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ABSTRACT

Regularization by denoising (RED) is a recently developed framework for solving
inverse problems by integrating advanced denoisers as image priors. Recent work
has shown its state-of-the-art performance when combined with pre-trained deep
denoisers. However, current RED algorithms are inadequate for parallel processing
on multicore systems. We address this issue by proposing a new asynchronous
RED (AsYNC-RED) algorithm that enables asynchronous parallel processing of
data, making it significantly faster than its serial counterparts for large-scale inverse
problems. The computational complexity of ASYNC-RED is further reduced by
using a random subset of measurements at every iteration. We present complete
theoretical analysis of the algorithm by establishing its convergence under explicit
assumptions on the data-fidelity and the denoiser. We validate ASYNC-RED on
image recovery using pre-trained deep denoisers as priors.

1 INTRODUCTION

Imaging inverse problems seek to recover an unknown image € R™ from its noisy measurements
y € R™. Such problems arise in many fields, ranging from low-level computer vision to biomedical
imaging. Since many imaging inverse problems are ill-posed, it is common to regularize the solution
by using prior information on the unknown image. Widely-adopted image priors include total
variation, low-rank penalties, and transform-domain sparsity (Rudin et al.| (1992} Figueiredo &
Nowak, 2001;2003; Hu et al.,[2012; |[Elad & Aharon, 2006).

There has been considerable recent interest in plug-and-play priors (PnP) (Venkatakrishnan et al.}
2013; Sreehari et al., 2016) and regularization by denoising (RED) (Romano et al.,[2017), as frame-
works for exploiting image denoisers as priors for image recovery. The popularity of deep learning has
led to a wide adoption of deep denoisers within PnP/RED, leading to their state-of-the-art performance
in a variety of applications, including image restoration (Mataev et al.,|[2019), phase retrieval (Metzler
et al.,2018), and tomographic imaging (Wu et al.,[2020). Their empirical success has also prompted
a follow-up theoretical work clarifying the existence of explicit regularizers (Reehorst & Schniter]
2019), providing new interpretations based on fixed-point projections (Cohen et al., [2020), and
analyzing their coordinate/online variants (Sun et al., | 2019a; Wu et al., [2020). Nonetheless, current
PnP/RED algorithms are inherently serial. As illustrated in Fig. [I, this makes them suboptimal on
multicore systems that are often required for processing large-scale datasets (Recht et al.,2011), such
as those involving biomedical (Ong et al., 2020) and astronomical images (Akiyama et al., 2019)

We address this gap by proposing a novel asynchronous RED (ASYNC-RED) algorithm. The
algorithm decomposes the inference problem into a sequence of partial (block-coordinate) updates
on x executed asynchronously in parallel over a multicore system. ASYNC-RED leads to a more
efficient usage of available cores by avoiding synchronization of partial updates. ASYNC-RED is also
scalable in terms of the number of measurements, since it processes only a small random subset of y
at every iteration. We present two new theoretical results on the convergence of ASYNC-RED based
on a unified set of explicit assumptions on the data-fidelity and the denoiser. Specifically, we establish
its fixed-point convergence in the batch setting and extend this analysis to the randomized minibatch
scenario. Our results extend recent work on serial block-coordinate RED (BC-RED) (Sun et al.}
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Figure 1: Visual illustration of serial and parallel image recovery on a multicore system. (a) Serial
processing uses only one core of the system for every iteration. (b) Synchronous parallel processing
has to wait for the slowest core to finish before starting the next iteration. (¢) Asynchronous parallel
processing can continuously iterate using all the cores without waiting. (d) Asynchronous parallel
processing using the stochastic gradient leads to additional flexibility. (a), (b), and (c) use all the
corresponding measurements at every iteration, while (d) uses only a small random subset at a time.
ASYNC-RED adopts the schemes shown in (¢) and (d).

2019a) and are fully consistent with the traditional asynchronous parallel optimization methods (Lian
et al., 2015; Sun et al.,[2017). We numerically validate ASYNC-RED on image recovery from linear
and noisy measurements using pre-trained deep denoisers as image priors.

