
PARCO: Parallel AutoRegressive Models for
Multi-Agent Combinatorial Optimization

Federico Berto∗ ,1,2,3, Chuanbo Hua∗,1,2, Laurin Luttmann∗,4, Jiwoo Son2, Junyoung Park1,
Kyuree Ahn2, Changhyun Kwon1,2, Lin Xie5, Jinkyoo Park1,2

1KAIST 2Omelet 3Radical Numerics 4Leuphana University
5Brandenburg University of Technology AI4CO‡

Abstract

Combinatorial optimization problems involving multiple agents are notoriously
challenging due to their NP-hard nature and the necessity for effective agent coordi-
nation. Despite advancements in learning-based methods, existing approaches often
face critical limitations, including suboptimal agent coordination, poor generaliza-
tion, and high computational latency. To address these issues, we propose PARCO
(Parallel AutoRegressive Combinatorial Optimization), a general reinforcement
learning framework designed to construct high-quality solutions for multi-agent
combinatorial tasks efficiently. To this end, PARCO integrates three key novel
components: (1) transformer-based communication layers to enable effective agent
collaboration during parallel solution construction, (2) a multiple pointer mecha-
nism for low-latency, parallel agent decision-making, and (3) priority-based conflict
handlers to resolve decision conflicts via learned priorities. We evaluate PARCO
in multi-agent vehicle routing and scheduling problems, where our approach out-
performs state-of-the-art learning methods, demonstrating strong generalization
ability and remarkable computational efficiency. We make our source code publicly
available to foster future research: https://github.com/ai4co/parco.

1 Introduction

Solution

Solution
AutoRegressive Model

Parallel AutoRegressive Model
Actions: {1, 4, 6}

Action: {6}

Actions: {2, 3, 5}

Agent 1

Agent 2

1

2
34

5
6

Agent 1

Agent 2

Agent 3

1

2
34

5

6

Agent 1

Agent 2

Agent 3

1

234

5
6Communicate

Action: {2}

Agent 1

1
234

5
6

Continue?

Back?

Step 2

…… Agent 1

Agent 2

Agent 3

……

…

Step 1 Step 2 Step 3 [Done]

Step 6 Step 9 [Done]

Agent 1

Agent 2

Agent 3

Figure 1: PARCO generates better solutions with
higher efficiency through parallel decision making.

Combinatorial optimization (CO) problems involve
determining an optimal sequence of actions in dis-
crete spaces with several crucial domains, including
logistics and supply chain management [91]. Many
practical CO problems require a solution to be con-
structed by coordinating multiple distinct entities (i.e.,
agents), each with unique characteristics. We call
such problems multi-agent CO. This class of prob-
lems naturally arises in real-world applications such
as coordinated vehicle routing for disaster manage-
ment [60], manufacturing [37] and last-mile delivery
optimization [1], where heterogeneous agents must
operate under complex constraints.

CO problems are notoriously hard to solve and cannot
generally be solved optimally in polynomial time
due to their NP-hardness [36, 79]. While traditional
methods such as exact and heuristic methods have

∗Equal contributions.
‡Authors are members of the AI4CO open research community.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/ai4co/parco

been developed to solve a variety of problems [51, 25], these approaches often concentrate on
single-agent scenarios and require long execution times. Moreover, multi-agent CO poses additional
challenges including additional constraints and different optimization objectives, such as minimizing
lateness or the makespan among agents [82, 72].

Recently, Neural Combinatorial Optimization (NCO) has emerged as a powerful alternative by
learning efficient neural solvers [4]. In particular, Reinforcement Learning (RL) has shown promise
due to its ability to learn directly from interactions with CO problems instead of relying on costly
labeled datasets in the shape of optimal solutions, and could even outperform traditional approaches by
automatically discovering better (neural) heuristics [3, 49, 40]. Among NCO methods, Autoregressive
(AR) models—constructing solutions step-by-step—have garnered attention for their ability to
generate solutions for a variety of problems with hard constraints [47, 50, 7]. This capability is
crucial for addressing complex problems with multiple constraints, such as heterogeneous capacity
[2] or precedences in pickup and delivery [77] and machine scheduling problems [101].

However, despite their promising results in single-agent settings, AR-CO methods pose two challenges
that hinder their practical adoption in solving complex multi-agent CO problems. First, existing AR
methods for multi-agent CO suffer from poor coordination, resulting in unsatisfactory solution quality
and poor generalization across varying problem sizes and agent configurations [108, 84, 104, 63].
Moreover, AR sequence generation is associated with high latency due to each single action (or
“token”) depending on each previous one, akin to large language models [52, 21]. This issue becomes
increasingly pronounced when dealing with large problem instances involving numerous agents.

This paper introduces PARCO (Parallel AutoRegressive Combinatorial Optimization), a novel learn-
ing framework to address multi-agent combinatorial problems effectively via parallel solution con-
struction as illustrated in Fig. 1. We design specialized transformer-based Communication Layers
to enhance coordination among agents during decision-making, enabling collaborative behaviors.
Our model leverages a Multiple Pointer Mechanism to efficiently generate actions for various agents
simultaneously at each solution construction step. Priority-based Conflict Handlers ensure feasibility
and resolve potential conflicts among agents’ decisions based on learned priorities.

We summarize PARCO’s contributions as follows:
• We propose a general Parallel Autoregressive framework for solution construction in multi-

agent CO.
• We introduce Communication Layers to enhance agent coordination at each parallel con-

struction step.
• We design a Multiple Pointer Mechanism that reduces latency by efficiently decoding

solutions in parallel.
• We enhance solution quality with Priority-based Conflict Handlers that tie break with learned

priorities.
• We evaluate PARCO on multi-agent vehicle routing and scheduling, where we outperform

state-of-the-art learning methods in solution quality, generalization, and efficiency.

2 Related Work

Neural Combinatorial Optimization Recent advancements in Neural Combinatorial Optimization
(NCO) have shown promising end-to-end solutions for combinatorial optimization problems [4,
94]. NCO has led to the development of a variety of methods for diverse problems, including the
incorporation of problem-specific biases [35, 64, 44, 41, 83, 20, 31], bi-level solution pipelines [56,
96, 105], learning-guided search [95, 45, 85, 57, 58, 59, 42], improvement methods [26, 69, 70, 28],
effective training algorithms [43, 23, 14, 13, 80, 65, 103], downstream applications [11, 106, 71,
66, 93], and the recent development of end-to-end foundation models [61, 107, 15, 6, 34, 53, 22].
Among such methods, RL-based end-to-end autoregressive (AR) models present several advantages,
including eliminating the need for labeled solutions, reducing reliance on handcrafted heuristics, and
achieving high efficiency in generating high-quality solutions [47, 49, 50, 5, 8].

Multi-Agent AR Methods for CO While the seminal works in AR-CO methods of Vinyals et al.
[89], Kool et al. [47], Kwon et al. [49, 50] propose models that can be used in loose multi-agent
settings, such methods cannot be employed directly to model heterogeneous agents with different

2

attributes and constraints. Building on Kool et al. [47], Son et al. [84] and Zheng et al. [104]
introduce attention-based policies for multi-agent min-max routing. These models adopt a sequential
AR construction strategy, solving for one agent at a time and switching agents only after completing
a single-agent solution. While this approach outperforms decentralized methods [10, 76] it remains
inherently sequential. In contrast, other multi-agent AR methods determine a location for every agent
in each solution construction step, but the different agents select their actions sequentially in either
random [102] or learned order [18, 55, 63], making these models still suffer from high generation
latency as well as missing inter-agent communication and coordination. Zong et al. [108] propose a
multi-agent pickup and delivery model with parallel decoding, using distinct decoders for each agent.
However, this approach exhibits limited generalizability due to inflexible fixed decoders for specific
agents, lacking a powerful communication mechanism, and conflict resolution handled naively by
assigning random precedence to agents, restricting the robustness of the model.

PARCO addresses the shortcomings of previous works by leveraging parallel solution construction
for any number of agents efficiently with a Multiple Pointer Mechanism, enhancing coordination
via Communication Layers, and solving conflicts in a principled manner via Priority-based Conflict
handlers. Finally, unlike previous works, PARCO is a general framework tackling multi-agent CO
without restricting to a single class of problems.

3 Preliminaries

3.1 Markov Decision Processes

Multi-agent CO problems can be formulated as Markov Decision Processes (MDPs) and solved
autoregressively using RL [74]. In this framework, a solution a to a CO problem instance x is
represented as a sequence of actions. Actions at are selected sequentially from the action space A of
size N based on the current state st ∈ S, which encodes the problem’s configuration at step t. In
multi-agent problems, at each step one agent m ∈M = {1, . . . ,M} selects an action amt according
to a policy πθ, usually represented by a θ-parametrized neural network, mapping states to actions.
Agents are selected either by some predefined precedence rule as in the sequential planning of Son
et al. [84], where agent solutions are constructed one after another, or by the policy itself, in which
case πθ : S → A×M. Given the agent and its corresponding action, the problem then transitions
from state st to state st+1 according to a transition function τ : S × A ×M → S. This process
reaches the terminal state once it has generated a feasible solution a = (a1, ..., aT) for the problem
instance x in T construction steps. The (sparse) reward R(a,x) is usually obtained only in the
terminal state and takes the form of the negative of the cost function of the respective CO problem.

3.2 AR Models for CO

Given the sequential nature of MDPs, autoregressive (AR) models pose a natural choice for the policy
πθ. AR methods construct a viable solution by sequentially generating actions based on the current
state and previously selected actions. Without loss of generality, the process can be represented in an
encoder-decoder framework as:

pθ(a|x) ≜
T∏

t=1

gθ(at|a<t,h) (1)

where a<t = (a1, . . . , at−1) is the sequence of actions taken prior to t and h = fθ(x) is an encoding
of the problem instance x obtained via the encoder network f . The decoder gθ then autoregressively
generates the sequence of actions, conditioned on h and the previously generated actions. The
parameters θ encompass both the encoder and decoder components, which together define the policy
as the mechanism for producing the joint distribution pθ(a|x). Thus, the RL objective becomes
finding the optimal set of parameters θ∗ that maximizes the reward function R [48, 49, 43].

4 Methodology

We now outline the general structure of PARCO as shown in Fig. 2. First, we formally define parallel
multi-agent MDPs for CO (§ 4.1), which we use as a basis to derive our overall parallel autoregressive
approach (§ 4.2). We then describe in detail the components of our model: Multi-Agent Encoder

3

Graph Features

Agent 1
Agent 2

Agent M

…
…

…
…

…
…

…

Node 1
Node 2

Node N
…

Encoder
Agent

xL

Agent Features

Node Features

Embedding
Layer

Node
Embedding

Layer

Encoder
Layers

Agent

Node

Hidden States

Embeddings

Embeddings

Agents

Nodes

States

States

States

Environment
Communication Layer Multiple Pointer

Mechanism

MHA

Q

[B, M, d]

K V

Norm

MLP

Norm

+

+

Agent 1

Agent M

…
Agent 2

K

Q

V

K

Q

V

K

Q

V
Agent M

Agent 1
...

Node N

Node 1
...

Decoder

Context

Dynamic
Embedding

Embedding

Action Probabilities

Actions

Actions

Priority-based
Conflicts Handler

…

…

reset()

step()

Figure 2: Overview of PARCO. Our model encodes multi-agent CO problems into separate agent and node
embeddings. Communication Layers allow for coordination among agents during decoding, which enhances
solution quality. Actions are decoded efficiently autoregressively in parallel through a Multiple Pointer Mecha-
nism enhanced by a Priority-based Conflict Handler.

(§ 4.3), Communication Layers (§ 4.4), Decoder with Multiple Pointer Mechanism (§ 4.5) and
Conflict Handlers (§ 4.6). Finally, we outline the training scheme (§ 4.7).

4.1 Cooperative Multi-Agent MDPs

We reformulate the MDPs of § 3.1 as cooperative multi-agent MDPs [9], often termed fully coopera-
tive Markov games [73], by selecting multiple actions from a joint action space simultaneously to en-
hance efficiency and coordination [98, 68]. At each step t, M agents select actions at = (a1t , ..., a

M
t)

according to a policy πθ : S → A1 × ... × AM , which maps the state space S to the joint action
space of agents. A conflict handling function ψ : (A1 × ... × AM) → (A1 × ... × AM) ensures
action compatibility by allowing only one agent to execute when multiple agents select mutually
conflicting actions (e.g., the same customer location), and assigning a fallback action (e.g., staying at
current position) to the others. Given the resolved agent actions ãt = ψ(at), the state of the problem
st progresses to st+1 according to the transition function τ : S × (A1 × ...×AM)→ S . The agents
receive a shared reward R(a,x), with a = (ã1, ..., ãT) the sequence of joint agent actions.

In the following, we refer to the entities corresponding to actions in the MDP formulation of a CO
problem (e.g., customer locations in VRPs) as nodes, following the convention of Kool et al. [47] and
Kwon et al. [49].

