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ABSTRACT

As diffusion models are deployed in real-world settings, and their performance is
driven by training data, appraising the contribution of data contributors is crucial
to creating incentives for sharing quality data and to implementing policies for
data compensation. Depending on the use case, model performance corresponds
to various global properties of the distribution learned by a diffusion model (e.g.,
overall aesthetic quality). Hence, here we address the problem of attributing global
properties of diffusion models to data contributors. The Shapley value provides
a principled approach to valuation by uniquely satisfying game-theoretic axioms
of fairness. However, estimating Shapley values for diffusion models is computa-
tionally impractical because it requires retraining on many training data subsets
corresponding to different contributors and rerunning inference. We introduce a
method to efficiently retrain and rerun inference for Shapley value estimation, by
leveraging model pruning and fine-tuning. We evaluate the utility of our method
with three use cases: (i) image quality for a DDPM trained on a CIFAR dataset, (ii)
demographic diversity for an LDM trained on CelebA-HQ, and (iii) aesthetic qual-
ity for a Stable Diffusion model LoRA-finetuned on Post-Impressionist artworks.
Our results empirically demonstrate that our framework can identify important data
contributors across models’ global properties, outperforming existing attribution
methods for diffusion models.

1 INTRODUCTION

Diffusion models have demonstrated impressive performance on image generation (Ho et al., 2020;
Song et al., 2020b), with models such as Dall·E 2 (Ramesh et al., 2022) and Stable Diffusion (Rom-
bach et al., 2022) showing versatile utilities and enabling downstream applications via customization
(Hu et al., 2021; Ruiz et al., 2023). A key driver for the performance of diffusion models is the data
used for training and fine-tuning. The data for commercial diffusion models are often scraped from
the internet (Schuhmann et al., 2022), raising concerns about credit attribution for those who created
the data in the first place (e.g., artists and their artworks) (Jiang et al., 2023). Additionally, as labor is
required to label and curate data to further improve model performance, demands for data labeling
platforms have risen, with workers often underpaid (Widder et al., 2023; Wong, 2023). To create
incentives for sharing quality data and implement policies for data compensation, a pressing question
arises: How do we fairly credit data contributors of diffusion models?

Data attribution, which aims to trace machine learning model behaviors back to training data, has the
potential to address the above question. Indeed, in the context of supervised learning, several works
have proposed methods for valuating the contribution of individual datum to model performance
such as accuracy (Ghorbani & Zou, 2019; Kwon & Zou, 2021; Wang & Jia, 2023). Some recent
work has developed data attribution methods for diffusion models (Dai & Gifford, 2023; Georgiev
et al., 2023; Wang et al., 2023a; Zheng et al., 2023). However, two gaps remain when applying these
recent methods to credit data contributors of diffusion models. First, these methods focus on local
properties related to the generation of a given image. For example, Zheng et al. (2023) showcase their
method D-TRAK to study the changes in pixel values of particular generated images. In contrast, the
performance of diffusion models is evaluated based on global properties of the learned generative
distributions. For example, the demographic diversity of generated images can be considered a global
property for evaluation (Luccioni et al., 2023). Second, existing attribution methods for diffusion
models consider the contribution of each training datum instead of each data contributor, but a
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contributor can provide multiple data points. One reasonable approach is to aggregate the valuations
of data provided by a contributor as the contributor’s total contribution. However, previous work has
shown this approach to incur errors between the aggregated and actual contribution (Koh et al., 2019).
Here, we aim to address these two gaps by attributing global properties of diffusion models to data
contributors.

Attribution methods based on cooperative game theory are particularly desirable because of their
axiomatic justification. Specifically, the Shapley value provides a principled approach to fairly
distribute credit among contributors, since it is the unique notion that satisfies game-theoretic axioms
for equitable valuation (Ghorbani & Zou, 2019; Shapley, 1953). Briefly, the Shapley value assesses
each contributor based on the average gain incurred by adding the contributor’s data to different
contributor combinations. To estimate the Shapley values for data contributors in our setting, we
need to (i) retrain diffusion models on data subsets corresponding to different combinations of
contributors; and (ii) measure global properties of the retrained models by rerunning inference.
However, training a diffusion model can take hundreds of GPU days, and inference can also be
expensive (e.g., approximately 5 GPU days to generate 50,000 images for image quality metrics)
(Dhariwal & Nichol, 2021). Therefore, estimating Shapley values with vanilla retraining and inference
is computationally impractical. Here, we propose to efficiently approximate retraining and inference
on retrained models through model pruning and fine-tuning, providing a framework that enables
Shapley value estimation (Figure 1).

Figure 1: Schematic overview of our proposed framework, where θ∗ denotes a trained diffusion model
for which we aim to credit data contributors, and θ̃∗ denotes the pruned model that approximates θ∗.
After fine-tuning the pruned model on data corresponding to various subsets of contributors, denoted
as θ̃ft, and rerunning inference; global model properties (F) are measured to estimate the Shapley
value for each data contributor.

Related work. Data attribution methods for diffusion models have been developed by recent work.
Some methods require models be trained with specialized paradigms. For example, to assess the
importance for a training sample, Dai & Gifford (2023) first train an ensemble of diffusion models on
data splits, followed by ablating models trained on splits containing the specific sample. Wang et al.
(2023a) evaluate data attribution for text-to-image models by customizing a pretrained model toward
an exemplar style. In contrast, other methods can be applied to already trained models in a post hoc
manner. For example, the TRAK framework has been adapted to find important training data for
intermediate latents along a generative process (Georgiev et al., 2023), while Zheng et al. (2023)
introduce empirical approaches that improve the performance of TRAK for diffusion models. All
these methods attribute local model properties to each individual datum, whereas our work focuses
on attributing global model properties to each data contributor.

Contributions. (1) To our knowledge, we are the first to investigate how to attribute global properties
of diffusion models to data contributors. (2) We propose a framework that efficiently approximates
retraining and rerunning inference for diffusion models, enabling the estimation of Shapley values for
data contributors. (3) We empirically demonstrate that our framework outperforms existing attribution
methods across three datasets, model architectures, and global properties.
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2 PRELIMINARIES

This section provides an overview for diffusion models, attributing global model properties to data
contributors, and existing attribution methods for diffusion models.

2.1 DIFFUSION MODELS

Our research primarily focuses on discrete-time diffusion models, specifically denoising diffusion
probabilistic models (DDPMs) (Ho et al., 2020) and latent diffusion models (LDMs) (Rombach
et al., 2022). Generally, diffusion models are trained to approximate a data distribution q(x0).
To perform learning, a training sample x0 ∼ q(x0) is sequentially corrupted by additive noise
(Ho et al., 2020). This procedure is called the forward process and is defined by q(xt|xt−1) :=
N (xt;

√
1− βtxt−1, βtI), for t = 1, ..., T , where {βt}Tt=1 corresponds to a variance schedule.

Notably, the forward process allows sampling of xt at any time step t from x0, with the closed
form q(xt|x0) = N (xt;

√
ᾱtx0, (1 − ᾱt)I), where αt := 1 − βt and ᾱt :=

∏t
s=1 αs. Then, a

diffusion model learns to denoise x1:T , following the reverse process defined by pθ(xt−1|xt) :=
N (xt−1;µθ(xt, t), σ

2
t I), where θ ∈ Rd is the model parameters, and σt corresponds to some

sampling schedule (Karras et al., 2022). Instead of modeling the conditional means µθ, it is standard
to predict the added noises with a neural network ϵθ using the reparameterization trick. The training
objective corresponds to a variational bound and is formulated as

LSimple(x; θ) = Et,ϵ

[
∥ϵ− ϵθ(

√
ᾱtx+

√
(1− ᾱt)ϵ, t)∥22

]
(1)

Once a diffusion model has been trained, a new image can be generated by sampling an initial noise
xT ∼ N (0, I) and iteratively applying ϵθ at each step t = T, ..., 1 for denoising.

2.2 ATTRIBUTING GLOBAL MODEL PROPERTIES TO DATA CONTRIBUTORS

To gain a comprehensive understanding of machine learning models, it is often beneficial to study
global model properties (Covert et al., 2020), which assess the model’s performance across samples,
rather than focusing on individual outputs. For example, in the setting of supervised learning, global
model property can be test accuracy. In the context of generative models, it can be a quality metric
for generated samples. For example, in image generation, the global model property of interest can
be the Inception Score (Goodfellow et al., 2014) or FID (Heusel et al., 2017). More formally, a global
model property for generative models is defined by any application-specific function F : Θ → R,
which maps a generative model to a scalar value, thereby quantifying the overall distribution learned
by the model. Building on this, we introduce the problem of attributing global model properties to
data contributors. The goal of contributor attribution is to identify important groups of training data
for a model’s global properties, where each group of data is provided by a contributor. More formally,
we have the following definition.
Definition 1. (Contributor attribution) Consider n contributors of training samples D =
{C1, C2, ..., Cn}, with the ith contributor providing a set of data points denoted as Ci, and a global
model property function F . A contributor attribution method is a function τ(F , {Ci}ni=1) that assigns
scores to all contributors to indicate each contributor’s importance to the global model property F .

2.3 EXISTING ATTRIBUTION METHODS FOR DIFFUSION MODELS

In the context of diffusion models, recent work has focused on attributing local model properties to
each datum by adapting the TRAK framework (Park et al., 2023), such as D-TRAK (Zheng et al.,
2023) and Journey-TRAK (Georgiev et al., 2023). Formally, let X denote the input space and Θ the
parameter space of a diffusion model. Suppose there are N training data points {x(1),x(2), ...,x(N)},
and x̃ is the generated image of interest for local attribution. Given a loss function L : X ×Θ → R,
a local model property f : X ×Θ → R, and models {θ∗s}Ss=1 trained on S data subsets1, TRAK for
diffusion models is defined as:

1

S

S∑
s=1

Φs

(
Φ⊤

s Φs + λI
)−1

γs(x̃), and (2)

1In practice, we consider the computationally efficient retraining-free setting by Zheng et al. (2023). That is,
S = 1, and θ∗1 = θ∗ is the original model trained on the entire dataset.
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Φs =
[
ϕs(x

(1)), . . . , ϕs(x
(N))

]⊤
, (3)

where ϕs(x) = P⊤
s ∇θL(x; θ∗s), γs(x) = P⊤

s ∇θf(x; θ
∗
s), Ps is a random projection matrix, and λI

serves for numerical stability and regularization. More details on Journey-TRAK (Georgiev et al.,
2023) and D-TRAK (Zheng et al., 2023) are in Appendix E.

