
On the Expressivity of GNN for
Solving Second Order Cone Programming

Ruizhe Li1, Enming Liang2,∗, Minghua Chen2,3,∗
1 Department of Mathematics, Southern University of Science and Technology

2Department of Data Science, City University of Hong Kong
3School of Data Science, The Chinese University of Hong Kong, Shenzhen

Abstract

Graph Neural Networks (GNNs) have demonstrated both empirical efficiency
and universal expressivity for solving constrained optimization problems such as
linear and quadratic programming. However, extending this paradigm to more
general convex problems with universality guarantees, particularly Second-Order
Cone Programs (SOCPs), remains largely unexplored. We address this challenge
by proposing a novel graph representation that captures the structure of conic
constraints. We then establish a key universality theorem: there exist GNNs that
can provably approximate essential SOCP properties, such as instance feasibility
and optimal solutions. This work provides a rigorous foundation linking GNN
expressive power to conic optimization structure, opening new avenues for scalable,
data-driven SOCP solvers. Our approach extends to p-order cone programming
for any p ≥ 1 with universal expressivity preserved, requiring no GNN structural
modifications. Numerical experiments on randomly generated SOCPs demonstrate
the expressivity of the proposed GNN, which achieves better prediction accuracy
with fewer parameters than fully connected neural networks.

1 Introduction:
Second Order Cone Programming (SOCP) represents a fundamental class of convex optimization
problems with numerous real-world applications [1], including optimal power flow [2, 3], signal
processing [4], and grasping force optimization [5]. However, traditional algorithms, such as interior
point methods, face computational limitations in large-scale applications, particularly in real-time
scenarios where rapid response is crucial.

Convex Cone

p-order Cone (this work)

Second-Order Cone (this work)

Convex Quadratic [6, 7]

Linear [8, 9]

Figure 1: Hierarchy for convex constraints.

Recent advances in machine learning have en-
abled solving optimization problems in real-
time. Specifically, graph neural networks
(GNNs) have been proven effective in learning
input-to-solution mappings by leveraging prob-
lem structures. For instance, linear programs
can be modeled as bipartite graphs with vari-
able and constraint nodes [8], enabling efficient
learning with a parameter sharing mechanism
over GPUs. Beyond empirical success, theoret-
ical foundations, including universal approxima-
tion capabilities, have been established for GNN
applications in (mixed-integer) linear/quadratic programming [8, 9, 7] and convex quadratically
constrained quadratic programming [7, 6].

∗Corresponding authors: Enming Liang (enming.cityu@gmail.com) and Minghua Chen (minghua@cuhk.edu.cn)

39th Conference on Neural Information Processing Systems (NeurIPS 2025). ScaleOPT Workshop.

mailto:enming.cityu@gmail.com
mailto:minghua@cuhk.edu.cn

Despite these advances, extending GNNs to more general convex programs like SOCP remains
an open challenge. This paper proposes a novel GNN architecture with universal approximation
capabilities for SOCPs, making the following contributions:

▷ We propose a novel graph representation for SOCPs, which exploits linear relationships within the
non-linear conic constraint and decomposes it into separated nodes for efficient graph representations.

▷ Based on proposed graph representations, we design SOCP-GNNs, to predict the key properties of
SOCPs, including instance feasibility and optimal solutions, with universal expressivity guarantees.

▷ Our GNN design and universality guarantees can be extended directly to p-order conic program-
ming for p ≥ 1 (covering a class of polynomial programs) without GNN structural modifications.

▷ Our experiments demonstrate that the expressivity of designed GNNs, which use fewer parameters
to achieve better prediction accuracy compared to fully connected NNs.

To the best of our knowledge, this is the first GNN design for SOCP with universality guarantees,
providing key insights for GNNs to solve general conic and polynomial programming.

2 Related Work

We review two primary paradigms for analyzing GNN expressivity for optimization problems: the
Weisfeiler-Lehman (WL)-based and Algorithm-Unrolling (AU)-based frameworks.

