior increasingly concentrated in function space around functions described
by hL ≈ 1 and hR ≈ 0, implying that the mode in function space should better approximate its mean.
In contrast, as we decrease α, both the prior and posterior become more concentrated in parameter
space since the parameter prior p(θ) = N (0, α2) approaches the delta function at zero, suggesting
that PS-MAP should be a good approximation to the BMA function. By varying α, we can interpolate
between how well PS-MAP and FS-MAP approximate the BMA.

4.4 Scalable Approximation for Large Neural Networks

In practice, the expectation J (θ; pX) = EpX [Jθ(X)⊤Jθ(X)] is almost never analytically tractable
due to the integral over X . We show in Appendix B.9 that a simple Monte Carlo estimate for
J (θ; pX) with S samples of X can yield decent accuracy. For large neural networks, this estimator
is still prohibitively expensive: each sample will require K backward passes, taking a total of
O(SKP ) time. In addition, computing the resulting SK-byP determinant takes time O(SKP 2)
(assuming P ≥ SK). However, we can remedy the challenge of scalability by further leaning
into the variational objective described in Equation (13) and consider the regime where ϵ≫ λi for
all eigenvalues λi of J (θ; pX)). To first order in maxi λi/ϵ, we have log det(J (θ; pX)) + ϵI) =
1
2∆ψd(θ, θ + ψ))

∣∣
ψ=0

where d(θ, θ′) =̇EpX [∥fθ(X)− fθ′(X)∥2] and ∆ =
∑P
i=1 ∂

2
θi

denotes the
Laplacian operator. Exploiting the identity 1

2∆ψd(θ, θ + ψ))
∣∣
ψ=0

= 1
β2Eψ∼N (0,β2I)[d(θ, θ + ψ)] +

O
(
β2

)
and choosing β small enough, we obtain an accurate Monte Carlo estimator for the Laplacian
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Figure 5: FS-MAP does not necessarily approximate the BMA better than PS-MAP. A Gaussian mixture
regression model, where the right Gaussian has weight exp(θR) with prior p(θR) = N (0, α2). As we increase
α, we interpolate between PS-MAP and FS-MAP approximating the BMA.
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using only forward passes. The resulting objective which we refer to as Laplacian Regularized MAP
(L-MAP) is given by

LL-MAP(θ; pX) =̇
∑N

i=1
log p(y

(i)
D |x(i)D , fθ) + log p(θ)− 1

2ϵβ2
Eψ∼N (0,β2I)[d(θ, θ + ψ)]. (15)

We use a single sample of ψ and S samples of evaluation points for estimating d(θ, θ + ψ) at each
step, reducing the overhead from O

(
SKP 2

)
to only O(SP ). A more detailed exposition is available

in Appendix B.10.

4.5 Experimental Evaluation of L-MAP

We now evaluate L-MAP applied to neural networks on various commonly used datasets. We provide
full experimental details and extended results in Appendix C. Unlike the synthetic task in Section 3.3,
in applying neural networks to these more complex datasets we often cannot specify a prior that
accurately models the true data-generating process, beyond choosing a plausible architecture whose
high-level inductive biases align with the task (e.g. CNNs for images) and a simple prior p(θ) favoring
smooth functions (e.g. an isotropic Gaussian with small variances). Therefore, we have less reason to
expect L-MAP should outperform PS-MAP in these settings.

UCI Regression. In Table 1, we report normalized test RMSE on UCI datasets [1], using an MLP
with 3 hidden layers and 256 units. L-MAP achieves lower error than PS-MAP on 7 out 8 datasets.
Since the inputs are normalized and low-dimensional, we use pX = N (0, I) for L-MAP.

Table 1: Normalized test RMSE (↓) on UCI datasets. We report mean and standard errors over six trials.

METHOD BOSTON CONCRETE ENERGY NAVAL POWER PROTEIN WINERED WINEWHITE

PS-MAP .329±.033 .272±.016 .042±.003 .032±.005 .219±.006 .584±.005 .851±.029 .758±.013

L-MAP .352±.040 .261±.013 .041±.002 .018±.002 .218±.005 .580±.005 .792±.031 .714±.017

Image Classification. In Table 2, we compare L-MAP and PS-MAP on image classification using a
ResNet-18 [9]. L-MAP achieves comparable or slightly better accuracies and is often better calibrated.
We further test the effectiveness of L-MAP with transfer learning with a larger ResNet-50 trained on
ImageNet. In Table 3, we show L-MAP also achieves small improvements in accuracy and calibration
in transfer learning.

Loss Landscape. In Figure 6 (Left), we show that L-MAP indeed finds flatter minima. Further, we
plot the Laplacian estimate in Figure 6 (Right) as the training progresses. We see that the Laplacian
is much lower for L-MAP, showing its effectiveness at constraining the eigenvalues of J (θ; pX).

Distribution of Evaluation Points. In Table 2, we study the impact of the choice of distribution of
evaluation points. Alongside our main choice of the evaluation set (KMNIST for FashionMNIST and
CIFAR-100 for CIFAR-10), we use two additional distributions - the training set itself and a white
noise N (0, I) distribution of the same dimensions as the training inputs. For both tasks, we find that
using an external evaluation set beyond the empirical training distribution is often beneficial.