3 CREDITING DATA CONTRIBUTORS OF DIFFUSION MODELS USING THE
SHAPLEY VALUE

Here, we motivate the use of the Shapley value for crediting data contributors of diffusion models.
While estimating Shapley values for diffusion models require computationally expensive retraining
and inference, we propose to address the computational challenge with model pruning and fine-tuning.

3.1 THE SHAPLEY VALUE FOR CONTRIBUTOR ATTRIBUTION

The Shapley value was developed in cooperative game theory to fairly attribute credit in coalition
games (Shapley, 1953). In the context of contributor attribution, for training data with n contributors,
the Shapley value attributed to the ith contributor is defined as:

βi =
1

n

∑
S⊆D\Ci

(
n− 1

|S|

)−1 (
F(θ∗S∪Ci

)−F(θ∗S)
)

(4)

where θ∗S∪Ci
and θ∗S are models trained on the subsets S ∪ Ci and S, respectively. The Shapley value

appraises each contributor’s contribution based on the weighted marginal contribution, F(θ∗S∪Ci
)−

F(θ∗S). It satisfies axioms desirable for equitable attribution, including linearity, dummy player,
symmetry, and efficiency (see Ghorbani & Zou (2019) for a succinct summary). There are arguments
that the efficiency axiom,

∑n
i=1 βi = F(θ∗) − F(θ∅), where θ∗ denotes the model trained on the

entire dataset, and θ∅ denotes the model without training, may not always be essential in use cases
where the primary goal is to remove detrimental data points (Wang & Jia, 2023). In that setting,
ranking is more important than exact attribution values. However, in the context of diffusion models,
particularly in applications involving monetary or credit allocation related to model performance,
having the total attribution matches the model utility can directly quantify reward for each contributor.

Despite its advantages, evaluating the exact Shapley value is challenging as it involves retraining
2n (all possible subsets) models and computing their corresponding model properties. Fortunately,
many sampling-based estimators for Shapley values have been developed (Lundberg & Lee, 2017;
Ghorbani & Zou, 2019; Štrumbelj & Kononenko, 2010). In particular, we adopt KernelSHAP in the
feature attribution literature for contributor attribution, by solving a weighted least squares problem
with sampling (Lundberg & Lee, 2017; Covert & Lee, 2021):

β̂ = min
β0,...,βn

1

M

M∑
j=1

[
F(θ∅) + 1⊤

Sj
β −F(θ∗Sj

)
]2

s.t. 1⊤β = F(θ∗)−F(θ∅) (5)

where Sj is sampled following the distribution µ(S) ∝ n−1

( n
|S|)|S|(n−|S|)

for 1 < 1⊤
S β < n, and 1S

is an indicator vector representing the presence of contributors in S. By solving the least squares
problem with the constraint, a closed-form solution can be derived (Covert & Lee, 2021). The
obtained parameters β̂1, ..., β̂n are the contributor attribution scores.

3.2 SPEED UP RETRAINING AND INFERENCE WITH SPARSIFIED FINE-TUNING

Although using the Shapley value for contributor attribution is well motivated, and existing sampling
approach can be used, the main challenge is in computing F(θ∗Sj

). First, a diffusion model needs to
be trained again from random initialization on the subset Sj to obtain θ∗Sj

. Then inference needs to
be rerun on the retrained model θ∗Sj

to measure F(θ∗Sj
). For diffusion models, both retraining and

rerunning inference can take multiple GPU days (Dhariwal & Nichol, 2021), making the estimator in
Equation (5) computationally impractical.

4
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To address this computational challenge, we propose to speed up retraining and rerunning inference
with sparsified fine-tuning (Figure 1). Sparsified fine-tuning enhances the efficiency of both retraining
and inference, by reducing the number of model parameters through pruning (Jia et al., 2023).
Specifically, θ∗ is pruned and initially fine-tuned on the full dataset D to obtain a performant pruned
model θ̃∗ that approximates θ∗. To furthermore improve the retraining efficiency, θ̃∗ is fine-tuned
on each subset Sj for k steps to obtain θ̃ft

Sj ,k
, instead of retraining the pruned model on Sj from

random initialization. The diffusion loss objective used to train the original model θ∗ is used for all
fine-tuning. Overall, sparsified fine-tuning aims to efficiently achieve

F(θ̃ft
Sj ,k) (sparsified fine-tuning) ≈ F(θ∗Sj

) (retraining full model from scratch). (6)

In other words, under the same computational budget and compared to retaining the full model from
scratch, sparsified fine-tuning can increase the number of sampled subsets Sj for estimating Shapley
values, thus making feasible a framework for crediting data contributors of diffusion models.

In practice, computing F(θ) requires sampling N initial noises x(r)
T ∼ N (0, I), for r = 1, ..., N ,

denoising those noises into generated samples with the denoising network ϵθ, and computing some
quantity over the generated samples (e.g., FID). Hence, to formally analyze the approximation
in Equation (6), we consider the expected error2 E{x(r)

T }N
r=1

[|F(θ̃ft
Sj ,k

) − F(θ∗Sj
)|]. For notational

ease, the dependency of F on {x(r)
T }Nr=1 is omitted, and all expectations are taken with respect to

{x(r)
T }Nr=1 for the rest of the paper unless otherwise noted. We then have the following proposition to

formalize the intuition behind Equation (6).
Proposition 1. Suppose an objective function ℓ : Rd 7→ R on the data provided by a given subset of
data contributors S is convex and differentiable, and that its gradient is Lipschitz-continuous with
some constant L > 0, i.e.

∥∇ℓ(θ1)−∇ℓ(θ2)∥2 ≤ L∥θ1 − θ2∥2
for any θ1, θ2 ∈ Rd. Let θ̃ft

S,k denote a pruned model after k fine-tuning steps on the given subset
S with learning rate α ≤ 1/L, θ̃∗S the optimal pruned model trained on S with the same sparsity
structure as θ̃ft

S,k, and θ∗S the optimal full-parameter model trained on S. Furthermore, assume that

E[|F(θ̃∗S)−F(θ∗S)|] ≤ B for some constant B. Then the expected error E[|F(θ̃ft
S,k)−F(θ∗S)|] ≤ B

as k → ∞.

The proof is in Appendix A. The assumption that ℓ is convex and differentiable with Lipschitz-
continuous gradient is a standard setting for the theoretical analysis of approximating retraining with
fine-tuning, instantiated as a quadratic objective3 in Golatkar et al. (2020) and Georgiev et al. (2024).
The assumption that E[|F(θ̃∗S) − F(θ∗S)|] ≤ B corresponds to the lottery ticket hypothesis that a
sparser neural network can approximate the performance of a dense, full-parameter network (Frankle
& Carbin, 2018), which has been shown to hold for diffusion models (Fang et al., 2023). The main
takeaway from Proposition 1 is that more steps of sparsified fine-tuning should lead to a bounded
approximation error between F(θ̃ft

Sj ,k
) and F(θ∗Sj

) in Equation (6). We further relate Proposition 1
to the expected error in Shapley values with the following proposition.

Proposition 2. Let β̃ft
k ∈ Rn be the Shapley values for the data contributors evaluated with

{F(θ̃ft
S,k)}S∈2D , and β∗ ∈ Rn the Shapley values evaluated with {F(θ∗S)}S∈2D . Suppose the

assumptions on ℓ in Proposition 1 hold for all subsets of data contributors. Furthermore, assume that
E[maxS∈2D |F(θ̃∗S)−F(θ∗S)|] ≤ C. Then E[∥β̃ft

k − β∗∥2] ≤ 2
√
nC as k → ∞.

The proof is in Appendix A. The assumption that convexity, differentiability, and the Lipschitz
continuity of gradient hold for all subsets is implied by the standard setting of a quadratic loss4, as in

2We consider the setting where the same {x(r)
T }Nr=1 are inputs for both ϵθ̃ft

Sj,k
and ϵθ∗

Sj
to represent the use

case of generating samples with the same random seed across multiple inference runs.
3A quadratic objective has the form ℓ(θ) = (θ −B)⊤A(θ −B), with Lipschitz-continuous gradient such

that ∥∇ℓ(θ1)−∇ℓ(θ2)∥2 ≤ 2σmax(A) · ∥θ1 − θ2∥2, where σmax(A) is the maximum singular value of A.
4A Lipschitz constant applicable across all subsets can be defined as maxS∈2D σmax(AS), where AS is

defined by the subset S. For example, in linear regression, AS = X⊤
S XS , where XS denotes the feature matrix

contributed by the data contributors in S.
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Golatkar et al. (2020) and Georgiev et al. (2024). The key takeaway is that the Shapley value error
is bounded with more steps of sparsified fine-tuning. Finally, we note that both Proposition 1 and
Proposition 2 are asymptotic results, and that Proposition 2 is based on exact Shapley values. We
leave theoretical results incorporating finite-step bounds and Shapley value estimation for future
work. Nevertheless, we verify the insights from our theoretical results under empirical settings for
diffusion models in Appendix D.

4 EXPERIMENTS

In this section, we compare our approach with existing attribution methods across three settings. We
employ two metrics for evaluation: linear datamodeling score (LDS) and counterfactual analysis. Our
results demonstrate that our method outperforms existing attribution methods for diffusion models.

4.1 DATASETS AND CONTRIBUTORS

Datasets used for our experiments include CIFAR-20, a subset of CIFAR-100 with 20 contributors,
one per class, as described in Krizhevsky et al. (2009); CelebA-HQ, with 50 celebrity identities as
contributors; and ArtBench (Post-Impressionism), with 258 artists as contributors. More details about
datasets and contributors can be found in Appendix B.