4.2 Parallel AR Models for CO

Motivated by the nature of multi-agent MDPs, PARCO introduces a Parallel AR model for the policy
πθ. PARCO constructs feasible solutions by simultaneously generating multiple agent actions based
on the current state. We formulate the solution generation process in an encoder-decoder framework
similarly to Eq. (1):

pθ(a|x) ≜
T∏

t=1

ψ

(
M∏

m=1

gθ(a
m
t |a<t,h)

)
(2)

where h = fθ(x) is the encoding of problem instance x via encoder network fθ, and decoder gθ
implements the policy πθ to autoregressively generate actions efficiently for all agents in parallel.
At each step t, the decoder outputs joint actions at = (a1t , ..., a

M
t) for all M agents with amt being

the sampled action of agent m. The conflict resolution function ψ ensures action compatibility by
allowing only one agent to execute when multiple agents select mutually conflicting actions, resulting
in resolved actions ãt = ψ(at). pθ is thus a solver that maps x to a solution a = (ã1, ..., ãT).

A benefit of our parallel formulation is that the total number of construction steps T can be sub-
stantially lower compared to purely AR methods. While the latter require

∑M
m=1 Tm total actions

to construct a solution with Tm being the number of steps required by agent m to finish its task,

4

PARCO’s Parallel AR needs only maxm Tm steps as agents effectively divide the solution space
and act concurrently. This leads to a faster solution construction as illustrated in Figs. 1 and 6 and
significantly reduced training times.

4.3 Multi-Agent Encoder

The multi-agent encoder fθ transforms an input instance x into a hidden representation h. In PARCO,
we explicitly model agents and employ separate agent and node embedding layers similar to Son et al.
[84] to project agents and nodes into the same embedding space.

The agent embedding layer projects ka agent features – such as vehicle locations and capacities
(routing) or machine characteristics (scheduling) – into a d-dimensional space using a linear projection
Wa ∈ Rka×d. Let h(0)

a = xaWa denote the initial agent embeddings, where xa ∈ RM×ka denotes
the matrix of agent features. Similarly, the node embedding layer projects kn node features – such
as customer demands in vehicle routing or job durations in scheduling problems – into the same
d-dimensional space using a linear projection Wn ∈ Rkn×d. The initial embeddings of the nodes are
defined as h(0)

n = xnWn where xni
∈ RN×kn represents the node feature matrix.

Depending on the problem structure, the initial agent and node embeddings might either be con-
catenated as h(0) = Concat(h(0)

a ,h
(0)
n) and passed through L transformer blocks, consisting of

multi-head self-attention MHA(h(0),h(0),h(0)) and multi-layer perceptrons (MLPs) as defined in
Vaswani et al. [88]. Or, agent and node embeddings are used separately as query and keys/values,
respectively, in a cross-attention mechanism MHA(h

(0)
a ,h

(0)
n ,h

(0)
n) akin to MatNet [50]. The final

embeddings h = {ha,hn} emitted by the last encoder layer contain processed representations of
both agents and nodes that capture their interactions as well as the overall problem structure.

4.4 Communication Layers

At each step t of the decoding process of Eq. (2), given the encoded representations h, we construct
dynamic agent queries that capture the current state of both agents and the environment. For each
agent m, we form a context embedding dm = Concat(ham ,hδmt

,he) consisting of the following
components: (1) the (static) embedding of the agent ham ; (2) a projection hδmt

= δmt Wδ ∈ Rd of
the agent’s dynamics δmt like its current location and capacity (routing) or the time until the agent
becomes idle (scheduling); (3) a projection he = etWδ ∈ Rd of the dynamic environment features
et that encode the current problem’s state. These dynamic embeddings are then projected into query
vectors qm = dmWq where Wq ∈ R3d×d is a learnable projection matrix.

The resulting queries q = [q1, . . . , qM] ∈ RM×d are then processed through communication layers
comprising multi-head self-attention followed by an MLP:

q′ = Norm(MHA(q, q, q) + q) (3)

q = Norm(MLP((q′)) + q′) (4)

where Norm denotes a normalization layer [33, 100]. These layers are inherently agent-count agnostic,
allowing PARCO to handle arbitrary numbers of agents, making it more flexible and generalizable
across different problems. Communication Layers allow agents to coordinate their actions by
attending to both the problem structure and other agents’ states while maintaining efficiency through
parallel processing.

4.5 Decoder with Multiple Pointer Mechanism

PARCO’s decoder improves the AR pointer mechanism [89, 47] – originally designed for single-
agent scenarios and recently applied to sequential multi-agent planning with a single agent at a time
[84, 104] – to handle multiple agents operating in parallel via a Multiple Pointer Mechanism.

Starting with the processed agent queries q that underwent communication, we first compute agent-
specific representations through masked cross MHA:

q′ = MHA(q, hn + ξtW
K
ξ , hn + ξtW

V
ξ ; Mt) (5)

5

where ξt ∈ RN×kξ are dynamic node features which are projected via WK
ξ ,W

V
ξ ∈ Rkξ×d for keys

and values of the MHA, respectively. Further, Mt ∈ RM×N is the current action mask at step t,
avoiding agent representations to attend to infeasible actions.

We then obtain a joint logit space u across all agents:

u = β · tanh

(
q′(hnW

L + ξtW
L
ξ)

⊤
√
d

)
(6)

with learnable parameters WL ∈ Rd×d, WL
ξ ∈ Rkξ×d and β is a scale parameter, set to 10 following

Bello et al. [3] to enhance exploration. The output logits u ∈ RM×N are masked by setting infeasible
actions given mask Mt to −∞. The joint probability distribution over all agent actions becomes:

p(at|a<t,h) =

M∏
m=1

exp
(
um,am

t

)∑N
j=1 exp(um,j)

(7)

where at = (a1t , . . . , a
M
t) represents the joint action across all agents at step t.

4.6 Conflict Handlers

When sampling from the probability distribution p generated by the Multiple Pointer Mechanism,
multiple agents may select the same action simultaneously, which can result in an infeasible solution
in several CO problems – for instance, in vehicle routing problems, usually only one agent is allowed
to visit a customer node – and it becomes essential how to deal with such a situation effectively.
Conflict handling (i.e., tie-breaking) can be achieved by allowing a single agent among a number
of agents that are in conflict to continue with its action while others revert to fallback actions, e.g.,
staying in their current position. A simple approach introduced by Zong et al. [108] consists of
randomly selecting an agent to perform the new action. However, this can be suboptimal since it
excludes inductive biases that can be leveraged, such as learned representations.

Algorithm 1 Priority-based Conflict Handler

Require: Actions a ∈ NM , Priorities p ∈ RM , Fallback actions r ∈ RM

Ensure: Resolved Actions a′ ∈ NM

1: σ ← argsort(p, descending = True) // Sort indices based on priorities in descending order
2: â← a[σ] // Reorder actions according to priority
3: C ← 0M // Initialize conflict mask
4: for i = 2 to M do // Check for conflicts in reordered actions
5: if âi ∈ {â1, . . . , âi−1} then
6: Ci ← 1 // Ci = 1 indicates a conflict for index i
7: end if
8: end for
9: â← (1− C)⊙ â+ C ⊙ r // Resolve conflicts by assigning fallback actions

10: a′ ← â[σ−1] // Reorder resolved actions back to original order

In PARCO, we propose Priority-based Conflict Handlers that leverage priorities as a tie-breaking
rule. Such priorities can be based on heuristics – such as giving priority to agents close to completion
or whose action results in the smallest immediate cost – or on learned priorities. In the latter case, the
model output probability values of the selected actions p(at) serve as an indicator for prioritizing
certain agents: the higher their value, the higher the priority learned by the model to have those agents
win the tie-break.

Algorithm 1 shows our efficient vectorized implementation of the Priority-based Conflict Handler
algorithm. In practice, we augment the conflict handler ψ from § 4.2 with priorities p := p(at) and
fallback actions r, i.e. ψ(·) := ψ(at,p, r). Fallback actions in PARCO correspond to “do nothing”
operations – maintaining an agent’s current position (routing) or keeping a machine idle (scheduling)
– which may result in slightly more solution construction steps but do not affect the final solution a.
This approach effectively handles conflicts by allowing the affected agents to reconsider their choices
given the actions of (preceding) agents in the next decoding step.

6

4.7 Training Scheme

PARCO is a centralized multi-agent decision-making framework and can thus be trained by RL algo-
rithms proposed in the single-agent NCO literature. We train PARCO by employing the REINFORCE
gradient estimator [92] with a shared baseline as outlined by Kwon et al. [49] and Kim et al. [43]:

∇θL ≈
1

B · S
B∑
i=1

S∑
j=1

Gij∇θ log pθ(aij |xi) (8)

whereB is the batch size, S the number of shared baseline samples, andGij = R(aij ,xi)−bshared(xi)
is the advantage of a solution aij compared to the shared baseline bshared

i of problem instance xi.

5 Experiments

We assess the effectiveness of PARCO on representative multi-agent CO problems, spanning both
routing and scheduling domains. Specifically, we evaluate its performance on two challenging routing
problems – the min-max heterogeneous capacitated vehicle routing problem (HCVRP) and the open
multi-depot capacitated pickup and delivery problem (OMDCPDP) – as well as a scheduling problem,
the flexible flow shop problem (FFSP). Experimental details are available through Appendix B3.

5.1 Experimental Settings

HCVRP Problem. The min-max HCVRP involves M agents serving customer demands while
adhering to heterogeneous vehicle capacity constraints. Each vehicle can replenish its load by
returning to the depot. The objective is to minimize the longest route taken by any agent (min-max),
ensuring balanced workload distribution. Traditional solvers. We include state-of-the-art SISRs [12],
Genetic Algorithm (GA) [39] and Simulated Annealing (SA) [32]. Neural baselines. We evaluate
the sequential planning baselines Attention Model (AM) [47], Equity Transformer (ET) [84] and
Decoupling Partition and Navigation (DPN) [104], and autoregressive models with agent selection
DRLLi [55] and state-of-the-art learning method 2D-Ptr [63]. Additional problem and experimental
details are available in Appendix A.1 and Appendix B.1, respectively.

OMDCPDP Problem. The OMDCPDP is a challenging problem arising in last-mile delivery
settings where M agents starting from different locations (i.e., multiple depots) must pick up
and deliver parcels without returning to their starting point (i.e., open). Agents have a capacity
constraint for orders that can be carried out as a stacking limit: a tour can include more pickups
than the constraint, but the agent must deliver corresponding orders so that carrying capacity is
freed. The goal is to minimize the lateness, i.e., the sum of delivery arrival times. Traditional
solvers. We include the popular and efficient optimization suite Google OR-Tools [19] as a classical
baseline. Neural baselines. We evaluate models specializing in pickup and delivery problems,
including the autoregressive Heterogeneous Attention Model (HAM) [54] for sequential planning
and MAPDP [108] for parallel planning. Additional problem and experimental details are available
in Appendix A.2 and Appendix B.2, respectively.

FFSP Problem. In FFSP, N jobs must be processed by M machines divided equally in S stages.
Jobs follow a specified sequence through these stages. Within each, any available machine can process
the job, with the key constraint that no machine can handle multiple jobs simultaneously. The goal is
to schedule the jobs so that all jobs are finished in the shortest time possible. Traditional solvers. We
incorporate the widely used and powerful Gurobi solver [24] as a baseline. Furthermore, we include
dispatching rules Random and Shortest Job First (SJF), Particle Swarm Optimization (PSO) [81] and
Genetic Algorithm (GA) [25]. Neural baselines. Notable benchmarks include the Matrix Encoding
Network (MatNet) [50] which demonstrates superior performance on FFSP. Additional problem and
experimental details are available in Appendix A.3 and Appendix B.3, respectively.

3Source code is available at https://github.com/ai4co/parco

7

https://github.com/ai4co/parco

Table 1: Main results on different problems with different configurations for problem size N and number of
agents M . For all metrics, the lower the better (↓).

