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Abstract
Recently, Denoising Diffusion Probabilistic001
Models (DDPMs) have attained leading per-002
formances across a diverse range of generative003
tasks. However, in the field of speech synthe-004
sis, although DDPMs exhibit impressive perfor-005
mance, their long training duration and substan-006
tial inference costs hinder practical deployment.007
Existing approaches primarily focus on enhanc-008
ing inference speed, while approaches to accel-009
erate training—a key factor in the costs associ-010
ated with adding or customizing voices—often011
necessitate complex modifications to the model,012
compromising their universal applicability. To013
address the aforementioned challenges, we pro-014
pose an inquiry: is it possible to enhance the015
training/inference speed and performance of016
DDPMs by modifying the speech signal it-017
self? In this paper, we double the training and018
inference speed of Speech DDPMs by simply019
redirecting the generative target to the wavelet020
domain. This method not only achieves com-021
parable or superior performance to the original022
model in speech synthesis tasks but also demon-023
strates its versatility. By investigating and uti-024
lizing different wavelet bases, our approach025
proves effective not just in speech synthesis,026
but also in speech enhancement.027

1 Introduction028

Recently, with the advancement of deep learning,029

generative models have made significant progress030

in various fields (Karras et al., 2019; Oord et al.,031

2016; Yang et al., 2019). Particularly, the emer-032

gence of diffusion models has elevated the capabil-033

ities of deep generative models to a new level (Ho034

et al., 2020; Song et al., 2020b). In the field of035

speech processing, Denoising Diffusion Probabilis-036

tic Models (DDPMs) not only exhibit astonishing037

performance in speech synthesis (Kong et al., 2020;038

Jeong et al., 2021) but also demonstrate commend-039

able results in speech enhancement (Lu et al., 2022;040

Yen et al., 2023). However, despite the impressive041

results achieved by DDPMs in the field of speech042

Figure 1: Wavelet of Cohen-Daubechies-Feauveau 5-
tap/3-tap. (a) Scaling and wavelet functions, (b) decom-
position and reconstruction filters.

processing, the requirement to generate a guarantee 043

of high sample quality — typically necessitating 044

hundreds to thousands of denoising steps — results 045

in training and inference speeds that are daunting 046

in practical applications. 047

Given these issues, researchers from various 048

fields have attempted different methods to improve 049

diffusion models. In the realm of speech process- 050

ing, existing approaches have endeavored to al- 051

ter the model structure to accelerate the inference 052

speed of speech synthesis (Huang et al., 2022), 053

while others have experimented with changing 054

training strategies to reduce the number of infer- 055

ence steps required for diffusion models in speech 056

enhancement (Lay et al., 2023). These approaches 057

primarily focus on enhancing the inference speed 058

of speech diffusion models. However, in the field of 059

speech synthesis, the industry frequently requires 060

incorporating new voices to accommodate var- 061

ied requirements. Additionally, generative-based 062

speech enhancement often demands tailoring mod- 063

els to distinct scenarios, which introduces prac- 064

tical limitations to the aforementioned methods 065

in real-world applications. In the field of com- 066

puter vision, researchers have attempted to accel- 067

erate diffusion models using wavelets. Their ef- 068

forts are mainly concentrated on score-based diffu- 069

sion models (Song et al., 2020b, 2021), employing 070

wavelets to modify the training strategy, thereby 071
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Figure 2: Overview of the Speech Wavelet Diffusion Model pipeline: First, the speech signal is decomposed
into Approximation coefficients Matrix(cA) and Detail coefficients matrix(cD), the Diffusion model subsequently
generates cA and cD and restores the speech signal from these matrices.

