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Fast Elastic-Net Multi-view Clustering: A Geometric
Interpretation Perspective

Anonymous Authors
ABSTRACT
Multi-view clustering methods have been extensively explored
in the last decades. This kind of methods is built on the assump-
tion that the data are sampled from multiple subspaces with low
dimension and each group fits into one of these subspaces. The qua-
dratic or cubic computation complexity produced by these methods
is inevitable, resulting in the difficulty for clustering multi-view
datasets with large scales. Some efforts have been presented to
select key anchors beforehand to capture the data distributions in
different views. Despite significant progress, these methods pay
few attentions to deriving provably scalable and correct method
for finding the optimal shared anchor graph from the geometric
interpretation perspective. They also ignore to give a well balance
between the connectedness and subspace preserving properties of
the shared anchor graph. In this paper, we propose the Fast Elastic-
Net Multi-view Clustering (FENMC) from a geometric interpreta-
tion perspective. We provide the geometric analysis in determining
the optimal shared anchor graph based on the introduced elastic-
net regularizer for fast multi-view clustering, where the elastic-net
regularizer is built on the mixture of 𝐿2 and 𝐿1 norms.We also give a
theoretical justification for the balance between the connectedness
and subspace preserving properties of the shared anchor graph for
multi-view clustering. Our experiments on different datasets show
that the proposed method not only obtains the satisfied clustering
performance, but also deals with large-scale datasets with high
efficiency.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
Geometric interpretation, elastic-net regularizer, multi-view clus-
tering, connectedness, subspace preserving.

1 INTRODUCTION
In various computer vision tasks, including motion segmentation
[5], image representation [11], feature extraction [7, 13, 18] and face
clustering [10], the high-dimensional datasets can be approximated
by a union subspaces with low dimensions. The subspace clustering
[28, 33] has been widely explored in recent decades, which recovers
the underlying structure of data with low dimensions and assigns
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each data point to the corresponding subspace. Significant progress
has been made in uncovering such underlying subspace representa-
tions and subspace clustering based on graph usually produces the
satisfied performance among multiple approaches. As a result, the
subspace clustering based on graph has received great attention
and a large number of methods have been presented.

Among these subspace clustering methods based on graph, some
representive works are sparse subspace clustering [6], least squares
regression (LSR) [20] and low-rank representation (LRR) [17]. They
learn an 𝑛 × 𝑛 graph to represent the pairwise similarity between
data points and then use the learned graph as the input to the
existing clustering algorithm, i.e., spectral clustering. Moreover,
some subspace clustering networks [12] have been developed to
enjoy the merit of discriminative feature representations achieved
by deep neural networks. It typically requires O(𝑛2) to obtain the
graph and O(𝑛3) for eigen-decomposition in spectral clustering
algorithm, where 𝑛 is the total number of data points in dataset.
Thus, these two steps inevitably restrict the subspace clustering
application on the datasets with large scales.

Recently, some research endeavors are devoted to accelerate sub-
space clustering [35]. For instance, Wang et al. [30] aimed to speed
up the computation by adopting a data selection approach. You
et al. [33] reduced the computation load based on the orthogonal
matching pursuit. Peng et al. [22] converted the large-scale cluster-
ing issue as an out-of-sample problem. Alder et al. [1] combined
the bipartite graph and sparse representation, resulting in a linear
subspace clustering algorithm. Qin et al. [23] targeted at achieving
an analytical, symmetrical and nonnegative similarity matrix for
dealing with the data with large scales. Unfortunately, these accel-
erated subspace clustering methods usually target for the scenario
with single view and fail to deal with the multi-view data.

The heterogeneous feature representations usually provide com-
plementary information [37], i.e., a videomight includes text, sounds
and images [32]. As a result, multi-view subspace clustering meth-
ods have been exploited [2, 34]. For example, Cao et al. [2] studied
both the diversity and consistency among different views. Zhang et
al. [34] employed the latent space to perform subspace clustering.
Qin et al. [24] explicitly extended the existing multi-view clustering
in a semi-supervised manner and used small amount of supervisory
information to construct an anti-block-diagonal indicator matrix.
Compared with the methods for single view, these methods usually
produce more desired results.

Unfortunately, most existing multi-view subspace clustering
methods encounter the scalability issue, which limits their real
application on the dataset with large scales. Some multi-view clus-
tering approaches for dealing with large-scale data have been de-
veloped [26]. For example, Han et al. [9] reduced the number of
matrix multiplication in the optimization procedure by regarding
the intermediate factor matrix as a matrix with diagonal structure.
Kang et al. [15] studied smaller graphs for multiple views based on

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the built anchor bases. Wang et al. [29] explored the shared anchor
graph in multi-view subspace clustering, which is guided by the
consensus anchor bases in the data. Sun et al. [27] employed the
underlying data distribution to learn anchor graph. Chen et al. [3]
jointly obtained a more flexible and discriminative anchor repre-
sentation and the cluster indicator with linear complexity. Despite
significant progress, these methods pay few attentions to deriving
a scalable and correct method for finding the optimal shared an-
chor graph in a provable manner from the geometric interpretation
perspective. They also ignore to provide a well balance between the
connectedness and subspace preserving properties of the shared
anchor graph in multi-view subspace clustering.

In this work, we propose a Fast Elastic-Net Multi-view Clustering
(FENMC) from a geometric interpretation perspective to address
the above two issues. To be specific, we introduce the elastic -net
regularizer built on the mixture of 𝐿2 and 𝐿1 norms for the learned
shared anchor graph in multi-view subspace clustering, where 𝐿2
norm improves the connectivity and 𝐿1 helps obtain a subspace
preserving affinity. The geometry of the elastic-net regularizer is
explored and we then adopt it for deriving a provably scalable and
correct method in achieving the optimal shared anchor graph. Our
analysis shows a geometric interpretation and theoretical justifi-
cation for the balance between the connectedness and subspace
preserving properties of the shared anchor graph in multi-view
subspace clustering.

The major contributions of this work include

• Wepropose a Fast Elastic-NetMulti-viewClustering (FENMC)
from a geometric interpretation perspective. We provide the
geometric analysis in determining the optimal shared an-
chor graph based on the introduced elastic-net regularizer
for fast multi-view clustering, where the elastic-net regular-
izer is built on the mixture of 𝐿2 and 𝐿1 norms as well as
a refined-anchor algorithm is designed to achieve further
efficiency.

• We provide a geometric interpretation and theoretical jus-
tification for the balance between the connectedness and
subspace preserving properties of the shared anchor graph
based on the elastic-net regularizer for multi-view clustering.

• We conduct extensive experiments on several multi-view
datasets to show that the proposed method is able to obtain
the satisfied clustering performance and handle large-scale
datasets with high efficiency in terms of different metrics.