Number of Evaluation Point Samples. In Figure 7(a), we compare different Monte Carlo sample
sizes S for estimating the Laplacian. Overall, L-MAP is not sensitive to this choice in terms of
accuracy. However, calibration error [20] sometimes monotonically decreases with S.

Table 2: We report the accuracy (ACC.), negative log-likelihood (NLL), expected calibration error [20] (ECE),
and area under selective prediction accuracy curve [7] (SEL. PRED.) for FashionMNIST [31] (D′ = KMNIST
[4]), and CIFAR-10 [15] (D′ = CIFAR-100). A ResNet-18 [9] is used. Std. errors are reported over five trials.

METHOD
FASHIONMNIST CIFAR-10

ACC.↑ SEL. PRED.↑ NLL↓ ECE↓ ACC.↑ SEL. PRED.↑ NLL↓ ECE↓
PS-MAP 93.9%±.1 98.6%±.1 .26±.01 4.0%±.1 95.4%±.1 99.4%±.0 .18±.00 2.5%±.1

L-MAP pX=N (0, I) 94.0%±.0 99.2%±.0 .25±.01 4.0%±.2 95.3%±.1 99.4%±.0 .20±.00 3.0%±.1

pX=TRAIN 93.8%±.1 99.2%±.1 .27±.01 4.3%±.2 95.6%±.1 99.5%±.0 .18±.01 2.6%±.0

pX=D′ 94.1%±.1 99.2%±.1 .26±.01 4.1%±.1 95.5%±.1 99.5%±.0 .16±.01 1.4%±.1

9



Table 3: Transfer learning from ImageNet with ResNet-50 on CIFAR-10 can lead to slightly better
accuracy and improved calibration.

METHOD ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓
PS-MAP 96.3%±0.1 99.5%±0.1 0.18±0.01 2.6%±0.2

L-MAP 96.4%±0.1 99.5%±0.1 0.15±0.01 2.1%±0.1
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Figure 6: Empirical evidence that L-MAP finds flatter minima. (Left) For various step sizes in 20 randomly
sampled directions starting at the minima, we compute the training loss averaged over all directions to summarize
the local loss landscape. We use filter normalization for landscape visualization [16]. L-MAP visibly finds flatter
minima. (Right) We plot the Laplacian estimate throughout training, showing L-MAP is indeed effective at
constraining the eigenvalues of J (θ; pX).
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Figure 7: (Left) Calibration error can be reduced by
increasing the number of Monte Carlo samples for the
Laplacian estimator in Equation (15). (Right) L-MAP
is slightly more robust to training with label noise.
For each level of noise, we replace a fraction of labels
with uniformly random labels.

Robustness to Label Noise. In Figure 7(b), we
find L-MAP is slightly more robust to label noise
than PS-MAP on CIFAR-10.

Main Takeaways. L-MAP shows qualitatively
similar properties as FS-MAP such as favoring
flat minima and often provides better calibration.
However, it achieves comparable or only slightly
better accuracy on more complex image classifi-
cation tasks. In line with our expectations, these
results suggest that accounting for the precise dif-
ference between FS-MAP and PS-MAP is less use-
ful without a sufficiently well-motivated prior.

5 Discussion

While we typically train our models through PS-MAP, we show that FS-MAP has many appealing
properties in addition to re-parametrization invariance. We empirically verify these properties,
including the potential for better robustness to noise and improved calibration. But we also reveal
a more nuanced and unexpected set of pros and cons for each approach. For example, while it is
natural to assume that FS-MAP more closely approximates a Bayesian model average, we clearly
demonstrate how there can be a significant discrepancy. Moreover, while PS-MAP is not invariant
to re-parametrization, which can be seen as a fundamental pathology, we show FS-MAP has its own
failure modes such as pathological optima, as well as practical challenges around scalability. In
general, our results suggest the benefits of FS-MAP will be greatest when the prior is sufficiently
well-motivated.

Our findings engage with and contribute to active discussions across the literature. For example,
several works have argued conceptually—and found empirically—that solutions in flatter regions of
the loss landscape correspond to better generalization [8, 10, 11, 12, 25]. On the other hand, Dinh
et al. [5] argue that the ways we measure flatness, for example, through Hessian eigenvalues, are not
parameterization invariant, making it possible to construct striking failure modes. Similarly, PS-MAP
estimation is not parameterization invariant. However, our analysis and comparison to FS-MAP
estimation raise the question to what extent lack of parametrization invariance is actually a significant
practical shortcoming—after all, we are not reparametrizing our models on the fly, and we have
evolved our models and training techniques conditioned on standard parameterizations.
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Appendix A PS-MAP is not Invariant to Reparametrization

Parameter-space MAP estimation has conceptual and theoretical shortcomings stemming from the lack
of reparameterization-invariance of MAP estimation. Suppose we reparameterize the model parameters
θ with θ′ = R(θ) where R is an invertible transformation. The prior density on the reparameterized
parameters is obtained from the change-of-variable formula that states p′(θ′) = p(θ)|det−1(dθ′/dθ)|.
In the language of differential geometry, the prior density p(θ) is not a scalar but a scalar density,
a quantity that is not invariant under coordinate transformations [28]. The probabilistic model
is fundamentally unchanged, as we are merely viewing the parameters in a different coordinate
system, but the MAP objective is not invariant to reparameterization. Specifically, the reparameterized
parameter-space MAP objective becomes