HCVRP
N 60 100
M 3 5 7 3 5 7

Metric Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time
SISRs 6.57 0.00% 271s 4.00 0.00% 274s 2.91 0.00% 276s 10.29 0.00% 615s 6.17 0.00% 623s 4.45 0.00% 625s
GA 9.21 40.18% 233s 6.89 72.25% 320s 5.98 105.50% 405s 15.33 48.98% 479s 10.93 77.15% 623s 9.10 104.49% 772s
SA 7.04 7.15% 130s 4.39 9.75% 289s 3.30 13.40% 362s 11.13 8.16% 434s 6.80 10.21% 557s 5.01 12.58% 678s
AM (g.) 8.49 29.22% 0.08s 5.51 37.75% 0.08s 4.15 42.61% 0.09s 12.68 23.23% 0.14s 8.10 31.28% 0.13s 6.13 37.75% 0.13s
ET (g.) 7.58 15.37% 0.15s 4.76 19.00% 0.17s 3.58 23.02% 0.16s 11.74 14.09% 0.25s 7.25 17.50% 0.25s 5.23 17.53% 0.26s
DPN (g.) 7.50 14.16% 0.18s 4.60 15.00% 0.19s 3.45 18.56% 0.26s 11.54 12.15% 0.30s 6.94 12.48% 0.40s 4.98 11.91% 0.43s
DRLLi (g.) 7.43 13.09% 0.19s 4.71 17.75% 0.22s 3.60 23.71% 0.25s 11.44 11.18% 0.32s 7.06 14.42% 0.37s 5.38 20.90% 0.43s
2D-Ptr (g.) 7.20 9.59% 0.11s 4.48 12.00% 0.11s 3.31 13.75% 0.11s 11.12 8.07% 0.18s 6.75 9.40% 0.18s 4.92 10.56% 0.17s
PARCO (g.) 7.12 8.37% 0.04s 4.40 10.00% 0.05s 3.25 11.68% 0.05s 10.98 6.71% 0.06s 6.61 7.13% 0.05s 4.79 7.64% 0.05s
AM (s.) 7.62 15.98% 0.14s 4.82 20.50% 0.13s 3.63 24.74% 0.14s 11.82 14.87% 0.29s 7.45 20.75% 0.28s 5.58 25.39% 0.28s
ET (s.) 7.14 8.68% 0.21s 4.46 11.50% 0.22s 3.33 14.43% 0.22s 11.20 8.84% 0.41s 6.85 11.02% 0.38s 4.98 11.91% 0.40s
DPN (s.) 7.08 7.76% 0.25s 4.35 8.75% 0.28s 3.20 9.97% 0.38s 11.04 7.29% 0.48s 6.66 7.94% 0.52s 4.79 7.64% 0.78s
DRLLi (s.) 6.97 6.09% 0.30s 4.34 8.50% 0.36s 3.25 11.68% 0.43s 10.90 5.93% 0.60s 6.65 7.78% 0.76s 4.98 11.91% 0.92s
2D-Ptr (s.) 6.82 3.81% 0.13s 4.20 5.00% 0.13s 3.09 6.19% 0.14s 10.71 4.08% 0.22s 6.46 4.70% 0.23s 4.68 5.17% 0.24s
PARCO (s.) 6.82 3.81% 0.05s 4.17 4.25% 0.05s 3.06 5.15% 0.07s 10.61 3.11% 0.08s 6.36 3.08% 0.08s 4.58 2.92% 0.09s

OMDCPDP
N 50 100
M 5 7 10 10 15 20

Metric Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time
OR-Tools 37.61 4.61% 30s 30.18 3.38% 30s 24.48 1.79% 30s 66.78 4.99% 60s 51.49 3.15% 60s 43.90 1.53% 60s
HAM (g.) 39.67 10.30% 0.11s 31.49 7.85% 0.11s 29.24 21.23% 0.13s 71.12 11.60% 0.24s 54.31 8.69% 0.27s 53.73 23.93% 0.29s
MAPDP (g.) 37.36 4.09% 0.02s 30.36 4.08% 0.01s 24.88 3.46% 0.01s 66.54 4.71% 0.01s 52.08 4.34% 0.01s 44.71 3.40% 0.01s
PARCO (g.) 37.27 3.84% 0.02s 30.12 3.27% 0.01s 24.72 2.81% 0.01s 65.85 3.67% 0.02s 51.45 3.11% 0.01s 44.46 2.84% 0.01s
HAM (s.) 36.26 1.17% 1.18s 29.54 1.38% 1.31s 27.77 15.24% 1.37s 66.91 5.29% 2.33s 51.60 3.42% 2.53s 52.24 20.52% 2.72s
MAPDP (s.) 35.64 0.02% 0.02s 29.03 0.23% 0.02s 23.97 0.35% 0.01s 63.64 0.65% 0.03s 50.07 0.75% 0.03s 43.57 1.13% 0.02s
PARCO (s.) 35.64 0.00% 0.03s 28.96 0.00% 0.02s 23.89 0.00% 0.02s 63.20 0.00% 0.04s 49.69 0.00% 0.03s 43.08 0.00% 0.03s

FFSP
N 20 50 100 50
M 12 18 24 30

Metric Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time
Gurobi (1m) 35.29 42.4% 60s - - 60s - - 60s - - 60s - - 60s - - 60s
Gurobi (10m) 31.61 27.6% 600s - - 600s - - 600s - - 600s - - 600s - - 600s
Random 47.89 93.3% 0.18s 93.34 89.4% 0.37s 167.22 86.9% 0.72s 67.03 112.1% 0.33s 54.48 130.9% 0.33s 46.84 137.0% 0.37s
SJF 31.27 26.2% 0.13s 56.94 15.6% 0.34s 99.27 11.0% 0.62s 38.01 20.3% 0.25s 29.39 24.6% 0.25s 24.62 24.6% 0.29s
GA 31.15 25.7% 21s 56.92 15.5% 44s 99.25 10.9% 89s 38.26 21.1% 47s 29.05 16.7% 50s 24.52 24.1% 55s
PSO 29.10 17.4% 46s 55.10 11.8% 82s 97.3 8.8% 154s 36.83 16.6% 85s 28.06 12.7% 89s 23.44 18.6% 95s
MatNet (g.) 27.26 10.0% 1.22s 51.52 4.6% 2.17s 91.58 2.4% 4.97s 34.82 10.2% 2.42s 27.52 16.7% 2.65s 23.65 19.7% 3.09s
PARCO (g.) 26.31 6.2% 0.26s 51.19 3.9% 0.52s 91.29 2.0% 0.89s 32.88 4.1% 0.50s 24.89 5.5% 0.44s 20.29 2.7% 0.41s
MatNet (s.) 25.44 2.7% 3.88s 49.68 0.8% 8.91s 89.72 0.3% 18s 33.45 5.9% 9.23s 26.00 10.2% 9.81s 22.51 13.9% 11s
PARCO (s.) 24.78 0.0% 0.99s 49.27 0.0% 1.97s 89.46 0.0% 4.04s 31.60 0.0% 1.89s 23.59 0.0% 1.68s 19.76 0.0% 1.54s

5.2 Experimental Results

We report the main empirical results for HCVRP, OMDCPDP, and FFSP in Table 1, with average
objective function values (Obj.), gaps to the best-known solutions, and inference times for solving
each single problem instance. For neural baselines, we evaluate both greedy (g.) and sampling (s.)
performance, using 1280 sampled solutions for routing problems and 128 for FFSP.

In HCVRP, PARCO outperforms all neural baselines in solution quality and speed while providing
solutions at a fraction of the solving time required by traditional solvers. In OMDCPDP, our model
surpasses all baselines, including OR-Tools. Notably, while the AR baseline HAM struggles with a
larger number of agents M , PARCO’s parallel AR method maintains strong performance across all
scales. In FFSP, PARCO outperforms traditional solvers (e.g., Gurobi cannot find solutions in time
for N > 20), dispatching rules, and MatNet in all tested scenarios while being more than 4× faster.
Furthermore, similar to our results in routing, PARCO’s advantage becomes even more pronounced in
instances with a larger number of agents where PARCO generates higher-quality schedules through
effective agent coordination at a fraction of the cost of MatNet.

5.3 Analysis

Effect of Communication Layers We showcase the importance of Communication Layers in
Fig. 3a. We benchmark different ways to obtain decoder queries (see § 4.5) with 1) No communication
(W/o Comm., i.e., with only context features), 2) MLP, 3) MHA, 4) our transformer-based Com-

8

Table 2: Generalization for unseen numbers of nodes N and agents M (up to 10× those seen during training).
N 500 1000
M 50 75 100 100 150 200

Metric Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time
OR-Tools 290.79 7.81% 300s 223.72 4.68% 300s 192.59 1.51% 300s 780.89 33.93% 600s 642.54 36.47% 600s 584.27 36.81% 600s
HAM (g.) 410.95 55.44% 1.03s 310.17 48.72% 1.13s 204.00 9.91% 1.23s 710.64 40.92% 2.43s 554.15 39.41% 2.66s 388.56 8.88% 2.91s
PARCO (g.) 268.56 1.41% 0.02s 211.21 1.13% 0.02s 187.37 0.83% 0.01s 510.61 0.81% 0.02s 401.46 0.64% 0.02s 359.98 0.49% 0.02s
HAM (s.) 409.67 54.95% 1.19s 305.16 46.32% 1.31s 203.50 9.64% 1.39s 708.55 40.50% 2.94s 552.76 39.06% 3.22s 384.10 7.63% 3.46s
PARCO (s.) 264.38 0.00% 0.03s 208.56 0.00% 0.02s 185.61 0.00% 0.02s 504.30 0.00% 0.79s 397.51 0.00% 0.91s 356.87 0.00% 1.26s

W/o Comm. MLP MHA Comm.
3.0

3.2

3.4

3.6

3.8

4.0

4.2

G
ap

(%
)

(a) Effect of communication

200

220

M = 18 M = 24 M = 30
0

20

40

60

A
ve

ra
ge

D
ec

od
in

g
St

ep
s

300

400

40

60

80

Ti
m

e
pe

rE
po

ch
(s

)

Steps:
Time:

MatNet
MatNet

PARCO w/o Comm.
PARCO w/o Comm.

PARCO
PARCO

(b) Decoding steps and training time
Random Smallest Closest Learned

3.2

3.3

3.4

3.5

3.6

3.7

G
ap

(%
)

(c) Effect of conflict handlers

Figure 3: Analysis of PARCO components.

munication Layers (Comm.). Our Communication Layers consistently outperform other methods.
Fig. 3b shows decoding steps and training times on the FFSP for N = 50. PARCO greatly reduces
the number of steps and training times, with Communication Layers further reducing them through
better coordination, especially at a higher number of agents M .

Effect of Conflict Handlers In Fig. 3c, we compare 1) the random handler from MAPDP and our
proposed Priority-based Conflict Handlers in different configurations, namely with priorities based on
simple heuristics as 2) “smallest” prioritizing the agent with the lowest cost so far, and 3) “closest”,
prioritizing agents closer to the corresponding node, and finally 4) “learned” based on model output
probabilities. The latter consistently outperforms other methods, which also enjoy a relative reduction
in the number of steps for constructing a solution, e.g., with a 4% reduction in conflict rates.

Large-Scale Generalization We study the zero-shot large-scale generalization performance of
PARCO in the OMDCPDP and report the results in Table 2 for out-of-distribution numbers of
nodes N and agents M , both up to 10× those seen in training. We find that the AR HAM baseline
cannot generalize well to such scales due to the lack of communication and robust parallel construc-
tion, while MAPDP cannot be applied to an unseen M because of its inflexible decoder structure.

200 400 600 800 1000

Problem Size N

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

In
fe

re
nc

e
Ti

m
e

(s
)

Speedup (10): 3.3×
Speedup (20): 6.5×
Speedup (50): 24.7×

Method (M Agents)
AR (10)
AR (20)
AR (50)

PARCO (10)
PARCO (20)
PARCO (50)

Figure 4: PARCO vs AR inference time. PARCO
constructs solutions faster with more agents M .

Conversely, our method outperforms all baselines, in-
cluding OR-Tools with a 10-minute solving time per
instance for N = 1000, making PARCO a strong can-
didate for real-time deployment.

PARCO vs AR Models Scalability Finally, we
showcase PARCO’s speedups against autoregressive
methods in Fig. 4. Notably, compared to AR mod-
els (e.g., DPN, HAM), PARCO achieves significant
speedups of 3.3× up to 24.7×, with inference time de-
creasing as the number of agents M increases: thanks
to parallel decoding, fewer solution construction steps
for larger M lead to substantially lower latency.

6 Conclusion

We introduced PARCO, a learning model to tackle multi-agent combinatorial optimization problems
efficiently via parallel autoregressive solution construction. By integrating transformer-based Com-
munication Layers, a Multiple Pointer Mechanism, and Priority-based Conflict Resolution, PARCO
enables effective agent coordination and significantly reduces computational latency. Our extensive
experiments on multi-agent vehicle routing and scheduling demonstrate that PARCO consistently
outperforms state-of-the-art learning-based solvers with better solution quality and higher efficiency.

9

Limitations & Future Work Although PARCO can efficiently solve multi-agent CO problems
with a defined number of agents M , it cannot be directly applied to CO tasks where solutions are
constructed via an unspecified M . In future work, we plan to explore multi-agent CO problems with
an unspecified number of agents, which could be achieved by either rolling out a batch of several
values of M until an optimal solution is reached or by employing a prediction module to predict an
optimal agent number. We defer additional discussions to Appendix C.1.

Acknowledgements We are deeply grateful to the members of the AI4CO open research community
for their invaluable contributions to PARCO and related projects, including RL4CO. We also thank
the anonymous reviewers who greatly helped improve our paper with their constructive feedback.
This work was supported by the Institute of Information & Communications Technology Planning &
Evaluation (IITP) grant, funded by the Korean government (MSIT) [Grant No. 2022-0-01032, Devel-
opment of Collective Collaboration Intelligence Framework for Internet of Autonomous Things];
National Research Foundation of Korea(NRF) grants funded by the Korea government(MSIT) (No.
RS-2024-00410082 and No. RS-2025-00563763), and by the InnoCORE program of the Ministry of
Science and ICT(N10250154).

References
[1] C. Archetti and L. Bertazzi. Recent challenges in routing and inventory routing: E-commerce

and last-mile delivery. Networks, 77(2):255–268, 2021.