4.2 EXPERIMENT SETTINGS

Model training. For CIFAR-20, we follow the original implementation of the unconditional DDPM
(Ho et al., 2020) where the model has 35.7M parameters. For CelebA-HQ, we follow the implemen-
tation of LDM (Rombach et al., 2022) with 274M parameters and a pre-trained VQ-VAE (Razavi
et al., 2019). For ArtBench (Post-Impressionism), a Stable Diffusion model (Rombach et al., 2022) is
fine-tuned using LoRA (Hu et al., 2021) with rank = 256, corresponding to 5.1M LoRA parameters.
The prompt for the Stable Diffusion model is set to "a Post-Impressionist painting" for each image.
Please refer to Appendix C for more details about model training and inference.

Sparsified fine-tuning. Magnitude-based pruning (Han et al., 2015) is used to remove model weights
according to their magnitudes, resulting in sparse diffusion models with reduced parameters: from
35.7M to 19.8M for CIFAR-20 at a pruning ratio of 0.3, from 274M to 70.9M for CelebA-HQ at
a ratio of 0.5, and from 5.1M to 2.6M for ArtBench (Post-Impressionism) at a ratio of 0.5. To
estimate Shapley values, the pruned models are fine-tuned on data subsets corresponding to different
contributor combinations, with 1,000 steps, 500 steps, and 200 steps for CIFAR-20, CelebA-HQ, and
ArtBench (Post-Impressionism), respectively.

Global model properties. For CIFAR-20, we aim to study the contribution of each labeler. As
each labeler is tasked to filter out noisy samples in each class (Krizhevsky et al., 2009), high-quality
labeling should ensure that generated images are well separated with respect to image classes.
Therefore, for the global model property, we choose the Inception Score (Salimans et al., 2016):

IS = exp (Ex[KL(p(y|x)∥p(y))]) , (7)

where p(y) represents the marginal class distribution over the generated data and p(y|x) represents
the conditional class distribution given a generated image x.

For CelebA-HQ, our goal is to investigate how individual celebrities contribute to the demographic
diversity of the model. Following Luccioni et al. (2023), we measure diversity using entropy:

H = −
K∑

k=1

pk log(pk), (8)

where pk is the proportion of generated samples in the kth demographic cluster. We generate images
using the full model and extract their embeddings with BLIP-VQA (Li et al., 2022) to create 20
reference clusters. Subsequently, we assign these reference clusters to images generated from various
retrained models to calculate the entropy.

6
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For ArtBench (Post-Impressionism), we consider the use case where images are generated and the
most aesthetically pleasing ones are kept. We simulate this use case by computing aesthetic scores5

for 50 generated images and considering the 90th percentile as the global model property.

More details about these global model properties are in Appendix B.

4.3 BASELINE METHODS

We mainly categorize baseline attribution methods into three categories6: (i) similarity-based methods
(e.g., pixel similarity between the generated and training images); (ii) leave-one-out (LOO) and its
approximate variants such as the influence functions (Koh & Liang, 2017) and TRAK-based methods
(Park et al., 2023); and (iii) application-specific metrics such as the aesthetic score of each training
image for ArtBench (Post-Impressionism). Because retraining diffusion models is computationally
expensive, gradients are computed using the original model θ∗ for TRAK-based methods, as done in
Zheng et al. (2023). Local attribution scores are averaged for the images generated by the original
model and used for computing global model properties. To aggregate datum-level attributions, the
sum of attributions corresponding to each contributor is taken for the influence functions and TRAK-
based methods, since this is the principled aggregation (Koh et al., 2019). For similarity-based and
application-specific methods, datum-level attribution scores are aggregated for contributor attribution
by taking either the average or maximum. More details about baseline methods can be found in
Appendix E.

4.4 EVALUATING THE PERFORMANCE OF CONTRIBUTOR ATTRIBUTION

Linear datamodeling score (LDS). From Definition 1, for a given subset of contributors S ⊆ D,
where D = {C1, ..., Cn}, we can define an additive datamodel of global properties based on a given
set of attribution scores τ for the contributors:

g(S, τ) =
∑

i:Ci∈S

τi. (9)

Therefore, the evaluation for an attribution method τ can be constructed as follows: (Linear
datamodeling score) Contributor attribution performance is measured using the linear datamodeling
score (LDS) (Ilyas et al., 2022), which evaluates an attribution method by comparing predicted model
properties based on the additive datamodel against actual retrained model properties. Let S1, ..., SB

be randomly sampled subsets of D, each of size α · n for some α ∈ (0, 1). The LDS for a contributor
attribution score τ ∈ Rn is defined as

LDS = ρ
(
{F(θ∗Sb

)}Bb=1, {g(Sb, τ)}Bb=1

)
, where Sb ∼ Uniform{S ⊂ D : |S| = α · n}, (10)

where ρ is the Spearman rank correlation (Spearman, 1961), and θ∗Sb
denotes a model retrained

from scratch with the contributor subset Sb.

We evaluate the LDS using 100 held-out subsets Sb, each sampled from the datamodel distribution
with α = 0.25, 0.5, 0.75 for each dataset. We report the LDS means and 95% confidence intervals
across three independent sets of {Sb}100b=1.

Counterfactual evaluation. Following Zheng et al. (2023), we also apply counterfactual evaluation
(Hooker et al., 2019). We assess the relative change in model property, ∆F =

F(θ∗
k)−F(θ∗)
F(θ∗) , by

comparing the models trained before and after excluding (or retaining only) the top k most influential
contributors identified by each attribution method. Counterfactual evaluation requires retraining
models on different subsets for each method, so only baseline methods with the best LDS in each
category are chosen for computational feasibility.

4.5 EXPERIMENT RESULTS

SHAPLEY ATTRIBUTION OUTPERFORMS BASELINE METHODS IN CONTRIBUTOR ATTRIBUTION

In Table 1, we present the LDS results for baseline methods and our approach. Interestingly, similarity-
based methods such as raw pixel similarity, CLIP similarity, and gradient similarity occasionally

5https://github.com/LAION-AI/aesthetic-predictor
6TracIn (Pruthi et al., 2020) is not considered since intermediate checkpoints may not be available in practice.
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outperform TRAK-based methods. We observe that TRAK-based methods sometimes yield poor
or even negative correlations. Among TRAK-based approaches, attribution using noisy latents
during generation (i.e., Journey-TRAK) can result in a negative LDS for model properties such as
the Inception Score and aesthetic score. Our findings indicate that simply aggregating individual
attributions derived from diffusion loss or its alternative functions is insufficient for accurately
determining contributor attribution of global properties. Such an approach can perform worse than
simple heuristics based on model properties (e.g., the average aesthetic score).

Table 1: LDS (%) results with α = 0.5. Means and 95% confidence intervals across three random
initializations are reported.

Method CIFAR-20 CelebA-HQ
ArtBench

(Post-Impressionism)

Pixel similarity (average) -11.81 ± 4.56 -8.91 ± 0.93 11.24 ± 0.63
Pixel similarity (max) -31.80 ± 2.90 21.70 ± 2.05 14.61 ± 2.72
Embedding dist. (average) - 13.83 ± 1.12 -
Embedding dist. (max) - 7.32 ± 3.16 -
CLIP similarity (average) 5.79 ± 3.67 -32.23 ± 0.87 -6.96 ± 4.08
CLIP similarity (max) 11.31 ± 0.37 -0.93 ± 3.83 -1.75 ± 4.07
Gradient similarity (average) 5.79 ± 3.67 -18.32 ± 0.65 0.25 ± 1.18
Gradient similarity (max) -0.89 ± 3.17 -12.90 ± 1.60 10.48 ± 3.11

Aesthetic score (average) - - 24.85 ± 2.30
Aesthetic score (max) - - 21.36 ± 3.70

Relative IF 5.23 ± 5.50 -1.07 ± 0.68 -5.02 ± 1.77
Renormalized IF 11.39 ± 6.79 10.17± 0.57 -11.41 ± 0.93
TRAK 7.94 ± 5.67 3.22± 0.75 -8.18 ± 1.30
Journey-TRAK -42.92 ± 2.15 -2.88 ± 4.02 -11.41 ± 4.22
D-TRAK 10.90± 1.21 −27.23± 2.80 11.30 ± 3.47
Leave-one-out (LOO) 30.66 ± 6.11 -1.22 ± 6.34 3.74 ± 8.00

Sparsified-FT Shapley (Ours) 61.48 ± 2.27 26.34 ± 3.42 61.44 ± 2.04

In contrast, our approach, sparsified-fine-tuning (sparsified-FT) Shapley, computes contributor attri-
bution using the Shapley value, achieving the highest LDS results of 61.48%, 26.34% , and 61.44%
for CIFAR-20, CelebA-HQ, and ArtBench (Post-Impressionism), respectively. While leave-one-out
(LOO) achieves 30.66% LDS on CIFAR-20, its performance declines as the number of contributors
increase, e.g., CelebA-HQ and ArtBench (Post-Impressionism). This shows that attribution based on
the marginal contribution of Shapley subsets with respect to F provides the most accurate importance
score. Despite achieving the best results for CelebA-HQ compared to the baseline methods, we
observe that the LDS performance of sparsified-FT Shapley, 26.32%, is relatively low compared to
those of CIFAR-20 and ArtBench. We also perform evaluation across varying datamodel subset sizes
(α = 0.25, 0.5, 0.75), and our approach consistently outperforms others (Appendix F).

ENHANCING RETRAINING AND INFERENCE EFFICIENCY THROUGH SPARSIFIED FINE-TUNING

As described in Section 3.2, computing F(θ∗Sj
) is the primary computational bottleneck. Our

sparsified fine-tuning approach significantly reduces the runtime required to obtain θ∗Sj
compared to

retraining and fine-tuning without sparsification. On average, retraining and inference with sparsified
fine-tuning for a Shapley subset take 18.3 minutes for CIFAR-20, 22.9 minutes for CelebA-HQ,
and 10.5 minutes for ArtBench (Post-Impressionism), making it 5.3, 10.4, and 18.6 times faster
than retraining, respectively (Table 2). By enabling faster computation and obtaining more models
retrained on different subsets, sparsified FT yields the best LDS results under the same computational
budgets (Figure 2). This demonstrates that sparsified-FT Shapley is both more computationally
feasible and accurate with limited computational resources. To the best of our knowledge, we are
the first to overcome the computational bottleneck and enable contributor attribution using Shapley
values for diffusion models.
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Figure 2: Comparison of LDS (%) with α = 0.5 among Shapley values estimated with sparsified
fine-tuning (FT), fine-tuning (FT), and retraining under the same computational budgets (1 unit =
runtime to retrain and run inference on a full model). Specific runtimes are shown in Table 2.