L′MAP(θ′) =
∑N

i=1
log p(y

(i)
D | x(i)D , θ′) + log p′(θ′) = LMAP(θ)− log |det−1(dθ′/dθ)|︸ ︷︷ ︸

new term

. (A.1)

Since L′MAP(θ′) and the original objective LMAP(θ) differ by a term which is non-constant in the pa-
rameters if T is non-linear, the maxima θ′MAP =̇ argmaxθ′ L′MAP(θ′) and θMAP =̇ argmaxθ LMAP(θ)
under the two objectives will be different. Importantly, by "different" we don’t just mean θ′MAP ̸= θMAP

but θ′MAP ̸= R(θMAP). That is, they are not simply each other viewed in a different coordinate sys-
tem but actually represent different functions. More accurately, therefore, one should say MAP
estimation is not equivariant (rather than invariant) under reparameterization. As a result, when
using a parameter-space MAP estimate to make predictions at test time, the predictions can change
dramatically simply depending on how the model is parameterized. In fact, one can reparameterize
the model so that PS-MAP will return an arbitrary solution θ0 irrespective of the observed data, by
choosing a reparameterization θ′ = R(θ) such that log |det−1(dθ′/dθ)|θ=θ0 = −∞. One such
choice is θ′ = (θ − θ0)

3
, where the exponent is taken element-wise.

As a less extreme example, consider the reparameterization θ′ = 1/θ. A Gaussian prior on the original
parameters p(θ) ∝ exp

(
−θ2/2

)
translates to a prior p′(θ′) ∝ exp

(
−1/2θ′2

)
/θ′2 = θ2 exp

(
−θ2/2

)
on the inverted parameters. Note the transformed prior, when mapped onto the original parameters
θ, assigns a higher weight on non-zero values of θ due to the quadratic factor coming from the log
determinant. We illustrate this effect with a simple experiment where a linear model with RBF
features is trained with a Gaussian likelihood and a Gaussian prior N (0, I) using PS-MAP to fit
noisy observations from a simple function. Figure 8 show the predictions and learned weights when
PS-MAP is performed both in the original parameterization and in the inverted parameterization.
While PS-MAP favors small weights in the original parameterization, it favors non-zero weights in the
inverted one, learning a less smooth function composed of a larger number of RBF bases.
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Figure 8: PS-MAP is not invariant to reparameterization. Simply inverting the parameterization of
the weights removes the preference for small coefficients in a linear model, leading to a less smooth
learned function, even though the underlying probabilistic model is unchanged.
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Appendix B Mathematical Details & Derivations

B.1 Prior Distributions over Functions

Since the function evaluations fθ(x̂) are related to the parameters θ through the map T : θ 7→ fθ(x̂),
the prior density p(fθ(x̂)) is simply the push forward of the density p(θ) through T, which can be
expressed without loss of generality using the Dirac delta function as

p(fθ(x̂)) =

∫
RP

p(θ′)δ(T (θ′)− fθ(x̂)) dθ
′. (B.2)

This generic expression as an integral over the parameter space is difficult to evaluate and thus not
directly useful. By assuming that T is injective (one-to-one) modulo some global symmetries in
parameter space (e.g., permutation of the neurons), which holds for many neural network architectures
[2], Wolpert [30] established the simplification in Equation (6). Note that since the map T is not
guaranteed to be surjective (onto), especially when there are more evaluation points than parameters
(|x̂| > P ), p(fθ(x̂)) does not generally have support everywhere and is to be interpreted as a
surface density defined over the image of T [30]. If the model parameterization has continuous
symmetries, such as scaling symmetries in MLPs with ReLU activations [5], then the log determinant
in Equation (6) should be replaced by the log pseudo-determinant to account for the fact that the
dimension of the image of T is less than P, the number of parameters.

B.2 The General Case

Here we present a more general result for which the result in Section 3.2 is a special case, without
assuming the function output is univariate (K = 1) or that the metric is diagonal. To simplify
notations, we suppress all θ-dependence and write fkθ (xi), the k-th output of the function at xi,
as fki for some x̂ = {xi}Mi=1. We use Einstein notation to imply summation over repeated indices
and leave everything in un-vectorized forms. In this more general case, the metric is given by
ds2 = gikjℓdf

k
i df

ℓ
j , where i, j are input indices and k, ℓ are output indices. Denote the un-vectorized

M -by-K-by-P Jacobian Jika =̇ ∂θaf
k
i . The P -by-P matrix J appearing inside the determinant in

Equation (6) is now given by

Jab = JikagikjℓJjℓb = gikjℓ∂θaf
k
i ∂θbf

ℓ
j (B.3)

In the limit of infinitely many evaluation points uniformly populating the domain X , the sum over
i, j becomes a double integral2

Jab =
∫
X×X

∂θaf
k
θ (x)∂θbf

ℓ
θ(x

′)gkℓ(x, x
′) dxdx′, (B.4)

where we have re-written the metric gikjℓ as gkℓ(xi, xj) where g : X × X → RK×K is the metric
represented now as a matrix-valued function. After dividing by a constant Z, we can similarly write
Jab as the expectation

Jab = EpXX′CC′

[
∂θaf

C
θ (X)∂θbf

C′

θ (X ′)sgn(gCC′(X,X ′))
]
, (B.5)

where pXX′CC′(x, x′, c, c′) = |gcc′(x, x′)|/Z for some normalization constant Z that only shifts
the log determinant by a θ-independent constant. Note Equation (10) is recovered if the metric is
diagonal, that is gc,c′(x, x′) ̸= 0 only if c = c′ and x = x′. We can further remove the assumption
that g is constant (independent of f ), but at the cost of letting the normalization constant Z depend
on f (or equivalently θ), making it invalid to ignore Z during optimization. While more general than
the result presented in Section 3.2, specifying a (possibly θ-dependent) non-diagonal metric adds a
significant amount of complexity without being particularly well-motivated. Therefore we did not
further investigate this more general objective.