The WL-based framework models optimization problems as graphs, where nodes represent variables
and constraints, with edges modeling their interactions. It then links the GNN’s expressive power
with WL tests on graphs. Building on established foundations for (mixed-integer) linear programs
(LP) [8, 9], researchers have extended this framework to more complex problems such as quadratic
programs (QP) [7] and quadratically constrained QP (QCQP) [6]. A key challenge is representing
non-linear constraints, as encoding complex interactions into nodes and edges is non-trivial. Recent
work has addressed convex quadratic constraints through dynamic edge updates [7] or augmented
quadratic variable nodes [6]. However, extending existing frameworks to represent general conic
constraints like second-order cones remains an open question (see Appendix A.2 for details).

The AU-based paradigm maps iterative steps of specialized algorithms (e.g., primal-dual methods)
onto GNN layers. By aligning GNN layers with known algorithms for specific problems such as LP
[10, 11], QP [12, 13], and Max-CSP problems [14], universality and parameter complexity can be
naturally established through existing algorithmic convergence properties. However, representing
more complex algorithmic steps involving non-linear operations (e.g., factorization or projection) is
non-trivial. Furthermore, the GNN’s expressivity is inherently limited by the underlying capability of
the algorithm itself (see Appendix A.3 for details).

In this work, we extend the WL-based framework to optimization problems with second-order cone
constraints—a general class encompassing convex quadratic constraints with broad real-world appli-
cations. Our specialized GNN achieves both universal representation and computational efficiency,
providing a foundational step toward applying GNNs to more general conic programming.

3 Problem and Open Issues

We consider a general second-order cone programming (SOCP) [15], defined as:

minimize e⊤x

subject to Fx ≤ g, l ≤ x ≤ r,

∥Aix+ bi∥2 ≤ cTi x+ di, i ∈ [m]

(1)

where decision variables are x ∈ Rn and the problem parameters are e ∈ Rn, Ai ∈ Rki×n, bi ∈ Rki ,
ci ∈ Rn, di ∈ R, F ∈ Rb×n, g ∈ Rb, l ∈ ({−∞} ∪ R)n, and r ∈ ({+∞} ∪ R)n. For more details
of SOCP-related concepts, please refer to Appendix B.1

Open issue: While GNNs have successfully modeled linear and convex quadratic relationships,
handling SOC constraints remains challenging. Although SOC constraints can be reformulated as
quadratic constraints, this transformation has critical limitations: the resulting quadratic coefficient

2

Figure 2: The graph representation of SOCPs and the message passing steps in GNN design. A
specific SOCP instance and its corresponding SOCP-graph are included in Fig. 5, Appendix B.4.

matrices may be non-positive semidefinite, making existing GNN architectures for convex quadratic
constraints theoretically inapplicable, and the transformation increases graph complexity while failing
to exploit the inherent sparse structure of SOC constraints. Developing GNN models that efficiently
process conic constraints with theoretical guarantees remains an open problem.

4 Methodology

We address this challenge of GNN for SOCP by introducing the following graph representations:

4.1 Graph Representation of SOCPs

As shown in Fig. 2, the graph representation of a SOCP consists of four types of nodes, to represent
decision variables (V1), polyhedron constraints (V2), minor conic constraints (V3), and major conic
constraints (V4):

• V1 := {vj}j∈[n] denotes decision variables, where each node vj is associated with a feature tuple
(ej , lj , rj), representing the objective coefficient, variable lower, and upper bounds.

• V2 := {sk}k∈[b] denotes polyhedron constraints equipped with feature (gk) for each node.

• V3 := {oil}l∈[ki]
i∈[m] denotes the minor conic constraint, where each node oil represents the i-th conic

constraint’s l-th component, with feature (bi,l).
• V4 := {qi}i∈[m] denotes the i-th conic constraint with feature (di).

The SOCP graph includes four types of edges to model the interactions between the decision variables
and different constraints:

• ekj ∈ V1 × V2 denote the edges between the variable node vj and the polyhedron constraint node
sk, with weight Fkj .

• ej,il ∈ V1 × V3 denote the edge between variable node vj and minor conic constraint node oil,
with weight Ai,lj .

• eij ∈ V1 × V4 denote the edge between the variable node vj and major conic constraint node qi,
with weight ci,j .