simultaneously enhancing both training and infer-072

ence speeds (Guth et al., 2022). However, there is073

a significant difference between audio and im-074

age signals. Unlike the common feature sizes of075

64x64 or 256x256 in images, speech signals often076

have large feature sizes to ensure training quality.077

This means that the challenges in training speech078

models often stem from the nature of the speech079

signal itself (Radford et al., 2023). Considering080

this, we propose a question from a different angle:081

can we improve the training and inference speeds082

of DDPMs and significantly alleviate GPU memory083

pressure by operating directly on the speech signal084

itself?085

The principle of simplicity often underlies effec-086

tive methods, as evidenced by tools like LoRA (Hu087

et al., 2021) and Word2Vec (Mikolov et al., 2013).088

Inspired by the successful application of latent089

space diffusion models (Rombach et al., 2022) and090

wavelets in image compression (Taubman et al.,091

2002), we pivot the generative aim of speech092

DDPMs towards the compressed speech signal093

in the wavelet domain. This involves decompos-094

ing the speech signal using the Discrete Wavelet095

Transform(DWT) into high-frequency and low-096

frequency components. These components are then097

concatenated to form a unified generative target for098

our model. Through this approach, the feature-099

length of the data is halved, which enhances the100

GPU’s parallel processing capabilities and signifi-101

cantly reduces the demand for GPU memory.102

In the Further Study chapter, we have devel-103

oped two additional modules: the Low Frequency104

Enhancer and the Multi-Level Accelerator. The105

former enhances low-frequency signals, allowing106

our method to not only double the speed com-107

pared to the original model but also achieve better108

performance. The latter, by integrating the Low-109

Frequency Enhancer with multi-level wavelet trans-110

form, further compress the speech signal. This111

enables an acceleration of more than five times 112

while maintaining comparable results. 113

In summary, our contributions include the fol- 114

lowing: 115

• We designed a simple, effective, and univer- 116

sal method that doubles the training and in- 117

ference speed of the original model without 118

altering its architecture while maintaining 119

comparable performance. Testing across dif- 120

ferent models and tasks not only confirmed 121

the wide applicability and versatility of our 122

approach but also demonstrated that the Diffu- 123

sion Models can generate speech components 124

in the wavelet domain. 125

• We designed two simple and easily integrable 126

front-end modules. The first achieves better 127

performance than the original model while 128

doubling the speed. The second offers a per- 129

formance comparable to the original while en- 130

abling an acceleration of more than five times. 131

132• We offer a new perspective on accelerating 133

and optimizing speech models by focusing on 134

processing the signal itself rather than modify- 135

ing the model, thereby charting a new course 136

for future research. 137

2 Related Work 138

Diffusion Probabilistic Models. Diffusion proba- 139

bilistic models (DMs) (Sohl-Dickstein et al., 2015; 140

Ho et al., 2020) are a powerful and effective class 141

of generative models, which are highly competi- 142

tive in terms of sample quality, surpassing Varia- 143

tional Autoencoders (VAEs) and Generative Ad- 144

versarial Networks (GANs) to become the state- 145

of-the-art in a variety of synthesis tasks (Dhari- 146

wal and Nichol, 2021; Liu et al., 2022). DMs 147

comprise a forward noise diffusion process and 148

a Markovian reverse diffusion process. They func- 149

tion by training a deep neural network to denoise 150

content that has been corrupted with various levels 151
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Figure 3: Overview of (a) Block of Multi-Level Discrete Wavelet Transform, (b) Multi-Level Low-Frequency Voice
Enhancement Module, (c) Block of Multi-Level Inverse Discrete Wavelet Transform.

of Gaussian noise. In the sampling phase, a gen-152

erative Markov chain process based on Langevin153

dynamics (Song and Ermon, 2019) iteratively de-154

noises from complete Gaussian noise to progres-155

sively generate the target samples. Due to their156

iterative nature, DMs experience a significant in-157

crease in training and sampling time when gener-158

ating high-dimensional data (Song et al., 2020a).159

Speech Synthesis. In recent times, a variety of160

neural text-to-speech (TTS) systems have been de-161

veloped (Oord et al., 2016; Bińkowski et al., 2019;162

Valle et al., 2020). Initially, these systems generate163

intermediate representations, such as mel spectro-164

grams or hidden representations, conditioned on165

textual input. This is followed by the use of a166

neural vocoder for the synthesis of the raw audio167

waveform. The pivotal role in the recent advance-168

ments of speech synthesis has been played by neu-169

ral vocoders. Models like WaveFlow (Ping et al.,170

2020) and WaveGlow (Prenger et al., 2019) achieve171

training through likelihood maximization. On the172

other hand, models based on VAEs and GANs di-173

verge from likelihood-centric models, often neces-174

sitating additional training losses to enhance audio175

fidelity. Another notable approach is the diffusion-176

based model (Kong et al., 2020), which stands out177

by synthesizing high-quality speech using a sin-178

gular objective function. Our experiment will be179

conducted on a diffusion-based vocoder.180

Speech Enhancement. Speech enhancement is a181

field in audio signal processing focused on improv-182

ing the quality of speech signals in the presence183

of noise (Benesty et al., 2006). Recent advances184

in deep learning have significantly improved the185

performance of speech enhancement systems, en-186

abling more effective noise suppression and clarity187

in diverse environments (Zhang et al., 2020; Sun 188

et al., 2023). In the realm of speech denoising, 189

diffusion-based models are being effectively uti- 190

lized. Lu (Lu et al., 2022) investigates the efficacy 191

of diffusion model with noisy mel band inputs for 192

this purpose. In a similar vein, Joan (Serrà et al., 193

2022) examines the application of score-based dif- 194

fusion models for enhancing speech quality. Fur- 195

thermore, Welker (Welker et al., 2022) proposes 196

formulations of the diffusion process specifically 197

designed to adapt to real audio noises, which often 198

present non-Gaussian properties. 199

Speed Up Generative Speech Model. Numerous 200

efforts have been made to expedite speech synthe- 201

sis, with Fastspeech (Ren et al., 2019) and Fast- 202

speech 2 (Ren et al., 2020) being among the most 203

notable, both accelerating the process using trans- 204

former models. FastDiff (Huang et al., 2022), a 205

more recent development, aims to address the slow 206

inference speed of diffusion models in practical 207

applications, focusing primarily on hastening infer- 208

ence time. In contrast, our technology is designed 209

not only to accelerate both training and infer- 210

ence but also to be easily adaptable to various 211

speech synthesis models. 212

3 Methodology 213

In this section, the proposed method is illustrated 214

using the Cohen-Daubechies-Feauveau 5/3 wavelet 215

as a case study (Le Gall and Tabatabai, 1988). We 216

first explain how we utilize wavelet transforms for 217

compressing and parallel processing of speech sig- 218

nals. Then, we delve into the specifics of accel- 219

erating speech synthesis and enhancement tasks. 220

221
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Algorithm 1 Wavelet Diffwave Training

for i = 1, 2, . . . , Niter do
Sample x0 ∼ qdata, ϵ ∼ N (0, I), and
t ∼ Uniform({1, . . . , T})
y0 = DWT (x0)
Take gradient step on
∇θ∥ϵ− ϵθ(