IMPACT OF CONTRIBUTORS ON MODEL PROPERTY

Here we present the results of our counterfactual evaluation, analyzing changes in model behavior
after either removing the top contributors or including only the top contributors identified by each
method. In CIFAR-20, our approach shows a change of -23.23%, compared to -14.95% for CLIP
similarity and -17.30% for LOO, as shown in Figure 3 (top). For CelebA-HQ, the changes are
-7.83% for our method, -6.64% for pixel similarity, and 0.21% for renormalized IF. For ArtBench
(Post-Impressionism), the changes are 0.58%, -0.05%, -1.27%, and -1.86% for D-TRAK, maximum
pixel similarity, average aesthetic score, and sparsified-FT Shapley, respectively.

Conversely, when retaining the top 60% of contributors, model properties improve. In the CIFAR-20
dataset, our method leads to a 16.98% positive change in model properties, compared to -9.45% for
CLIP similarity and 9.51% for LOO. For CelebA-HQ, the model behavior change was 20.0% for
our method, 8.89% for pixel similarity, and 6.02% for renormalized IF (bottom of Figure 3). These
findings, along with the results in Section 4.5, demonstrate that our approach effectively identifies the
top contributors and provides accurate attribution.

WHO ARE THE TOP CONTRIBUTORS?

We analyze the top contributors identified by sparsified-FT Shapley in CIFAR-20, including contribu-
tors to classes such as motorcycles, buses, and lawnmowers (Figure 4). High-quality labeling by these
contributors ensures that the training images contain clear and meaningful objects, which should
result in low entropy (i.e., high confidence) of a classifier (i.e., Inception v3) (Barratt & Sharma,
2018). We therefore compute the entropy of each image and find that the top 20% classes have a lower
average entropy of 5.18, compared to 6.03 for the remaining classes (Figure 16). For CelebA-HQ,
the most important celebrities ranked by sparsified-FT Shapley encompass a diverse range of demo-
graphics and tend to belong to non-majority demographic clusters (Figure 16). Excluding images
corresponding to these celebrities can have a negative impact on the diversity score. For ArtBench,
we observe that images from the top contributors are more vivid and exhibit more vibrant colors, as
shown in Figure 4.

5 DISCUSSION

In this work, we introduce the problem of attributing global model properties to data contributors in
the context of diffusion models. To address this problem, we develop an efficient framework that
estimates the Shapley values for data contributors by leveraging model pruning and fine-tuning. This
approach speeds up retraining and improves inference runtime, while ensuring accurate attribution.
Our framework can have wide-ranging implications, such as creating incentives for data contributors,
rewarding data labelers in a way that satisfies game-theoretic fairness, assessing labeling quality, and
improving model performance and fairness. Empirical results across multiple datasets and global
model properties show that our framework outperforms existing attribution approaches based on the
diffusion loss, such as TRAK (Park et al., 2023) and its variant D-TRAK (Zheng et al., 2023), in
crediting data contributors. There are several promising directions for future research. First, beyond
fine-tuning, recent unlearning methods designed for diffusion models (Gandikota et al., 2023; Heng
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Figure 3: Relative percentage changes in global properties, comparing the original fully trained
models to models retrained after removing the top 40% contributors (top) and including only the top
contributors (bottom), as identified by various attribution methods.

Figure 4: Top contributors and their corresponding training images for each dataset (top). Pairs
of generated images above and below the 90th percentile of aesthetic score from Stable Diffusion
models LoRA-finetuned under three conditions: excluding the data from the top 40% of artists, using
the data from all the artists, and including only the data from the top 60% of artists (bottom).

& Soh, 2023) could be explored in combination with various pruning strategies (Ding et al., 2019;
Fang et al., 2024; Liu et al., 2021). Second, it can be useful to allocate contributor-level importance to
datum-level importance for the data provided by each contributor, providing attribution at two levels
of granularity. The Owen value, which modifies the Shapley value, is well suited for this scenario
(Owen, 1977). Beyond diffusion models, our proposed framework can also be extended to models
that are expensive to retrain, such as large language models (LLMs), whenever appropriate pruning
and unlearning approaches are available. Finally, our approach and existing attribution methods for
diffusion models assume access to training data and model parameters, which are not necessarily
available for deployed models. For text-to-image models, membership inference and in-context
learning may be useful in addressing this challenge (Hu & Pang, 2023; Wang et al., 2023b).
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6 ETHICS STATEMENT

As diffusion models become increasingly deployed in real-world applications, there is a notable
lack of clear guidelines for crediting data contributors. This work focuses on the fair attribution
of data contributors for diffusion models, which is a crucial step towards creating incentives for
sharing quality data and implementing policies for equitable compensation. By efficiently estimating
Shapley values, our approach can promote fairness in recognizing the importance of data contributors.
Importantly, our approach is motivated by positive attribution, such as incentivizing quality labeling
and improving the demographic diversity of generated images. However, we also recognize that our
approach could potentially be used to remove data from certain data contributors. We view this as an
opportunity to ensure higher data quality and transparency in model development, particularly when
addressing harmful or irrelevant contributions. Ensuring data contributors are fairly compensated and
informed is critical to avoid exploitation. Our use cases, such as demographic diversity for CelebA-
HQ, highlight the need for transparency in data usage and advocate for diverse and representative
datasets. At the same time, we acknowledge that considerations related to data privacy, consent, and
the potential amplification of biases, especially in socially sensitive applications, may not be easily
quantified as model properties.
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APPENDIX

A PROOFS

Before proving Proposition 1, we first provide the following lemma.
Lemma 1. Suppose an objective function ℓ : Rd 7→ R is convex and differentiable, and that its
gradient is Lipschitz-continuous with some constant L > 0, i.e.

∥∇ℓ(θ1)−∇ℓ(θ2)∥2 ≤ L∥θ1 − θ2∥2
for any θ1, θ2 ∈ Rd. Then running gradient descent for k steps with learning rate α ≤ 1/L satisfies

ℓ(θ(k))− ℓ(θ∗) ≤ ∥θ(0) − θ∗∥22
2kα

,

where θ(k) is the model parameter after the kth step, θ∗ is the optimum, and θ(0) is the initial
parameter.

Proof. We provide the proof for this well-known result for completeness. The assumption that ∇ℓ(θ)
is L-Lipschitz continuous implies that ∇2ℓ(θ) ⪯ LI , so we can perform a quadratic expansion of ℓ
around ℓ(θ) to obtain the following inequality:

ℓ(θ(i)) ≤ ℓ(θ) +∇ℓ(θ)⊤(θ(i) − θ) +
1

2
L∥θ(i) − θ∥22, (11)

for any θ, θ(i) ∈ Rd. With the gradient descent update θ(i) = θ(i−1) − α∇ℓ(θ(i−1)) and setting
θ = θ(i−1)in Equation (11), we obtain

ℓ(θ(i)) ≤ ℓ(θ(i−1)) +∇ℓ(θ(i−1))⊤α∇ℓ(θ(i−1)) +
1

2
L∥α∇ℓ(θ(i−1))∥22 (12)

= ℓ(θ(i−1))− α∥∇ℓ(θ(i−1))∥22 +
1

2
α2L∥∇ℓ(θ(i−1))∥22 (13)

= ℓ(θ(i−1))−
(
1− 1

2
αL

)
α∥∇ℓ(θ(i−1))∥22. (14)

Using α ≤ 1/L, we have

1− 1

2
αL ≥ 1− 1

2
· 1
L

· L =
1

2
. (15)

Hence
ℓ(θ(i)) ≤ ℓ(θ(i−1))− 1

2
α∥∇ℓ(θ(i−1))∥22, (16)

which implies that the objective is decreasing until the optimal value is reached, because
∥∇ℓ(θ(i−1))∥22 is positive unless ∇ℓ(θ(i−1)) = 0.

Now since ℓ is convex, we have
ℓ(θ(i−1)) +∇ℓ(θ(i−1))⊤(θ∗ − θ(i−1)) ≤ ℓ(θ∗), (17)

and
ℓ(θ(i−1)) ≤ ℓ(θ∗) +∇ℓ(θ(i−1))⊤(θ(i−1) − θ∗) (18)

after rearrangement. Plugging this inequality into Equation (16), we have

ℓ(θ(i)) ≤ ℓ(θ∗) +∇ℓ(θ(i−1))⊤(θ(i−1) − θ∗)− 1

2
α∥∇ℓ(θ(i−1))∥22, (19)

which implies that
ℓ(θ(i))− ℓ(θ∗) (20)

≤ ∇ℓ(θ(i−1))⊤(θ(i−1) − θ∗)− 1

2
α∥∇ℓ(θ(i−1))∥22 (21)

=
1

2α

(
2α∇ℓ(θ(i−1))⊤(θ(i−1) − θ∗)− α2∥∇ℓ(θ(i−1))∥22

)
(22)

=
1

2α

(
2α∇ℓ(θ(i−1))⊤(θ(i−1) − θ∗)− α2∥∇ℓ(θ(i−1))∥22 − ∥θ(i−1) − θ∗∥22 + ∥θ(i−1) − θ∗∥22

)
(23)

=
1

2α

(
∥θ(i−1) − θ∗∥22 − ∥θ(i−1) − α∇ℓ(θ(i−1))− θ∗∥22

)
. (24)
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Plugging in the gradient descent update rule into this inequality, we get

ℓ(θ(i))− ℓ(θ∗) ≤ 1

2α

(
∥θ(i−1) − θ∗∥22 − ∥θ(i) − θ∗∥22

)
. (25)

Summing over k steps, we have

k∑
i=1

ℓ(θ(i))− ℓ(θ∗) ≤
k∑

i=1

1

2α

(
∥θ(i−1) − θ∗∥22 − ∥θ(i) − θ∗∥22

)
(26)

=
1

2α

(
∥θ(0) − θ∗∥22 − ∥θ(k) − θ∗∥22

)
(27)

≤ 1

2α
∥θ(0) − θ∗∥22 (28)

, where the telescoping sum results in the equality. Finally, the term in the summation on the LHS is
decreasing because of Equation (16), hence

ℓ(θ(k))− ℓ(θ∗) ≤ 1

k

k∑
i=1

ℓ(θ(i))− ℓ(θ∗) ≤ ∥θ(0) − θ∗∥22
2kα

. (29)

We then proceed to prove Proposition 1.