2To be more accurate, an integral of the form
∫
ϕ(x) dx is the limit of

∑M
i=1 ϕ(xi)∆x with the extra factor

∆x = xi+1 − xi (∀i), as M → ∞. However, accounting for this factor does not affect the final result in our
case because again ∆x is independent of θ.

15



B.3 Why Should a Constant Metric Affect FS-MAP?

One may object that a constant metric g should have no effect in the MAP estimate for fθ. However,
the subtlety arises from the fact that p(fθ) does not have support everywhere but is, in fact, a surface
density defined on the image of T (as defined in Appendix B.1), a curved manifold in function space
which gives rise to locally preferred directions such that even a global linear transformation will
change the density in a non-homogeneous way. If T were instead surjective, then in Section 3.2 Jθ(x̂)
would be a square matrix and we could write log det

(
Jθ(x̂)

⊤gJθ(x̂)
)
= log det

(
Jθ(x̂)

⊤Jθ(x̂)
)
+

log det(g) and conclude that a constant metric indeed has no effect on the MAP estimate. Similarly, if
the image of T is not curved, meaning Jθ(x̂) is constant in θ, then log det

(
Jθ(x̂)

⊤gJθ(x̂)
)

would be
constant in θ regardless of g and the metric would have no effect.

B.4 Comments on the Infinite Limit

In Section 3.2, we generalized the finite evaluation point objective from Equation (8) by considering
the limit as the number of evaluation points x̂ approaches infinity and the points cover the domain
RP uniformly and densely. This technique, known as the continuum limit [21], is commonly used in
physics to study continuous systems with infinite degrees of freedom, by first discretizing and then
taking the limit as the discretization scale approaches zero, thereby recovering the behavior of the
original system without directly dealing with intermediate (possibly ill-defined) infinite-dimensional
quantities. Examples include lattice field theories where the continuous spacetime is discretized into
a lattice, and numerical analysis where differential equations are discretized and solved on a mesh,
where the solution often converges to the continuous solution as the mesh size goes to zero.

In a similar vein, we utilize this technique to sidestep direct engagement with the ill-defined quantity
p(fθ). It may be possible to assign a well-defined value to p(fθ) through other techniques, though we
expect the result obtained would be consistent with ours, given the continuum limit has historically
yielded consistent results with potentially more refined approaches in other domains.

B.5 Condition for a Non-Singular J (θ; pX)

Proof. Recall J (θ; pX) = EpX
[
Jθ(X)⊤Jθ(X)

]
. Suppose J (θ; pX) is singular. Then there is a

vector v ̸= 0 for which 0 = v⊤J (θ; pX)v = EpX
[
∥Jθ(X)v∥22

]
=

∫
X ∥Jθ(X)v∥22pX(x)dx = 0.

Since the integrand is non-negative and continuous by assumption, it is zero everywhere. Therefore,
we have

∑P
i=1 vi∂θifθ(x) = 0 for all x ∈ supp(pX) for a non-zero v, showing {∂θifθ(·)}Pi=1 are

linearly dependent functions over the support of pX .

Conversely, if {∂θifθ(·)}Pi=1 are linearly dependent functions over the support of pX , then∑P
i=1 vi∂θifθ(x) = Jθ(x)v = 0 for all x ∈ supp(pX) for some v ̸= 0. Hence J (θ; pX)v =

EpX
[
Jθ(X)⊤Jθ(X)v

]
= 0, showing J (θ; pX) is singular. ■

B.6 Architectural Symmetries Imply Singular J (θ; pX)

Proof. Differentiating with respect to θ, we have Jθ = ∂θfθ = ∂θfSθ = JSθS for all θ. Suppose
there exists θ∗ that is invariant under S, Sθ∗ = θ∗, then Jθ∗ = Jθ∗S and Jθ∗(I − S) = 0. Since, by
assumption S ̸= I , we have shown that Jθ∗ has a non-trivial nullspace. Because the nullspace of
J (θ∗; pX) contains the nullspace of Jθ∗ , we conclude J (θ; pX) is also singular. ■