√
ᾱty0 +

√
1− ᾱtϵ, t)∥22

3.1 Wavelet Transform and Compression222

The Wavelet Transform is a key method in image223

compression, involving Discrete Wavelet Trans-224

form (DWT) and Inverse Discrete Wavelet Trans-225

form (IWT) to separate low-frequency (cA) and226

high-frequency (cD) components from signals (Sul-227

livan, 2003). We focus on the Daubechies-228

Feauveau 5/3 wavelet, shown in Figure 1, a229

biorthogonal wavelet commonly used in lossless230

compression algorithms (Taubman et al., 2002).231

Let us define L =
[
−1

8 ,
2
8 ,

6
8 ,

2
8 ,−

1
8

]
and H =232 [

1
2 , 1,

1
2

]
as the low-pass and high-pass filters, re-233

spectively. In the DWT Process, these filters are234

employed to decompose speech signals x ∈ R1×2x235

into matrices cA ∈ R1×x and cD ∈ R1×x. Subse-236

quently, these matrices are concatenated to form237

y ∈ R2×x, as depicted in the left part of Figure 2.238

In the IWT process, the matrix y ∈ R2×x is divided239

back into cA ∈ R1×x and cD ∈ R1×x, which are240

then reconstructed into the speech signal. The de-241

tails of how Wavelet compresses speech and ac-242

celerates the model can be seen in Appendix C.243

244

3.2 Wavelet-based Speech Diffusion Scheme245

3.2.1 Speech Synthesis246

We evaluated our method using Diffwave (Kong247

et al., 2020), a well-known diffusion vocoder248

widely adopted in numerous TTS systems. We249

altered only the first layer of the one-dimensional250

convolutional network used for processing the in-251

put signal, ensuring that the number of channels re-252

mains constant, thereby keeping the network width253

unchanged in comparison with Diffwave. During254

the training process, the diffusion process is char-255

acterized by a fixed Markov chain transitioning256

from the concatenated wavelet data y0 to the latent257

variable yT . This is achieved via258

q(y1, . . . , yT |y0) =
T∏

t=1

q(yt|yt−1), (1)259

where q(yt|yt−1) is defined as a Gaussian distri-260

bution N (yt;
√
1− βtyt−1, βtI) and β is a small261

positive constant. The function q(yt|yt−1) intro-262

Algorithm 2 Wavelet Diffwave Sampling

Sample yeT ∼ platent = N (0, I)
for t = T, T − 1, . . . , 1 do

Compute µθ(yt, t) and σθ(yt, t)
Sample yt−1 ∼ pθ(yt−1|yt) =

N (yt−1;µθ(yt, t), σθ(yt, t)
2I)

x0 = IWT (y0)
return x0

duces slight Gaussian noise into the distribution of 263

yt−1, effectively adding minimal Gaussian noise to 264

both cA and cD. 265

The reverse process is characterized by a Markov 266

chain transitioning from yT back to y0. This is 267

parameterized by θ and computed via 268

pθ(y0, . . . , yT−1|yT ) =
T∏

t=1

pθ(yt−1|yt). (2) 269

The distribution p(yT ) originates from an 270

isotropic Gaussian and is composed of two 271

distinct components, corresponding respec- 272

tively to cA and cD. The term pθ(yt−1|yt) 273

is parameterized by a Gaussian distribution 274

N (yt−1;µθ(yt, t), σθ(yt, t)
2I). Here, µθ yields a 275

2 × X matrix representing the mean values for 276

cA and cD, while σθ produces two real numbers, 277

indicating the standard deviations for cA and cD. 278

The training objective is to minimize the fol- 279

lowing unweighted variant of the variational lower 280

bound (ELBO): 281

min
θ

L(θ) = E
∥∥ϵ− θ(

√
αty0 +

√
1− αtϵ, t)

∥∥2
, (3) 282

where αt is derived from the variance schedule, 283

parameter θ denotes a neural network that outputs 284

noise for both cA and cD. Furthermore, ϵ is repre- 285

sented as a 2×X matrix, encapsulating the actual 286

noise values corresponding to both cA and cD. The 287

detailed procedures for training and sampling are 288

outlined in Algorithm 1 and Algorithm 2. 289

3.2.2 Speech Enhancement 290

We also evaluated our algorithm in Diffusion- 291

based Speech Enhancement tasks, employing CDif- 292

fuSE (Lu et al., 2022) as a test case to demonstrate 293

the effectiveness of our approach. Their diffusion 294

forward process after wavelet processing can be 295

formulated as 296

qdiff(yt|y0, yn) = N
(
yt; (1−mt)

√
ᾱty0+

mt

√
ᾱtyn, δtI

)
.

(4) 297

The variablemt represents the interpolation ratio 298

between the clean wavelet data y0 and the noisy 299

4



Algorithm 3 Wavelet CDiffuSE Sampling

1: Sample yT ∼ N (yT ,
√
ᾱT yn, δT I)

2: for t = T, T − 1, . . . , 1 do
3: Compute cxt , cyt and cϵt
4: Sample yt−1 ∼ pθ(yt−1|yt, yn) =

N (yt−1; cxtyt + cytyn − cϵtϵθ(yt, yn, t), δtI)
x0 = IWT (y0)