Proof of Proposition 1. By the triangle inequality, we have

E[|F(θ̃ft
S,k)−F(θ∗S)|] ≤ E[|F(θ̃ft

S,k)−F(θ̃∗S)|] + E[|F(θ̃∗S)−F(θ∗S)|] (30)

≤ E[|F(θ̃ft
S,k)−F(θ̃∗S)|] +B, (31)

where the second inequality comes from the assumption that E[|F(θ̃∗S)−F(θ∗S)|] ≤ B.

Note that θ̃ft
S,k and θ̃∗S are in Rd, with zeros for the pruned weights. Hence the assumptions on ℓ hold

for θ̃ft
S,k, θ̃

∗
S . Applying Lemma 1, we have

ℓ(θ̃ft
S,k)− ℓ(θ̃∗S) ≤

∥θ̃∗ − θ̃∗S∥22
2kα

, (32)

where we recall that θ̃∗ denotes the pruned model before fine-tuning. Taking k → ∞, we obtain
ℓ(θ̃ft

S,k)− ℓ(θ̃∗S) = 0, and it follows that θ̃ft
S,k = θ̃∗S because ℓ is convex. Therefore, as k → ∞, we

have

E[|F(θ̃ft
S,k)−F(θ∗S)|] ≤ E[|F(θ̃ft

S,k)−F(θ̃∗S)|] +B (33)

= E[|F(θ̃∗S)−F(θ̃∗S)|] +B (34)
= B (35)

Before proving Proposition 2, we provide the following lemma.

Lemma 2. The exact Shapley values β ∈ Rn for the data contributors evaluated with {F(θS)}S∈2D

can be represented as β = Av, where A ∈ Rn×2n is a matrix with rows indexed by the data
contributors and columns indexed by all possible contributor subsets, and v ∈ R2n is a vector
indexed by all possible contributor subsets. Specifically,

A[i, S] =

{
1
n

(
n−1
|S|−1

)−1
, if Ci ∈ S

− 1
n

(
n−1
|S|

)−1
, otherwise

(36)

and v[S] = F(θS).
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Proof. For each data contributor i, we have

βi =
∑
S∈2D

A[i, S] · v[S] (37)

=
∑

S:Ci∈S

1

n

(
n− 1

|S| − 1

)−1

F(θS)−
∑

S′:Ci /∈S′

1

n

(
n− 1

|S′|

)−1

F(θS′) (38)

=
∑

S′⊆D\Ci

1

n

(
n− 1

|S′|

)−1

F(θS′∪Ci)−
∑

S′⊆D\Ci

1

n

(
n− 1

|S′|

)−1

F(θS′) (39)

=
1

n

∑
S′⊆D\Ci

(
n− 1

|S′|

)−1

(F(θS′∪Ci
)−F(θS′)) , (40)

which is the Shapley value for contributor i. The third equality follows from the change of variable
S′ = S \ Ci such that |S′| = |S| − 1.

Finally, we prove Proposition 2 as follows.

Proof of Proposition 2. Based on Lemma 2, β̃ft
k = Aṽft

k , and β∗ = Av∗, where ṽft
k [S] = F(θ̃ft

S,k) and
v∗[S] = F(θ∗S) for all S ∈ 2D. Hence we have

E[∥β̃ft
k − β∗∥2] = E[∥Aṽft

k −Av∗∥2] (41)

= E

√√√√ n∑
i=1

(
A[i]⊤(ṽft

k − v∗)
)2

(42)

≤ E

√√√√ n∑
i=1

∥A[i]∥21 · ∥ṽft
k − v∗∥2∞ (43)

= E∥ṽft
k − v∗∥∞ ·

√√√√ n∑
i=1

∥A[i]∥21, (44)

where the inequality follows from Holder’s inequality.

For each i = 1, ..., n, we have

∥A[i]∥1 =
∑
S∈2D

|A[i, S]| (45)

=

n∑
z=1

∑
S:Ci∈S,|S|=z

1

n

(
n− 1

z − 1

)−1

+

n−1∑
z=0

∑
S:Ci /∈S,|S|=z

1

n

(
n− 1

z

)−1

(46)

=

n∑
z=1

1

n

(
n− 1

z − 1

)−1

·
(
n− 1

z − 1

)
+

n−1∑
z=0

1

n

(
n− 1

z

)−1

·
(
n− 1

z

)
(47)

=
1

n
· n+

1

n
· n = 2, (48)

where the third equality follows from counting the number of subsets. Hence, we have

E[∥β̃ft
k − β∗∥2] ≤ 2

√
n · E∥ṽft

k − v∗∥∞ (49)

= 2
√
n · E

[
max
S∈2D

|F(θ̃ft
S,k)−F(θ∗S)|

]
(50)

≤ 2
√
n ·

(
E[max

S∈2D
|F(θ̃ft

S,k)−F(θ̃∗S)|] + E[max
S∈2D

|F(θ̃∗S)−F(θ∗S)|]
)

(51)

= 2
√
n · E

[
max
S∈2D

|F(θ̃∗S)−F(θ∗S)|
]
, (52)
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as k → ∞, where the last equality follows the same steps as in Proposition 1. Finally, with the
assumption that E[maxS∈2D |F(θ̃∗S)−F(θ∗S)|] ≤ C, we have

E[∥β̃ft
k − β∗∥2] ≤ 2

√
nC. (53)

B DATASETS AND MODEL PROPERTIES

CIFAR-20 (32× 32). The full CIFAR-100 dataset7 contains 50,000 training samples across 100
classes, with each class labeled by a labeler (Krizhevsky et al., 2009). These labelers were com-
pensated to ensure the removal of initially mislabeled images. For computational feasibility in the
LDS evaluations, we follow a similar approach in Zheng et al. (2023) to create a smaller subset,
CIFAR-20. This subset includes 10,000 training samples randomly selected from four superclasses
in CIFAR-100: "large carnivores", "flowers", "household electrical devices", and "vehicles 1". For
Inception Score calculation, we generate 10,240 samples and use Inception Score Pytorch 8.

CelebA-HQ (256× 256). The original CelebA-HQ dataset (Karras et al., 2018) comprises of 30,000
face images with 6,217 unique identities. We downloaded a preprocessed dataset from https:
//github.com/ndb796/LatentHSJA, which contain 5,478 images from 307 identities, each
with 15 or more images. For our experiment, we randomly sample 50 identities, totaling 895 images.
Also, to match the input dimension required by the implementation of latent diffusion model, we
resize the original images from a resolution of 1024× 1024 to 256× 256. To calculate the diversity
score based on Equation (8), we first generate 1,024 samples from the model trained on the full dataset
and extract image embeddings using the pretrained BLIP-VQA image encoder9 (Li et al., 2022).
These embeddings are then clustered into 20 distinct groups as the reference clusters using the Ward
linkage criterion (Jh Jr, 1963), representing groups with demographic characteristics. Subsequently,
for models trained on various subsets of celebrities, we generate 1,024 samples and assign them into
these 20 reference clusters.

ArtBench Post-Impressionism (256× 256). ArtBench-10 is a dataset for benchmarking artwork
generation with 10 art styles, consisting of 5,000 training images per style (Liao et al., 2022).
For our experiments, we consider the 5,000 training images corresponding to the art style “post-
impressionism" from 258 artists. The aesthetic score predictor10 is a linear model built on top of
CLIP to predict the aesthetic quality of images as a proxy to how much people, on average, perceive
an image as aesthetically pleasing.

C ADDITIONAL DETAILS ON TRAINING AND INFERENCE

CIFAR-20 and CelebA-HQ. For CIFAR-20, we follow the original implementation of the uncondi-
tional DDPMs (Ho et al., 2020) where the model has 35.7M parameters. For CelebA-HQ, we follow
the implementation of LDM (Rombach et al., 2022) with 274M parameters and a pre-trained VQ-VAE
(Razavi et al., 2019). For both datasets, the maximum diffusion time step is set to T = 1000 during
training, with a linear variance schedule for the forward diffusion process ranging from β1 = 10−4 to
βT = 0.02. For both CIFAR-20 and CelebA-HQ, we use the Adam optimizer (Loshchilov & Hutter,
2017) and apply random horizontal flipping as data augmentation. Both the DDPM and LDM are
trained for 20,000 steps with a batch size of 64 and a learning rate of 10−4. During inference, images
are generated using the 100-step DDIM solver (Song et al., 2020a).

ArtBench (Post-Impressionism). A Stable Diffusion model11 (Rombach et al., 2022) is fine-tuned
using LoRA (Hu et al., 2021) with rank = 256, corresponding to 5.1M LoRA parameters. The prompt
is set to "a Post-Impressionist painting" for each image. The LoRA parameters are trained using the
AdamW optimizer (Loshchilov & Hutter, 2017) with a weight decay of 10−6, for 200 epochs and

7https://www.cs.toronto.edu/~kriz/cifar.html
8https://github.com/sbarratt/inception-score-pytorch
9https://huggingface.co/Salesforce/blip-vqa-base

10https://github.com/LAION-AI/aesthetic-predictor
11https://huggingface.co/lambdalabs/miniSD-diffusers
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a batch size of 64. Cosine learning rate annealing is used, with 500 warm-up steps and an initial
learning rate of 3× 10−4. At inference time, images are generated using the PNDM scheduler with
100 steps (Karras et al., 2022).

For training diffusion models, we utilize NVIDIA GPUs: RTX 6000, A40, and A100, equipped with
24GB, 48GB, and 80GB of memory, respectively. This study employs the Diffusers package version
0.24.0 12 to train models across. Per-sample gradients are computed using the techniques outlined
in the PyTorch package tutorial (version 2.2.1) 13. Furthermore, we apply the TRAK package14

to project gradients with a random projection matrix. All experiments are conducted on systems
equipped with 64 CPU cores and the specified NVIDIA GPUs.

For CelebA-HQ, we implement two techniques to reduce GPU memory usage during training. First,
we pre-compute the embeddings of VQ-VAE for all training samples, since the VQ-VAE is kept
frozen during training. This approach allows us to avoid loading the VQ-VAE module into GPU
memory during training. Second, we use the 8-bit Adam optimizer implemented in the bitsandbytes
Python package (Dettmers et al., 2022).