2 BACKGROUND
Inverse problems. Inverse problems are traditionally formulated as a composite optimization problem

x = argmin g(x) + h(x), (1)
xER
where g is the data-fidelity term that ensures consistency of  with the measured data y and h is
the regularizer that infuses the prior knowledge on x. For example, consider the smooth ¢5-norm
data-fidelity term g(x) = ||y — Ax||3, which assumes a linear observation model y = Ax + e, and
the nonsmooth TV regularizer h(x) = 7| Dx||;, where 7 > 0 is the regularization parameter and D
is the image gradient (Rudin et al., |1992).

Regularization by denoising (RED). RED is a recent methodology for imaging inverse problems
that seeks vectors * € R™ satisfying

G(z") =Vg(@*)+7(x" —Dy(x*)) =0 < a"czer(G) = {xeR": G(x)=0} (2

where Vg denotes the gradient of the data-fidelity term and D, : R™ — R"™ is an image denoiser
parameterized by ¢ > 0. Under additional technical assumptions, the solutions &* € zer(G)
can be associated with an explicit objective function of form (I). Specifically, when D, is locally
homogeneous and has a symmetric Jacobian satisfying strong passivity (Romano et al.| 2017} Reehorst

& Schniter, |[2019), H(x) := x — D, (x) corresponds to the gradient of a convex regularizer
1
h(z) = 2T (z — Do (). 3)

A simple strategy, known as GM-RED, for computing * € zer(G) is based on the first-order
fixed-point iteration

xl =z —~4G(z!!), with G:R™ = R", 4)

where 7 > 0 denotes the stepsize. In this paper, we extend this first-order RED algorithm to design
ASYNC-RED. Since many denoisers do not satisfy the assumptions necessary for having an explicit
objective (Reehorst & Schniter| 2019), our theoretical analysis considers a broader setting where
D, does not necessarily correspond to any explicit regularizer. The benefit of our analysis is that it
accommodates powerful deep denoisers (such as DnCNN (Zhang et al., 2017a))) that have been shown
to achieve the state-of-the-art performance (Sun et al.,2019a; Wu et al.;2020; |Cohen et al., 2020).
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Plug-and-play priors (PnP) and other related work. There are other lines of works that combine
the iterative methods with advanced denoisers. One closely-related framework is known as the
deep mean-shift priors (Bigdeli et al., 2017). It develops an implicit regularizer whose gradient is
specified by a denoising autoencoder. Another well-known framework is PnP, which generalizes
proximal methods by replacing the proximal map with an image denoiser (Venkatakrishnan et al.,
2013). Applications and theoretical analysis of PnP are widely studied in (Sreehari et al.|2016;|Zhang
et al.;2017b;[Sun et al., 2019; Zhang et al.,[2019;|Ahmad et al., 2020; Wei et al.,[2020) and (Chan
et al., 2017; Meinhardt et al.,[2017; Buzzard et al.,[2018; Sun et al., [2019b; [Tirer & Giryes, [2019;
Teodoro et al., 2019; Ryu et al., 2019; | Xu et al., 2020), respectively. In particular, Buzzard et al.
(2018) proposed a parallel extension of PnP called Consensus Equilibrium (CE), which enables
synchronous parallel updates of x. Note that while we developed ASYNC-RED as a variant of RED,
our framework and analysis can be also potentially applied to PnP/CE. The plug-in strategy can be
also applied to another family of algorithms known as approximate message passing (AMP) (Metzler
et al., 2016aib; Fletcher et al., 2018). The AMP-based algorithms are known to be nearly-optimal for
random measurement matrices, but are generally unstable for general A (Rangan et al.,2014;[2015).

Asynchronous parallel optimization. There are two main lines of work in asynchronous parallel
optimization, the one involving the asynchrony in coordinate updates (lutzeler et al.,2013;|Liu et al.|
2015;Peng et al.| |2016; [Bianchi et al., [2015;|Sun et al.| 2017;|Hannah & Yin,2018; Hannah et al.|
2019)), and the other focusing on the study of various asynchronous stochastic gradient methods (Recht
et al.,|2011; |Lian et al., 2015} [Liu et al.,[2018;|Zhou et al., 2018 |Lian et al., 2018).