5: return x0

wavelet data yn. This ratio initiates at m0 = 0 and300

progressively increases to mt = 1. The term ᾱt301

is computed following the same methodology as302

employed in Diffwave, and δt is defined as (1 −303

αt)−m2
tαt. The reverse process is formulated as304

pθ(yt−1|yt, yn) = N (yt−1;µθ(yt, yn, t), δ̃tI), (5)305

where µθ(yt, ynoise, t) is the mean of a linear com-306

bination of yt and ynoise, being formulated as307

µθ(yt, yn, t) = cytyt + cynyn − cϵtϵθ(yt, yn, t). (6)308

Parameters cyt , cyn , and cϵt are derived from the309

ELBO optimization. The detailed procedures for310

training and sampling are outlined in Algorithm 4311

and Algorithm 3. The details of coefficients and312

ELBO optimization can be seen in Appendix B.313

4 Experiments314

4.1 Dataset315

Speech Synthesis Our experiments were con-316

ducted using the LJSpeech dataset (Ito and317

Johnson, 2017), comprising 13,100 English318

audio clips along with their corresponding text319

transcripts. The total duration of the audio in320

this dataset is approximately 24 hours. For the321

purpose of objectively assessing the NISQA322

Speech Naturalness (Mittag et al., 2021), 1,000323

samples were randomly chosen as the test dataset.324

Additionally, we conduct a subjective audio325

evaluation using a 5-point Mean Opinion Score326

(MOS) test, involving 30 examples per model and327

20 participants.328

Speech Enhancement Our experiments were329

conducted using the VoiceBankDEMAND330

dataset (Valentini-Botinhao et al., 2016). The331

dataset, derived from the VoiceBank corpus (Veaux332

et al., 2013), encompasses 30 speakers and is333

bifurcated into a training set with 28 speakers and a334

testing set with 2 speakers.The training utterances335

are deliberately mixed with eight real-recorded336

noise samples from the DEMAND database, in337

addition to two synthetically generated noise338

samples, at SNR levels of 0, 5, 10, and 15 dB. This339

Algorithm 4 Wavelet CDiffuSE Training

1: for i = 1, 2, . . . , Niter do
2: Sample (x0, xn) ∼ qdata, ϵ ∼ N (0, I),
3: y0 = DWT (x0), yn = DWT (xn)
4: t ∼ Uniform({1, . . . , T})
5: yt = ((1−mt)

√
ᾱty0+mt

√
ᾱtyn)+

√
δtϵ

6: Take gradient step on
∇θ

∥∥∥ 1√
1−ᾱt

(mt
√
ᾱt(yn − y0) +

√
δtϵ) −

ϵθ(yt, yn, t)
∥∥∥2
2

results in a total of 11,572 training utterances. 340

For testing, the utterances are combined with 341

different noise samples at SNR levels of 2.5, 7.5, 342

12.5, and 17.5 dB, culminating in a total of 824 343

testing utterances. Our algorithm was evaluated 344

using the Perceptual Evaluation of Speech Quality 345

(PESQ) and a deep learning evaluation approach, 346

DNSMos (Dubey et al., 2023). 347

4.2 Model Architecture and Training 348

To ensure a fair comparison with the baseline, we 349

adhered to the identical parameter settings utilized 350

in both Diffwave and CDiffuSE. To more effec- 351

tively validate the versatility of our method, we 352

conducted tests on both the base and large ver- 353

sions of Diffwave and CDiffuSE. To explore the 354

distinct characteristics of various wavelets, we con- 355

ducted experiments using a computational base of 356

32 NVIDIA V100 32GB GPUs. we conducted tests 357

with different wavelets base using 32 V100 32G, in- 358

cluding Haar, Biorthogonal 1.1 (bior1.1), Biorthog- 359

onal 1.3 (bior1.3), Coiflets 1 (coif1) (Daubechies, 360

1988), Daubechies 2 (db2), and Cohen-Daubechies- 361

Feauveau 5/3 (cdf53) (Sullivan, 2003). The details 362

of the parameter setting can be seen in Appendix A. 363

4.3 Main Result 364

Table 1 shows the results for various wavelet bases 365

in both Speech Enhancement and Speech Synthe- 366

sis tasks. It can be observed that, across all tasks, 367

regardless of the type of wavelet basis used, the 368

training time, the inference time, and the required 369

GPU memory consumption have been reduced by 370

nearly half. In the Speech Enhancement task, when 371

evaluated using the pseq metric, most wavelets, 372

with the exception of the Coif1, performed com- 373

parably to the original model. The DB2 wavelet 374

exhibited the best performance on both the base 375

and large models. 376

Despite nearly doubling in training and infer- 377
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ence speeds, its performance was only marginally378