As an example, consider a single hidden layer MLP fθ(x) = w⊤
2 σ(w1x), θ = {w1 ∈ R2, w2 ∈ R2},

where we neglected the bias for simplicity. The permutation P12

⊕
P12 is a symmetry of fθ, where⊕

is the direct sum and P12 is the transposition
(
0 1
1 0

)
. The nullspace of Jθ∗ contains the image of(

1 −1
−1 1

)⊕(
1 −1
−1 1

)
(B.6)

with a basis {(1,−1, 0, 0), (0, 0, 1,−1)}, for any θ∗ of the form (a, a, b, b). It’s easy to check that
perturbing the parameters in directions (1,−1, 0, 0) and (0, 0, 1,−1) leaves the function output
unchanged, due to symmetry in the parameter values and the network topology.
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Continuous symmetries, among other reasons, can also lead to singular J (θ; pX) and are not covered
by the above analysis, which is specific to discrete symmetries. One example is scaling symmetries in
MLPs with ReLU activations [5]. However, these scaling symmetries cause J (θ; pX) to be singular
for all θ in a manner that does not introduce any pathological optimum. This becomes clear when
noting that the space of functions implemented by an MLP with P parameters using ReLU activations
lies in a space with dimension lower than P due to high redundancies in the parameterization. The
resolution is to simply replace all occurrences of log detJ (θ; pX) with log |J (θ; pX)|+, where | · |+
represents the pseudo-determinant. This step is automatic if we optimize Equation (14) instead of
Equation (11), where adding a small jitter will automatically compute the log pseudo-determinant
(up to an additive constant) when J (θ; pX) is singular. By contrast, symmetries such as permutation
symmetries do create pathological optima because they only make the Jacobian singular at specific
settings of θ, thereby assigning to those points infinitely higher prior density compared to others.

B.7 Addressing the Infinite Prior Density Pathology with a Variational Perspective

We now decribe the remedy that leads to the objective in Equation (13). As shown in Section 4.2,
almost all commonly-used neural networks suffer from the pathology such that a singular Jacobian
leads infinite prior density at the singularities. Such singularities arise because FS-MAP optimize for
a point approximation for the function space posterior, equivalent to variational inference with the
family of delta functions {q(fθ′ |θ) = δ(fθ′ − fθ)}θ.
We can avoid the singularities if we instead choose a variational family where each member is a dis-
tribution over f localized around fθ for some θ. Namely, we consider the family Q =̇ {q(fθ′ |θ)}θ∈Θ

parameterized by a mean-like parameter θ and a small but fixed entropy in function space
H(q(fθ′ |θ)) = Eq(fθ′ |θ)[− log q(fθ′ |θ)] = h for all θ ∈ Θ. For convenience, we overload the
notation and use q(θ′|θ) to denote the pullback of q(fθ′ |θ) to parameter space. The resulting varia-
tional lower bound is

LVLB(θ; pX)

= Eq(fθ′ |θ)
[
log

q(fθ′ |θ)
p(fθ|D)

]

= Eq(fθ′ |θ)[− log p(fθ′ |D)]−
const.︷ ︸︸ ︷

H(q(fθ′ |θ))
= Eq(fθ′ |θ)[− log p(D|fθ′)] + Eq(fθ′ |θ)[− log p(fθ′)] + const. (Bayes’ rule)

= Eq(θ′|θ)[− log p(D|θ′)] + Eq(θ′|θ)[− log p(θ′)] +
1

2
Eq(θ′|θ)[log det(J (θ′; pX))] (Equation (11))

= − log p(D|fθ)− log p(θ) +
1

2
Eq(θ′|θ)[log det(J (θ′; pX))] +O(h) + const.,

where in the last line we used the assumption that q(θ′|θ) is localized around θ to write the ex-
pectation of log p(D|θ) and log p(θ) as their values at θ′ = θ plus O(h) corrections (which we
will henceforth omit since by assumption h is tiny), because they vary smoothly as a function of
θ. More care is required to deal with the remaining expectation, since when J (θ; pX) is singular
at θ, log det(J (θ; pX)) is infinite, but its expectation, Eq(θ′|θ)[log det(J (θ′; pX))], must be finite
(assuming p(θ) and p(D|θ) are finite), given that LVLB(θ; pX) lower bounds the log marginal likeli-
hood log p(D) = log

∫
p(D|θ)p(θ)dθ <∞. As we will show in Appendix B.8, the effect of taking

the expectation of the log determinant is similar to imposing a lower limit ϵ on the eigenvalue of
J (θ; pX), which can be approximated by adding a jitter ϵ when computing the log determinant. This
effect is similar to applying a high-frequency cutoff to an image by convolving it with a localized
Gaussian filter.

With this approximation, we arrive at a simple objective inspired by such a variational perspective,
equivalent to adding a jitter inside the log determinant computation in the FS-MAP objective,

L̂(θ; pX) =
∑N

i=1
log p(y

(i)
D |x(i)D , θ) + log p(θ)− 1

2
log det(J (θ; pX) + ϵI). (B.7)

Note that while using a jitter is common in practice for numerical stability, it arises for an entirely
different reason here.
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B.8 Approximating the Expectation

Rewriting log det(J (θ′; pX)) in terms of the eigenvalues λi(θ′), we have

Eq(θ′|θ)[log det(J (θ′; pX))] =
∑P

i=1
Eq(θ′|θ)[log λi(θ′)]. (B.8)

Consider each term Eq(θ′|θ)[log λi(θ′)] in isolation. Since the distribution q(θ′|θ) is highly localized
by assumption, there are only two regimes. If λi(θ) ̸= 0, then the variation of the log eigenvalue
is small and the expectation is well approximated by log λi(θ). Otherwise, if λi(θ) = 0, then
log λi(θ

′) has a singularity at θ′ = θ and Eq(θ′|θ)[log λi(θ′)] ≈ log λi(θ) = −∞ is no longer a valid
approximation since we’ve shown the expectation is finite. Therefore, in this case, the expectation
must evaluate to a large but finite quantity, say log(ϵ) for some small ϵ, where the exact value
of ϵ depends on the details of q(θ′|θ) and λi(θ′). Consequently, taking the expectation can be
approximated by adding a jitter ϵI to J (θ′; pX) when computing the log determinant to clip its
eigenvalues from below at some threshold ϵ > 0.