2 RELATEDWORK
As an efficient way, anchors or landmarks are adopted for scal-
able clustering on large-scale datasets. It usually selects relatively
smaller number of data points termed anchors or landmarks to
denote the neighborhood structure in the dataset. To be specific,
we can build a small graph 𝑆 ∈ 𝑅𝑚×𝑛 to measure the relationship
between the entire dataset and the anchors with the guidance of𝑚
anchors 𝐴 = {𝑎1, · · · , 𝑎𝑚} ∈ 𝑅𝑑×𝑚 . The commonly used Gaussian
kernel function can be employed to construct the graph 𝑆 . However,
it is not flexible enough in characterizing the complex data.

We can treat 𝐴 as a dictionary and learn affinity matrix 𝑆 for
subspace clustering as follows:

min
𝑆

∥𝑋 −𝐴𝑆 ∥2𝐹 + 𝜂∥𝑆 ∥2𝐹 , 𝑠 .𝑡 . 𝑆 ≥ 0, 𝑆1 = 1, (1)

where 𝜂 > 0 represents the balance parameter and 1 is a vector
with all entries being one. It is observed that the above approach for
constructing the graph is extremely efficient since the computation
complexity is low. Likewise, the above model can be extended to the
case for dealing with multi-view datasets and some recent works
have incorporated anchor graphs into multi-view clustering. Liu
et al. [19] combined graph construction and anchor learning for
boosting clustering performance and imposed a graph connectivity
constraint in the learning process. Yang et al. [31] used the multiple
anchor graphs to achieve the efficient 𝐾-means clustering on multi-
view dataset. However, the existing methods pay few attentions
to deriving a scalable and correct method for finding the optimal
shared anchor graph in a provable way from the geometric interpre-
tation perspective. These methods also ignore to give a well balance
between the connectedness and subspace preserving properties of
the shared anchor graph in multi-view subspace clustering.

3 THE PROPOSED METHOD
In this part, we describe the proposed method in details, which
includes the motivation, formulation and the complexity analysis.

3.1 Motivation and Formulation
There is much redundancy in the multi-view dataset with large
scales and a small number of data points are enough to reconstruct
the underlying subspaces. The smaller matrix 𝑆 ∈ 𝑅𝑚×𝑛 can be
adopted to approximate the full matrix, where𝑚 ≪ 𝑛. That is, 𝑆 is
achieved based on the anchors 𝐴 ∈ 𝑅𝑑×𝑚 and the dataset 𝑋𝑝 for
the 𝑝-th view. However, the existing multi-view clustering methods
pay few attentions to deriving a scalable and correct method for
finding the optimal shared anchor graph in a provable way from the
geometric interpretation perspective. These methods also ignore
to give a well balance between the connectedness and subspace
preserving properties of the shared anchor graph in multi-view
subspace clustering.

Based on the assumption that a consensus subspace with low
dimension is shared by the high-dimensional data from different
views, the learned anchors are expected to be consistent in the
consensus space. Given multi-view dataset {𝑋𝑝 ∈ 𝑅𝑑𝑝×𝑛}𝑣

𝑝=1 with
𝑑𝑝 and 𝑛 being the dimension and size of dataset, we define the
projection matrix 𝑈 𝑝 and then align the consensus anchors 𝐴 for
the 𝑝-th view. To bridge the gap between the connectedness and
subspace preserving properties of the obtained anchor graph 𝑆 , we
introduce a mixed 𝐿1 and 𝐿2 norm 𝑟 (.) to the anchor graph. Here,
the mixed norm is also called the elastic-net regularizer. The above
process is formulated as

𝑟 (𝑠) = 𝜆∥𝑠 ∥1 +
1 − 𝜆
2 ∥𝑠 ∥22, (2)
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where 𝜆 ∈ [0, 1] is the trade-off parameter for the two regularizers.
Thus, the proposed method has the formulation as follows:

min
𝑈 𝑝 ,𝐴,𝑆,𝛼

𝑣∑︁
𝑝=1

𝛼2𝑝 | |𝑋𝑝 −𝑈 𝑝𝐴𝑆 | |2𝐹 + 𝜆∥𝑆 ∥1 +
1 − 𝜆
2 ∥𝑆 ∥22,

𝑠 .𝑡 . 𝑆 ≥ 0, 𝑆𝑇 1 = 1, (𝑈 𝑝 )𝑇𝑈 𝑝 = 𝐼 , 𝐴𝑇𝐴 = 𝐼 ,

(3)

where 𝛼2𝑝 > 0 represents the parameter of weight coefficient to
learn. The above optimization problem can be solved by solving
each variable while fixing the others. For simplicity, we adopt the
objective function 𝑓 (𝑠;𝑈 𝑝𝐴) to denote the optimization problem
in Eq. (3) and omit the constraints of variables in this formulation
for the 𝑝-th view, defined as

𝑓 (𝑠;𝑈 𝑝𝐴) := 𝛼2𝑝 | |𝑥𝑝 −𝑈 𝑝𝐴𝑠 | |2𝐹 + 𝜆∥𝑠 ∥1 +
1 − 𝜆
2 ∥𝑠 ∥22 . (4)

Without loss of generality, {𝑢𝑝
𝑗
𝑎 𝑗 }𝑛𝑗=1 and 𝑥𝑝 are assumed to be

normalized in the manner of unit 𝐿2 norm. The above model then
calculates

𝑠∗ (𝑈 𝑝𝐴) := argmin
𝑠
𝑓 (𝑠;𝑈 𝑝𝐴) . (5)

For clarity, we adopt the notation 𝑠∗ in place of 𝑠∗ (𝑈 𝑝𝐴) and fix 𝛼
in Eq. (4) for the following analysis. Due to the convex property of
𝑓 (𝑠;𝑈 𝑝𝐴), we can guarantee that the obtained 𝑠∗ (𝑈 𝑝𝐴) is unique.
In the following part, we provide the detailed analysis of the so-
lution to the proposed method from a geometric interpretation
perspective and then design a refined-anchor algorithm to achieve
further efficiency. We first give the concept of the trigger point in
the following.

Definition 1. (Trigger Point) The trigger point regarding the
optimization problem Eq. (5) is

𝜗 (𝑈 𝑝𝐴) := 𝜚 (𝑥𝑝 −𝑈 𝑝𝐴𝑠∗ (𝑈 𝑝𝐴)), (6)

where 𝜚 > 0 is the parameter. We adopt 𝜗 to represent 𝜗 (𝑈 𝑝𝐴) for
simplicity and find that the trigger point can be calculated when
the optimal 𝑠∗ is obtained. Likewise, the solution 𝑠∗ can be directly
achieved once the trigger point 𝜗 is known, which is shown in the
theorem as follows.