lower than the original model, with a difference of379

0.051 and 0.021, respectively. However, when we380

switch to using the DNSMos metric for evaluation,381

the scenario changes completely. When evaluat-382

ing with the DNSMos metric, there is a complete383

shift in results. The Coif1 wavelet becomes the384

best performer. In the base model, it surpasses the385

original model by 0.009, and in the large model,386

the lead extends to 0.056. A detailed analysis will387

be presented in the subsequent sections.388

In the task of Speech Synthesis, the results show389

some variations. In the base model, the Coif1390

wavelet still outperforms others, even exceeding391

the original model by 0.004 in Speech Naturalness392

(SN). However, when we examine the large model,393

we find that although the Coif1 wavelet continues394

to perform well, it is the Bior1.3 wavelet that stands395

out as the top performer, surpassing the original396

model by 0.008 in terms of SN.397

Through these experiments, we have demon-398

strated that our method can double the training399

and inference speeds of the speech diffusion model400

while achieving results that are comparable to, or401

even surpass, those of the original model. The402

consistent performance across both base and large403

models further validates the generalizability of our404

approach. The stable results on Diffwave and CDif-405

fuSE highlight the versatility of our method across406

various tasks. This advancement enables the practi-407

cal application of diffusion models in the field of408

speech, especially the accelerated training aspect,409

making it feasible to customize voices and perform410

targeted noise reduction for specific scenarios.411

5 Further Study412

Under the significant acceleration achieved by our413

method, we explore the potential for enhancing the414

quality of samples through wavelet transformation415

and further accelerating the training and sampling416

process of the diffusion model.417

5.1 Low-frequency Speech Enhancer418

In speech signals, the primary speech components419

are typically concentrated in the low-frequency420

range, while background noise tends to domi-421

nate the high-frequency spectrum (Flanagan, 2013).422

Therefore, to further enhance the quality of syn-423

thesized speech, we fully leverage the properties424

of wavelet decomposed signals. By performing425

Discrete Wavelet Transform (DWT) on the speech426

signals (Shensa et al., 1992), we obtain a 2-channel427

vector, consisting of detail coefficients filtered428

Figure 4: Overview of Frequency Bottleneck Block

through a high-pass filter and approximation co- 429

efficients filtered through a low-pass filter. Prior 430

to feeding into the diffusion model, this vector is 431

processed through the Frequency Bottleneck Block 432

as shown in Figure 4, which amplifies the low- 433

frequency speech signals and attenuates the back- 434

ground noise. Since different wavelet signals em- 435

phasize various speech characteristics during DWT, 436

we tested six types of wavelets, as shown in Ap- 437

pendix D, Table 3. The results indicate that the 438

Haar wavelet, which focuses on signal discontinu- 439

ities and rapid changes (Stanković and Falkowski, 440

2003), achieves superior sampling quality com- 441

pared to DiffWave after processing through the 442

Frequency Bottleneck Block module. 443

5.2 Multi-Level Wavelet Accelerator 444

To further enhance training and sampling speeds, 445

we implemented a multi-level DWT approach, as 446

demonstrated in Figure 3a. This method reduces 447

the length of speech signal features to a quarter of 448

their original size, and increases the channel count 449

to four. Concurrently, the Frequency Bottleneck 450

Block, designed to intensify speech signals, is ex- 451

panded into the Multi-level Low-Frequency Voice 452

Enhancement Module, which encompasses a multi- 453

level residual block. This block is adept at progres- 454

sively attenuating high-frequency components, as 455

depicted in Figure 3b. This methodology signifi- 456

cantly reduces both training and sampling times, 457

with training speeds approximately five times faster 458

than the original DiffWave and sampling speeds 459

about three times quicker. As shown in Table 2, 460

the Mean Opinion Score (MOS) indicates that the 461

audio quality of the samples remains comparably 462

high, which underscores its strong practicality. 463

6 Ablation Study and Analysis 464

6.1 Effect of Vanishing Moments, Smoothing 465

and Complexity 466

From Table 1, it can be observed that Coif1 per- 467

forms well on the DNSmos metric and in speech 468
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Speech Enhancement Speech Synthesis
Base

PESQ ↑ DNS_MOS ↑ Training Time↓ RTF↓ MOS ↑ SN ↑ Training Time↓ RTF↓
Orignial 2.466 3.116 481.784 0.728 4.38±0.08 4.372 330.857 0.599

Haar 2.387 3.008 248.065 0.402 4.32±0.09 4.302 171.914 0.317
Bior1 2.389 3.031 248.112 0.402 4.33±0.06 4.300 172.077 0.317
Coif1 1.625 3.125 248.997 0.407 4.37±0.07 4.376 171.964 0.325
DB2 2.415 3.032 251.215 0.409 4.30±0.08 4.351 172.266 0.327

Cdf53 2.367 3.049 249.190 0.407 4.23±0.07 4.372 172.266 0.325
Bior1.3 2.302 3.027 259.831 0.413 4.32±0.09 4.331 181.914 0.342

Large
Original 2.514 3.140 997.688 6.387 4.41±0.08 4.395 806.158 6.055

Haar 2.463 3.127 507.813 3.366 4.40±0.07 4.229 408.123 3.061
Bior1 2.468 3.140 504.313 3.363 4.33±0.07 4.360 408.132 3.060
Coif1 1.660 3.196 511.689 3.443 4.39±0.06 4.351 412.727 3.152
DB2 2.493 3.125 513.384 3.445 4.35±0.07 4.374 413.210 3.144

Cdf53 2.475 3.136 512.544 3.440 4.31±0.06 4.325 412.963 3.149
Bior1.3 2.395 3.126 519.353 3.467 4.32±0.09 4.403 421.415 3.373

GT – – – – 4.53±0.06 – – –

Table 1: The table presented above displays the results for various wavelet bases in both Speech Enhancement
and Speech Synthesis tasks. SN represents Speech Naturalness. GT stands for Ground Truth, referring to the raw
audio from human. ’Training Time’ represents the time required for training in a single epoch(seconds). ’RTF’
(Real-Time Factor) is utilized as a metric to assess inference time.