B.9 Monte Carlo Estimator for the Log Determinant

Monte Carlo Estimator. Exactly computing J (θ; pX) = EpX
[
Jθ(X)⊤Jθ(X)

]
and its log deter-

minant is often intractable. Instead, we can use a simple Monte Carlo estimator to approximate the
expectation inside the log determinant:

log det
(
EpX

[
Jθ(X)⊤Jθ(X)

])
≈ log det

(
1

S

∑S

j=1
Jθ(x

(j))⊤Jθ(x
(j)) + ϵI

)
, (B.9)

where we add a small amount of jitter to prevent the matrix inside the determinant from be-
coming singular when SK < P . Since 1

S

∑M
j=1 Jθ(x

(j))⊤Jθ(x
(j)) = 1

SJθ(x̂S)
⊤Jθ(x̂S)

where x̂S = {x(j)}Sj=1 and Jθ(x̂S) is an SK-by-P matrix, one can compute the determinant
of 1

SJθ(x̂S)
⊤Jθ(x̂S) + ϵI through the product of squared singular values of Jθ(x̂S)/

√
S in

O(min(SKP 2, S2K2P )) time (with zero singular values replaced with
√
ϵ), much faster than

O
(
P 3

)
for computing the original P -by-P determinant if S is small enough, without ever storing

the P × P matrix J (θ; pX).

Accuracy of the Estimator. Due to the nonlinearity in taking the log determinant, the estimator
is not unbiased. To test its accuracy, we evaluate the estimator with S = {800, 400, 200} for a
neural network with two inputs, two outputs, four hidden layers, and 898 parameters, using tanh
activations. The network is chosen small enough so that computing the exact log determinant is
feasible. In Figure 9, we compare the exact log determinant for pX = 1

M

∑M
i=1 δxi

with M = 1, 600,
and its estimate with S Monte Carlo samples. Here {xi} are linearly spaced in the region [−5, 5]2.
We observe that using S = 800 can almost perfectly approximate the exact log determinant. With
S = 400 and S = 200, the approximation underestimates the exact value because the number of
zero singular values increases for 1

SJθ(x̂S)
⊤Jθ(x̂S), but it still maintains a strong correlation and

monotonic relation with the exact value. We see that it is possible to approximate the log-determinant
with sufficient accuracy with simple Monte Carlo using a fraction of the compute and memory for
exact evaluation, though there can be a larger discrepancy as we continue to decrease S.

B.10 Laplacian Regularized MAP Objective

For ϵ that is large enough compared to the eigenvalues of J (θ; pX)), a first order approximation to
log det(J (θ; pX) + ϵI) can be sufficiently accurate. Expanding to first order in ρ =̇ maxi λi/ϵ, we
have

log det(J (θ; pX) + ϵI) =
1

ϵ

∑P

i=1
λi + cϵ +O

(
ρ2
)
=

1

ϵ
Tr(J (θ; pX)) + cϵ +O

(
ρ2
)
, (B.10)

where cϵ = P log(ϵ) is independent of θ. Defining d(θ, θ′) =̇EpX [∥fθ(X)− fθ′(X)∥2], we have

d(θ, θ + ψ) = EpX [∥Jθ(X)ψ∥2] +O
(
ψ4

)
= ψ⊤J (θ; pX))ψ +O

(
ψ4

)
, (B.11)
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Figure 9: Approximating the log determinant via an S-sample simple Monte Carlo estimator and
jitter. Each dot represents the exact and estimated log determinant evaluated at random parameters
sampled by randomly initializing the network followed by scaling by a factor s ∼ loguniform(0.1, 10)
to include parameters of different magnitudes. The dashed line shows x = y.

which shows J (θ; pX)) = 1
2∇2

ψd(θ, θ + ψ)
∣∣
ψ=0

. Therefore,

Tr(J (θ; pX)) =
1

2
Tr

(
∇2
ψd(θ, θ + ψ)

)∣∣
ψ=0

=
1

2
∆ψd(θ, θ + ψ))

∣∣
ψ=0

, (B.12)

where ∆ is the Laplacian operator.

To estimate the Laplacian, consider the following expectation:

Eψ∼N (0,β2I)[d(θ, θ + ψ)] (B.13)

=Eψ∼N (0,β2I)

[
ψ⊤J (θ; pX))ψ +O

(
ψ4

)]
(B.14)

=Eψ∼N (0,β2I)

[
ψ⊤J (θ; pX))ψ

]
+O

(
β4

)
(B.15)

=β2 Tr(J (θ; pX)) +O
(
β4

)
, (B.16)

where we used

Eψ
[
ψ⊤J (θ; pX))ψ

]
=

∑
ij

Eψ[ψiψj ]Jij(θ; pX) = β2
∑
ij

δijJij(θ; pX) = β2 Tr(J (θ; pX)).