D EMPIRICAL VERIFICATION OF PROPOSITION 1 AND COROLLARY 1

Proposition 1 suggests that increasing the number of fine-tuning steps can lead to a better approxima-
tion of the retrained model property F(θ∗Sj

) using the sparsified fine-tuned model property F(θ̃ft
Sj ,k

).

Here, we empirically measure the similarity between F(θ∗Sj
) and F(θ̃ft

Sj ,k
), with 100 subsets Sj

sampled from the Shapley kernel and varying the number of sparsified fine-tuning steps k. As
Proposition 1 provides an upper bound on the estimation error, the possibility of a constant shift
should be considered15. Therefore, we focus on the Pearson correlation between {F(θ∗Sj

)}100j=1 and
{F(θ̃ft

Sj ,k
)}100j=1 as the similarity metric. As shown in Figure 5, the approximation generally becomes

better with more fine-tuning steps.

500 1000 1500 2000 2500 3000
Number of Fine-Tuning Steps

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Pe
ar

so
n 

Co
rre

la
tio

n 
of

 M
od

el
 P

ro
pe

rti
es

CIFAR-20

300 400 500 600 700 800 900 1000
Number of Fine-Tuning Steps

0.65

0.70

0.75

0.80

0.85

0.90

CelebA-HQ

100 200 300 400 500 600 700 800
Number of Fine-Tuning Steps

0.45

0.50

0.55

0.60

0.65

0.70

ArtBench (Post-Impressionism)

Figure 5: Pearson correlation between model behaviors evaluated with retraining vs. sparsified
fine-tuning, with varying number of fine-tuning steps. Models are retrained or fine-tuned on 100
contributor subsets sampled from the Shapley kernel.

Proposition 2 suggests that increasing the number of fine-tuning steps can also lead to a better
approximation of the retrained Shapley values (denoted as β∗) using Shapley values estimated
through sparsified fine-tuning (denoted as β̃ft

k ). Here, we compare the correlation between β∗ and β̃ft
k ,

both estimated with 500 contributor subsets, with varying number of fine-tuning steps k. As shown
in Figure 6, the approximation tends to become better with more fine-tuning steps.

Finally, we note there is a trade-off between better approximation and computational efficiency. As
shown in Figure 7, average runtime increases linearly with more fine-tuning steps.

12https://pypi.org/project/diffusers/
13https://pytorch.org/
14https://trak.csail.mit.edu/quickstart
15For example, E[|F(θ̃ft

Sj ,k
)− F(θ∗Sj

)|] ≤ B still holds when F(θ̃ft
Sj ,k

) = F(θ∗Sj
) + B′ for some −B ≤

B′ ≤ B
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Figure 6: Pearson correlation between the Shapley values estimated with retraining vs. sparsified fine-
tuning, with varying number of fine-tuning steps. Shapley values are estimated with 500 contributor
subsets sampled from the Shapley kernel.

500 1000 1500 2000 2500 3000
Number of Fine-Tuning Steps

0

5

10

15

20

25

30

35

40

45

Av
er

ag
e 

Ru
nt

im
e 

(M
in

ut
es

)

CIFAR-20

300 400 500 600 700 800 900 1000
Number of Fine-Tuning Steps

0

5

10

15

20

25

30

35

40

45
CelebA-HQ

100 200 300 400 500 600 700 800
Number of Fine-Tuning Steps

0

5

10

15

20

25

30

35

40

45
ArtBench (Post-Impressionism)

Figure 7: Average runtime of sparsified fine-tuning for the Shapley kernel.

E DATA ATTRIBUTION METHODS FOR DIFFUSION MODELS

Here we provide definitions and implementation details of the baselines used in Section 4. For
TRAK-based approaches, we follow the implementation details in Zheng et al. (2023)16.

Raw pixel similarity. This is a simple baseline that uses each raw image as the representation and
then computes the cosine similarity between the generated sample of interest and each training sample
as the attribution score.

Embeddings distance. This method computes the l2 distances between training samples encoded
using BLIP-VQA17 (Li et al., 2022), and the average embedding of each reference cluster as the
attribution score.

CLIP similarity. This method utilizes CLIP18 (Radford et al., 2021) to encode each sample into an
embedding and then compute the cosine similarity between the generated sample of interest and each
training sample as the attribution score.

Leave-one-out. Leave-one-out (LOO) evaluates the change in model property due to the removal of
a single data contributor i from the training set (Koh & Liang, 2017). Formally, it is defined as:

τLOO(F ,D)i = F(θ∗)−F(θ∗D\Ci
), (54)

where F(θ∗) denotes the global property for the model trained with the full dataset, and F(θ∗D\Ci
)

represents the global property of the mode trained with the data provided by the ith contributor.

Gradient similarity. This is a gradient-based influence estimator (Charpiat et al., 2019), which
computes the cosine similarity using the gradient representations of the generated sample of interest,
x̃ and each training sample x(j) as the attribution score:

PT∇θLSimple(x
(j); θ∗) · PT∇θLSimple(x̃; θ

∗)

∥PT∇θLSimple(x(j); θ∗)T∥∥PT∇θLSimple(x̃; θ∗)∥
(55)

16https://github.com/sail-sg/D-TRAK/
17https://huggingface.co/Salesforce/blip-vqa-base
18https://github.com/openai/CLIP
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TRAK. Park et al. (2023) propose an approach that aims to enhance the efficiency and scalability of
data attribution for classifiers. Zheng et al. (2023) adapt TRAK for attributing images generated by
diffusion models, defined as follows:

1

S

S∑
s=1

Φs

(
Φ⊤

s Φs + λI
)−1 P⊤

s ∇θLSimple(x̃; θ
∗
s), and (56)

Φs =
[
ϕs(x

(1)), . . . , ϕs(x
(N))

]⊤
, where ϕs(x) = P⊤

s ∇θLSimple(x; θ
∗
s), (57)

where LSimple is the diffusion loss used during training, Ps is a random projection matrix, and λI
serves for numerical stability and regularization.

D-TRAK. Zheng et al. (2023) find that, compared to the theoretically motivated setting where the loss
function is defined as L = LSimple, using alternative functions—such as the squared loss LSquare—to
replace both the loss function and local model property result in improved performance:

1

S

S∑
s=1

Φs

(
Φ⊤

s Φs + λI
)−1 P⊤

s ∇θLSquare(x̃; θ
∗
s), and (58)

Φs =
[
ϕs(x

(1)), . . . , ϕs(x
(N))

]⊤
, where ϕs(x) = P⊤

s ∇θLSquare(x; θ
∗
s). (59)

Journey-TRAK. Georgiev et al. (2023) focus on attributing noisy images xt during the denoising
process. It attributes training data not only for the final generated sample but also for the intermediate
noisy samples throughout the denoising process. At each time step, the reconstruction loss is treated
as a local model property. Following (Zheng et al., 2023), we compute attribution scores by averaging
over the generation time steps, as shown below:

1

T ′
1

S

T ′∑
t=1

S∑
s=1

Φs

(
Φ⊤

s Φs + λI
)−1 P⊤

s ∇θLt
Simple(x̃t; θ

∗
s), and (60)

Φs =
[
ϕs(x

(1)), . . . , ϕs(x
(N))

]⊤
, where ϕs(x) = P⊤

s ∇θLSimple(x; θ
∗
s). (61)

Here, Lt
Simple is the diffusion loss restricted to the time step t (hence without taking the expectation

over the time step).

In practice, we follow the main implementation by Zheng et al. (2023) that considers TRAK, D-
TRAK, and Journey-TRAK as retraining-free methods. That is, S = 1, and θ∗1 = θ∗ is the original
diffusion model trained on the entire dataset.

Relative Influence. Proposed by Barshan et al. (2020), the θ-relative influence functions estimator
normalizes the influence functions estimator of Koh & Liang (2017) by the HVP magnitude. Follow-
ing Zheng et al. (2023), we combine this estimator with TRAK dimension reudction. The attribution
for each training sample x(j) is as follows:

PT∇θLSimple(x̃; θ
∗) ·

(
ΦTRAK

T · ΦTRAK + λI
)−1

· PT∇θLSimple(x
(j); θ∗)∥∥∥∥(ΦTRAK

T · ΦTRAK + λI
)−1

· PT∇θLSimple(x(j); θ∗)

∥∥∥∥ , (62)

and
ΦTRAK =

[
ϕ(x(1)), . . . , ϕ(x(N))

]⊤
, where ϕ(x) = P⊤∇θLSimple(x; θ

∗). (63)

Renormalized Influence. Introduced by Hammoudeh & Lowd (2022), this method renormalizes the
influence functions by the magnitude of the training sample’s gradients. Similar to relative influence,
we made an adaptation following Zheng et al. (2023). The attribution for each training sample x(j) is
as follows:

PT∇θLSimple(x̃; θ
∗) ·

(
ΦTRAK

T · ΦTRAK + λI
)−1

· PT∇θLSimple(x
(j); θ∗)

∥PT∇θLSimple(x(j); θ∗)∥
, (64)
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and
ΦTRAK =

[
ϕ(x(1)), . . . , ϕ(x(N))

]⊤
, where ϕ(x) = P⊤∇θLSimple(x; θ

∗). (65)

For TRAK-based methods and gradient similarity, we compute gradients using the final model
checkpoint, meaning that S = 1 in Equation (56). We select 100 time steps evenly spaced within the
interval [1, T ] for computing the diffusion loss. At each time step, we introduce one instance of noise.
The projection dimensions are set to k = 4096 for CIFAR-20 and k = 32768 for CelebA-HQ and
ArtBench (Post-Impressionism). For D-TRAK, we use the best-performing output function LSquare

and choose λ = 5e−1 as in Zheng et al. (2023).

TracIn. Pruthi et al. (2020) propose to attribute the training sample’s influence based on first-order
approximation with saved checkpoints during the training process. However, this is also a major
limitation because sometimes it is impossible to obtain checkpoints for models such as Stable
Diffusion (Rombach et al., 2022).
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F ADDITIONAL EXPERIMENT RESULTS

In this section, we present additional experiment results, including 1) LDS results across different
datamodel alpha and computational budgets, 2) generated images after removing top contributing
groups, 3) the performance of alternative unlearning approaches in CIFAR-20, and 4) analysis for top
contributors in each dataset.