Speech Synthesis (Haar Base)

Model MOS Training Time RTF

GT 4.53±0.06 – –
Original 4.38±0.08 330.857 0.599
Haar2C 4.41±0.09 173.198 0.318
Haar4C 4.32±0.09 65.350 0.126

Table 2: The Table shows the result of Multi-level
wavelet Accelerator, the 4C means the speech signal
will be decomposed into 4 Parts.

synthesis tasks, yet exhibits poor performance469

when evaluated using the PSEQ. The difference470

between DNSmos and PSEQ lies in the fact that471

DNSmos does not require reference audio; it is472

used directly to evaluate the quality of the gen-473

erated speech. After listening to several sets of474

generated speech, we discovered that while the475

diffusion model using Coif1 wavelets produces476

clear and smooth speech, there is a significant alter-477

ation in timbre compared to the original sound. By478

comparing with DB2 and Haar wavelets, we can479

conclude that as the vanishing moment increases480

and complexity follows (Coif1 > DB2 > Haar),481

the diffusion model tends to generate clearer and482

smoother speech. However, once the vanishing mo- 483

ment reaches a certain level, the timbre of the sound 484

is altered. This characteristic enables the selection 485

of Coif1 wavelets in scenarios where only noise 486

reduction is needed, or in speech synthesis tasks 487

where timbre is of lesser concern and the emphasis 488

is on naturalness. 489

6.2 Effect of Order of the Wavelet 490

Comparing bior1.1 with bior1.3, we observe that 491

with an increase in the reconstruction order, both 492

the PSEQ and DNS_MOS scores decrease. This in- 493

dicates that as the reconstruction order rises, the dif- 494

fusion model’s ability to handle noise diminishes, 495

although there is a slight improvement in speech 496

synthesis tasks. We believe this is because bior1.3, 497

compared to bior1.1, captures more high-frequency 498

information. However, noise compared to human 499

voice generally occupies the high-frequency range, 500

which explains why bior1.3 performs less effec- 501

tively than bior1.1 in speech enhancement tasks. 502

Comparing Haar (DB1) with DB2, we find that 503

when the reconstruction order remains the same, 504

an increase in the decomposition order enhances 505

the performance of the wavelet speech diffusion 506
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model, especially in terms of stability and superior507