(B.17)

Therefore, we have

Tr(J (θ; pX)) =
1

2
∆ψd(θ, θ + ψ))

∣∣
ψ=0

=
1

β2
Eψ∼N (0,β2I)[d(θ, θ + ψ)] +O

(
β2

)
. (B.18)

Combining Equation (B.10) and Equation (B.18), we have shown Equation (14) reduces to the more
efficiently computable L-MAP objective for large enough ϵ and small enough β :

LL-MAP(θ; pX) =̇
∑N

i=1
log p(y

(i)
D | x(i)D , fθ) + log p(θ)− 1

2ϵβ2
Eψ∼N (0,β2)[d(θ, θ + ψ)]. (B.19)

The entire objective is negated and divided by N to yield the loss function

LL-MAP(θ; pX) =̇ − 1

N

∑N

i=1
log p(y

(i)
D | x(i)D , fθ)−

1

N
log p(θ)︸ ︷︷ ︸

Standard regularized loss

+λ

(
1

β2
Eψ∼N (0,β2)[d(θ, θ + ψ)]

)
︸ ︷︷ ︸

Laplacian regularizationR(θ;β)

,

(B.20)

where we have absorbed the 1/N factor into the hyperparameter λ = 1
2ϵN . Therefore, using L-MAP

amounts to simply adding a regularization λR(θ;β2) to standard regularized training (PS-MAP). β is
a tolerance parameter for approximating the Laplacian and can simply be fixed to a small value such
as 10−3.
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Appendix C Further Empirical Results and Experimental Details

C.1 Training details for Synthetic Experiments

For both PS-MAP and FS-MAP, we train with the Adam [13] optimizer with a learning rate 0.1 for
2,500 steps to maximize the respective log posteriors. For FS-MAP, we precompute the Φ matrix and
reuse it throughout training. When pX is not Uniform(−1, 1), Φ does not have a simple form and
we use 10,000 Monte Carlo samples to evaluate it.

C.2 Hyperparameters for UCI Regression

We use an MLP with 3 hidden layers, 256 units, and ReLU activations. We train it with the Adam
optimizer for 10,000 steps with a learning rate of 10−3. For each dataset, we tune hyperparameters
based on validation RMSE, where the validation set is constructed by holding out 10% of training
data. We tune both the weight decay (corresponding to prior precision) and L-MAP’s λ over the
choices {10−5, 10−4, 10−3, 10−2, 10−1}. We then report the mean and standard error of test RMSE
across 6 runs using the best hyperparameters selected this way. In each dataset, the inputs and outputs
are standardized based on training statistics.

C.3 Hyperparameters for Image Classification Experiments

Both the weight decay scale, corresponding to the variance of a Gaussian prior, and the L-MAP
hyperparameter λ in Equation (B.20) is tuned over the range [10−1, 10−10] using randomized grid
search. For PS-MAP, λ is set to 0. The parameter variance in the Laplacian estimator is fixed to
β2 = 10−6. In addition, we clip the gradients to unit norm. We use a learning rate of 0.1 with SGD
and a cosine decay schedule over 50 epochs for FashionMNIST and 200 epochs for CIFAR-10. The
mini-batch size is fixed to 128.

C.4 Verifying the L-MAP Approximation

To verify that the L-MAP objective is a good approximation to Equation B.7 when ϵ is large enough
compared to the eigenvalues of J (θ; pX), we compare log det(J (θ; pX) + ϵI)− P log(ϵ) with the
Laplacian estimate 1

2ϵβ2Eψ∼N (0,β2)[d(θ, θ + ψ)] used by L-MAP in Appendix B.10 as its first order
approximation in maxi λi(θ)/ϵ. We reuse the same network architecture, evaluation distribution
pX , and sampling procedure for the parameters from Appendix B.9 to perform the comparison
in Figure 10 and color each point by λ̄(θ)/ϵ, the average eigenvalue of J (θ; pX) divided by ϵ. The
smaller this value, the better the approximation should be. We observe that indeed as ϵ increases
and λ̄(θ)/ϵ approaches 0, the Laplacian estimate becomes a more accurate approximation of the log
determinant. Interestingly, even when ϵ ≪ λ̄(θ) and the approximation is not accurate, there still
appears to be a monotonic relation between the estimate and the log determinant, suggesting that the
Laplacian estimate will continue to produce a qualitatively similar regularization effect as the log
determinant in that regime.
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Figure 10: Log determinant v.s. the Laplacian estimate at different values of ϵ. The x-axis
shows log det(J (θ; pX) + ϵI) − P log(ϵ) while the y-axis shows its first order approximation

1
2ϵβ2Eψ∼N (0,β2)[d(θ, θ + ψ)], estimated with 10 samples of ψ.

C.5 Effective Eigenvalue Regularization using the Laplacian Regularizer
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Figure 11: L-MAP is effective at
minimizing the eigenvalues.

The Laplacian regularizer in Equation (B.19) only uses a sample-
based estimator that is unbiased only in the limit that σ → 0. To keep
the computational overhead at a minimum so that L-MAP can scale to
large neural networks, we only take 1 sample of ψ per gradient step.
To test the effectiveness of L-MAP in regularizing the eigenvalues of
J (θ; pX) under this practical setting, we train an MLP with 2 hidden
layers, 16 units, and tanh activations on the Two Moons dataset (gen-
erated with sklearn.datasets.make_moons(n_samples=200,
shuffle=True, noise=0.2, random_state=0)) for 104 steps
with the Adam optimizer and a learning rate of 0.001. Here we
choose pX = 1

M

∑M
i=1 δxi

with M = 1, 600 and {xi} linearly spaced in the region [−5, 5]2. In Fig-
ure 11, we compare the sum of eigenvalues of J (θ; pX) for L-MAP and FS-MAP with different levels
of jitter ϵ. Both FS-MAP and L-MAP significantly reduce the eigenvalues compared to PS-MAP with
small values of ϵ, corresponding to stronger regularization.