[2] R. Baldacci, M. Battarra, and D. Vigo. Routing a heterogeneous fleet of vehicles. The vehicle
routing problem: latest advances and new challenges, pages 3–27, 2008.

[3] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization
with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[4] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

[5] F. Berto, C. Hua, J. Park, L. Luttmann, Y. Ma, F. Bu, J. Wang, H. Ye, M. Kim, S. Choi,
N. G. Zepeda, A. Hottung, J. Zhou, J. Bi, Y. Hu, F. Liu, H. Kim, J. Son, H. Kim, D. Angioni,
W. Kool, Z. Cao, J. Zhang, K. Shin, C. Wu, S. Ahn, G. Song, C. Kwon, L. Xie, and J. Park.
RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark.
In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2025.

[6] F. Berto, C. Hua, N. G. Zepeda, A. Hottung, N. Wouda, L. Lan, J. Park, K. Tierney, and J. Park.
RouteFinder: Towards Foundation Models for Vehicle Routing Problems. Transactions on
Machine Learning Research, 2025. ISSN 2835-8856. URL https://openreview.net/
forum?id=QzGLoaOPiY.

[7] J. Bi, Y. Ma, J. Zhou, W. Song, Z. Cao, Y. Wu, and J. Zhang. Learning to handle complex
constraints for vehicle routing problems. arXiv preprint arXiv:2410.21066, 2024.

[8] C. Bonnet, D. Luo, D. Byrne, S. Surana, S. Abramowitz, P. Duckworth, V. Coyette, L. I.
Midgley, E. Tegegn, T. Kalloniatis, et al. Jumanji: a diverse suite of scalable reinforcement
learning environments in jax. ICLR, 2024.

[9] C. Boutilier. Planning, learning and coordination in multiagent decision processes. In TARK,
volume 96, pages 195–210, 1996.

[10] Y. Cao, Z. Sun, and G. Sartoretti. Dan: Decentralized attention-based neural network for the
minmax multiple traveling salesman problem. In International Symposium on Distributed
Autonomous Robotic Systems, pages 202–215. Springer, 2022.

[11] J. Chen, J. Wang, Z. Zhang, Z. Cao, T. Ye, and S. Chen. Efficient meta neural heuristic for
multi-objective combinatorial optimization. arXiv preprint arXiv:2310.15196, 2023.

[12] J. Christiaens and G. Vanden Berghe. Slack induction by string removals for vehicle routing
problems. Transportation Science, 54(2):417–433, 2020.

[13] A. Corsini, A. Porrello, S. Calderara, and M. Dell’Amico. Self-labeling the job shop scheduling
problem. arXiv preprint arXiv:2401.11849, 2024.

10

https://openreview.net/forum?id=QzGLoaOPiY
https://openreview.net/forum?id=QzGLoaOPiY

[14] D. Drakulic, S. Michel, F. Mai, A. Sors, and J.-M. Andreoli. Bq-nco: Bisimulation quotienting
for efficient neural combinatorial optimization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[15] D. Drakulic, S. Michel, and J.-M. Andreoli. Goal: A generalist combinatorial optimization
agent learning. In International Conference on Learning Representations, 2025.

[16] L. Duan, Y. Zhan, H. Hu, Y. Gong, J. Wei, X. Zhang, and Y. Xu. Efficiently solving the
practical vehicle routing problem: A novel joint learning approach. In Proceedings of the
26th ACM SIGKDD international conference on knowledge discovery & data mining, pages
3054–3063, 2020.

[17] W. Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019. URL https:
//github.com/Lightning-AI/lightning.

[18] J. K. Falkner and L. Schmidt-Thieme. Learning to solve vehicle routing problems with time
windows through joint attention. arXiv preprint arXiv:2006.09100, 2020.

[19] V. Furnon and L. Perron. Or-tools routing library, 2024. URL https://developers.
google.com/optimization/routing/.

[20] C. Gao, H. Shang, K. Xue, D. Li, and C. Qian. Towards generalizable neural solvers
for vehicle routing problems via ensemble with transferrable local policy. arXiv preprint
arXiv:2308.14104, 2023.

[21] X. Gao, W. Xie, Y. Xiang, and F. Ji. Falcon: Faster and parallel inference of large language
models through enhanced semi-autoregressive drafting and custom-designed decoding tree.
arXiv preprint arXiv:2412.12639, 2024.

[22] Y. L. Goh, Y. Ma, J. Zhou, Z. Cao, M. H. Dupty, and W. S. Lee. Shield: Multi-task multi-
distribution vehicle routing solver with sparsity & hierarchy in efficiently layered decoder. In
ICML, 2025.

[23] N. Grinsztajn, D. Furelos-Blanco, S. Surana, C. Bonnet, and T. Barrett. Winner takes it
all: Training performant rl populations for combinatorial optimization. Advances in Neural
Information Processing Systems, 36:48485–48509, 2023.

[24] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

[25] S. R. Hejazi and S. Saghafian. Flowshop-scheduling problems with makespan criterion: a
review. International Journal of Production Research, 43(14):2895–2929, 2005.

[26] A. Hottung, Y.-D. Kwon, and K. Tierney. Efficient active search for combinatorial optimization
problems. arXiv preprint arXiv:2106.05126, 2021.

[27] A. Hottung, F. Berto, C. Hua, N. G. Zepeda, D. Wetzel, M. Römer, H. Ye, D. Zago, M. Poli,
S. Massaroli, J. Park, and K. Tierney. Vrpagent: Llm-driven discovery of heuristic operators
for vehicle routing problems, 2025. URL https://arxiv.org/abs/2510.07073.

[28] A. Hottung, P. Wong-Chung, and K. Tierney. Neural deconstruction search for vehicle routing
problems. Transactions on Machine Learning Research, 2025.

[29] C. Hua, F. Berto, J. Son, S. Kang, C. Kwon, and J. Park. CAMP: Collaborative Attention
Model with Profiles for Vehicle Routing Problems. In Proceedings of the 2025 International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2025. https://
github.com/ai4co/camp.

[30] C. Hua, F. Berto, Z. Zhao, J. Son, C. Kwon, and J. Park. Uspr: Learning a unified solver for
profiled routing, 2025. URL https://arxiv.org/abs/2505.05119.

[31] Z. Huang, J. Zhou, Z. Cao, and Y. Xu. Rethinking light decoder-based solvers for vehicle
routing problems. In International Conference on Learning Representations, 2025.

[32] İ. İlhan. An improved simulated annealing algorithm with crossover operator for capacitated
vehicle routing problem. Swarm and Evolutionary Computation, 64:100911, 2021.

[33] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456. pmlr,
2015.

[34] X. Jiang, Y. Wu, Y. Wang, and Y. Zhang. Unco: Towards unifying neural combinatorial
optimization through large language model. arXiv preprint arXiv:2408.12214, 2024.

11

https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/
https://www.gurobi.com
https://www.gurobi.com
https://arxiv.org/abs/2510.07073
https://github.com/ai4co/camp
https://github.com/ai4co/camp
https://arxiv.org/abs/2505.05119

[35] Y. Jin, Y. Ding, X. Pan, K. He, L. Zhao, T. Qin, L. Song, and J. Bian. Pointerformer: Deep
reinforced multi-pointer transformer for the traveling salesman problem. arXiv preprint
arXiv:2304.09407, 2023.

[36] M. Jünger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. Handbooks in
operations research and management science, 7:225–330, 1995.

[37] J. Jungwattanakit, M. Reodecha, P. Chaovalitwongse, and F. Werner. Algorithms for flexible
flow shop problems with unrelated parallel machines, setup times, and dual criteria. The
International Journal of Advanced Manufacturing Technology, 37:354–370, 2008.

[38] C. Kahraman, O. Engin, I. Kaya, and M. K. Yilmaz. An application of effective genetic
algorithms for solving hybrid flow shop scheduling problems. International Journal of
Computational Intelligence Systems, 1(2):134–147, 2008.

[39] S. Karakatič and V. Podgorelec. A survey of genetic algorithms for solving multi depot vehicle
routing problem. Applied Soft Computing, 27:519–532, 2015.

[40] H. Kim, M. Kim, S. Ahn, and J. Park. Symmetric exploration in combinatorial optimization is
free! arXiv preprint arXiv:2306.01276, 2023.

[41] H. Kim, M. Kim, F. Berto, J. Kim, and J. Park. Devformer: A symmetric transformer for
context-aware device placement. In International Conference on Machine Learning, pages
16541–16566. PMLR, 2023.

[42] H. Kim, S. Choi, J. Son, J. Park, and C. Kwon. Neural genetic search in discrete spaces. In
International Conference on Machine Learning, 2025.

[43] M. Kim, J. Park, and J. Park. Sym-nco: Leveraging symmetricity for neural combinatorial
optimization. In Advances in Neural Information Processing Systems, 2022.

[44] M. Kim, T. Yun, E. Bengio, D. Zhang, Y. Bengio, S. Ahn, and J. Park. Local search gflownets.
arXiv preprint arXiv:2310.02710, 2023.

[45] M. Kim, S. Choi, H. Kim, J. Son, J. Park, and Y. Bengio. Ant colony sampling with gflownets
for combinatorial optimization. In AISTATS, 2025.

[46] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[47] W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxBFsRqYm.

[48] W. Kool, H. van Hoof, and M. Welling. Buy 4 reinforce samples, get a baseline for free! 2019.

[49] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min. Pomo: Policy optimization
with multiple optima for reinforcement learning. Advances in Neural Information Processing
Systems, 33:21188–21198, 2020.

[50] Y.-D. Kwon, J. Choo, I. Yoon, M. Park, D. Park, and Y. Gwon. Matrix encoding networks for
neural combinatorial optimization. In Advances in Neural Information Processing Systems,
volume 34, pages 5138–5149, 2021.

[51] G. Laporte and I. H. Osman. Routing problems: A bibliography. Annals of operations research,
61:227–262, 1995.

[52] Y. Leviathan, M. Kalman, and Y. Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pages 19274–19286. PMLR,
2023.

[53] H. Li, F. Liu, Z. Zheng, Y. Zhang, and Z. Wang. Cada: Cross-problem routing solver with
constraint-aware dual-attention. arXiv preprint arXiv:2412.00346, 2024.

[54] J. Li, L. Xin, Z. Cao, A. Lim, W. Song, and J. Zhang. Heterogeneous attentions for solving
pickup and delivery problem via deep reinforcement learning. IEEE Transactions on Intelligent
Transportation Systems, 23(3):2306–2315, 2021.

[55] J. Li, Y. Ma, R. Gao, Z. Cao, L. Andrew, W. Song, and J. Zhang. Deep reinforcement learning
for solving the heterogeneous capacitated vehicle routing problem. IEEE Transactions on
Cybernetics, 52(12):13572–13585, 2022. doi: 10.1109/TCYB.2021.3111082.

12

https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm

[56] S. Li, Z. Yan, and C. Wu. Learning to delegate for large-scale vehicle routing. In Advances in
Neural Information Processing Systems, volume 34, pages 26198–26211, 2021.

[57] Y. Li, J. Guo, R. Wang, and J. Yan. From distribution learning in training to gradient search in
testing for combinatorial optimization. Advances in Neural Information Processing Systems,
36, 2024.

[58] Y. Li, J. Guo, R. Wang, H. Zha, and J. Yan. Fast t2t: Optimization consistency speeds up
diffusion-based training-to-testing solving for combinatorial optimization. Advances in Neural
Information Processing Systems, 37, 2025.

[59] Y. Li, J. Ma, W. Pan, R. Wang, H. Geng, N. Yang, and J. Yan. Unify ml4tsp: Drawing
methodological principles for tsp and beyond from streamlined design space of learning and
search. In The Thirteenth International Conference on Learning Representations, 2025.

[60] F. Liberatore, M. T. Ortuño, G. Tirado, B. Vitoriano, and M. P. Scaparra. A hierarchical
compromise model for the joint optimization of recovery operations and distribution of
emergency goods in humanitarian logistics. Computers & Operations Research, 42:3–13,
2014.

[61] F. Liu, X. Lin, Z. Wang, Q. Zhang, T. Xialiang, and M. Yuan. Multi-task learning for
routing problem with cross-problem zero-shot generalization. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1898–1908, 2024.

[62] F. Liu, T. Xialiang, M. Yuan, X. Lin, F. Luo, Z. Wang, Z. Lu, and Q. Zhang. Evolution
of heuristics: Towards efficient automatic algorithm design using large language model. In
R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, and F. Berkenkamp,
editors, Proceedings of the 41st International Conference on Machine Learning, volume 235
of Proceedings of Machine Learning Research, pages 32201–32223. PMLR, 21–27 Jul 2024.
URL https://proceedings.mlr.press/v235/liu24bs.html.

[63] Q. Liu, C. Liu, S. Niu, C. Long, J. Zhang, and M. Xu. 2d-ptr: 2d array pointer network for
solving the heterogeneous capacitated vehicle routing problem. In Proceedings of the 23rd
International Conference on Autonomous Agents and Multiagent Systems, pages 1238–1246,
2024.