performance in speech enhancement. It effectively508

removes noise while maintaining the timbre with-509

out significant changes. In speech synthesis tasks,510

DB2 also shows improvement over Haar, which we511

attribute to the increased complexity of the wavelet.512

513
6.3 Relationship between Wavelet base and514

Training/Inference Speed515

From Table 1, it is evident that regardless of the516

wavelet used, both training and inference speeds517

are nearly doubled compared to the original model.518

The table indicates that when wavelets are applied519

to the diffusion model, Haar and bior1.1 exhibit520

similar speeds. The differences in speed between521

Coif1, DB2, and cdf53 are minimal, with bior1.3522

being the slowest. We discovered that their speeds523

do not strictly correlate with their computational524

complexity. Our analysis suggests that the longer525

filter length of Bior1.3 in implementation, com-526

bined with the inherently long nature of speech sig-527

nals, results in increased computational overhead.528

529
6.4 Effect of Frequency Enhancer530

After incorporating the Frequency Enhancer, most531

wavelet speech diffusion models showed an im-532

provement in performance. In speech enhancement533

tasks, Haar, bior1.3, and cdf53 wavelets demon-534

strated significant improvements. Meanwhile, the535

training and inference speeds, compared to the536

wavelet diffusion model without the Frequency537

Enhancer, remained virtually unchanged, falling538

within the margin of error. Haar and Coif1 wavelets539

diffusion model even outperformed the original540

model, indicating that by simply adding a small541

pre-processing module, we can surpass the perfor-542

mance of the original model while significantly543

increasing training and inference speeds. However,544

we believe that the reasons for the performance545

enhancement offered by these three wavelets are546

not the same. For the Haar wavelet, its abil-547

ity to capture discontinuities and abrupt changes548

in signals makes it particularly effective at han-549

dling non-stationary signals like speech. The Fre-550

quency Enhancer further amplifies this capabil-551

ity. Bior1.3, due to its enhanced ability to cap-552

ture high-frequency signals, sees a reduction in553

noise after processing with the Frequency Enhancer.554

Therefore, its performance improves compared to555

when the Frequency Enhancer is not used. For the556

cdf53 wavelet, it is capable of compressing sig-557

nals with minimal loss. After being enhanced by558

the Frequency Enhancer, high-frequency noise is 559

effectively removed, while low-frequency signals 560

are well preserved. This lossless property is bet- 561

ter demonstrated in the field of speech synthesis, 562

where, after enhancement by the Frequency En- 563

hancer, the performance slightly exceeds that of 564

the original model in MOS tests. For detailed data, 565

please refer to the appendix D, table 3. 566

6.5 Effect of Multi-Level Wavelet Accelerator 567

To further explore the potential for acceleration, 568

we conducted tests in the field of speech synthesis 569

using the Haar wavelet, which demonstrated the 570

most stable performance. The results of the exper- 571

iment are shown in Table 2. It can be observed 572

that when the speech signal is split into quarters 573

of its original length, both training and inference 574

speeds increase by more than fivefold. However, 575

unlike the results of splitting just once (as shown 576

in the second row of Table 2, corresponding to the 577

second row of Table 3), which were better than 578

the original model, the results after splitting four 579

times, even with the Frequency Enhancer, exhib- 580

ited a notable decline in MOS values. We believe 581

this is due to information loss caused by excessive 582

compression. However, the substantial increase in 583

speed still makes this method worth considering for 584

scenarios where ultra-clear audio is not required. 585

7 Conclusion 586
In this paper, we have enhanced the speech diffu- 587

sion model by transitioning its generation target to 588

the wavelet domain, thereby doubling the model’s 589

training and inference speeds. We offer a new per- 590

spective on accelerating speech models by focusing 591

on processing the signal itself rather than modify- 592

ing the model. Our approach has demonstrated 593

model versatility and task adaptability across both 594

speech enhancement and synthesis. Through our 595

research, we found that the Coif1 wavelet is an ex- 596

cellent choice for scenarios requiring noise reduc- 597

tion without the need to preserve timbre, while the 598

DB2 wavelet is preferable when changes in timbre 599

must be considered. For speech synthesis tasks, the 600

Haar wavelet offers simplicity and effectiveness, 601

whereas the cdf53 wavelet excels at preserving in- 602

formation to the greatest extent. Additionally, We 603

designed two simple and easily integrable front- 604

end modules. The first achieves better performance 605

than the original model while doubling the speed. 606

The second offers a performance comparable to 607

the original while enabling an acceleration of more 608

than five times. 609
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limitations610

In this study, speed tests were conducted on a large-611

scale cluster, subject to the hardware variability612

inherent in the cluster (despite all GPUs being613

V100s, they may not be identical), which could614

introduce some timing inaccuracies. However, con-615

sidering that the training and inference times for616

most wavelet-utilizing diffusion models do not sig-617

nificantly differ, we believe these discrepancies can618

be disregarded. This does not detract from our con-619

tribution of accelerating the speech diffusion model620

by a factor of two.621

Ethics Statement622

Our proposed model diminishes the necessity for623

high-quality speech synthesis, potentially affecting624

employment opportunities for individuals in related625

sectors, such as broadcasters and radio hosts. By626

lowering the training costs, our approach may im-627

pact a broader audience.628
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A Details of Experiment Setup836

Diffwave offers two configurations: base and large.837

In the base version, the model comprises 30 resid-838

ual layers, a kernel size of 3, and a dilation cycle839

of [1, 2, ..., 512]. It utilizes 50 diffusion steps840

and a residual channel count of 64. The large841

version maintains all parameters identical to the842

base, except for an increase to 128 residual chan-843

nels and 200 diffusion steps. All models employed844

the Adam optimizer, with a batch size of 16 and a845

learning rate of 2×10−4.We trained each DiffWave846

model for a total of 1 million steps.847

We conducted evaluations on two versions of848

CDiffuSE: base and large. The base CDiffuSE849

model employs 50 diffusion steps, while the large850

CDiffuSE model uses 200 diffusion steps. Batch851

sizes differ, with the base CDiffuSE set to 16 and852

the large CDiffuSE set to 15. Both the base and853

large CDiffuSE models were trained for 300,000854

iterations, following an early stopping scheme.855

B Details of CDiffuSE856

The CDiffuSE is trying to optimize the likelihood857

by ELBO condition for the conditional diffusion858

process. we further extend it to the Wavelet Latent859

domain.860

ELBO =

− Eq (DKL(qcdiff(yT |y0, yn) ∥ platent(yT |yn)))

+

T∑
t=2

DKL(qdiff(yt−1|yt,y0, yn) ∥ pθ(yt−1|yt, yn))

− log pθ(y0|y1, yn).
(7)861

Parameters cyt , cyn , and cϵt be derived as: 862

cyt =
1−mt

1−mt−1

δt−1

δt

√
αt + (1−mt−1)

δt|t−1

δt

1
√
αt
,

(8)

863

cyn =
(mt−1δt −mt(1−mt)αtδt−1)

√
α̂t−1

1−mt−1δt
,

(9)

864

cϵt =
(1−mt−1)

δt

δt|t−1

√
1− α̂t√
αt

. (10) 865

Where δt variance term, all other parameters have 866

been mentioned in main section. 867

C Details of Wavelet Diffusion 868

Accelerator 869

C.1 How Wavelets Accelerate Diffusion 870

models 871

In §3.1, we detailed the application of Discrete 872

Wavelet Transform (DWT) and Inverse Discrete 873

Wavelet Transform (IWT) in processing audio sig- 874

nals, highlighting how these techniques compress 875

the audio signal features during the diffusion pro- 876

cess. This section elaborates on the principles be- 877

hind the acceleration offered by the Wavelet Diffu- 878

sion Accelerator. 879

To facilitate training acceleration, the diffusion 880

model shifts its focus from generating complete 881

audio signals with extensive features to producing 882

compressed speech signals in wavelet domain. In 883

line with this shift, DWT is employed to process the 884

raw audio signal g (n) ∈ R1×2x, where n denotes 885

the sample index, through two complementary fil- 886

ters. Specifically, a low-pass filter ϕ extracts the 887

low-frequency components Ψlow ∈ R1×2x: 888

Ψlow (n) =

+∞∑
k=−∞

g (k)ϕ (2n− k). (11) 889

And a high-pass filter ψ is utilized to extract the 890

high-frequency portion Ψhigh ∈ R1×2x: 891

Ψhigh (n) =

+∞∑
k=−∞

g (k)ψ (2n− k). (12) 892

To further reduce the size of the features and empha- 893

size the signal’s essential characteristics, downsam- 894

pling is applied to both parts of the signal, resulting 895

in the approximation coefficients cA and the detail 896

coefficients cD: 897

cA = Ψlow ↓ 2, (13) 898
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899
cD = Ψhigh ↓ 2. (14)900