C.6 Visualizing the Effect of Laplacian Regualrization

The hyperparameter ϵ is inversely related to the strength of the Laplacian regularization. We visualize
the effect of ϵ in Figure 12, showing the L-MAP solution varies smoothly with ϵ, evolving from a
near-zero function that severely underfits the data to one that fits the data perfectly.
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Figure 12: Visualization of L-MAP solustions at various ϵ.
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C.7 Further Neural Network Experiments

In Table 4, we report the detailed results for varying the number of Monte Carlo samples S as
reported by Section 4.5 and Figure 7. As noted previously, the performance is fairly robust to this
hyperparameter S in terms of accuracy, selective accuracy, and negative log-likelihood. However,
we find that increasing S can sometimes lead to significant improvement in calibration, as seen for
FashionMNIST [31].

Table 4: This table provides detailed quantitative performance for the results plotted in Figure 7,
ablating the choice of the number of samples used for evaluation of the Laplacian estimator S. The
standard deviations are reported over five trials.

# SAMPLES (S) FASHIONMNIST CIFAR-10
ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓ ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓

4 94.0%±0.1 99.2%±0.0 0.28±0.01 4.3%±0.2 95.6%±0.1 99.5%±0.0 0.17±0.01 2.4%±0.1

8 94.0%±0.2 99.2%±0.0 0.27±0.01 4.2%±0.3 95.6%±0.1 99.5%±0.0 0.17±0.00 2.2%±0.1

16 94.1%±0.1 99.2%±0.0 0.27±0.01 4.1%±0.1 95.6%±0.2 99.5%±0.0 0.17±0.00 2.1%±0.1

32 93.8%±0.1 99.2%±0.0 0.28±0.01 4.4%±0.2 95.5%±0.1 99.5%±0.0 0.16±0.00 1.8%±0.2

64 94.0%±0.1 99.2%±0.0 0.27±0.0 4.2%±0.1 95.7%±0.2 99.5%±0.0 0.16±0.00 1.7%±0.2

128 94.1%±0.1 99.2%±0.1 0.26±0.01 4.1%±0.1 95.5%±0.1 99.5%±0.0 0.16±0.00 1.4%±0.1

256 94.0%±0.2 99.2%±0.0 0.27±0.0 4.3%±0.1 95.5%±0.1 99.5%±0.0 0.16±0.00 1.2%±0.2

512 93.9%±0.1 99.1%±0.0 0.26±0.01 4.2%±0.1 95.5%±0.1 99.5%±0.0 0.16±0.00 1.2%±0.1

Distribution Shift. We additionally evaluate our L-MAP trained models to assess their performance
under covariate shift. Specifically, for models trained on CIFAR-10 [15], we use the additional
test set from CIFAR-10.1 [22] which contains additional images collected after the original data,
mimicing a covariate shift. As reported in Table 5, L-MAP tends to improve calibration, while
retaining performance in terms of accuracy.

Table 5: We evaluate the performance of CIFAR-10.1 [22] using the models trained on CIFAR-10
[15]. L-MAP tends to improve the data fit in terms of the log likelihood and is better calibrated while
retaining the same performance as PS-MAP. The standard deviations are reported over five trials.

METHOD ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓
PS-MAP 89.2%±0.4 97.8%±0.2 0.43±0.03 6.2%±0.3

L-MAP 89.2%±0.7 97.9%±0.2 0.40±0.02 4.1%±0.5

Transfer Learning. Using ResNet-50 trained on ImageNet, we test the effectiveness of L-MAP with
transfer learning. We choose hyperparameters as in Appendix C.3, except a lower learning rate of
10−3 and a smaller batch size of 64 due to computational constraints. Table 3 reports all the results.

22


	Introduction
	Preliminaries
	Understanding Function-Space Maximum A Posteriori Estimation
	The Finite Evaluation Point Objective
	Deriving a More General Objective and its Interpretation
	Investigating the Properties of Function-Space map Estimation

	Limitations and Practical Considerations
	fs-map Does not Necessarily Generalize Better than ps-map
	Pathological Solutions
	Does the Function-Space map Better Approximate the Bayesian Model Average?
	Scalable Approximation for Large Neural Networks
	Experimental Evaluation of l-map

	Discussion
	ps-map is not Invariant to Reparametrization
	Mathematical Details & Derivations
	Prior Distributions over Functions
	The General Case
	Why Should a Constant Metric Affect fs-map?
	Comments on the Infinite Limit
	Condition for a Non-Singular J(; pX)
	Architectural Symmetries Imply Singular J(; pX)
	Addressing the Infinite Prior Density Pathology with a Variational Perspective
	Approximating the Expectation
	Monte Carlo Estimator for the Log Determinant
	Laplacian Regularized map Objective

	Further Empirical Results and Experimental Details
	Training details for Synthetic Experiments
	Hyperparameters for UCI Regression
	Hyperparameters for Image Classification Experiments
	Verifying the l-map Approximation
	Effective Eigenvalue Regularization using the Laplacian Regularizer
	Visualizing the Effect of Laplacian Regualrization
	Further Neural Network Experiments