Theorem 1. The optimal 𝑠∗ to Eq. (5) satisfies

(1 − 𝜆)𝑠∗ = ∇𝜆 ((𝑈 𝑝𝐴)𝑇𝜗), (7)

where ∇𝜆 (.) represents the soft-thresholding operator. It is defined
as 0 if | (𝑈 𝑝𝐴)𝑇𝜗 | ≤ 𝜆 and 𝑠𝑔𝑛((𝑈 𝑝𝐴)𝑇 ) ( | (𝑈 𝑝𝐴)𝑇 | − 𝜆) otherwise.

Proof.Due to the convex property of Eq. (5), 𝑠∗ is unique optimal
if and only if it satisfies the optimally condition based on the partial
derivative value regarding 𝑠∗ as:

(𝑈 𝑝𝐴)𝑇 𝜚 (𝑥𝑝 −𝑈 𝑝𝐴𝑠∗) = (1 − 𝜆)𝑠∗ + 𝜆𝑧, (8)

where 𝑧 ∈ 𝜕∥𝑠∗∥1. We then take the soft-thresholding on Eq. (8) for
both sides by ∇𝜆 (.). Thus, Eq. (7) in Theorem 1 can be obtained.
The reverse implication can be proved by establishing that the 𝑗-th
row of Eq. (8) is satisfied when the corresponding row in Eq. (7)
holds for three cases 𝑠∗ < 0, 𝑠∗ = 0 and 𝑠∗ > 0 separately.

As shown in Theorem 1, the value of 𝑠∗ is determined by the
angle between 𝑢𝑝

𝑗
𝑎 𝑗 and 𝜗 . The inequation |⟨𝑢𝑝

𝑗
𝑎 𝑗 , 𝜗⟩| ≤ 𝜆 holds

when 𝑢𝑝
𝑗
𝑎 𝑗 is far from 𝜗 to certain degree, resulting in that 𝑠∗

𝑗
is

equal to zero. We call the region 𝑠∗ ≠ 0 as the trigger region and

use the quality 𝜑 (𝑣𝑝 , 𝜗) := | ⟨𝑣𝑝 ,𝜗 ⟩ |
∥𝑣 ∥2 ∥𝜗 ∥2 for representing the coherence.

The trigger region is formally defined as follows.
Definition 2. (Trigger Region) The trigger region for the opti-

mization problem Eq. (5) is defined as

Γ(𝑈 𝑝𝐴) := {𝑣𝑝 ∈ 𝑅𝑑𝑝 : ∥𝑣𝑝 ∥2 = 1, 𝜑 (𝑣𝑝 , 𝜗) > 𝜆

∥𝜗 ∥2
}. (9)

According to Theorem 1 and the above definition, we can obtain
that 𝑠∗ ≠ 0 if and only if𝑢𝑝

𝑗
𝑎 𝑗 ∈ Γ(𝑈 𝑝𝐴). The properties of solution

can be captured by the trigger region when new columns are added
or columns are removed from 𝑈 𝑝𝐴, which gives us the key insight
in designing the refined-anchor method. The basic measure is for
solving the reduced-scale problem determined from the trigger
region and the obtained anchor is called refined anchor. We denote
the refined anchor at iteration 𝑖 as 𝑇𝑖 and select the next refined
anchor 𝑇𝑖+1 from the trigger region Γ(𝑈 𝑝

𝑇𝑖
𝐴𝑇𝑖 ), where𝑈

𝑝

𝑇𝑖
and 𝐴𝑇𝑖

denote the submatrix of 𝑈 𝑝 and 𝐴 with columns indexed by 𝑇𝑖 ,
respectively. This iterative process is terminated when 𝑇𝑖+1 no
longer contains any new data points. To show the convergence
of this refined-anchor method, we give the lemma as follows.

Lemma 1. If 𝑇𝑖+1 ⊈ 𝑇𝑘 , then

𝑓 (𝑠∗ (𝑈 𝑝

𝑇𝑖+1
𝐴𝑇𝑖+1 );𝑈

𝑝

𝑇𝑖+1
𝐴𝑇𝑖+1 ) < 𝑓 (𝑠∗ (𝑈 𝑝

𝑇𝑖
𝐴𝑇𝑖 );𝑈

𝑝

𝑇𝑖
𝐴𝑇𝑖 ). (10)

Proof.We first define the sets

𝐿 := 𝑇𝑖+1 \𝑇𝑖 ≠ ∅, 𝑄 := 𝑇𝑖 \𝑇𝑖+1, 𝐽 := 𝑇𝑖 ∩𝑇𝑖+1 . (11)

Based on these definitions, we can obtain 𝑇𝑖 = 𝑄 ∪ 𝐽 and 𝑇𝑖+1 =

𝐽 ∪ 𝐿. Since 𝑇𝑖+1 consists of columns of 𝑈 𝑝𝐴 in Γ(𝑈 𝑝

𝑇𝑖
𝐴𝑇𝑖 ), we can

achieve that there is no column of𝑈 𝑝

𝑄
𝐴𝑄 in Γ(𝑈 𝑝

𝑇𝑖
𝐴𝑇𝑖 ). Considering

𝑈
𝑝

𝑇𝑖
𝐴𝑇𝑖 = [𝑈 𝑝

𝐽
𝐴𝐽 ,𝑈

𝑝

𝑄
𝐴𝑄 ], we have

𝑓 (𝑠∗ (𝑈 𝑝

𝑇𝑖
𝐴𝑇𝑖 );𝑈

𝑝

𝑇𝑖
𝐴𝑇𝑖 ) = 𝑓 ( [0, 𝑠

∗ (𝑈 𝑝

𝐽
𝐴𝐽 )]𝑇 ; [𝑈

𝑝

𝐽
𝐴𝐽 ,𝑈

𝑝

𝐿
𝐴𝐿])

≥ min
𝑠
𝑓 (𝑠; [𝑈 𝑝

𝐽
𝐴𝐽 ,𝑈

𝑝

𝐿
𝐴𝐿])

= 𝑓 (𝑠∗ ( [𝑈 𝑝

𝐽
𝐴𝐽 ,𝑈

𝑝

𝐿
𝐴𝐿]); [𝑈

𝑝

𝐽
𝐴𝐽 ,𝑈

𝑝

𝐿
𝐴𝐿])

= 𝑓 (𝑠∗ (𝑈 𝑝

𝑇𝑖+1
𝐴𝑇𝑖+1 );𝑈

𝑝

𝑇𝑖+1
𝐴𝑇𝑖+1 ) .

(12)

We then achieve Theorem 2 with the guidance of Lemma 1, which
is shown in the following.

Theorem 2. The refined-anchor algorithm converges to the
optimal 𝑠∗ (𝑈 𝑝𝐴) in a finite number of iterations.