Our work contributes to the area by developing a novel deep-regularized asynchronous parallel
method with provable convergence guarantees.

3 ASYNCHRONOUS RED

ASYNC-RED allows efficient processing of data by simultaneously considering the asynchronous
partial updates of solution x and the use of randomized subset of measurements y. In this section,
we introduce the algorithmic details of our method. We start with the basic batch formulation of
ASYNC-RED (AsYNC-RED-BG) followed by its minibatch variant (ASYNC-RED-SG).

3.1 ASYNC-RED USING BATCH GRADIENT

When the gradient uses all the measurements y € R™, ASYNC-RED-BG is the asynchronous
extension of the recent block-coordinate RED (BC-RED) algorithm (Sun et al., 2019a). Consider the
decomposition of the variable space R™ into b > 1 blocks

= (¢, - ,xp) ER™ x - - xR™ =R" with n=n;+ns+--+nyp,

For eachi € {1,...,b}, we introduce the operator U; : R™ — R™ that injects a vector in R™ into
R™ and its transpose U] that extracts the ith block from a vector in R™. This directly implies that

l=UUf +---+UU] and |z|3 = |z1]3+ -+ |zpl3 with z;=Ulz. (5
In analogy to the RED operator G in (2)), we define the block-coordinate operator G; as
Gi(x) = U;U]G(x), with £z €R" and G;:R" - R". (6)

Due to the asynchrony in the block updates, the iterate might be updated several times by different
cores during a single update cycle of a core, which means that the evaluation of 2**! relies on a stale
iterate £~
-1
Pt xb — 4G, (T), with ZF ="+ Z (x® — ), Ap <A (7
s=k—Ap

Here, we assume that the stale iterate Z" exits as a state of x in the shared memory, and the delay
between them is bounded by a finite number A € Z_. These two assumptions are often referred
to as the consistent read (Recht et al., 2011) and the bounded delay (Liu & Wright, 2015) in the
traditional asynchronous block coordinate optimization. Although we implement the consistent read
in ASYNC-RED, the algorithm never imposes a global lock on x*. We refer to SupplementEfor the
related discussion.
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Algorithm 1 ASsYNC-RED-BG

1: input: 2% € R”, v > 0,7 > 0.

2: setup: A multicore system with one shared memory storing @ and global iteration k.

3: for global k=1,2,3,... do

zk read( )

50 G (®%) « U; U] G(z*)  withrandom iy € {1,...,b} > Block Operation
6: ¥ < read(x)

7. a2l xF — 4G, (2)

8

9:

nok

. update z in the shared memory using 2**+!
end for

The first variant, ASYNC-RED-BG, is summarized in Algorithmm where read(-) reads a block from
the shared memory to the local memory. When the algorithm is run on a single core system without
parallelization (that is to say £* = 2*), it reduces to the normal BC-RED algorithm. Hence, our
analysis is also applicable to BC-RED.

We specifically consider the random block selection strategy in ASYNC-RED-BG, namely that
every block index iy, is selected as an i.i.d random variable uniformly distributed over {1,...,b}.
Such a strategy is commonly adopted for simplifying the convergence analysis. Nevertheless, our
method and analysis can be generalized to the scenario where 7, follows some arbitrary probability
P(iy, = 1) = p; specified by the user.

Compared with serial RED algorithms, ASYNC-RED-BG enjoys considerable scalability by dividing
the computation of the full operator G into b parallel evaluation of G; distributed across all cores.
Thus, without any modification to the algorithmic design, one can easily improve the performance
of the algorithm by simply integrating more cores into the system. In Section[5, we experimentally
demonstrate the significant speed-up and scale-up in solving the context of image recovery.