At this stage, the signal g (n) ∈ R1×2x is com-901

pressed into h (n) ∈ R2×x, wherein h embodies902

a two-channel structure, each channel containing903

features of halved length.904

This change significantly contributes to reducing905

the computational time required for training the906

diffusion model. To further demonstrate, we exem-907

plify with the computational changes in the diffu-908

sion model’s first convolutional layer. Assuming909

the output channel count is Cout, the kernel size is910

K, and the output length Lout remains unchanged911

from the input length. The formula for calculat-912

ing Multiply-Accumulate Operations (MACs) per913

channel is:914

MACeach = K × Cout × Lout. (15)915

Hence, for each channel, with h(n) as the input,916

the computational load in the first convolutional917

layer is halved:918

MACh(n) = K ×Cout × x =
1

2
MACg(n). (16)919

Given the GPU’s optimization for parallel comput-920

ing, the increase in the number of channels does921

not lead to a linear increase in computational time.922

From experimental results, both training and sam-923

pling times of the diffusion model have a significant924

reduction.925

C.2 Wavelets for Diffusion Acceleration: Why926

Not FFT927

While wavelet and Fourier transforms both serve928

as essential tools in signal processing and share929

similarities in handling time and frequency domain930

information, this section explores why Fast Fourier931

Transform (FFT) is not applicable for accelerat-932

ing diffusion models. This is determined by the933

inherent nature of the Fourier transform. Assum-934

ing f(t) is the representation of the signal in the935

time domain and f̂(ω) is its representation in the936

frequency domain, where t stands for time and ω937

for frequency, then the CFT can be described as:938

f̂ (ω) =

∫ +∞

−∞
f (t) e−iωtdt. (17)939

The Fourier transform fits the entire signal f(t)940

with a series of sine and cosine functions, convert-941

ing it into frequency domain information f̂ (ω). As942

a result, the signal is stripped of time information 943

following this transformation. However, conven- 944

tional input audio signals f(t) display traits where 945

local frequency domain features shift in response 946

to variations in short-time segments of the time 947

domain signal, like abrupt transitions or displace- 948

ments. This lack of capability to concurrently ana- 949

lyze local time and frequency domain information 950

makes the Fourier transform insufficient for accu- 951

rately recreating the original audio in generative 952

models. 953

In contrast, for the wavelet transform, assuming 954

ψ (t) as a basic wavelet function, let: 955

ψa,b (t) =
1√
|a|
ψ

(
t− b

a

)
. (18) 956

where a, b ∈ R, a ̸= 0, and the function ψa,b (t) 957

is called a continuous wavelet, generated from the 958

mother wavelet ψ (t) and dependent on parame- 959

ters a and b. Therefore, the continuous wavelet 960

transform can be written as: 961

f̂ (a, b) =
1√
|a|

∫ +∞

−∞
f (t)ψ

(
t− b

a

)
dt. (19) 962

At this juncture, the wavelet transform converts a 963

univariate time-domain signal f(t) into a bivari- 964

ate function f̂ (a, b) encompassing both time and 965

frequency domain information. It enables targeted 966

analysis of local frequency domain characteristics 967

corresponding to specific time domain segments, 968

making it particularly well-suited for handling com- 969

mon non-stationary audio signals. 970

Besides, the wavelet transform’s capability for 971

time-frequency localization analysis ensures that 972

downsampling and compressing cA and cD does 973

not result in significant information loss. On the 974

contrary, based on the Discrete Fourier Transform, 975

FFT struggles with signal compression for diffu- 976

sion acceleration due to its local frequency domain 977

transformations affecting characteristics across the 978

entire time domain. 979

D Result of Frequency Enhancer 980

The Table below presents Low-frequency Speech 981

Enhancer results for various wavelet bases in both 982

Speech Enhancement and Speech Synthesis tasks. 983

All experiments are tested on the same test set. 984
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Speech Enhancement Speech Synthesis
Base

PESQ DNS_MOS Training Time RTF MOS Speech Naturalness Training Time RTF
Orignial 2.466 3.116 481.784 0.728 4.38±0.08 4.372 330.857 0.599

Haar 2.477 3.157 249.2735 0.405 4.41±0.09 4.421 173.19 0.317
Bior1 2.429 3.118 251.908 0.405 4.36±0.08 4.353 171.490 0.318
Coif1 1.647 3.129 250.579 0.410 4.38±0.06 4.104 171.455 0.327
DB2 2.463 2.999 251.004 0.411 4.36±0.07 4.252 171.777 0.328

Cdf53 2.412 3.027 251.686 0.410 4.27±0.06 4.327 173.427 0.327
Bior1.3 2.463 3.014 258.316 0.421 4.34±0.07 4.342 182.731 0.333

Large
Original 2.514 3.140 997.688 6.387 4.41±0.08 4.395 806.158 6.055

Haar 2.463 3.127 507.813 3.366 4.34±0.06 4.229 408.123 3.061
Bior1 2.468 3.140 504.313 3.363 4.35±0.07 4.360 408.132 3.060
Coif1 1.660 3.196 511.689 3.443 4.35±0.08 4.351 412.727 3.152
DB2 2.493 3.125 513.384 3.445 4.37±0.07 4.374 413.210 3.144

Cdf53 2.475 3.136 512.544 3.440 4.43±0.09 4.325 412.963 3.149
Bior1.3 2.395 3.126 522.733 3.483 4.38±0.06 4.403 422.326 3.342

Table 3: The table presented above displays the Low-frequency Speech Enhancer results for various wavelet bases
in both Speech Enhancement and Speech Synthesis tasks. ’Training Time’ represents the time required for training
in a single epoch(seconds). ’RTF’ (Real-Time Factor) is utilized as a metric to assess inference time.
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