[64] F. Luo, X. Lin, F. Liu, Q. Zhang, and Z. Wang. Neural combinatorial optimization with heavy
decoder: Toward large scale generalization. arXiv preprint arXiv:2310.07985, 2023.

[65] F. Luo, X. Lin, Z. Wang, X. Tong, M. Yuan, and Q. Zhang. Self-improved learning for scalable
neural combinatorial optimization. arXiv preprint arXiv:2403.19561, 2024.

[66] L. Luttmann and L. Xie. Neural combinatorial optimization on heterogeneous graphs: An
application to the picker routing problem in mixed-shelves warehouses. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 34, pages 351–359,
2024.

[67] L. Luttmann and L. Xie. Learning to solve the min-max mixed-shelves picker-routing problem
via hierarchical and parallel decoding, 2025. URL https://arxiv.org/abs/2502.10233.

[68] L. Luttmann and L. Xie. Multi-action self-improvement for neural combinatorial optimization,
2025. URL https://arxiv.org/abs/2510.12273.

[69] Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and J. Tang. Learning to iteratively solve
routing problems with dual-aspect collaborative transformer. Advances in Neural Information
Processing Systems, 34:11096–11107, 2021.

[70] Y. Ma, Z. Cao, and Y. M. Chee. Learning to search feasible and infeasible regions of routing
problems with flexible neural k-opt. Advances in Neural Information Processing Systems, 36,
2024.

[71] Z. Ma, H. Guo, J. Chen, Z. Li, G. Peng, Y.-J. Gong, Y. Ma, and Z. Cao. Metabox: A
benchmark platform for meta-black-box optimization with reinforcement learning. arXiv
preprint arXiv:2310.08252, 2023.

[72] S. Mahmoudinazlou and C. Kwon. A hybrid genetic algorithm for the min–max multiple
traveling salesman problem. Computers & Operations Research, 162:106455, 2024.

[73] L. Matignon, G. J. Laurent, and N. Le Fort-Piat. Independent reinforcement learners in
cooperative markov games: a survey regarding coordination problems. The Knowledge
Engineering Review, 27(1):1–31, 2012.

13

https://proceedings.mlr.press/v235/liu24bs.html
https://arxiv.org/abs/2502.10233
https://arxiv.org/abs/2510.12273

[74] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev. Reinforcement learning for combina-
torial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

[75] J. Park, C. Kwon, and J. Park. Learn to solve the min-max multiple traveling salesmen
problem with reinforcement learning. In Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems, pages 878–886, 2023.

[76] J. Park, C. Kwon, and J. Park. Learn to solve the min-max multiple traveling salesmen problem
with reinforcement learning. In AAMAS, pages 878–886, 2023.

[77] S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and delivery problems: Part i:
Transportation between customers and depot. Journal für Betriebswirtschaft, 58:21–51, 2008.

[78] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In Advances in neural information processing systems, 2019.

[79] F. Peres and M. Castelli. Combinatorial optimization problems and metaheuristics: Review,
challenges, design, and development. Applied Sciences, 11(14):6449, 2021.

[80] J. Pirnay and D. G. Grimm. Self-improvement for neural combinatorial optimization: Sample
without replacement, but improvement. arXiv preprint arXiv:2403.15180, 2024.

[81] M. R. Singh and S. Mahapatra. A swarm optimization approach for flexible flow shop
scheduling with multiprocessor tasks. The International Journal of Advanced Manufacturing
Technology, 62:267–277, 2012.

[82] J. T. Soman and R. J. Patil. A scatter search method for heterogeneous fleet vehicle routing
problem with release dates under lateness dependent tardiness costs. Expert Systems with
Applications, 150:113302, 2020.

[83] J. Son, M. Kim, H. Kim, and J. Park. Meta-sage: Scale meta-learning scheduled adaptation
with guided exploration for mitigating scale shift on combinatorial optimization. arXiv preprint
arXiv:2306.02688, 2023.

[84] J. Son, M. Kim, S. Choi, H. Kim, and J. Park. Equity-transformer: Solving np-hard min-max
routing problems as sequential generation with equity context. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 20265–20273, 2024.

[85] Z. Sun and Y. Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization.
arXiv preprint arXiv:2302.08224, 2023.

[86] C. D. Tran, Q. Nguyen-Tri, H. T. T. Binh, and H. Thanh-Tung. Large language models
powered neural solvers for generalized vehicle routing problems. In Towards Agentic AI for
Science: Hypothesis Generation, Comprehension, Quantification, and Validation, 2025. URL
https://openreview.net/forum?id=EVqlVjvlt8.

[87] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normalization: The missing ingredient for
fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[88] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in neural information processing systems,
2017.

[89] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. Advances in neural information
processing systems, 28, 2015.

[90] Y. Wang, Y.-H. Jia, W.-N. Chen, and Y. Mei. Distance-aware Attention Reshaping: Enhance
Generalization of Neural Solver for Large-scale Vehicle Routing Problems, Jan. 2024. URL
http://arxiv.org/abs/2401.06979. arXiv:2401.06979 [cs].

[91] J. M. Weinand, K. Sörensen, P. San Segundo, M. Kleinebrahm, and R. McKenna. Research
trends in combinatorial optimization. International Transactions in Operational Research, 29
(2):667–705, 2022.

[92] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, May 1992. ISSN 0885-6125, 1573-0565. doi:
10.1007/BF00992696.

[93] Z. Yan and C. Wu. Neural neighborhood search for multi-agent path finding. In The Twelfth
International Conference on Learning Representations, 2024.

14

https://openreview.net/forum?id=EVqlVjvlt8
http://arxiv.org/abs/2401.06979

[94] Y. Yang and A. Whinston. A survey on reinforcement learning for combinatorial optimization.
In 2023 IEEE World Conference on Applied Intelligence and Computing (AIC), pages 131–136.
IEEE, 2023.

[95] H. Ye, J. Wang, Z. Cao, H. Liang, and Y. Li. Deepaco: Neural-enhanced ant systems for
combinatorial optimization. In Advances in Neural Information Processing Systems, 2023.

[96] H. Ye, J. Wang, H. Liang, Z. Cao, Y. Li, and F. Li. Glop: Learning global partition and
local construction for solving large-scale routing problems in real-time. arXiv preprint
arXiv:2312.08224, 2023.

[97] H. Ye, J. Wang, Z. Cao, F. Berto, C. Hua, H. Kim, J. Park, and G. Song. Reevo: Large language
models as hyper-heuristics with reflective evolution. In Advances in Neural Information
Processing Systems, 2024. https://github.com/ai4co/reevo.

[98] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The surprising effectiveness
of ppo in cooperative multi-agent games. In Advances in Neural Information Processing
Systems, volume 35, pages 24611–24624, 2022.

[99] N. G. Zepeda, A. Hottung, and K. Tierney. Learning to solve the skill vehicle routing problem
with deep reinforcement learning. In THE 19TH LEARNING AND INTELLIGENT OPTIMIZA-
TION CONFERENCE, 2025. URL https://openreview.net/forum?id=Xf7fGzezHB.

[100] B. Zhang and R. Sennrich. Root mean square layer normalization. In Advances in Neural
Information Processing Systems, 2019.

[101] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi. Learning to dispatch for job
shop scheduling via deep reinforcement learning. Advances in neural information processing
systems, 33:1621–1632, 2020.

[102] K. Zhang, F. He, Z. Zhang, X. Lin, and M. Li. Multi-vehicle routing problems with soft time
windows: A multi-agent reinforcement learning approach. Transportation Research Part C:
Emerging Technologies, 121:102861, 2020.

[103] N. Zhang, J. Yang, Z. Cao, and X. Chi. Adversarial generative flow network for solving vehicle
routing problems. In The Thirteenth International Conference on Learning Representations,
2025.

[104] Z. Zheng, S. Yao, Z. Wang, X. Tong, M. Yuan, and K. Tang. Dpn: Decoupling partition
and navigation for neural solvers of min-max vehicle routing problems. arXiv preprint
arXiv:2405.17272, 2024.

[105] Z. Zheng, C. Zhou, T. Xialiang, M. Yuan, and Z. Wang. Udc: A unified neural divide-
and-conquer framework for large-scale combinatorial optimization problems. arXiv preprint
arXiv:2407.00312, 2024.

[106] J. Zhou, Y. Wu, Z. Cao, W. Song, J. Zhang, and Z. Chen. Learning large neighborhood search
for vehicle routing in airport ground handling. IEEE Transactions on Knowledge and Data
Engineering, 2023.

[107] J. Zhou, Z. Cao, Y. Wu, W. Song, Y. Ma, J. Zhang, and C. Xu. Mvmoe: Multi-task vehicle
routing solver with mixture-of-experts. arXiv preprint arXiv:2405.01029, 2024.

[108] Z. Zong, M. Zheng, Y. Li, and D. Jin. Mapdp: Cooperative multi-agent reinforcement learning
to solve pickup and delivery problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 9980–9988, 2022.

15

https://github.com/ai4co/reevo
https://openreview.net/forum?id=Xf7fGzezHB

PARCO: Parallel AutoRegressive Models for
Multi-Agent Combinatorial Optimization

Supplementary Material

A Problem Definitions

A.1 HCVRP

The min-max HCVRP (Heterogeneous Capacitated Vehicle Routing Problem) consists of M agents
sequentially visiting customers to satisfy their demands, with constraints including each customer
can be visited exactly once and the amount of demand satisfied by a single vehicle in a trip cannot
exceed its capacity, which can be reloaded by going back to the depot. The goal is to minimize the
makespan, i.e., the worst route.

Consider a problem with N + 1 nodes (including N customers and a depot) and M vehicles. The
depot is indexed as 0, and customers are indexed from 1 to N .

Indices
i, j Node indices, where i, j = 0, . . . , N (0 represents the depot)
k Vehicle index, where k = 1, . . . ,M

Parameters
N Number of customer nodes (excluding depot)
M Number of vehicles
Xi Location of node i
di Demand of node i (d0 = 0 for the depot)
Qk Capacity of vehicle k
fk Speed of vehicle k
cij Distance between nodes i and j

Decision Variables

xijk

{
1 if vehicle k travels directly from node i to node j
0 otherwise

lijk Remaining load of vehicle k before travelling from node i to node j

Objective Function:

min max
k=1,...,m

 N∑
i=0

N∑
j=0

cij
fk
xijk

 (9)

16

Subject to:
m∑

k=1

N∑
j=0

xijk = 1 i = 1, . . . , N (10)

N∑
i=0

xijk −
N∑

h=0

xjhk = 0 j = 0, . . . , N, k = 1, . . . ,m (11)

m∑
k=1

N∑
i=0

lijk −
m∑

k=1

N∑
h=0

ljhk = dj j = 1, . . . , N (12)

djxijk ≤ lijk ≤ (Qk − di) · xijk i, j = 0, . . . , N, k = 1, . . . ,m (13)
xijk ∈ {0, 1} i, j = 0, . . . , N, k = 1, . . . ,m (14)

lijk ≥ 0, di ≥ 0 i, j = 0, . . . , N, k = 1, . . . ,m (15)

Constraint Explanations: The formulation is subject to several constraints that define the feasible
solution space. Eq. (10) ensures that each customer is visited exactly once by one vehicle. The flow
conservation constraint (11) guarantees that each vehicle that enters a node also leaves that node,
maintaining route continuity. Demand satisfaction is enforced by constraint (12), which ensures that
the difference in load before and after serving a customer equals the customer’s demand. The vehicle
capacity constraint (13) ensures that the load carried by a vehicle does not exceed its capacity and is
sufficient to meet the next customer’s demand.

A.2 OMDCPDP

The OMDCPDP (Open Multi-Depot Capacitated Pickup and Delivery Problem) is a practical variant
of the pickup and delivery problem in which agents have a stacking limit of orders that can be
carried at any given time. Pickup and delivery locations are paired, and pickups must be visited
before deliveries. Multiple agents start from different depots without returning (open). The goal is to
minimize the sum of arrival times to delivery locations, i.e., minimizing the cumulative lateness.