Proof.We find that the objective function is guaranteed to be
decreasing for each iteration before the termination happens ac-
cording to Lemma 1. Since there are limited number of entries in
𝑇 , we conclude that the refined-anchor algorithm converges in a
finite number of iterations with 𝑇𝑖+1 ⊂ 𝑇𝑖 . We construct 𝑠∗ such
that 𝑠∗

𝑇𝑖
= 0 when 𝑇 𝑠

𝑖
is the complement of 𝑇𝑖 and 𝑠∗𝑇𝑖 = 𝑠

∗ (𝑈 𝑝

𝑇𝑖
𝐴𝑇𝑖 )

otherwise. Due to (1 − 𝜆)𝑠∗ = ∇𝜆 ((𝑈
𝑝

𝑇𝑖
𝐴𝑇𝑖 )𝑇𝜗) in Theorem 1, we

have ∇𝜆 ((𝑢
𝑝

𝑗
𝑎 𝑗 )𝑇𝜗 (𝑈 𝑝

𝑇𝑖
𝐴𝑇𝑖 )) = 0. Thus, the 𝑠∗ (𝑈 𝑝𝐴) is optimal

when the refined-anchor algorithm converges.
The refined-anchor algorithm can effectively deal with the large-

scale problems, which solves the reduced-size problems by updat-
ing 𝑠∗ (𝑈 𝑝

𝑇𝑖
𝐴𝑇𝑖 ) in Algorithm 1. We then provide conditions for the
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Algorithm 1: The refined-anchor algorithm
Input:𝑈 𝑝 , 𝐴, 𝛼 and 𝜆.
Output: The optimal 𝑠∗.
Initialize : Initialize 𝑇0 and set 𝑖 = 0.
repeat

Update 𝑠∗ (𝑈 𝑝

𝑇𝑖
𝐴𝑇𝑖 ) in Eq. (5);

Update 𝜗 (𝑈 𝑝

𝑇𝑖
𝐴𝑇𝑖 ) in Eq. (6);

Update 𝑇𝑖+1 = { 𝑗 : 𝑢𝑝
𝑗
𝑎 𝑗 ∈ Γ(𝑈 𝑝

𝑇𝑖
𝐴𝑇𝑖 )};

𝑖 = 𝑖 + 1.
until 𝑇𝑖+1 ⊆ 𝑇𝑖 ;

shared anchor graph to be subspace preserving by balancing con-
nectedness and subspace preserving properties. As Eq. (5), we calcu-
late 𝑠∗ (𝑢𝑝

𝑗
𝑎 𝑗 , (𝑈 𝑝𝐴)− 𝑗 ) for each {𝑢𝑝𝑗 𝑎 𝑗 }

𝑛
𝑗=1, where 𝑠

∗ (𝑢𝑝
𝑗
𝑎 𝑗 , (𝑈 𝑝𝐴)− 𝑗 )

equals to argmin𝑠 𝑓 (𝑠;𝑢𝑝𝑗 𝑎 𝑗 , (𝑈
𝑝𝐴)− 𝑗 ) and (𝑈 𝑝𝐴)− 𝑗 is𝑈 𝑝𝐴 with

𝑗-th column removed. We can obtain that 𝑠∗ (𝑢𝑝
𝑗
𝑎 𝑗 , (𝑈 𝑝𝐴)− 𝑗 ) is

subspace preserving if there are no connections built between 𝑢𝑝
𝑗
𝑎 𝑗

and (𝑈 𝑝𝐴)− 𝑗 from different subspaces. The nonzero entries in
𝑠∗ (𝑢𝑝

𝑗
𝑎 𝑗 , (𝑈 𝑝𝐴)− 𝑗 ) are desired to be dense for guaranting that the

affinity graph is well-connected. That is, the connectedness and
subspace preserving properties are two conflicting goals. We then
provide the detailed analysis of the tradeoff between the connected-
ness and subspace preserving properties from a geometric interpre-
tation perspective and the sufficient conditions when the anchor
graph is subspace preserving.

We perform the detailed analysis upon the optimization problem
min𝑠 𝑓 (𝑠;𝑢𝑝𝑗 𝑎 𝑗 , (𝑈

𝑝𝐴)𝑙− 𝑗
), where (𝑈 𝑝𝐴)𝑙− 𝑗

denotes (𝑈 𝑝𝐴)𝑙 in the
Ξ𝑙 subspace with the 𝑗-th column removed. We regard anchors
from other subspaces as newly added columns to (𝑈 𝑝𝐴)𝑙− 𝑗

and
achieve the geometric result as follows.

Theorem 3. Supposing 𝑢𝑝
𝑗
𝑎 𝑗 ∈ Ξ𝑙 , then 𝑠∗ (𝑢

𝑝

𝑗
𝑎 𝑗 , (𝑈 𝑝𝐴)− 𝑗 ) is

subspace preserving if and only if 𝑥𝑒 ∉ Γ(𝑢𝑝
𝑗
𝑎 𝑗 , (𝑈 𝑝𝐴)𝑙− 𝑗

) for all
𝑥𝑒 ∉ Ξ𝑙 .

Proof. According to the notation as above, Γ(𝑢𝑝
𝑗
𝑎 𝑗 , (𝑈 𝑝𝐴)𝑙− 𝑗

)
is the trigger region. We know that adding more data points that
are not in the trigger region Γ(𝑢𝑝

𝑗
𝑎 𝑗 , (𝑈 𝑝𝐴)𝑙− 𝑗

) does not affect the
corresponding solution. Specifically, we have 𝑠∗ (𝑢𝑝

𝑗
𝑎 𝑗 , (𝑈 𝑝𝐴)− 𝑗 ) =

𝑃 · [𝑠∗ (𝑢𝑝
𝑗
𝑎 𝑗 , (𝑈 𝑝𝐴)𝑙− 𝑗

)𝑇 ,𝑶𝑇 ]𝑇 if 𝑥𝑒 ∉ Γ(𝑢𝑝
𝑗
𝑎 𝑗 , (𝑈 𝑝𝐴)𝑙− 𝑗

) for all
𝑥𝑒 ∉ Ξ𝑙 , where 𝑃 denotes some permutation matrix. Moreover,
the vector of 𝑠∗ (𝑢𝑝

𝑗
𝑎 𝑗 , (𝑈 𝑝𝐴)− 𝑗 ) corresponding to the data points

outside of Ξ𝑙 is nonzero if any 𝑥𝑒 ∉ Ξ𝑙 in the trigger region
Γ(𝑢𝑝

𝑗
𝑎 𝑗 , (𝑈 𝑝𝐴)𝑙− 𝑗

). Thus, the obtained solution is incorrect in de-
termining the 𝑙-th space.