• eil,i ∈ V3 × V4 denote the edge between node oil and node qi, with a constant weight 1.
Remark 1 (Insights of Graph Design). For linear objectives and polyhedral constraints, our structure
builds upon previous works [8]. However, for nonlinear second-order cone constraints, we exploit
the linear relationships within the conic constraint—specifically, between Ai and x, and between
ci and x. By representing the left-hand side and right-hand side as separate constraint nodes with
linear interactions, and connecting them via an edge, we decompose the challenging nonlinear conic
constraint into components amenable to efficient graph representations.
Remark 2 (SOCP→ QCQP2). One may note that SOC constraints, ∥Ax+ b∥2 ≤ c⊤x+ d, can be
transformed into quadratic constraints by squaring both sides, potentially enabling the application of

2Please refer to Appendix B.2 for detailed equivalent SOCP formulations.

3

previous work on quadratic constraints [6, 7]. However, this transformation introduces two significant
challenges: (i) the resulting quadratic coefficient matrix A⊤A− cc⊤ may not be positive semidefinite,
rendering previous work theoretically inapplicable for such a non-convex QC; and (ii) the quadratic
coefficient matrix A⊤A− cc⊤ may be dense, losing the potential sparse/low-rank structure of A and
c in the SOC constraint and making the graph representation and message passing inefficient.
Remark 3 (Convex QCQP→ SOCP). Conversely, we may transform convex quadratic constraints
of the form x⊤Qx + c⊤x + d ≤ 0 into SOC constraints for more effective graph representation.
For example, we can apply matrix decomposition Q = LL⊤ where L ∈ Rn×r, and reformulate the
constraint as

∥∥[(1 + c⊤x+ d)/2; LTx]
∥∥
2
≤ (1− c⊤x− d)/2. Such a transformation is particularly

efficient for low-rank matrices Q where r ≪ n, as it reduces the complexity of the graph representa-
tion for original convex quadratic constraints, from quadratic node [6] to minor conic constraint node
via SOC graph representation. The convex quadratic objective in QCQP can also be converted to a
linear objective by adding the epigraph constraint [15]. Thus, a convex QCQP with n variables and
m quadratic constraints is equivalent to an SOCP with n+ 1 variables and m+ 1 conic constraints
(potentially low-rank). We further provide a quantitative comparison in the next section (Table 3).

4.2 Message Passing in SOCP-GNNs

Given the established graph representation of SOCPs, we propose message-passing (MP)-GNNs,
consisting of an embedding layer, T message-passing layers (each comprised of three sub-layers),
and a readout layer, detailed as follows:

• Embedding Layer: For all nodes, the input features h0,v, h0,s, h0,o, h0,q are initialized by embed-
ding the node features into a hidden space Rh0 , where h0 is the space dimension. Specifically,

h0,v ← ĝ01(h
v), ∀v ∈ V1, h0,s ← ĝ02(h

s),∀s ∈ V2

h0,o ← ĝ03(h
o), ∀o ∈ V3, h0,q ← ĝ04(h

q), ∀q ∈ V4

where ĝ0l are learnable embedding functions for l = 1, 2, 3, 4, and hv, hs, ho, hq denotes the node
features for v ∈ V1, s ∈ V2, o ∈ V3, q ∈ V4, respectively.

• Message-Passing Layer: Each message-passing layer consists of three sub-layers for updating
the features of nodes with learnable functions f t

l , g
t
l . For notation simplicity, wij represents the

weight of edge eij and τ(n) ∈ {1, 2, 3, 4} denotes the index of the node set for a node n.
– Updating for all constraint nodes (V1 → V2 + V3 + V4): ∀s ∈ V2 and ∀n ∈ V3 ∪ V4, we

update the embedding as:

ht+1,s ← gt1

(
ht,s,

∑
v∈V1

wv,sf
t
1(h

t,v)

)
, h̄t,n ← gtτ(n)−1

(
ht,n,

∑
v∈V1

wv,nf
t
τ(n)−1(h

t,v)