3.2 ASYNC-RED USING STOCHASTIC GRADIENT

The scale of measurements is another important factor influencing the computational complexity
in the large-scale inference tasks. ASYNC-RED-SG improves the applicability of ASYNC-RED to
these cases by further considering the decomposition of the measurement space R™ into £ > 1 blocks

y=(y1,- -,y ER™ x--- xR™ =R™ with m=mq+ms+--+my.
Hence, ASYNC-RED-SG considers the following data-fidelity g and its gradient Vg

4
% Z = Vy(z Z Vg;(a (8)

where each g; is evaluated on the subset y; € R™i of the full y. From (8), we know that the
computation of Vg(x) is proportional to the total number ¢. To reduce the per-iteration cost, we
follow the idea of stochastic optimization to approximate the batch gradient by using the stochastic
gradient that relies on a minibatch of w < ¢ measurements

1 w
=—> Vg (), ©
w
s=1
where j, is picked from the set {1,..., ¢} as i.i.d uniform random variable. Based on the minibatch

gradient, we define the block stochastic operator 61 :R™ — R" as

G; == U,UJG(z), with G = Vg(x)+7(x—D,(z)), G:R"—>R" (10)
Note that the computation of GZ is now dependent on the minibatch size w that is adjustable to cope
with the computation resources at hand. ASYNC-RED-SG is summarized in Algorithm[2]

The operation minibatchG(-) computes the estimate of G based on w randomly selected measurements.
We clarify the difference between ASYNC-RED-SG and ASYNC-RED-BG via a specific example.
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Algorithm 2 ASYNC-RED-SG
1: input: 2% € R”, v > 0,7 > 0.
2: setup: A multicore system with one shared memory storing @ and global iteration k.
3: for global k=1,2,3,... do
zk < read(x )
5. G(&F) mlnlbatchG(:zc’f w) with random j,, € {1,...,¢} > Minibatch Gradient
6 Gik (@*) + U;, uT G( k) with random ij, € {1,...,b} > Block Operation
7. xF < read(z )
8 bl xk — 4G, (&F)
9
10:

Rl

. update x in the shared memory using 2**+!
end for

Consider the least-squares g with a block-friendly operator A and a block-efficient denoiser D,. We
can write the update of ASYNC-RED-BG regarding a single iteration as

Gi(z) = Al (A& — ;) + 7(Z; — D(T)), (11)

where T is the delayed iterate for x, and A; € R"™*™ is a submatrix of A consisting of columns
corresponding to the ith blocks. Although the per-iteration complexity is reduced by roughly
b = n/n, times by working with A; instead of A, ASYNC-RED-BG still needs to work with all the
measurements y; related to the ¢th block at every iteration. Consider the corresponding update of
ASYNC-RED-SG with one measurement used at a time

Gi(@) = AL, (A& — y;:) + 7(%; — D(&))), (12)

where y;; denotes the jth measurement of «;, and A;; € R™7*™ is the submatrix crossed by the
rows and columns corresponding to the jth measurement and the ith blocks. This indicates that the
reduction of the per-iteration complexity from ASYNC-RED-BG to ASYNC-RED-SG can be up to
¢ = m/m,; times. In the practice, it is common to use w > 1 measurements at a time to optimize the
total runtime. Note that if U = UT = |, ASYNC-RED-SG becomes the asynchronous stochastic RED
algorithm. In the next section, we will present a complete analysis of ASYNC-RED and theoretically
discuss its connection to the related algorithms.

4 CONVERGENCE ANALYSIS OF ASYNC-RED

The proposed analysis is based on the following explicit assumptions. Note that these assumptions
serve as sufficient conditions for the convergence.

Assumption 1. We assume bounded maximal delay A\ < oc. Hence, during any update cycle of an
agent, the estimate x in the shared memory is updated at most \ € Z. times by other cores.

The value of ) is often dependent on the number of cores involved in the computation (Wright, 2015).
If every core takes a similar amount of time to compute its update, A is expected to be a multiple of
the number of cores. Related work has investigated the convergence with unbounded maximal delays
in the context of traditional optimization (Hannah & Yin, 2018} |Peng et al., 2019; Zhou et al.| 2018).