Table 2: Average runtime for data subset in minutes (training + inference) for Shapley values
estimated with retraining, fine-tuning (FT), sparsified FT, and LoRA fine-tuning.

Method CIFAR-20 CelebA-HQ ArtBench (Post-Impressionism)

Retrain 77.4 + 20.8 213.4 + 26.5 190.6 + 6.4
FT 6.06 + 18.9 17.5 + 27.0 4.4 + 6.4
Sparsified FT 4.37 + 14.0 11.0 + 11.9 4.5 + 6.1
LoRA 4.21 + 19.0 5.5 + 26.7 -

First, we provide the training cost incurred for each method. Utilizing 8 RTX-6k GPUs, the total
runtime cost for sparsified-FT Shapley is under one day for each dataset. In contrast, the corresponding
runtime costs for retraining-based Shapley are 4.3 days, 10.4 days, and 17.1 days. This highlights
that sparsified-FT Shapley is more computationally feasible than retraining-based Shapley.

F.1 CIFAR-20

Table 3: LDS (%) results with α = 0.25, 0.5, 0.75 on CIFAR-20, with the Inception Score of 10,240
generated images as the global model property. Means and 95% confidence intervals across three
random initializations are reported.

Method α = 0.25 α = 0.5 α = 0.75

Pixel similarity (average) -10.88 ± 9.61 -11.81 ± 4.56 -20.82 ± 5.57
Pixel similarity (max) -17.42 ± 0.83 -31.80 ± 2.90 -23.88 ± 1.28
CLIP similarity (average) -0.34 ± 4.65 -21.27 ± 1.37 -13.13 ± 1.96
CLIP similarity (max) -1.19 ± 15.19 11.31 ± 0.37 16.05 ± 7.30
Gradient similarity (average) 6.48 ± 10.98 5.79 ± 3.67 -10.75 ± 7.06
Gradient similarity (max) 7.22 ± 3.88 -0.89 ± 3.17 -4.82 ± 4.71

Relative IF 1.14 ± 13.51 5.23 ± 5.50 5.21 ± 3.78
Renormalized IF 9.09 ± 13.40 11.39 ± 6.79 7.99 ± 4.02
TRAK 3.62 ± 14.02 7.94 ± 5.67 6.59 ± 3.88
Journey-TRAK -30.09 ± 3.85 -42.92 ± 2.15 -40.43 ± 3.46
D-TRAK 21.02 ± 6.76 10.90 ± 1.21 21.90 ± 5.02

LOO 17.01 ± 5.29 30.66 ± 6.11 13.64 ±4.99

Sparsified-FT Shapley (Ours) 51.24 ± 3.39 61.48 ± 2.27 59.15 ± 4.24
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Table 4: LDS (%) results on Shapley value with different number of subset S.

α Method S = 100 S = 200 S = 300 S = 400 S = 500

0.25
Retraining 43.88 (3.97) 49.95 (3.20) 57.56 (2.52) 62.68 (1.85) 65.90 (1.52)

Sparsified-FT 8.46 (13.41) 23.92 (6.27) 33.88 (8.33) 54.88 (7.44) 51.24 (3.39)
FT 13.57 (7.09) 40.01 (8.30) 28.94 (8.59) 24.58 (6.07) 20.57 (3.02)

LoRA 12.00 (0.65) 29.61 (1.37) 54.26 (3.38) 51.55 (6.40) 61.60 (7.44)

0.5
Retraining 48.84 (2.00) 39.55 (3.17) 57.24 (2.69) 66.81 (2.99) 70.58 (2.05)

Sparsified-FT -5.41 (4.78) 38.00 (3.06) 47.74 (1.49) 63.62 (2.30) 61.48 (2.27)
FT 13.57 (7.09) 40.01 (8.30) 28.94 (8.59) 24.58 (6.07) 39.60 (3.03)

LoRA 29.90 (2.96) 41.41 (1.28) 41.27 (0.59) 34.20 (0.53) 30.86 (1.07)

0.75
Retraining 51.39 (3.21) 45.85 (3.99) 61.91 (4.62) 70.59 (3.13) 72.07 (4.83)

Sparsified-FT -11.44 (2.26) 33.98 (0.98) 48.16 (5.18) 59.65 (5.34) 59.15 (4.24)
FT 33.90 (5.88) 26.09 (8.55) 45.49 (6.83) 46.92 (5.96) 38.51 (4.62)

LoRA 24.55 (2.16) 31.07 (7.83) 32.67 (7.94) 35.01 (7.05) 35.16 (8.14)
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Figure 8: LDS (%) results on CIFAR-20 for Shapley values estimated with sparsified fine-tuning
(FT), finet-tuning (FT), LoRA fine-tuning, and retraining under the same computational budgets (1
unit = runtime to retrain and run inference on a full model).

Table 5: LDS (%) results for retraining-based attribution across Shapley, Leave-One-Out (LOO), and
Banzhaf distributions with α = 0.25, 0.5, 0.75 on CIFAR-20. The global model behavior is evaluated
using the Inception Score of 10,240 generated images. Means and 95% confidence intervals across
three random initializations are reported. For sparsified fine-tuning (sFT) and fine-tuning (FT), the
number of fine-tuning steps is set to 1000.

Method α = 0.25 α = 0.5 α = 0.75

LOO (retraining) 17.01 ± 5.29 30.66 ± 6.11 13.64 ±4.99
Banzhaf (retraining) 10.59 ± 8.64 37.11 ± 2.33 42.78 ± 1.85
Shapley (retraining) 65.90 ± 1.52 70.58 ± 2.05 72.07 ±4.83
LOO (FT) -55.00 ± 11.76 -66.06 ± 2.28 -54.58 ±7.02
Banzhaf (FT) -11.20 ± 6.42 9.09 ± 2.67 16.79 ± 1.12
Shapley (FT) 20.57 ± 3.02 39.60 ± 3.03 38.51 ± 4.62
LOO (sFT) 29.45 ± 5.96 27.43 ± 4.20 19.58 ± 0.35
Banzhaf (sFT) 5.44 ± 8.59 22.55 ± 5.07 31.44 ± 0.27
Shapley (sFT) 51.24 ± 3.39 61.48 ± 2.27 59.15 ± 4.24

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Sparsified-FT Shapley

IS = 6.134

D-TRAK

IS = 6.160

CLIP Similarity (Max)

IS = 6.258

IS = 5.604 IS = 6.143 IS = 6.552

IS = 5.352 IS = 5.872 IS = 6.365

Figure 9: Inception scores and example images generated with the same initial noises for DDPMs
trained without the 10%, 20%, and 40% (top to bottom) most important CIFAR-20 classes based on
sparsified-FT Shapley, D-TRAK, and CLIP similarity (max).
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F.2 CELEBA-HQ

Table 6: LDS (%) results with α = 0.25, 0.5, 0.75 on CelebA-HQ, with the cluster entropy of 1,024
generated images as the global model property. Means and 95% confidence intervals across three
random initializations are reported.

Method α = 0.25 α = 0.5 α = 0.75

Pixel similarity (average) −1.52± 3.14 −8.91± 0.93 −4.19± 2.25
Pixel similarity (max) 9.53± 6.35 21.70± 2.05 24.76± 0.96
Embedding dist. (average) 3.59± 6.47 13.83± 1.12 10.89± 2.04
Embedding dist. (max) 9.17± 2.12 7.32± 3.16 22.25± 1.87
CLIP similarity (average) −8.29± 4.38 −32.23± 0.87 −22.29± 2.56
CLIP similarity (max) −23.62± 3.51 −0.93± 3.83 −8.86± 2.16
Gradient similarity (average) -19.40 ± 3.81 -18.32 ± 0.65 -21.29 ± 1.76
Gradient similarity (max) −15.98± 2.72 −12.90± 1.60 −25.41± 2.42

Relative IF -5.14 ± 2.30 -1.07 ± 0.68 -5.50 ±1.13
Renormalized IF −5.27± 6.15 10.17± 0.57 0.39± 1.20
TRAK −6.59± 5.04 3.22± 0.75 −3.65± 1.24
Journey-TRAK −16.82± 3.25 −2.88± 4.02 −12.66± 2.27
D-TRAK −30.77± 4.26 −27.23± 2.80 −23.67± 1.71
LOO 11.9± 8.32 −1.22± 6.34 −8.47±−7.93

Sparsified-FT Shapley (Ours) 10.05 ± 5.33 26.34 ± 3.34 24.08 ± 1.52

Table 7: LDS (%) results on Shapley value with different number of subsets S

α Method S = 100 S = 200 S = 300 S = 400 S = 500

0.25
Retraining 3.54 (0.59) 8.91 (2.61) 16.77 (4.75) 15.58 (6.23) 31.52 (5.56)

Sparsified - FT 9.95 (5.77) 15.93 (6.29) 9.90 (8.17) 16.12 (6.40) 10.05 (5.33)
FT -10.52 (4.26) 2.77 (5.79) 12.29 (4.50) 9.86 (4.84) 13.91 (3.91)

LoRA 3.07 (1.17) 19.03 (9.47) 26.20 (9.73) 27.17 (7.72) 31.09 (7.72)

0.5
Retraining 19.01 (1.60) 28.43 (2.71) 35.06 (3.48) 23.48 (2.95) 28.58 (3.91)

Sparsified - FT 20.73 (2.89) 26.83 (3.96) 12.71 (2.06) 27.23 (2.94) 26.34 (3.42)
FT 1.82 (3.36) 9.25 (2.59) 12.17 (2.83) 8.63 (0.52) 13.77 (1.42)

LoRA 10.66 (3.56) 20.12 (2.72) 13.99 (1.13) 21.12 (0.85) 22.37 (0.82)

0.75
Retraining 21.14 (0.93) 26.29 (1.37) 31.87 (2.85) 31.60 (2.23) 32.26 (2.08)

Sparsified - FT 16.05 (0.31) 29.35 (1.43) 9.49 (2.03) 17.70 (1.30) 24.08 (1.52)
FT -11.02 (1.51) -12.07 (4.30) 1.93 (4.82) 0.96 (4.16) 7.37 (3.79)

LoRA 6.05 (1.17) 9.66 (1.43) -1.92 (0.77) 9.00 (2.18) 14.60 (2.33)
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Figure 10: LDS (%) results on CelebA-HQ for Shapley values estimated with sparsified fine-tuning
(FT), fine-tuning (FT), and retraining under the same computational budgets (1 unit = runtime to
retrain and run inference on a full model).
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Table 8: LDS (%) results for retraining-based attribution across Shapley, Leave-One-Out (LOO),
and Banzhaf distributions with α = 0.25, 0.5, 0.75. The global model behavior is calculated with
the cluster entropy of 1,024 generated images. Means and 95% confidence intervals across three
random initializations are reported. For sparsified fine-tuning (sFT) and fine-tuning (FT), the number
of training steps is set to 500.