)
– Updating between major and minor conic constraint nodes (V3 → V4 and V4 → V3):
∀q ∈ V4 and ∀o ∈ V3, we update the embedding as:

ht+1,q ← gt4

(
h̄t,q,

∑
o∈V3

wo,qf
t
4(h̄

t,o)

)
, ht+1,o ← gt5

(
h̄t,o,

∑
q∈V4

wq,of
t
5(h

t+1,q)

)
– Updating for variable nodes (V2 + V3 + V4 → V1): ∀v ∈ V1, we update the embedding as:

ht+1,v ← gt6

(
ht,v,

∑
s∈V2

ws,vf
t
6(h

t+1,s),
∑
o∈V3

wo,vf
t
7(h

t+1,o),
∑
q∈V4

wq,vf
t
8(h

t+1,q)

)
• Readout layer: The readout layer leverages a learnable function fout to map the node embedding
hT,v output by the T -th (i.e., last) message-passing layer for v ∈ V1 ∪ V2 ∪ V3 ∪ V4, to a readout
y in a desired output space Ra, where a is the output dimension. For example:

– Graph-level scalar output (e.g., predicting SOCP feasibility with a = 1):

y = fout (I1, I2, I3, I4)

– Node-level vector output (e.g., predicting SOCP optimal solutions with a = n)

yi = fout
(
hT,vi , I1, I2, I3, I4

)
where I1 =

∑
v∈V1

hT,v, I2 =
∑

s∈V2
hT,s, I3 =

∑
o∈V3

hT,o, I4 =
∑

q∈V4
hT,q .

4

Number of Nodes 1-Layer MP
Complexity

[6] O(n2 +m) O(n3 +mn2)
[7] O(mn) O(mn2)
Ours O(n+

∑m
i=0 ri) O(n ·

∑m
i=0 ri)

Figure 3: Complexity comparison of GNNs for con-
vex QCQP with n variables, m quadratic constraints,
and quadratic coefficient matrix of ranks ri ≤ n,
i = 0, . . . ,m, where i = 0 indicate the quadratic matrix
from objective.

As mentioned in Remarks 2 and 3, our SOCP-
GNN also efficiently handles convex QCQPs
by reformulating them into SOCP. Based on
the GNN architecture described above, we an-
alyze both the node and message passing com-
plexity compared to previous works on con-
vex QCQP [6, 7]. Our SOCP-GNN achieves
the same order of node and message passing
complexity as state-of-the-art GNNs designed
specifically for QCQP. Moreover, SOCP-GNN
becomes more efficient when the quadratic ma-
trices exhibit low-rank structures.

Therefore, SOCP-GNN not only extends theoretical applicability to the broader class of SOCP beyond
convex QCQPs, but also maintains competitive computational complexity when restricted to the
convex QCQP subclass. See detailed discussion in Appendix B.5.

5 Universality of GNN for SOCPs

With the established graph representation and corresponding GNN, we formally prove the universality
of the GNN for predicting key properties of SOCPs, like the instance feasibility and optimal solutions.

5.1 Formal Definitions

Definition 5.1 (Spaces of SOCP-Graphs). Let Gn,m,,k1,...,km,b
SOCP denote the set of graph representations

for all SOCPs with n variables, m conic constraints with dimension k1, ..., km, and b polyhedron
constraints.
Definition 5.2 (Spaces of SOCP-GNNs). We define Fn,m,,k1,...,km,b

SOCP (Ra) as the set of message
passing GNNs proposed in Sec. 4.2 that map the input graph in Gn,m,,k1,...,km,b

SOCP to a target output in
Ra. Each GNN is parameterized by continuous embedding functions g0l1 , l1 ∈ [4], continuous hidden
functions in the message passing layers gtl2 , l2 ∈ [6] and f t

l3
, l3 ∈ [8], and the continuous readout

function fout.
Definition 5.3 (Target mappings3). Let GSOCP be a graph representation of a SOCP problem. We
define the following target mappings.

• Feasibility mapping: Φfeas(GSOCP) = 1 if the SOCP is feasible and Φfeas(GSOCP) = 0 otherwise.