Assumption 2. The operator G is such that zer(G) # @, and the distance of the initial x° € R™ to
any element in zer(G) is bounded, that is ||x° — x*|| < Ry for all x* € zer(G) with Ry < oc.

This assumption ensures the existence of a solution for the RED problem and is related to the existence
of minimizers in traditional coordinate minimization (Nesterov,|2012; Beck & Tetruashvili, 2013)

Assumption 3. (a) Every component function g; is convex differentiable and has a Lipschitz continu-
ous gradient of constant L; > 0. (b) At every update, the stochastic gradient is unbiased estimator of
Vg that has a bounded variance:

E |Vg(x)| = g(@), E[|Vg(@) - Vg(@)|* << z€R", v>0.

The first part of the assumption implies that g is also convex and has Lipschitz continuous gradient
with constant L = max{Ly, ..., L¢}. The second part is a standard assumption on the unbiasedness
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Figure 2: Convergence of ASYNC-RED-BG for different numbers of accessible cores n, €
{2,4,6,8}. The left figure plots the average normalized distance to zer(G) against the iteration
number; the middle and right figures plot these values, as well as SNR, plotted against the actual
runtime in seconds. The shaded areas represent the range of values attained over the test images.

and variance of the stochastic gradient (Lian et al.;,[2015;/Ghadimi & Lan, 2016)). Our final assumption
is related to the deep denoiser used in ASYNC-RED.

Assumption 4. The denoiser D, is a nonexpansive operator |Dy(x) — Do (y)|| < || — y]|.

Compared with the conditions stated in Section 2 (namely, that it is locally homogeneous with a
symmetric Jacobian), our requirement on the denoiser is milder. One can train a nonexpansive D,
by constraining the Lipschitz constant of D, via the spectral normalization, which is an active area
of research in deep learning (Miyato et al., 2018;Sedghi et al., 2019;|Anil et al., [2019; [Terris et al.|
2020).

‘We can now state the theorems on ASYNC-RED.

Theorem 1. Let Assumptions[I{d| hold true. Run ASYNC-RED-BG for t > 0 iterations with uniform
i.i.d block selection using a fixed step-size v € (0,1/((1 + 2X)(L + 27))]. Then, the iterates of the
algorithm satisfy

min E [[|G(«")|]*] < R (13)

0<k<t—1
where D = 2)% /(1 + \)? is a constant.

2]

Theorem establishes the convergence of ASYNC-RED-BG to the fixed-point set zer(G) at the rate
of O(1/t). Our result is consistent with the existing results in the literature. In particular, when the
algorithm adopts serial block updates, that is A = 0 and T% = x*, the recovered convergence is
nearly the same as BC-RED (Sun et al., 2019a)) scaled by some constant. On the other hand, our
convergence rate O(1/t) is also consistent with the rate proved for the asynchronous block coordinate
descent in nonconvex optimization (Sun et al.,[2017).

Theorem 2. Let Assumptions[I4 hold true. Run ASYNC-RED-SG for t > 0 iterations with uniform
i.i.d selections of blocks and measurements using a fixed step-size v € (0,1/((1 4+ 2X\)(L + 27))].
Then, the iterates of the algorithm satisfy

. D (L+27)b 2D v
kN2 nd RS A » ] = na
OS?S.LE[HG@ P < [b +2} po R} + { +2] -C (14)

b
where C = (L + 27)(1 + \)v? and D = 2)? /(1 + \)? are constants.

Theorem [2|states that ASYNC-RED-SG approximates the solution obtained by ASYNC-RED-BG up
to a finite error that decreases for larger values of the minibatch size w. This relationship is consistent
with the recent theoretical results on the online PnP and RED algorithms (Sun et al., 2019b; |Wu
et al., 2020). In practice, the selection of w must balance the actual memory capacity of the system
and the desired runtime for obtaining a reasonable solution. Our numerical evaluation in Section[5
demonstrates the excellent approximation of ASYNC-RED-SG to the batch-gradient solution by
using a small subset of data.