Indices
i, j Node indices, where i, j = 1, . . . , 2N
k Vehicle index, where k = 1, . . . ,M

Sets
P Set of pickup nodes, P = {1, . . . , N}
D Set of delivery nodes, D = {N + 1, . . . , 2N}

Parameters
N Number of pickup-delivery pairs
M Number of vehicles
cij Travel time between nodes i and j
Qk Capacity (stacking limit) of vehicle k
ok Initial location (depot) of vehicle k

Decision Variables

xijk

{
1 if vehicle k travels directly from node i to node j
0 otherwise

yik

{
1 if vehicle k visits node i
0 otherwise

ti Arrival time at node i
lik Load of vehicle k after visiting node i

Objective Function:

min

2N∑
i=N+1

ti (16)

17

Subject to:

m∑
k=1

yik = 1 i = 1, . . . , 2N (17)

2N∑
j=1

xok,j,k = 1 k = 1, . . . ,m (18)

2N∑
i=1

xijk −
2N∑
h=1

xjhk = 0 j = 1, . . . , 2N, k = 1, . . . ,m (19)

yik =

2N∑
j=1

xijk i = 1, . . . , 2N, k = 1, . . . ,m (20)

ti + cij −M(1− xijk) ≤ tj i, j = 1, . . . , 2N, k = 1, . . . ,m (21)
ti ≤ ti+N i ∈ P (22)

lik + 1−M(1− xijk) ≤ ljk i ∈ P, j ̸= i+N, k = 1, . . . ,m (23)
lik − 1 +M(1− xijk) ≥ ljk i ∈ D, j ̸= i−N, k = 1, . . . ,m (24)

0 ≤ lik ≤ Qk i = 1, . . . , 2N, k = 1, . . . ,m (25)
xijk, yik ∈ {0, 1} i, j = 1, . . . , 2N, k = 1, . . . ,m (26)

ti ≥ 0 i = 1, . . . , 2N (27)

Constraints Explanations: Eq. (17) ensures that each node is visited exactly once. Constraint (18)
guarantees that each vehicle starts from its designated depot. The flow conservation constraint (19)
ensures route continuity for each vehicle. Eq. (20) defines the relationship between x and y variables.
Time consistency is enforced by constraint (21), while (22) ensures that pickups are visited before
their corresponding deliveries. Constraints (23) and (24) manage the load changes during pickup and
delivery operations. Finally, the vehicle capacity constraint (25) ensures that the load never exceeds
the vehicle’s stacking limit.

Visualization We provide a visualization of a large-scale instance in Fig. 5.

Figure 5: Real-world instance for the OMDCPDP problem in Seoul City, South Korea, with N = 1000 locations
and m = 100 agents () showing relations (–) of pickups () and their respective deliveries ().

18

A.3 FFSP

The flexible flow shop problem (FFSP) is a challenging and extensively studied optimization problem
in production scheduling, involving N jobs that must be processed by a total of M machines divided
into i = 1 . . . S stages, each with multiple machines (mi > 1). Jobs follow a specified sequence
through these stages, but within each stage, any available machine can process the job, with the key
constraint that no machine can handle more than one job simultaneously. The FFSP can naturally be
viewed as a multi-agent CO problem by considering each machine as an agent that constructs its own
schedule. Adhering to autoregressive CO, agents construct the schedule sequentially, selecting one
job (or no job) at a time. The job selected by a machine (agent) at a specific stage in the decoding
process is scheduled at the earliest possible time, that is, the maximum of the time the job becomes
available in the respective stage (i.e., the time the job finished on prior stages) and the machine
becoming idle. The process repeats until all jobs for each stage have been scheduled, and the ultimate
goal is to minimize the makespan, i.e., the total time required to complete all jobs.

Mathematical Model We use the mathematical model outlined in Kwon et al. [50] to define the
FFSP:

Indices
i Stage index
j, l Job index
k Machine index in each stage

Parameters
N Number of jobs
S Number of stages
mi Number of machines in stage i
M A very large number
pijk Processing time of job j in stage i on machine k

Decision variables
Cij Completion time of job j in stage i

Xijk

{
1 if job j is assigned to machine k in stage i
0 otherwise

Yilj

{
1 if job l is processed earlier than job j in stage i
0 otherwise

Objective:

min

(
max
j=1..n

{CSj}
)

(28)

Subject to:

mi∑
k=1

Xijk = 1 i = 1, . . . , S; j = 1, . . . , N (29)

Yiij = 0 i = 1, . . . , S; j = 1, . . . , N (30)

N∑
j=1

N∑
l=1

Yilj =

mi∑
k=1

max

 n∑
j=1

(Xijk)− 1, 0

 i = 1, . . . , S (31)

19

Yilj ≤ max

(
max

k=1...mi

{Xijk +Xilk} − 1, 0

)
i = 1, . . . , S; j, l = 1, 2, . . . , N

(32)
N∑
l=1

Yilj ≤ 1 i = 1, 2, . . . , S; j = 1, 2, . . . , N

(33)
N∑
j=1

Yilj ≤ 1 i = 1, 2, . . . , S; l = 1, 2, . . . , N

(34)

C1j ≥
m1∑
k=1

p1jk ·X1jk j = 1, 2, . . . , N (35)

Cij ≥ Ci−1j +

mi∑
k=1

pijk ·Xijk i = 2, 3, . . . , S; j = 1, 2, . . . , N

(36)

Cij +M(1− Yilj) ≥ Cil +

mi∑
k=1

pijk ·Xijk i = 1, 2, . . . , S; j, l = 1, 2, . . . , N

(37)

Constraint Explanations: Here, the objective function Eq. (28) minimizes the makespan of the
resulting schedule, that is, the completion time of the job that finishes last. The schedule has to
adhere to several constraints: First, constraint set (29) ensures that each job is assigned to exactly one
machine at each stage. Constraint sets (30) through (34) define the precedence relationships between
jobs within a stage. Specifically, constraint set (30) ensures that a job has no precedence relationship
with itself. Constraint set (31) ensures that the total number of precedence relationships in a stage
equals N −mi minus the number of machines with no jobs assigned. Constraint set (32) dictates
that precedence relationships can only exist among jobs assigned to the same machine. Additionally,
constraint sets (33) and (34) restrict a job to having at most one preceding job and one following job.

Moving on, constraint set (35) specifies that the completion time of a job in the first stage must be at
least as long as its processing time in that stage. The relationship between the completion times of a
job in consecutive stages is described by constraint set (36). Finally, constraint set (37) ensures that
no more than one job can be processed on the same machine simultaneously.

B Experimental Details

B.1 HCVRP

B.1.1 Baselines

We follow the experimental setup of Liu et al. [63] for baselines, with additional baselines hyperpa-
rameter details reported in their respective papers.

SISR The Slack Induction by String Removals (SISR) approach [12] offers a heuristic method for
addressing vehicle routing problems (VRPs), focusing on simplifying the optimization process. It
combines techniques for route dismantling and reconstruction, along with vehicle fleet minimization
strategies. SISR is applied across various VRP scenarios, including those with specific pickup and
delivery tasks. In our experiments, we adhere to the hyperparameters provided in the original paper
with c̄ = 10, Lmax = 10, α = 10−3, β = 10−2, T0 = 100, Tf = 1, iter = 3× 105 ×N .

20

GA The Genetic Algorithm (GA) [39] is used to address vehicle routing problems (VRPs) and
other NP-hard challenges by simulating natural evolutionary processes. GA generates adequate
solutions with reasonable computational resources. Our experiment follows the same carefully tuned
hyperparameters from [63] with n = 200, iter = 40×N,Pm = 0.8, Pc = 1.

SA The Simulated Annealing (SA) method [32] targets the capacitated vehicle routing problem
(CVRP) using a population-based approach combined with crossover operators. It incorporates local
search and the improved 2-opt algorithm to refine routes alongside crossover techniques to speed up
convergence. In our experiment, we follow the same carefully tuned hyperparameters from [63] with
T0 = 100, Tf = 10−7, L = 20×N,α = 0.98.

AM The Attention Model (AM) [47] applies the attention mechanism to tackle combinatorial
optimization problems like the Traveling Salesman and Vehicle Routing Problems. It utilizes
attention layers for model improvement and trains using REINFORCE with deterministic rollouts. In
our studies, we adopt adjustments from the DRLLi framework, which involves selecting vehicles
sequentially and then choosing the next node for each. Additionally, vehicle-specific features are
incorporated into the context vector generation to distinguish between different vehicles.

ET The Equity-Transformer (ET) approach [84] addresses large-scale min-max routing problems by
employing a sequential planning approach with sequence generators like the Transformer. It focuses
on equitable workload distribution among multiple agents, applying this strategy to challenges like
the min-max multi-agent traveling salesman and pickup and delivery problems. In our experiments,
we modify the decoder mask in ET to generate feasible solutions for HCVRP and integrate vehicle
features into both the input layer and the context encoder, similarly to the setting of Liu et al. [63].

DPN The Decoupling-Partition-Navigation (DPN) approach [104] is a SOTA sequential planning
AR baseline that tackles min-max vehicle routing problems (min-max VRPs) by explicitly separating
the tasks of customer partitioning and route navigation. It introduces a Partition-and-Navigation
(P&N) Encoder to learn distinct embeddings for these tasks, an Agent-Permutation-Symmetric
(APS) loss to leverage routing symmetries, and a Rotation-Based Positional Encoding to enhance
generalization across different depot locations. We employ a similar setting as ET.

DRLLi The DRL approach for solving HCVRP by Li et al. [55] employs a transformer architecture
similar to Kool et al. [47] in which the vehicle and node selection happens in two steps via a two
selection decoder, thus requiring two actions. We employ their original model with additional context
of variable vehicle speeds, noting that in the original setting each model was trained on a single
distribution of number of agents M , each with always the same characteristics.

2D-Ptr The 2D Array Pointer network (2D-Ptr) [63] addresses the heterogeneous capacitated
vehicle routing problem (HCVRP) by using a dual-encoder setup to map vehicles and customer nodes
effectively. This approach facilitates dynamic, real-time decision-making for route optimization. Its
decoder employs a 2D array pointer for action selection, prioritizing actions over vehicles. The model
is designed to adapt to vehicle and customer numbers changes, ensuring robust performance across
different scenarios.

B.1.2 Datasets

Train data generation Neural baselines were trained with the specific number of nodes N and
number of agentsM they were tested on. In PARCO, we select a varying size and number of customer
training schemes: at each training step, we sample N ∼ U(60, 100) and m ∼ U(3, 7). As we show
in Table 1, a single PARCO model can outperform baseline models even when they were fitted on a
specific distribution. The coordinates of each customer location (xi, yi), where i = 1, . . . , N , are
sampled from a uniform distribution U(0.0, 1.0) within a two-dimensional space. The depot location
is similarly sampled using the same uniform distribution. The demand di for each customer i is also
drawn from a uniform distribution U(1, 10), with the depot having no demand, i.e., d0 = 0. Each
vehicle m, where m = 1, . . . ,M , is assigned a capacity Qm sampled from a uniform distribution
U(20, 41). The speed fm of each vehicle is uniformly distributed within the range U(0.5, 1.0).

21

Testing Testing is performed on the 1280 instances per (N,M) test setting from Liu et al. [63].
In Table 1, (g.) refers to the greedy performance of the model, i.e., taking a single trajectory by
taking the maximum action probability; (s.) refers to sampling 1280 solutions in the latent space and
selecting the one with the lowest cost (i.e., highest reward).

B.1.3 PARCO Network Hyperparameters

Encoder Initial Embedding. This layer projects initial raw features to hidden space. For the depot,
the initial embedding is the positional encoding of the depot’s location X0. For agents, the initial
embedding is the encoding for the initial location, capacity, and speed. Main Encoder. we employ
L = 3 attention layers in the encoder, with hidden dimension dh = 128, 8 attention heads in the
MHA, MLP hidden dimension set to 512, with RMSNorm [100] as normalization before the MHA
and the MLP.

Decoder Context Embedding. This layer projects dynamic raw features to hidden space. The
context is the embedding for the depot states, current node states, current time, remaining capacities,
time of backing to the depot, and number of visited nodes. Multiple Pointer Mechanism. Similarly to
the encoder, we employ the same hidden dimension and number of attention heads for the Multiple
Pointer Mechanism.

Communication Layer We employ a single transformer layer with hidden dimension dh =
128, 8 attention heads in the MHA, MLP hidden dimension set to 512, with RMSNorm [100] as
normalization before the MHA and the MLP. Unlike the encoder layer, which acts between allM+N
problem tokens, communication layers are lighter because they communicate between M agents.

Agent Handler We use the Priority-based Conflict Handler guided by the model output probability
for managing conflicts: priority is given to the agent whose probability of selecting the conflicting
action is the highest (see § 4.6).

B.1.4 PARCO Training Hyperparameters

Unlike baselines, which are trained and tested on the same distribution, we train a single PARCO
model that can effectively generalize over multiple size and agent distributions thanks to our flexible
structure. We train PARCO with RL via SymNCO [43] with K = 10 symmetric augmentations as
shared REINFORCE baseline for 100 epochs using the Adam optimizer [46] with a total batch size
512 (using 4 GPUs in Distributed Data Parallel configuration) and an initial learning rate of 10−4

with a step decay factor of 0.1 after the 80th and 95th epochs. For each epoch, we sample 4× 105

randomly generated data. Training takes around 15 hours in our configuration.

B.2 OMDCPDP

The setting introduced in OMDCPDP is a more general and realistic setting than the one introduced
in Zong et al. [108], particularly due to the multiple depots and the global lateness objective function
which is harder to optimize than vanilla min-sum.

B.2.1 Baselines

OR-Tools Google OR-Tools [19] is an open-source software suite designed to address various
combinatorial optimization problems. This toolkit offers a comprehensive selection of solvers suitable
for linear programming, mixed-integer programming, constraint programming, and routing and
scheduling challenges. Specifically for routing problems like the OMDCPDP, OR-Tools can integrate
additional constraints to enhance solution accuracy. For our experiments, we maintained consistent
parameters across various problem sizes and numbers of agents. We configured the global span
cost coefficient to 10, 000, selected PATH_CHEAPEST_ARC as the initial solution strategy, followed
by GUIDED_LOCAL_SEARCH for local optimization. The solving time was set as {30, 60, 300, 600}
seconds for N = {50, 100, 500, 1000}, respectively.