• Optimal solution mapping: Φsol(GSOCP) = x∗, where x∗ is the optimal solution of the SOCP4.

5.2 Universal Approximation of SOCP-GNNs

Here, we provide the main theoretical results to validate the SOCP-GNN’s universal expressivity for
SOCP, i.e., there always exists an SOCP-GNN that can universally approximate target mappings in
Def. 5.3 within given error tolerance:

Theorem 1. For any Borel regular probability measure P on the space of SOCPs Gn,m,,k1,...,km,b
SOCP

and any δ, ϵ > 0, there exists F ∈ Fn,m,,k1,...,km,b
SOCP (Ra) such that for any target mapping Φ :

Gn,m,,k1,...,km,b
SOCP → Ra defined in Def. 5.3, we have

P{||F (GSOCP)− Φ(GSOCP)|| > δ} < ϵ. (2)

The detailed proof is provided in Appendix C. This Theorem formally establishes the universal
expressivity of the proposed SOCP-GNNs. The proof structure follows established foundations for
LP in [8]. To deal with the non-linear conic constraints, we leverage the equivariance, convexity, and
separability5 of the ℓ2 norm, and then establish the expressive power of SOCP-GNNs. We further
extend the universal expressivity of the proposed GNN to p-order cone programming in Appendix
C.6, since the core Lemmas in our proof are also satisfied for the ℓp norm.

3For more target mappings, please refer to Def. B.1. Theorem 1 also holds for these target mappings.
4Since an SOCP may admit multiple optimal solutions, we choose the one with minimum l2 norm [8].
5Please refer to those definitions in Definition C.2 and C.3.

5

6 Numerical Experiments

In this section, we generate random SOCP instances to demonstrate the effectiveness of SOCP-GNN.
For dataset generation, we randomly sample coefficient matrices and constraint parameters following
the CVXPY example code structure. We denote an SOCP instance by a tuple (n, b,m), where n
represents the number of decision variables, b denotes the number of polyhedral constraints, and
m indicates the number of second-order cone constraints. The total input parameters for an SOCP
(n, b,m) are of dimension O(n · (b + m)). Each instance is solved in CVXPY to obtain ground
truth solutions, forming our training dataset. We collected 5,000 samples for three problem scales,
respectively. We then train SOCP-GNN using standard supervised learning procedures for optimal
solution predictions. We also test the feasibility classification in Appendix D.

Although SOCP instances can be reformulated as QCQPs, existing GNN-based approaches for QCQP
[6, 7] do not provide publicly available implementations. Therefore, we employ a fully-connected
neural network (FCNN) as our primary baseline for comparison, where the FCNN receives the same
problem parameters as input in vectorized form. This comparison allows us to isolate the benefits
of the graph structure and message-passing mechanisms inherent in SOCP-GNN against a standard
FCNN baseline. Besides the network structure, other training settings, such as learning rate and batch
size, remain the same for both networks. All experiments are executed on an NVIDIA H200 GPU.

(a) Small SOCP: (50,10,10) (b) Medium SOCP (100,50,50) (c) Large SOCP (500,100,100)

Figure 4: Comparison between the proposed GNN and FCNN for predicting optimal solutions of
SOCPs. The GNN uses approximately 0.6M parameters across all three problem scales, while the
FCNN uses approximately 0.6M, 5.9M, and 58M parameters for the respective scales.

As shown in Fig. 6, we compare the solution relative error 6 of our SOCP-GNN against the FCNN
baseline across three different problem scales: Small (a), Medium (b), and Large (c), over 100
training epochs. Our SOCP-GNN demonstrates superior performance across all problem scales,
consistently achieving substantially lower error on both training and validation sets. In particular, for
the large-scale SOCP with input dimension 452,400, our GNN achieves better prediction accuracy
while using significantly fewer parameters, only 0.6M parameters compared to 58M for the FCNN
baseline, representing approximately 100× reduction in model complexity. This demonstrates SOCP-
GNN’s superior parameter efficiency and validates its ability to effectively learn the target mappings
in SOCPs by leveraging the sparse graph structure that naturally characterizes these problems.