By carefully choosing the stepsize v, we can state the following remark on Theorem [2]

Remark 1. Set the stepsize to be v = 1/+/wt. If the maximal delay satisfies A < (1/2)[vwt/(L +
27) — 1], then after ¢ > 0 iterations we have

. B2 D (L+27)b o 2D C
Ogr]?gng_l]E [1G(=")]]?] < [b +2} WRO—F [b —I—Q} o (15)
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Figure 3: Left: Evolution of the convergence accuracy of ASYNC-RED-SG as the minibatch size
w increases. The average distance is plotted against the number of iterations with the shaded areas
representing the range of values attained over the test images. Middle & Right: Comparison of
convergence speed between ASYNC-RED-BG/SG and other baselines. The right table summarizes
the total runtime and the speed-up compared with GM-RED for all algorithms.

This establishes the fixed-point convergence to the set zer(G) at the rate of O(1/+/wt) under specific
conditions. If we treat entire « as a block, namely that U = UT =land b = 1, ASYNC-RED-SG
then becomes the asynchronous stochastic RED algorithm. Hence, the proposed remark immediately
holds true for the later. Note that our convergence rate O(1/+/wt) is consistent with the rate proved
for the serial (Nemirovski et al.,[2009) and parallel (Dekel et al., 2012; |Lian et al.,|2015) stochastic
gradient methods.

All the proofs are presented in the supplement. We note that the analysis above does not assume the
existence of an explicit regularizer associated with the operator D,,. Moreover, it does not require D,,
to be a Gaussian denoiser. Our analysis is hence applicable to all nonexpansive operators, such as the
traditional proximal operators or the more recent artifact-removal operators (Zhang et al.,|[2019).

5 NUMERICAL VALIDATION

We now present a numerical validation of ASYNC-RED. Our goals are first to validate the proposed
theorems in Sectiond|and then to demonstrate the effectiveness and the efficiency of our algorithm on
the large-scale problem. We consider two image recovery tasks that have the form y = Ax+ e, where
the measurement matrix A corresponds to either the random matrix in compressive sensing (CS) or
the Radon transform in computed tomography (CT), and the noise e is assumed to be additive white
Gaussian (AWGN). In particular, the random matrix is implemented with the block-diagonal structure
A = diag([A;, ..., Ap)]) for fast validation, while the Radon transform is used as its full matrix form
to demonstrate the effectiveness of ASYNC-RED for overcoming the computation bottleneck. Our
deep neural net prior adapts the DnCNN architecture (Zhang et al.| [2017a). We used the signal-
to-noise ratio (dB) to quantify the quality of the reconstructed images. For each experiments, we
selected the denoiser that achieves the best SNR performance from the ones corresponding to five
noise levels o € {5,10, 15,20, 25}. The value of o is fixed across all iterations of the algorithm.
Supplement D provides additional technical details.

5.1 CONVERGENCE BEHAVIOR

We validate our theorems on the CS task with 6 test images selected from the Set /2 dataset (Zhang
et al.,[2017a). Each test image is rescaled to the size of 240 x 240 pixels (see Fig.[6]in the supplement
for the visualization). The block-diagonal matrix A is set to consist of 9 submatrices, corresponding
to a 3 x 3 grid of blocks with the size of 80 x 80 pixels in every image. The elements in A
are i.i.d zero-mean Gaussian random variables of variance of 1/m, and the compression ratio is
set to be m/n = 0.7, which indicates that the total number of measurements is 4480 for each
block. We obtain the measurements by multiplying A with each vectorized image and adding
additional noise corresponding to the input SNR of 30 dB. Finally, we use the normalized distance
|G(x*)||3/]|G(x°)||3 to quantify the fixed-point convergence, with b block updates grouped as one
iteration. The distance is expected to approach zero as the algorithm converges to a fixed point. The
average performance of all methods is obtained by running a single trial for each image.