The above theorem shows that 𝑠∗ (𝑢𝑝
𝑗
𝑎 𝑗 , (𝑈 𝑝𝐴)− 𝑗 ) is subspace

preserving if and only if all data points from other subspaces lie
outside the trigger region.We desire a small trigger region to ensure
that the solution is subspace preserving, while need a large trigger
region to ensure the connectedness. It further highlights the trade-
off between connectedness and subspace preserving properties.
The elastic-net promotes sparse and dense solution by 𝐿1 and 𝐿2
regularizations. Thus, as 𝜆 increases from 0 towards 1, one should
expect that the trigger region decreases in size.

To solve the optimization problem in Eq. (3), we adopt an alter-
nate minimizing algorithm to optimize each variable with others
being fixed.

3.2 Optimization
𝑺-subproblem: By fixing the other variables, the objective function
regarding 𝑆 is

min
𝑆

𝑣∑︁
𝑝=1

𝛼2𝑝 | |𝑋𝑝 −𝑈 𝑝𝐴𝑆 | |2𝐹 + 𝜆∥𝑆 ∥1 +
1 − 𝜆
2 ∥𝑆 ∥22,

𝑠 .𝑡 . 𝑆 ≥ 0, 𝑆𝑇 1 = 1.

(13)

We then rewrite it as the Quadratic Programming (QP) problem as
follows:

min 1
2𝑆

𝑇
:, 𝑗𝑊𝑆:, 𝑗 + ℎ𝑇 𝑆:, 𝑗 , 𝑠 .𝑡 ., 𝑆 ≥ 0, 𝑆𝑇:, 𝑗1 = 1, (14)

where ℎ𝑇 = −2∑𝑣
𝑝=1 (𝑋

𝑝

:, 𝑗 )
𝑇𝑈 𝑝𝐴 + 𝜆𝜕∥𝑠∗∥1 and𝑊 = 2(∑𝑣

𝑝=1 𝛼
2
𝑝 +

1−𝜆
2 )𝐼 .
𝑼𝒑-subproblem: By fixing the other variables, the objective

function regarding𝑈 𝑝 is

min
𝑈 𝑝

𝑣∑︁
𝑝=1

𝛼2𝑝 | |𝑋𝑝 −𝑈 𝑝𝐴𝑆 | |2𝐹 , 𝑠 .𝑡 . (𝑈 𝑝 )𝑇𝑈 𝑝 = 𝐼 . (15)

We then transform it into the following form:

max
𝑈 𝑝

𝑇𝑟 ((𝑈 𝑝 )𝑇𝐺𝑝 ), 𝑠 .𝑡 . (𝑈 𝑝 )𝑇𝑈 𝑝 = 𝐼 . (16)

where 𝐺𝑝 = 𝑋𝑝𝑆𝑇𝐴𝑇 . The optimal 𝑈 𝑝 is𝑊𝑉𝑇 , where𝑊 and 𝑉
are singular matrices for 𝐺𝑝 .

𝑨-subproblem: By fixing the other variables, the objective func-
tion regarding 𝐴 is

min
𝐴

𝑣∑︁
𝑝=1

𝛼2𝑝 | |𝑋𝑝 −𝑈 𝑝𝐴𝑆 | |2𝐹 , 𝑠 .𝑡 . 𝐴
𝑇𝐴 = 𝐼 . (17)

Likewise, we can obtain the formulation as follows:
max
𝐴
𝑇𝑟 (𝐴𝑇 𝐸), 𝑠 .𝑡 . 𝐴𝑇𝐴 = 𝐼 , (18)

where 𝐸 =
∑𝑣
𝑝=1 𝛼

2
𝑝 (𝑈 𝑝 )𝑇𝑋𝑝𝑆𝑇 . The optimal 𝐴 can be obtained by

𝛥Γ𝑇 , where 𝛥 and Γ𝑇 are singular matrices for 𝐸.
𝜶𝒑-subproblem: By fixing the other variables, the objective

function regarding 𝐹 is

min
𝛼

𝑣∑︁
𝑝=1

𝛼2𝑝𝑀𝑝 , 𝑠 .𝑡 . 𝛼
𝑇 1 = 1, (19)

where𝑀𝑝 = ∥𝑋𝑝−𝑈 𝑝𝐴𝑆 ∥2
𝐹
. According to the Cauchy-Buniakowsky-

Schwarz inequality, the optimal 𝛼𝑝 is

𝛼𝑝 =

1
𝑀𝑝∑𝑣

𝑝=1
1
𝑀𝑝

. (20)

Due to the optimal solution and convex property of each subprob-
lem, the objective function monotonically decreases in each itera-
tion until convergence.We summarize the whole process for solving
the proposed FENMC in Algorithm 2. Then the refined-anchor al-
gorithm as shown in Algorithm 1 can be adopted to achieve further
efficiency.
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Figure 1: Parameter Study of 𝜆 on different datasets. (a) ORL; (b) Mfeat; (c) Caltech101; (d) SUNRGBD.
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Figure 2: Parameter Study of 𝜆 on different datasets. (a) NUSWIDEOBJ; (b) AWA; (c) YoutubeFace.

Table 1: Clustering results based on ACC (%) on all datasets. “N/A " denotes out of memory.

Dataset AMGL SFMC BMVC LMVSC MSGL FPMVS EOMSC-CA OMSC Ours
ORL 69.50±0.01 61.40±0.05 48.70±0.05 58.60±0.02 21.00±0.05 52.00±0.50 62.20±0.05 63.80±0.00 68.00±0.30
Mfeat 82.60±0.02 75.50±0.20 69.30±0.05 81.75±0.05 75.40±0.02 82.20±0.05 82.25±0.03 84.00±0.05 86.00±0.10

Caltech101 14.80±0.01 17.70±0.05 21.20±0.03 15.50±0.01 14.10±0.02 28.50±0.05 22.30±0.03 24.00±0.00 28.50±0.00
SUNRGBD 9.80±0.01 11.30±0.05 16.70±0.01 18.00±0.05 13.00±0.01 23.40±0.05 23.70±0.05 25.20±0.00 27.50±0.20

NUSWIDEOBJ N/A 12.20±0.05 12.90±0.05 14.70±0.05 12.00±0.05 19.20±0.05 19.60±0.05 21.00±0.05 24.20±0.50
AWA N/A 3.92±0.03 8.60±0.05 7.20±0.03 8.00±0.02 8.90±0.01 8.65±0.05 9.00±0.10 12.50±0.00

YoutubeFace N/A N/A 8.90±0.05 14.00±0.02 16.70±0.01 23.00±0.03 26.45±0.05 26.50±0.00 28.20±0.00

Table 2: Clustering results based on NMI (%) on all datasets. “N/A " denotes out of memory.