HAM The Heterogeneous Attention Model (HAM) [54] utilizes a neural network-integrated with
a heterogeneous attention mechanism that distinguishes between the roles of nodes and enforces

22

precedence constraints, ensuring the correct sequence of pickup and delivery nodes. This approach
helps the deep reinforcement learning model to make informed node selections during route planning.
We adapt the original model to handle OMDCPDP with multiple agents akin to the sequential
planning of Son et al. [84].

MAPDP The Multi-Agent Reinforcement Learning-based Framework for Cooperative Pickup and
Delivery Problem (MAPDP) [108] introduces a cooperative PDP with multiple vehicle agents. This
framework is trained via a centralized (MA)RL architecture to generate cooperative decisions among
agents, incorporating a paired context embedding to capture the inter-dependency of heterogeneous
nodes. We adapted the MAPDP to fit our OMDCPDP task, utilizing the same encoder as PARCO
to ensure a fair comparison. For the decoder and training phases, we kept the same random conflict
handler, and we retained the hyperparameters detailed in the original study overall.

B.2.2 Datasets

Train data generation Neural baselines were trained with the specific number of nodes N and
number of agents M they were tested on. In PARCO, we select a varying size and number of
customer training schemes: at each training step, we sample N ∼ U(50, 100) and m ∼ U(5, 20).
As we show in the Table 1, a single PARCO model can outperform baseline models even when they
were fitted on a specific distribution. The coordinates of each customer location (xi, yi), where
i = 1, . . . , N , are sampled from a uniform distribution U(0.0, 1.0) within a two-dimensional space.
Similarly, we sample M initial vehicle locations from the same distribution. We set the demand di
for each customer to 1 and the capacity of each vehicle to 3. This emulates realistic settings in which
a single package per customer will be picked up and delivered.

Testing Testing is performed on 1000 new instances for each setting of in-distribution N and M in
Table 1 with the distributions from the training settings. For large-scale generalization in Table 2, we
generate 100 new instances.

B.2.3 PARCO Network Hyperparameters

Most hyperparameters are kept similar to Appendix B.1.3.

Encoder Initial Embedding. This layer projects initial raw features to hidden space. For depots,
the initial embeddings encode the location om and the respective vehicle’s capacity Qm. For pickup
nodes, the initial embeddings encode the location and paired delivery nodes’ location. For delivery
nodes, the initial embeddings encode the location and paired pickup nodes’ location. Main Encoder.
We employ l = 3 attention layers in the encoder, with hidden dimension dh = 128, 8 attention heads
in the MHA, MLP hidden dimension set to 512, with RMSNorm [100] as normalization before the
MHA and the MLP.

Decoder Context Embedding. This layer projects dynamic raw features to hidden space. The
context is the embedding for the depot states om, current node states, current length, remaining
capacity, and number of visited nodes. These features are then employed to update multiple queries
qm, m = 1, . . . ,M simultaneously. Main Decoder. Similarly to the encoder, we employ the same
hidden dimension and number of attention heads for the Multiple Pointer Mechanism.

Communication Layer We employ a single transformer layer with hidden dimension dh =
128, 8 attention heads in the MHA, MLP hidden dimension set to 512, with RMSNorm [100] as
normalization before the MHA and the MLP. Note that unlike the encoder layer, which acts between
all M +N tokens, communication layers are lighter because they communicate between M agents.

Agent Handler We employ the Priority-based Conflict Handler guided by the model output
probability for managing conflicts with priority given to the agent whose probability of selecting the
conflicting action is the highest (see § 4.6).

B.2.4 PARCO Training Hyperparameters

For each problem size, we train a single PARCO model that can effectively generalize over multiple
size and agent distributions. We train PARCO with RL via SymNCO [43] with K = 8 symmetric

23

augmentations as shared REINFORCE baseline for 100 epochs using the Adam optimizer [46] with
a total batch size 128 on a single GPU and an initial learning rate of 10−4 with a step decay factor
of 0.1 after the 80th and 95th epochs. For each epoch, we sample 105 randomly generated data.
Training takes less than 5 hours in our configuration.

B.3 FFSP

B.3.1 Baselines

Gurobi We implement the mathematical model described above in the exact solver Gurobi [24]
with a time budget of 60 and 600 seconds per instance. However, with both time budgets, Gurobi is
only capable of generating solutions to the FFSP20 instances, similar to the findings made by Kwon
et al. [50] for the CPLEX solver.

Random and Shortest Job First (SJF) The Random and Shortest Job First (SJF) heuristics are
simple construction strategies that build valid schedules in an iterative manner. Starting from an
empty schedule, the Random construction heuristic iterates through time steps t = 0, . . . T and stages
i = 1 . . . S and randomly assigns jobs available at the given time to an idle machine of the respective
stage until all jobs are scheduled. Likewise, the SJF proceeds by assigning job-machine pairs with
the shortest processing time first.4

Genetic Algorithm (GA) Genetic Algorithms are metaheuristics widely used by the OR com-
munity to tackle the FFSP [38]. The GA iteratively improves multiple candidate solutions called
chromosomes. Each chromosome consists of S ×N real numbers, where S is the number of stages
and N is the number of jobs. For each job at each stage, the integer part of the corresponding number
indicates the assigned machine index, while the fractional part determines job priority when multiple
jobs are available simultaneously. Child chromosomes are created through crossover, inheriting
integer and fractional parts independently from two parents. Mutations, applied with a 30% chance,
use one of four randomly selected methods: exchange, inverse, insert, or change. The implementation
uses 25 chromosomes. One initial chromosome is set to the Shortest Job First (SJF) heuristic solution
and the best-performing chromosome is preserved across iterations. Each instance runs for 1,000
iterations.

Particle Swarm Optimization (PSO) Finally, Particle Swarm Optimization iteratively updates
multiple candidate solutions called particles, which are updated by the weighted sum of the inertial
value, the local best, and the global best at each iteration [81]. In this implementation, particles use
the same representation as GA chromosomes. The algorithm employs 25 particles, with an inertial
weight of 0.7 and cognitive and social constants set to 1.5. One initial particle represents the SJF
heuristic solution. Like GA, PSO runs for 1,000 iterations per instance.

MatNet We benchmark PARCO mainly against MatNet [50], a state-of-the-art NCO architecture
for the FFSP. MatNet is an encoder-decoder architecture, which is inspired by the attention model
[47]. It extends the encoder of the attention model with a dual graph attention layer, a horizontal
stack of two transformer blocks, capable of encoding nodes of different types in bipartite graph-like
machines and jobs in the FFSP. Kwon et al. [50] train MatNet using POMO [49].

B.3.2 Datasets

Train data generation We follow the instance generation scheme outlined in Kwon et al. [50]
sample processing times for job-machine pairs independently from a uniform distribution within
the bounds [2, 10]. For the first three FFSP instance types shown in Table 1 we also use the same
instance sizes as Kwon et al. [50] with N = 20, 50 and 100 jobs and M = 12 machines which are
spread evenly over S = 3 stages. To test for agent sensitivity in the FFSP, we fix the number of jobs
to N = 50 but alter the number of agents for the last three instance types shown in Table 1. Still,
we use S = 3 for this experiment, but alter the number of machines per stage to Mi = 6, 8 and 10,
yielding a total of 18, 24 and 30 agents, respectively.

4To obtain results for the heuristics and metaheuristics, we used the implementation of Kwon et al. [50],
provided in the official GitHub repository of the paper: https://github.com/yd-kwon/MatNet

24

https://github.com/yd-kwon/MatNet

Testing Testing is performed on 100 separate test instances generated randomly according to the
above generation scheme.

B.3.3 PARCO Network Hyperparameters

Encoder To solve the FFSP with our PARCO method, we use a similar encoder as Kwon et al.
[50]. The MatNet encoder generates embeddings for all machines of all stages and the jobs they
need to process, plus an additional dummy job embedding, which can be selected by any machine
in each decoding step to skip to the next step. To compare PARCO with MatNet, we use similar
hyperparameters for both models. We use L = 3 encoder layers, generating embeddings of dimen-
sionality dh = 256, which are split over h = 16 attention heads in the MHA layers. Further, we
employ Instance Normalization [87] and a feed-forward network with 512 neurons in the transformer
blocks of the encoder.

Decoder The machines are regarded as the agents in our PARCO framework. As such, their
embeddings are used as queries q in the Multiple Pointer Mechanism Eq. (6), while job embeddings
are used as the keys and values. In each decoding step, the machine embeddings are fused with a
projection of the time the respective machine becomes idle. Similarly, job embeddings are augmented
with a linear transformation of the time they become available in the respective stage before entering
the attention head in Eq. (5).

Communication Layer We employ a single transformer block with hidden dimension dh = 256
and h = 16 attention heads in the MHA, an MLP with 512 hidden units and Instance Normalization.

Agent Handler We use the High Probability Handler for managing conflicts: priority is given to the
agent whose (log-) probability of selecting the conflicting action is the highest. Formally, priorities
pm = log pθ(am|x) for m = 1, . . . ,M .

B.3.4 PARCO Training Hyperparameters

Regarding the training setup, each training instance i is augmented by a factor of 24, and the average
makespan over the augmented instances is used as a shared baseline bshared

i for the REINFORCE
gradient estimator of Eq. (8). We use the Adam optimizer [46] with a learning rate of 4 × 10−4,
which we alter during training using a cosine annealing scheme. We train separate models for the
environment configurations used in Table 1. We train models corresponding to environments with
20 jobs for 100, with 50 jobs for 150 and with 100 jobs for 200 epochs. In each epoch, we train the
models using 1,000 randomly generated instances split into batches of size 50.5

B.3.5 Diagram for MatNet Decoding vs. PARCO Decoding for the FFSP

The following figures visualize the decoding for the machines of a given stage using MatNet and
PARCO. As one can see in Fig. 6a, MatNet requires a decoder forward pass for each machine to
schedule a job on each of them. In contrast, as detailed in Fig. 6b, PARCO can schedule jobs on all
machines simultaneously through its Multiple Pointer Mechanism and Agent Handler, leading to
significant efficiency gains.

B.4 Hardware and Software

B.4.1 Hardware

We experiment on a workstation equipped with 2 INTEL(R) XEON(R) GOLD 6338 CPUs and 8
NVIDIA RTX 4090 graphic cards with 24 GB of VRAM each. Training runs of PARCO take less
than 24 hours each. During inference, we employ only one CPU and a single GPU.

B.4.2 Software

We used Python 3.12, PyTorch 2.5 [78] coupled with PyTorch Lightning [17] with most code based
on the RL4CO library [5]. The operating system is Ubuntu 24.04 LTS.

5Note: to avoid OOMs, for FFSP100 instances, batches are further split into mini-batches of size 25 whose
gradients are accumulated.

25

Encoder

𝑒𝑚𝑏!"
𝑒𝑚𝑏!#
𝑒𝑚𝑏!$
𝑒𝑚𝑏!%

𝑒𝑚𝑏&"
𝑒𝑚𝑏&#
𝑒𝑚𝑏&$
⋮

𝑒𝑚𝑏&'
𝑒𝑚𝑏&'("

Decoder
𝑡 = 0

𝑒𝑚𝑏!" 𝑒𝑚𝑏&"
𝑒𝑚𝑏&#
𝑒𝑚𝑏&$
⋮

𝑒𝑚𝑏&'
𝑒𝑚𝑏&'("

0
∞
0
⋮
0
0

Decoder

𝑒𝑚𝑏!# 𝑒𝑚𝑏&"
𝑒𝑚𝑏&#
𝑒𝑚𝑏&$
⋮

𝑒𝑚𝑏&'
𝑒𝑚𝑏&'("

0
∞
0
⋮
0
0

Decoder

𝑒𝑚𝑏!$ 𝑒𝑚𝑏&"
𝑒𝑚𝑏&#
𝑒𝑚𝑏&$
⋮

𝑒𝑚𝑏&'
𝑒𝑚𝑏&'("

∞
∞
0
⋮
0
0

𝐾, 𝑉

𝑞

𝐾, 𝑉

𝑞

𝐾, 𝑉

𝑞

Decoder

𝑒𝑚𝑏!% 𝑒𝑚𝑏&"
𝑒𝑚𝑏&#
𝑒𝑚𝑏&$
⋮

𝑒𝑚𝑏&'
𝑒𝑚𝑏&'("

0
∞
0
⋮
0
0

𝐾, 𝑉

𝑞

𝑡 = 𝑡 + 1

𝑝&", 𝑝&#, ⋯ , 𝑝&', 𝑝&'(" 𝑝&", 𝑝&#, ⋯ , 𝑝&', 𝑝&'(" 𝑝&", 𝑝&#, ⋯ , 𝑝&', 𝑝&'(" 𝑝&", 𝑝&#, ⋯ , 𝑝&', 𝑝&'("