Theorem E establishes the convergence of ASYNC-RED-BG to the fixed point set zer(G). This
is illustrated in Fig. [2 for four different numbers of accessible cores n. € {2,4,6,8}. In the left
figure, the average normalized distance is plotted against the iteration number, while the middle and
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Figure 4: CT reconstruction with a time budget of 1 hour by ASYNC-RED-BG/SG and GM-RED.
The colormap is adjusted for the best visual quality.

right figures plot the corresponding distance and SNR values against the actual runtime in seconds.
The shaded areas representing the range of values attained across all test images. We also plot the
results of serial BC-RED using the dashed line as reference. ASYNC-RED-BG is implemented
to be run asynchronously on multiple cores, while BC-RED can only use one core to perform the
computation. The left figure highlights the fixed-point convergence of ASYNC-RED-BG in iteration
for different n., with all variants agreeing with the serial BC-RED. Since ASYNC-RED-BG uses
more cores, the middle and right figures demonstrate the significantly faster in-time convergence
of ASYNC-RED-BG than BC-RED to the same SNR value. Specifically, BC-RED takes 1.8 hours
to achieve 29.00 dB, while ASYNC-RED-BG (n. = 8) takes only 17.9 minutes to obtain the same
value, corresponding to a 6 X improvement in computation time.

Theoremestablishes the convergence of ASYNC-RED-SG to zer(G) up to some error term, which
is inversely proportional to the minibatch size w. This is illustrated in Fig. [3| (left) for three different
minibatch sizes w € {1120,2240,3360}. As before, we plotted the average distance against the
iteration number with the shading area representing the variance. Note that the log-scale of y-
axis highlights the change for smaller values. Fig.[3/demonstrates the improved convergence of
ASYNC-RED-SG to zer(G) for larger w, which is consistent with our theoretical analysis. Fig.
(middle) compares the convergence speed between ASYNC-RED-BG/SG, gradient-method RED
(GM-RED), and synchronous parallel RED (SYNC-RED). For ASYNC-RED-SG, we use w = 1120.
In particular, ASYNC-RED-SG takes fewer total runtime (from 17.9 min to 13.0 min) to obtain the
similar result (29.01 dB and 28.03 dB) and achieves 8.4 x speedup compared with GM-RED. The
table in Fig. [3]summarizes the detailed results.

5.2 EFFECTIVENESS FOR COMPUTATIONAL IMAGING

We additionally demonstrate the effectiveness of our algorithm by reconstructing a 800 x 800 CT
image from its 180 projections. For block parallel updates, the image is decomposed into 16 blocks,
each having the size of 200 x 200 pixels. The Radon matrix used in the experiment corresponds
to 180 angles with 1131 detectors, and the noise level is set to 70 dB. We refer to Supplement[D.2]
for additional technical details. Fig.[# shows the visual illustration of the reconstructed images by
ASYNC-RED-BG/SG and GM-RED. Each algorithm starts from the filtered back-projection (FBP)
of the measurements and runs for 1 hour. Here, ASYNC-RED-SG randomly uses one-third of the total
measurements at every iteration. Given the same amount of time, ASYNC-RED-BG/SG successfully
mitigates the noise-artifacts, while the result of GM-RED is still noisy. In particular, the per-iteration
time cost of ASYNC-RED-BG/SG and GM-RED is 5.23, 3.21, and 19.19 seconds, respectively. This
experiment clearly illustrates the fast processing speed of the asynchronous procedure.

6 CONCLUSION

Asynchronous parallel methods have gained increasing importance in optimization for solving large-
scale imaging inverse problems. We have introduced ASYNC-RED as an extension of the recent
RED framework and theoretically analyze its convergence in batch and stochastic settings. We have
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validated its convergence guarantees and demonstrated its effectiveness in CT image reconstruction.
We note that this work is complementary to traditional acceleration strategies, such as Nesterov
acceleration and variance-reduction, commonly used in optimization. Future work will investigate
ASYNC-RED with Nesterov acceleration (as was done in (Hannah et al., 2019) for traditional
asynchronous block-coordinate algorithms) and variance-reduction (as was done in (Johnson &
Zhang| 2013) for traditional stochastic gradient method) to better understand the tradeoffs between
acceleration and scalability in multicore systems. We will additionally investigate theoretical limits
of ASYNC-RED in the unbounded maximal delay setting.
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