7 Conclusions, Limitations, and Future Works

This paper introduces a novel graph representation for SOCP, a fundamental class of convex programs,
covering previous LP, QP, and convex QCQP. We then design a GNN for predicting key properties
of SOCP, like feasibility and optimal solutions, proving its universal expressivity guarantees. Our
designs and guarantees directly extend to p-order cone programming, broadening the scope of GNNs
in conic and polynomial optimization. These results are validated by numerical experiments.

Beyond the expressivity guarantees, several limitations are worth discussing and motivating future
directions: (i) the sample and parameter complexity for GNNs to solve optimization problems, which
is also a challenge shared by prior WL-test-based frameworks [8, 9, 7, 6]; (ii) extending this GNN
paradigm to more general convex problems, such as Semidefinite Programs (SDPs) with matrix
variables, is a significant future step. (iii) unifying existing WL-based and AU-based frameworks for
general GNN analysis will also be explored.

6Following [7], the solution relative error between prediction x̂ and ground truth x∗ is as ∥x̂−x∗∥22
max(1,∥x∗∥22)

6

https://www.cvxpy.org/examples/basic/socp.html

Acknowledments

This work is supported in part by a General Research Fund from Research Grants Council, Hong
Kong (Project No. 11214825), a Collaborative Research Fund from Research Grants Council, Hong
Kong (Project No. C1049-24G), an InnoHK initiative, The Government of the HKSAR, Laboratory
for AI-Powered Financial Technologies, a Shenzhen-Hong Kong-Macau Science & Technology
Project (Category C, Project No. SGDX20220530111203026), and a Start-up Research Grant from
The Chinese University of Hong Kong, Shenzhen (Project No. UDF01004086). The authors would
also like to thank the anonymous reviewers for their helpful comments.

References
[1] Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. Applications of

second-order cone programming. Linear algebra and its applications, 284(1-3):193–228, 1998.

[2] Md Mahmud-Ul-Tarik Chowdhury, Sukumar Kamalasadan, and Sumit Paudyal. A second-order
cone programming (socp) based optimal power flow (opf) model with cyclic constraints for
power transmission systems. IEEE Transactions on Power Systems, 39(1):1032–1043, 2023.

[3] Burak Kocuk, Santanu S Dey, and X Andy Sun. Strong socp relaxations for the optimal power
flow problem. Operations Research, 64(6):1177–1196, 2016.

[4] Qingjiang Shi, Weiqiang Xu, Tsung-Hui Chang, Yongchao Wang, and Enbin Song. Joint
beamforming and power splitting for miso interference channel with swipt: An socp relaxation
and decentralized algorithm. IEEE Transactions on Signal Processing, 62(23):6194–6208,
2014.

[5] Amin Fakhari, Aditya Patankar, Jiayin Xie, and Nilanjan Chakraborty. Computing a task-
dependent grasp metric using second-order cone programs. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4009–4016. IEEE, 2021.

[6] Chenyang Wu, Qian Chen, Akang Wang, Tian Ding, Ruoyu Sun, Wenguo Yang, and Qingjiang
Shi. On representing convex quadratically constrained quadratic programs via graph neural
networks. arXiv preprint arXiv:2411.13805, 2024.

[7] Ziang Chen, Xiaohan Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. Expressive power of
graph neural networks for (mixed-integer) quadratic programs. arXiv preprint arXiv:2406.05938,
2024.

[8] Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear
programs by graph neural networks. arXiv preprint arXiv:2209.12288, 2022.

[9] Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing mixed-
integer linear programs by graph neural networks, 2023.

[10] Chendi Qian, Didier Chételat, and Christopher Morris. Exploring the power of graph neural
networks in solving linear optimization problems. In International conference on artificial
intelligence and statistics, pages 1432–1440. PMLR, 2024.

[11] Bingheng Li, Linxin Yang, Yupeng Chen, Senmiao Wang, Qian Chen, Haitao Mao, Yao Ma,
Akang Wang, Tian Ding, Jiliang Tang, et al. Pdhg-unrolled learning-to-optimize method for
large-scale linear programming. arXiv preprint arXiv:2406.01908, 2024.