Dataset AMGL SFMC BMVC LMVSC MSGL FPMVS EOMSC-CA OMSC Ours
ORL 87.10±0.07 82.70±0.01 67.70±0.03 78.50±0.03 43.70±0.02 74.40±0.05 88.10±0.02 88.50±0.10 90.00±0.60
Mfeat 86.70±0.05 86.80±0.10 66.05±0.15 76.00±0.20 76.54±0.05 79.40±0.01 83.20±0.15 84.20±0.10 85.50±0.10

Caltech101 35.30±0.01 26.10±0.03 42.50±0.04 33.30±0.02 26.10±0.02 34.10±0.05 24.65±0.05 30.00±0.00 32.00±0.10
SUNRGBD 18.50±0.10 2.30±0.05 19.50±0.05 25.50±0.05 9.30±0.05 24.10±0.05 22.50±0.01 24.30±0.00 25.30±0.25

NUSWIDEOBJ N/A 0.96±0.01 12.90±0.02 12.80±0.05 5.70±0.03 13.20±0.05 13.20±0.15 14.00±0.00 16.00±0.50
AWA N/A 0.30±0.05 13.70±0.02 8.50±0.05 7.90±0.03 10.50±0.03 9.70±0.03 10.00±0.02 11.20±0.10

YoutubeFace N/A N/A 5.90±0.05 11.80±0.01 0.07±0.01 2.40±0.01 0.32±0.01 0.37±0.00 0.55±0.05

3.3 Complexity Analysis
FENMC has a relatively low computation complexity since the
adopted anchor strategy. To be specific, it needs O(𝑛𝑚2 +𝑚3 +
𝑛𝑚𝑑 + 𝑛𝑚∑𝑣

𝑝=1 𝑑𝑝 ) in updating 𝑆 . In optimizing𝑈 𝑝 , the SVD con-
sumes O(𝑑𝑝𝑑2) and matrix multiplication takes O(𝑚𝑑𝑝 (𝑛 +𝑑)) for

each view. It needs O(𝑚𝑑2) in SVD and O(𝑛𝑑 (𝑚 + 𝑑𝑝 )) in matrix
multiplication for updating 𝐴. In updating 𝛼𝑝 , it takes O(1). With
the obtained shared anchor graph 𝑆 , we conduct a linear graph
algorithm and then adopt 𝐾-means to obtain the results and the
corresponding computation cost is O(𝑛𝑚𝑑). The total time cost of
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Figure 3: Sensity Study of anchor numbers on different datasets. (a) ORL; (b) Mfeat; (c) Caltech101; (d) SUNRGBD.

Table 3: Clustering results based on F1-score (%) on all datasets. “N/A " denotes out of memory.

Dataset AMGL SFMC BMVC LMVSC MSGL FPMVS EOMSC-CA OMSC Ours
ORL 51.20±0.03 30.60±0.05 30.50±0.04 45.90±0.09 51.50±0.20 38.40±0.15 62.10±0.00 63.20±0.10 65.50±0.40
Mfeat 80.90±0.05 71.10±0.15 58.80±0.01 72.50±0.02 70.10±0.02 76.00±0.40 77.00±0.01 78.20±0.00 90.00±0.20

Caltech101 4.05±0.10 4.65±0.10 18.50±0.05 10.50±0.05 8.60±0.04 20.90±0.03 10.80±0.03 15.00±0.00 19.00±0.50
SUNRGBD 6.40±0.40 12.10±0.00 10.20±0.01 11.60±0.20 9.50±0.15 16.00±0.05 15.30±0.05 17.00±0.00 19.80±0.50

NUSWIDEOBJ N/A 11.50±0.01 8.80±0.02 9.30±0.05 8.50±0.05 13.50±0.07 13.60±0.05 14.50±0.00 16.20±0.20
AWA N/A 4.60±0.03 5.59±0.02 3.60±0.05 4.20±0.01 6.20±0.05 5.90±0.05 6.20±0.00 7.50±0.50

YoutubeFace N/A N/A 5.80±0.02 8.30±0.01 15.00±0.10 14.00±0.05 16.40±0.01 17.10±0.00 19.35±0.30

FENMC is O((𝑛𝑚2 +𝑚3 +𝑛𝑚𝑑 +𝑛𝑚∑𝑣
𝑝=1 𝑑𝑝 +𝑚𝑑𝑝 (𝑛 +𝑑) +𝑑𝑝𝑑2 +

𝑛𝑑 (𝑚 + 𝑑𝑝 ) +𝑚𝑑2 + 𝑛𝑚𝑑)𝑡), where 𝑡 denotes the iteration number.
Since 𝑛 ≫𝑚 and 𝑛 ≫ 𝑘 , the computation complexity of FENMC is
almost linear to the number of data points.

4 EXPERIMENTS
We perform experiments in this part to demonstrate the perfor-
mance of the proposed method in terms of effectiveness and effi-
ciency on several datasets. We conduct all experiments on a stan-
dard Window PC with AMD Ryzen 5 1600X 3.60 GHz.
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Figure 4: Sensity Study of anchor numbers on different datasets. (a) NUSWIDEOBJ; (b) AWA; (c) YoutubeFace.

Figure 5: Logarithm of running time of on different datasets.
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Algorithm 2: Algorithm of FENMC
Input:Multi-view dataset

{
𝑋𝑝

}𝑣
𝑝=1, number of clusters 𝑘 ,

parameter 𝜆.
Output: The shared anchor graph 𝑆 .
Initialize : Initialize𝑈 𝑝 , 𝐴, {𝛼𝑝 }𝑣𝑝=1 and 𝑆 .
repeat

Update 𝑆 according to Eq. (14);
Update

{
𝑈𝑝

}𝑣
𝑝=1 according to Eq. (16);

Update 𝐴 according to Eq. (18);
Update 𝛼 according to Eq. (20);

until convergence;

4.1 Benchmark Datasets
We conduct experiments on seven commonly adopted multi-view
datasets, which includes AWA, Caltech101 [8], ORL, Mfeat, SUN-
RGBD [25], NUSWIDEOBJ [4] and YoutubeFace. To be specific,
AWA has total 30475 subjects originated from 50 classes. Caltech
consists of 102 classes and 9144 subjects. ORL has 400 images and 40
classes. Mfeat is generated from UCI machine learning repository,
which consists of the digits from 0 to 9. SUNRGBD has total 45
classes and 10335 indoor images. NUSWIDEOBJ is mainly used for
object recognition, which contains 30000 objects. YoutubeFace is
produced from YouTube and has total 101499 instances.

4.2 Experimental Settings
We compare the proposed method with eight multi-view clustering
approaches including AMGL [21], BMVC [36], LMVSC [15], SFMC
[16], MSGL [14], EOMSC-CA [19], OSMC [3] and FRMVS [29].