𝑗!")*+ = 4 𝑗!#)*+ = 1 𝑗!$)*+ = 5 𝑗!%)*+ = 3

𝑗 = 4	

𝑗 = 1	

𝑗 = 5	

𝑗 = 3	

𝑘 = 1
𝑘 = 2
𝑘 = 3
𝑘 = 4

𝑡 = 0 5 10

𝑚𝑎𝑠𝑘 𝑚𝑎𝑠𝑘 𝑚𝑎𝑠𝑘 𝑚𝑎𝑠𝑘

(a) An FFSP Decoding Step with MatNet

Encoder

𝑒𝑚𝑏!"
𝑒𝑚𝑏!#
𝑒𝑚𝑏!$
𝑒𝑚𝑏!%

𝑒𝑚𝑏&"
𝑒𝑚𝑏&#
𝑒𝑚𝑏&$
⋮

𝑒𝑚𝑏&'
𝑒𝑚𝑏&'("

Decoder
𝑡 = 0

𝑒𝑚𝑏&"
𝑒𝑚𝑏&#
𝑒𝑚𝑏&$
⋮

𝑒𝑚𝑏&'
𝑒𝑚𝑏&'("

0
∞
0
⋮
0
0

𝐾, 𝑉 𝑚𝑎𝑠𝑘

𝑒𝑚𝑏!"
𝑒𝑚𝑏!#
𝑒𝑚𝑏!$
𝑒𝑚𝑏!%

𝑝!"#$%$𝑝!"%$⋯𝑝!&%$𝑝!$%$

𝑝!"#$%&𝑝!"%&⋯𝑝!&%&𝑝!$%&

𝑝!"#$%'𝑝!"%'⋯𝑝!&%'𝑝!$%'

𝑝!"#$%(𝑝!"%(⋯𝑝!&%(𝑝!$%(

𝑗!")*+ = 4

𝑗!#)*+ = 1

𝑗!$)*+ = 5

𝑗!%)*+ = 3

Agent H
andler
𝑗 = 4	

𝑗 = 1	

𝑗 = 5	

𝑗 = 3	

𝑡 = 0 5 10

𝑘 = 1

𝑘 = 2

𝑘 = 3

𝑘 = 4

𝑄

(b) An FFSP Decoding Step with PARCO

Figure 6: Comparison of decoding steps for FFSP with MatNet and PARCO.

B.5 Source Code

We value open reproducibility and release our source code at https://github.com/ai4co/parco.
We also provide the summary of licenses in Table 3.

C Additional Materials

C.1 Further Discussions

Follow-ups We acknowledge there are works based on or inspired by PARCO already out in the
wild at the time of publication. These include extending to profiled VRP [29, 30], mixed-shelves
picker-routing [67], and self-improvement for better performance [68]. We hope to see even more in
the future from diverse research groups, and we remain available for discussions, including through
the AI4CO Slack.

Possible future directions In this paragraph, we will share a short list of possible additional future
directions for PARCO. One promising direction for NCO is to employ Large Language Models
(LLMs) for automating the design of algorithms and particularly heuristics [62, 97, 27]. Several

26

https://github.com/ai4co/parco

Table 3: Summary of licenses for used assets.
Resource Type License
OR-Tools [19] Code Apache License, Version 2.0
AM [47] Code MIT License
ET [84] Code Available on Github
DPN [104] Code MIT License
DRLLi [55] Code Available on Github
2D-Ptr [63] Code/Dataset Available on Github
HAM [54] Code MIT License
Gurobi [24] Code Commercial license (free for academic use)
MatNet [50] Code/Dataset MIT License
RL4CO [5] Library MIT License

components of PARCO could be designed by LLMs, including the conflict handling mechanism or
attention biases dependent on specific problems [31, 90] as done by Tran et al. [86]. Of interest would
also be extensions to other problem variants [99]. Integrating parallel decoding into search methods,
as NDS [28], may also yield much more efficient models and enable them to capture different agents.

C.2 Comparison with Decentralized and Graph-Based Communication Methods

We additionally compare PARCO with decentralized methods and alternative communication models
like Graph Neural Networks (GNNs). We experiment on the min-max traveling salesman problem
(mTSP), benchmarking PARCO against notable decentralized methods like GNN-DisPN [16], DAN
[10] and GNN-based communication models like ScheduleNet [75].

The results, shown in Table 4 with instances from Park et al. [75] as well as in the mTSPLib6 in Table 5
– additionally adding the HGA solver for further comparison from Mahmoudinazlou and Kwon [72] –
demonstrate that PARCO consistently outperforms these methods in solution quality. Centralized
training with parallel decoding, as used in PARCO, offers distinct advantages by enabling global
coordination and highly efficient solution construction. For example, GNN-based communication in
models like ScheduleNet incurs significantly higher computational overhead, making our approach
much faster than those methods.

Table 4: Cost comparison on the mTSP with different numbers of salesmen M and number of nodes N .
N 50 100 200 Gap(%)
M 5 7 10 5 10 15 10 15 20

LKH3 (solver) 2.00 1.95 1.91 2.20 1.97 1.98 2.04 2.00 1.97 -
OR-Tools (solver) 2.04 1.96 1.96 2.36 2.29 2.25 2.57 2.59 2.59 14.42
GNN-DisPN (g.) 2.14 2.10 1.99 2.56 2.22 2.04 2.97 2.30 2.15 13.45
DAN (g.) 2.29 2.11 2.03 2.72 2.17 2.09 2.40 2.20 2.15 11.75
SchedNet (g.) 2.17 2.07 1.98 2.59 2.13 2.07 2.45 2.24 2.17 10.16
PARCO (g.) 2.12 2.00 1.92 2.47 2.02 1.98 2.28 2.06 1.99 4.43
DAN (s.) 2.12 1.99 1.95 2.55 2.05 2.00 2.29 2.13 2.07 6.13
SchedNet (s.) 2.07 1.99 1.92 2.43 2.03 1.99 2.25 2.08 2.05 4.29
PARCO (s.) 2.07 1.98 1.91 2.38 1.99 1.98 2.22 2.03 1.98 2.80

We note that these experiments refer to a previous version of PARCO in which the conflict handler
was not properly working and was similar to the random handler – we would expect retraining
PARCO on the newest implementation would perform even better. As the scope of this comparison
is to compare against decentralized methods, we do not include more recent approaches as ET [84]
or DPN [104] which would outperform this old PARCO version – albeit with slower decoding. We
expect that recent follow-ups of our work, which allow for stopping actions by adding special tokens

6https://profs.info.uaic.ro/mihaela.breaban/mtsplib/MinMaxMTSP/

27

https://profs.info.uaic.ro/mihaela.breaban/mtsplib/MinMaxMTSP/

Table 5: Results for the mTSPLib. CPLEX results with ∗ are optimal solutions. Otherwise, the best-known
upper bound of CPLEX results are reported.

instance_N eil51 berlin52 eil76 rat99 Gap (%)

M 2 3 5 7 2 3 5 7 2 3 5 7 2 3 5 7
CPLEX 222.7∗ 159.6 124.0 112.1 4110.2 3244.4 2441.4 2440.9 280.9∗ 197.3 150.3 139.6 728.8 587.2 469.3 443.9 3.40%
LKH3 222.7 159.6 124.0 112.1 4110.2 3244.4 2441.4 2440.9 280.9 197.3 150.3 139.6 728.8 587.2 469.3 443.9 3.40%
OR-Tools 243.3 170.5 127.5 112.1 4665.5 3311.3 2482.6 2440.9 318.0 212.4 143.4 128.3 762.2 552.1 473.7 442.5 6.05%
HGA 222.7 159.6 118.1 112.1 4110.2 3069.6 2440.9 2440.9 280.9 196.7 142.9 127.6 666.0 517.7 450.3 436.7 0.00%
DAN (s.) 252.9 178.9 128.2 114.3 5097.7 3455.7 2677.1 2494.5 336.7 228.1 157.9 134.5 966.5 697.7 495.6 462.0 14.51%
SchedNet (s.) 239.3 173.5 125.8 112.2 4591.6 3276.1 2517.3 2441.4 317.7 220.8 153.8 131.7 781.2 627.1 502.3 464.4 8.55%
PARCO (s.) 231.7 170.8 123.6 112.5 4429.2 3331.6 2519.3 2444.8 295.7 202.9 147.7 128.6 762.4 581.4 473.5 450.7 5.22%

to the embedding, as MACSIM [68], would outperform ET and DPN, perhaps considerably. We
leave this as an interesting direction for future work.

C.3 Convergence Rates

Table 6: Convergence rates in different problems: cost as a percentage of training budget.
10% 25% 50% 75% 100%

HCVRP 5.13 ± 0.09 5.00 ± 0.06 4.90 ± 0.05 4.88 ± 0.03 4.79 ± 0.03
OMDCPDP 46.23 ± 0.21 45.57 ± 0.15 45.34 ± 0.11 44.87 ± 0.10 44.48 ± 0.09
FFSP 95.45 ± 0.52 94.32 ± 0.31 92.88 ± 0.20 92.15 ± 0.12 91.48 ± 0.08

Table 6 shows the convergence rate of PARCO across different problems on validation datasets at
different training budgets (in percentage). PARCO is robust during training and converges stably.

C.4 XXL Instances

To further strengthen our results, we have tested PARCO for even larger scales in both the number of
nodes and the number of agents. We generated 16 new instances for N = 5000 nodes and 3 different
values of M agents (a total of 48 instances) of OMDCPDP. We evaluated OR-Tools with 1 hour of
runtime and greedy performance for HAM and PARCO.

Table 7: Large-scale generalization results for OMDCPDP with N = 5000.
M = 500 M = 750 M = 1, 000

Obj. Gap Time Obj. Gap Time Obj. Gap Time
OR-Tools 5575.73 134.06% 3600s 5127.46 115.24% 3600s 4974.81 188.10% 3600s
HAM 4813.99 102.08% 17.4s 3732.06 97.33% 19.5s 3258.26 88.69% 22.3s
PARCO 2382.22 0.0% 0.21s 1891.28 0.0% 0.21s 1726.78 0.0% 0.22s

As shown in Table 7, PARCO excels at generalization at XXL scales with 50× the number of nodes
and agents seen during training and up to 1, 000 agents. Thanks to its massively parallel structure,
PARCO can solve such instances in a fraction of a second with better results than OR-Tools – at a
10, 000× speedup. This makes PARCO ideal for real-world, real-time, large-scale complex problems.

28

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims on the abstract and introduction accurately reflect the paper’s
contribution and scope (see methodology of § 4 and experimental results § 5).

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We include a paragraph in § 6 discussing limitations and future works.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We give a detailed description of our method in § 4 and discuss the experimental
settings in § 5 with further information in the Appendix. The source code of PARCO is also
publicly available.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code of PARCO is available at https://github.com/ai4co/parco.
We provide detailed instructions on how to reproduce the main experimental results.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the settings of the training and test details in § 5, supplemented
by further details for each experiment in Appendix B. The original configurations are
additionally available in the publicly available code to foster reproducibility and openness.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation in Fig. 3 with experiments run on 3 different
seeds. For the main results including Table 1, we adhere to the established standard in
machine learning for combinatorial optimization papers, which involves reporting averaged
results for several dataset instances each to ensure statistical significance: 1,280, 1,000, and
100 for HCVRP, OMDCPDP, and FFSP, respectively.

29

https://github.com/ai4co/parco

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report our resources in § 5.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms to the NeurIPS Code of Ethics

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The adoption of PARCO is not expected to have any negative societal impact.
On the contrary, we envision machine learning approaches as PARCO may become more
prevalent in solving CO problems and thus lead to positive societal benefits, including
reduced resource consumption, better management of logistics such as disaster relief efforts,
and democratization of optimization solvers.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no high risk of misuse for our released assets.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Creators of assets (e.g., code, data, models) used in the paper are properly
credited in Table 3.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All introduced assets are well documented. We provide clear instructions,
including checkpoints release through HuggingFace.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

30

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are used only for writing, editing, or formatting purposes and do not
impact the core methodology, scientific rigor, or originality of the research.

31

	Introduction
	Related Work
	Preliminaries
	Markov Decision Processes
	AR Models for CO

	Methodology
	Cooperative Multi-Agent MDPs
	Parallel AR Models for CO
	Multi-Agent Encoder
	Communication Layers
	Decoder with Multiple Pointer Mechanism
	Conflict Handlers
	Training Scheme

	Experiments
	Experimental Settings
	Experimental Results
	Analysis

	Conclusion
	Problem Definitions
	HCVRP
	OMDCPDP
	FFSP

	Experimental Details
	HCVRP
	Baselines
	Datasets
	PARCO Network Hyperparameters
	PARCO Training Hyperparameters

	OMDCPDP
	Baselines
	Datasets
	PARCO Network Hyperparameters
	PARCO Training Hyperparameters

	FFSP
	Baselines
	Datasets
	PARCO Network Hyperparameters
	PARCO Training Hyperparameters
	Diagram for MatNet Decoding vs. PARCO Decoding for the FFSP

	Hardware and Software
	Hardware
	Software

	Source Code

	Additional Materials
	Further Discussions
	Comparison with Decentralized and Graph-Based Communication Methods
	Convergence Rates
	XXL Instances