Method α = 0.25 α = 0.5 α = 0.75

LOO (retraining) 11.90 ± 8.32 -1.22 ± 6.34 -8.20 ±0.27
Banzhaf (retraining) 7.87 ± 1.31 6.79 ± 1.27 12.54 ± 2.60
Shapley (retraining) 31.52 ± 5.56 28.58 ± 3.91 32.26 ±2.08
LOO (FT) -2.70 ± 1.84 -10.15 ± 1.12 -10.09 ± 1.70
Banzhaf (FT) 1.50 ± 7.36 -2.78 ± 0.69 3.23 ± 1.91
Shapley (FT) 13.91 ± 3.91 13.77 ± 1.42 7.37 ± 3.79
LOO (sFT) 0.93 ± 2.83 -9.26 ± 0.39 -18.80 ± 1.28
Banzhaf (sFT) 7.87 ± 1.31 6.79 ± 1.27 12.54 ± 2.60
Shapley (sFT) 10.05 ± 5.33 26.34 ± 3.34 24.08 ± 1.52
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F.3 ARTBENCH (POST-IMPRESSIONISM)

Table 9: LDS (%) results with α = 0.25, 0.5, 0.75 on ArtBench (Post-Impressionism), with the 90th
percentil of aesthetic scores for 50 generated images as the global model property. Means and 95%
confidence intervals across three random initializations are reported.

Method α = 0.25 α = 0.5 α = 0.75

Pixel similarity (average) 16.57 (3.16) 11.24 (0.63) -1.19 (5.71)
Pixel similarity (max) 16.62 (2.95) 14.61 (2.72) 3.43 (10.57)
CLIP similarity (average) -6.03 (1.61) -6.96 (4.08) -9.27 (2.74)
CLIP similarity (max) 8.94 (0.43) -1.75 (4.07) -1.70 (9.89)
Grad similarity (average) 4.14 (5.14) 0.25 (1.18) -7.81 (0.89)
Grad similarity (max) 22.10 (9.02) 10.48 (3.11) 1.32 (4.19)

Aesthetic score (average) 24.81 (3.00) 24.85 (2.30) 13.21 (7.82)
Aesthetic score (max) 31.73 (3.04) 21.36 (3.70) 7.45 (11.66)

Relative IF 3.30 (4.98) -5.02 (1.77) -3.77 (12.05)
Renormalized IF -1.71 (4.37) -11.41 (0.93) -8.96 (12.86)
TRAK -0.85 (4.74) -8.18 (1.30) -6.78 (13.37)
Journey-TRAK -14.10 (5.09) -11.41 (4.22) -6.83 (2.80)
D-TRAK 19.37 (3.29) 11.30 (3.47) 17.72 (6.87)

Sparsified-FT Shapley (Ours) 52.83 (3.58) 61.44 (2.04) 32.24 (10.93)
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Figure 11: LDS (%) results with α = 0.25, 0.5, 0.75 on ArtBench (Post-Impressionism) for Shapley
values estimated with sparsified fine-tuning (FT), fine-tuning (FT), and retraining under the same
computational budgets (1 unit = runtime to retrain and run inference on a full model).

Table 10: Aesthetic Score (90th percentile of 50 generated images) as the global model behavior. 100
datamodel subsets with alpha = 0.25, 0.5, 0.75 are used for evaluation. Means and 95% confidence
intervals across three random initializations are reported. All Shapley values are estimated with 1,000
subsets.

α Retrain Sparsified - FT FT
0.25 53.25 (6.75) 51.15 (7.54) 52.83 (3.58)
0.50 52.30 (2.32) 51.61 (3.21) 61.44 (2.04)
0.75 23.78 (14.07) 33.77 (6.65) 32.24 (10.93)
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Table 11: LDS (%) results with α = 0.25, 0.5, 0.75 on ArtBench (Post-Impressionism), with the 90th
percentile of aesthetic score for 50 generated images as the global model property. Means and 95%
confidence intervals across three random initializations are reported. For sparsified fine-tuning (sFT)
and fine-tuning (FT), the number of fine-tuning steps is set to 200. For Banzhaf and Shapley values,
1000 sbusets are used for estimation.

Method α = 0.25 α = 0.5 α = 0.75

LOO (retraining) 2.69 ± 4.57 3.74 ± 8.00 -1.13 ± 15.78
Banzhaf (retraining) 4.70 ± 7.28 16.19 ±1.98 -10.16 ±9.49
Shapley (retraining) 53.25 ± 6.75 52.30 ± 2.32 23.78 ± 14.07
LOO (FT) -14.13 ± 5.36 -0.84 ± 1.44 6.62 ± 6.72
Banzhaf (FT) 3.55 ± 6.99 15.30 ± 2.09 -10.79 ± 9.40
Shapley (FT) 52.83 ± 3.58 61.44 ± 2.04 32.24 ± 10.93
LOO (sFT) 2.94 ± 2.64 2.84 ± 7.33 1.00 ± 4.45
Banzhaf (sFT) 3.81 ± 7.16 15.51 ± 2.15 -10.43 ± 9.16
Shapley (sFT) 51.15 ± 7.54 51.61 ± 3.21 33.77 ± 6.65
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Figure 12: Two generated images above and two generated images below the 90th percentile of
aesthetic scores, for Stable Diffusion models LoRA-finetuned without the top 40% most important
artists based on D-TRAK, pixel similarity (max), training image aesthetic score (average), and
sparsified-FT Shapley.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

D-
TR

AK

Aesthetic Score = 7.467 Aesthetic Score = 7.464 Aesthetic Score = 7.345 Aesthetic Score = 7.270

Pi
xe

l S
im

ila
rit

y
(M

ax
)

Aesthetic Score = 7.448 Aesthetic Score = 7.311 Aesthetic Score = 7.263 Aesthetic Score = 7.119

Ae
st

he
tic

 S
co

re
(A

ve
ra

ge
)

Aesthetic Score = 7.260 Aesthetic Score = 7.255 Aesthetic Score = 7.180 Aesthetic Score = 7.167

Sh
ap

le
y

(S
pa

rs
ifi

ed
 F

T)

Aesthetic Score = 7.259 Aesthetic Score = 7.239 Aesthetic Score = 7.171 Aesthetic Score = 7.102

Figure 13: Two generated images above and two generated images below the 90th percentile of
aesthetic scores, for Stable Diffusion models LoRA-finetuned without the top 40% most important
artists based on D-TRAK, pixel similarity (max), training image aesthetic score (average), and
sparsified-FT Shapley.
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F.4 ALTERNATIVE UNLEARNING APPROACHES FOR REMOVAL

In this section, we present the performance of unlearning approaches: fine-tuning (FT), gradient
ascent (GA)Graves et al. (2021), and influence unlearning (IU)Izzo et al. (2021). To evaluate how
well these approaches approximate retraining, we randomly selected 100 subsets from the Shapley
sampling distribution, and we computed the FID score between the samples generated by the model
retrained on each subset vs. models undergone by the unlearning methods. The resulting average FID
scores are 25.5, 185.9, and 101.3 for sparsified fine-tuning (FT), sparsified GA, and sparsified IU,
respectively (Table 12). In contrast, the average FID scores without sparsification are 43.1, 145.2, and
67.7 for fine-tuning (FT), GA, and IU, respectively (Table 12). These results indicate that while both
GA and IU can effectively unlearn the target set, they significantly degrade overall image quality,
Figure 14 and Figure 15. In contrast, sparsified FT demonstrates superior performance, producing
better image quality than both GA and IU.

Table 12: FID scores between generated samples from different unlearning approximations and
retrained models. Means and 95% confidence intervals across 100 random sampled subsets from
Shapley distribution are reported.

Unlearning Method FID Score

With Sparsification

Fine-Tuning (FT) 25.5 ± 10.5
Gradient Ascent (GA) 185.9 ± 45.7
Influence Unlearning (IU) 101.3 ± 32.1

Without Sparsification

Fine-Tuning (FT) 43.1 ± 10.9
Gradient Ascent (GA) 145.2 ± 15.4
Influence Unlearning (IU) 67.7± 15.9

Figure 14: Sample images generated using various unlearning approaches on CIFAR-20 with identical
noise inputs: retraining, sparsified fine-tuning (FT), sparsified gradient ascent (GA), and sparsified
influence unlearning (IU) (from left to right).

Figure 15: Sample images generated using various unlearning approaches on CIFAR-20 with identical
noise inputs: retraining, fine-tuning (FT), gradient ascent (GA), and influence unlearning (IU) (from
left to right).
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F.5 ANALYSIS OF TOP CONTRIBUTORS

Here, we present an additional analysis of the top contributors identified by sparsified FT. For CIFAR-
20, we compute the entropy of the training images for each class based on the softmax outputs
of InceptionNet. In the case of CelebA-HQ, the top contributors are predominantly drawn from
non-majority clusters.

Figure 16: Entropy of each class in CIFAR-20 (left), redline indicates top 20% groups; Distribution of
the demographic clusters in the CelebA-HQ dataset (middle). Top 4 celebrity identities by sparsified-
FT Shapley (right).
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F.6 DATA QUALITY DISTRIBUTION
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Figure 17: Entropy distributions across data contributors in CIFAR-20.
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Figure 18: Distributions of embedding distance to the average of majority clusters across celebrity
identities in CelebA-HQ.
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Figure 19: Distributions of aesthetic score across artists in ArtBench (Post-Impressionism).
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