We need to determine the anchor number in the experiment.
Since the number of data points adopted for reflecting the underly-
ing subspaces is expected to be not less than the total number of sub-
spaces, we tune the anchor number in the range of [2𝑘, 3𝑘, · · · , 7𝑘],
where 𝑘 denotes the cluster number in dataset. To guarantee the fair
comparison, we adopt the experimental settings stated in the corre-
sponding compared methods and use the best parameters for them.
We select 𝜆 from the range [0, 0.0001, 0.001, 0.01, 0.1, 1], which in-
fluences the connectedness and subspace preserving properties of
the proposed method. To evaluate the performance of all methods,
we employ accuracy (ACC), normalized mutual information (NMI)
and F1-score in the experiment.

4.3 Parameter Selection
In this section, we analyze how the parameter 𝜆 influences the clus-
tering performance of the proposed method on different datasets
in terms of ACC, NMI and F1-score. It is selected in the range
[0, 0.0001, 0.001, 0.01, 0.1, 1] and the impacts leaded by the param-
eter is given. Note that 𝜆 = 1 and 𝜆 = 0 also correspond to the
ablation studies when connectedness and subspace preserving prop-
erties are not considered, respectively. Based on Figs. 1-2, we ob-
serve that desired clustering performance is achieved when 𝜆 = 0.1,
which demonstrates that simultaneously considering connected-
ness and subspace preserving properties for the proposed method
with a appropriate tradeoff is helpful for achieving a desired shared
anchor graph. Moreover, connectedness and subspace preserving

properties are both important and should be simultaneously con-
sidered for the obtained anchor graph.

4.4 Sensity Study
We study how the anchor number impacts the clustering perfor-
mance under ACC, NMI and F1-score in this part. The sensity anay-
sis is performed on different datasets regarding the anchor number
under these metrics. Based on Figs. 3-4, we find that generally stable
performance can be produced with the varying number of anchors
on these datasets, which validates that the anchor number does not
play a vital important role in guiding desired performance for the
proposed method.

4.5 Experimental Results
We give the clustering results of the proposed method and other
methods for comparison on different datasets in Tables 1-3. In
the experiment, N/A is adopted to represent the out-of-memory
issue for clarity. We repeat each experiment for 20 times and give
the mean values as well as the standard deviations. Based on the
achieved results, we can draw conclusions in the following:

. The proposed method achieves more desired clustering per-
formance on most of the multi-view datasets, especially on
the datasets with relatively large scales. For example, the
proposed method is able to generate 14.4% improvements
than MSGL on Caltech101 for the clustering results in terms
of ACC.

. Methods based on the anchor tend to produce better results
than the traditional multi-view clustering approaches for
most cases, indicating that using anchors is critical to achieve
satisfied graph on different datasets.

. The proposed method is able to behave better than other
compared methods built on anchor, demonstrating that si-
multaneously taking connectedness and subspace preserv-
ing properties for the proposed method into consideration
controlled by a proper tradeoff is beneficial to achieve an
expected shared anchor graph.

4.6 Running Time
In this part, we show the running times consumed by all methods
on different multi-view datasets. According to Fig. 5, we observe
that relatively less running time is needed by the proposed method
compared with some multi-view clustering approaches on most
datasets, which can be explained by the fact that the necessarity of
constructing the shared anchor graph with relatively smaller size
guided by the proposed method.

5 CONCLUSION
In this paper, we introduce a Fast Elastic-Net Multi-view Clustering
(FENMC) from a geometric interpretation perspective. The geo-
metric analysis for determining the optimal shared anchor graph
based on the introduced elastic-net regularizer is given for fast
multi-view clustering. We then provide a theoretical justification
for the balance between the connectedness and subspace preserv-
ing properties of the shared anchor graph in multi-view clustering.
Experiments on several multi-view datasets demonstrate that the
proposed method owns desired effectiveness and efficiency.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Fast Elastic-Net Multi-view Clustering: A Geometric Interpretation Perspective ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Amir Adler, Michael Elad, and Yacov Hel-Or. 2015. Linear-Time Subspace Clus-

tering via Bipartite Graph Modeling. IEEE Trans. Neural Networks Learn. Syst. 26,
10 (2015), 2234–2246.

[2] Xiaochun Cao, Changqing Zhang, Huazhu Fu, Si Liu, and Hua Zhang. 2015.
Diversity-induced Multi-view Subspace Clustering. In IEEE Conference on Com-
puter Vision and Pattern Recognition. 586–594.

[3] Mansheng Chen, Chang-Dong Wang, Dong Huang, Jian-Huang Lai, and Philip S.
Yu. 2022. Efficient Orthogonal Multi-view Subspace Clustering. In The 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 127–135.

[4] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao
Zheng. 2009. NUS-WIDE: a real-world web image database from National Uni-
versity of Singapore. In Proceedings of the 8th ACM International Conference on
Image and Video Retrieval.

[5] João Paulo Costeira and Takeo Kanade. 1998. A Multibody Factorization Method
for Independently Moving Objects. Int. J. Comput. Vis. 29, 3 (1998), 159–179.

[6] Ehsan Elhamifar and René Vidal. 2013. Sparse Subspace Clustering: Algorithm,
Theory, and Applications. IEEE Trans. Pattern Anal. Mach. Intell. 35, 11 (2013),
2765–2781.

[7] Xiaozhao Fang, Lin Jiang, Na Han, Weijun Sun, Yong Xu, and Shengli Xie. 2022.
Cross-Domain Recognition via Projective Cross-Reconstruction. IEEE Trans. Syst.
Man Cybern. Syst. 52, 12 (2022), 7366–7377.

[8] Li Fei-Fei, Rob Fergus, and Pietro Perona. 2004. Learning Generative Visual
Models from Few Training Examples: An Incremental Bayesian Approach Tested
on 101 Object Categories. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops. 178.

[9] Junwei Han, Kun Song, Feiping Nie, and Xuelong Li. 2017. Bilateral k-Means
Algorithm for Fast Co-Clustering. In Proceedings of the AAAI Conference on
Artificial Intelligence. 1969–1975.

[10] Jeffrey Ho, Ming-Hsuan Yang, Jongwoo Lim, Kuang-Chih Lee, and David J. Krieg-
man. 2003. Clustering Appearances of Objects Under Varying Illumination
Conditions. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. 11–18.

[11] Wei Hong, John Wright, Kun Huang, and Yi Ma. 2006. Multiscale Hybrid Linear
Models for Lossy Image Representation. IEEE Trans. Image Process. 15, 12 (2006),
3655–3671.

[12] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian D. Reid. 2017. Deep
Subspace Clustering Networks. In Advances in Neural Information Processing
Systems. 24–33.

[13] Jiwoo Kang, Seongmin Lee, and Sanghoon Lee. 2022. Competitive Learning of
Facial Fitting and Synthesis Using UV Energy. IEEE Trans. Syst. Man Cybern. Syst.
52, 5 (2022), 2858–2873.

[14] Zhao Kang, Zhiping Lin, Xiaofeng Zhu, and Wenbo Xu. 2022. Structured Graph
Learning for Scalable Subspace Clustering: From Single View to Multiview. IEEE
Trans. Cybern. 52, 9 (2022), 8976–8986.

[15] Zhao Kang,Wangtao Zhou, Zhitong Zhao, Junming Shao, Meng Han, and Zenglin
Xu. 2020. Large-Scale Multi-View Subspace Clustering in Linear Time. In The
AAAI Conference on Artificial Intelligence. 4412–4419.

[16] Xuelong Li, Han Zhang, RongWang, and Feiping Nie. 2022. Multiview Clustering:
A Scalable and Parameter-Free Bipartite Graph Fusion Method. IEEE Trans.
Pattern Anal. Mach. Intell. 44, 1 (2022), 330–344.

[17] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. 2013.
Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE
Trans. Pattern Anal. Mach. Intell. 35, 1 (2013), 171–184.

[18] Mingjiang Liu, Chengli Xiao, and Chunlin Chen. 2022. Perspective-Corrected
Spatial Referring Expression Generation for Human-Robot Interaction. IEEE
Trans. Syst. Man Cybern. Syst. 52, 12 (2022), 7654–7666.

[19] Suyuan Liu, Siwei Wang, Pei Zhang, Kai Xu, Xinwang Liu, Changwang Zhang,
and Feng Gao. 2022. Efficient One-Pass Multi-View Subspace Clustering with
Consensus Anchors. In The AAAI Conference on Artificial Intelligence. 7576–7584.

[20] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and Shuicheng
Yan. 2012. Robust and Efficient Subspace Segmentation via Least Squares Regres-
sion. In Computer Vision - ECCV 2012 - 12th European Conference on Computer
Vision, Vol. 7578. 347–360.

[21] Feiping Nie, Jing Li, and Xuelong Li. 2016. Parameter-Free Auto-Weighted
Multiple Graph Learning: A Framework for Multiview Clustering and Semi-
Supervised Classification. In Proceedings of the International Joint Conference on
Artificial Intelligence. 1881–1887.

[22] Xi Peng, Huajin Tang, Lei Zhang, Zhang Yi, and Shijie Xiao. 2016. A Unified
Framework for Representation-Based Subspace Clustering of Out-of-Sample
and Large-Scale Data. IEEE Trans. Neural Networks Learn. Syst. 27, 12 (2016),
2499–2512.

[23] Yalan Qin, Guorui Feng, Yanli Ren, and Xinpeng Zhang. 2023. Consistency-
Induced Multiview Subspace Clustering. IEEE Trans. Cybern. 53, 2 (2023), 832–
844.

[24] Yalan Qin, Hanzhou Wu, Xinpeng Zhang, and Guorui Feng. 2022. Semi-
Supervised Structured Subspace Learning for Multi-View Clustering. IEEE Trans.

Image Process. 31 (2022), 1–14.
[25] Shuran Song, Samuel P. Lichtenberg, and Jianxiong Xiao. 2015. SUN RGB-D: A

RGB-D scene understanding benchmark suite. In IEEE Conference on Computer
Vision and Pattern Recognition. 567–576.

[26] Mengjing Sun, Pei Zhang, Siwei Wang, Sihang Zhou, Wenxuan Tu, Xinwang Liu,
En Zhu, and Changjian Wang. 2021. Scalable Multi-view Subspace Clustering
with Unified Anchors. In ACM Multimedia Conference. 3528–3536.

[27] Mengjing Sun, Pei Zhang, Siwei Wang, Sihang Zhou, Wenxuan Tu, Xinwang Liu,
En Zhu, and Changjian Wang. 2021. Scalable Multi-view Subspace Clustering
with Unified Anchors. In ACM Multimedia Conference. 3528–3536.

[28] René Vidal. 2011. Subspace Clustering. IEEE Signal Process. Mag. 28, 2 (2011),
52–68.

[29] Siwei Wang, Xinwang Liu, Xinzhong Zhu, Pei Zhang, Yi Zhang, Feng Gao, and En
Zhu. 2022. Fast Parameter-Free Multi-View Subspace Clustering With Consensus
Anchor Guidance. IEEE Trans. Image Process. 31 (2022), 556–568.

[30] Shusen Wang, Bojun Tu, Congfu Xu, and Zhihua Zhang. 2014. Exact Subspace
Clustering in Linear Time. In Proceedings of the AAAI Conference on Artificial
Intelligence. 2113–2120.

[31] Ben Yang, Xuetao Zhang, Zhongheng Li, FeipingNie, and FeiWang. 2022. Efficient
Multi-view K-means Clustering with Multiple Anchor Graphs. IEEE Transactions
on Knowledge and Data Engineering (2022), 1–12.

[32] Ming Yin, Junbin Gao, Shengli Xie, and Yi Guo. 2019. Multiview Subspace
Clustering via Tensorial t-Product Representation. IEEE Trans. Neural Networks
Learn. Syst. 30, 3 (2019), 851–864.

[33] Chong You, Daniel P. Robinson, and René Vidal. 2016. Scalable Sparse Subspace
Clustering by Orthogonal Matching Pursuit. In IEEE Conference on Computer
Vision and Pattern Recognition. 3918–3927.

[34] Changqing Zhang, Huazhu Fu, Qinghua Hu, Xiaochun Cao, Yuan Xie, Dacheng
Tao, and Dong Xu. 2020. Generalized Latent Multi-View Subspace Clustering.
IEEE Trans. Pattern Anal. Mach. Intell. 42, 1 (2020), 86–99.

[35] Tiejian Zhang, Xinwang Liu, En Zhu, Sihang Zhou, and Zhibin Dong. 2022.
Efficient Anchor Learning-based Multi-view Clustering - A Late Fusion Method.
In ACM International Conference on Multimedia. 3685–3693.

[36] Zheng Zhang, Li Liu, Fumin Shen, Heng Tao Shen, and Ling Shao. 2019. Bi-
nary Multi-View Clustering. IEEE Transactions on Pattern Analysis and Machine
Intelligence 41, 7 (2019), 1774–1782.

[37] Xiaojia Zhao, Tingting Xu, Qiangqiang Shen, Youfa Liu, Yongyong Chen, and
Jingyong Su. 2024. Double High-Order Correlation Preserved Robust Multi-View
Ensemble Clustering. ACM Trans. Multim. Comput. Commun. Appl. 20, 1 (2024),
1–21.


	Abstract
	1 Introduction
	2 Related Work
	3 The proposed method
	3.1 Motivation and Formulation
	3.2 Optimization
	3.3 Complexity Analysis

	4 Experiments
	4.1 Benchmark Datasets
	4.2 Experimental Settings
	4.3 Parameter Selection
	4.4 Sensity Study
	4.5 Experimental Results
	4.6 Running Time

	5 Conclusion
	References