[12] Chendi Qian and Christopher Morris. Towards graph neural networks for provably solving
convex optimization problems. arXiv preprint arXiv:2502.02446, 2025.

[13] Linxin Yang, Bingheng Li, Tian Ding, Jianghua Wu, Akang Wang, Yuyi Wang, Jiliang Tang,
Ruoyu Sun, and Xiaodong Luo. An efficient unsupervised framework for convex quadratic
programs via deep unrolling, 2024.

[14] Morris Yau, Nikolaos Karalias, Eric Lu, Jessica Xu, and Stefanie Jegelka. Are graph neural
networks optimal approximation algorithms? Advances in Neural Information Processing
Systems, 37:73124–73181, 2025.

7

[15] Farid Alizadeh and Donald Goldfarb. Second-order cone programming. Mathematical pro-
gramming, 95(1):3–51, 2003.

[16] Xiang Pan, Tianyu Zhao, Minghua Chen, and Shengyu Zhang. Deepopf: A deep neural network
approach for security-constrained dc optimal power flow. IEEE Transactions on Power Systems,
36(3):1725–1735, 2020.

[17] Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient
deep learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44,
2021.

[18] Ziang Chen, Jialin Liu, Xiaohan Chen, Xinshang Wang, and Wotao Yin. Rethinking the capacity
of graph neural networks for branching strategy. arXiv preprint arXiv:2402.07099, 2024.

[19] Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and
Ellen Vitercik. How much data is sufficient to learn high-performing algorithms? generalization
guarantees for data-driven algorithm design. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 919–932, 2021.

[20] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch:
Generalization guarantees and limits of data-independent discretization. Journal of the ACM,
71(2):1–73, 2024.

[21] Qian Chen, Tianjian Zhang, Linxin Yang, Qingyu Han, Akang Wang, Ruoyu Sun, Xiaodong
Luo, and Tsung-Hui Chang. Symilo: A symmetry-aware learning framework for integer linear
optimization. Advances in Neural Information Processing Systems, 37:24411–24434, 2024.

[22] Ian Horrocks Matthew Morris, Bernardo Cuenca Grau. Orbit-equivariant graph neural networks.
In 2024 The International Conference on Learning Representations(ICLR), pages 7056–7062.
ICLR, 2024.

[23] Qian Chen, Lei Li, Qian Li, Jianghua Wu, Akang Wang, Ruoyu Sun, Xiaodong Luo, Tsung-
Hui Chang, and Qingjiang Shi. When gnns meet symmetry in ilps: an orbit-based feature
augmentation approach. arXiv preprint arXiv:2501.14211, 2025.

[24] Chendi Qian and Christopher Morris. Principled data augmentation for learning to solve
quadratic programming problems. arXiv preprint arXiv:2506.01728, 2025.

[25] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks, 2019.

[26] Qian Li, Tian Ding, Linxin Yang, Minghui Ouyang, Qingjiang Shi, and Ruoyu Sun. On the
power of small-size graph neural networks for linear programming. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

[27] Qian Li, Minghui Ouyang, Tian Ding, Yuyi Wang, Qingjiang Shi, and Ruoyu Sun. Towards
explaining the power of constant-depth graph neural networks for linear programming. In The
Thirteenth International Conference on Learning Representations, 2025.

[28] Yu He and Ellen Vitercik. Primal-dual neural algorithmic reasoning, 2025.

[29] Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small relu networks are powerful memorizers: a
tight analysis of memorization capacity. Advances in neural information processing systems,
32, 2019.

[30] Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural
networks. arXiv preprint arXiv:2006.15646, 2020.

8

Contents
A Discussions on Related Works 9

A.1 GNN for Constrained Optimization . 9
A.2 WL-based Frameworks . 9
A.3 AU-based Frameworks . 10

B Preliminary and Basic Concepts 11
B.1 Basic concepts of SOCPs . 11
B.2 Equivalent Formulations of SOCP . 11
B.3 Target Mappings for SOCP . 12
B.4 An Example for SOCP graphs . 13
B.5 Complexity Comparison with SOTA Works: . 13

C Proof of Main Theorem 14
C.1 SOCP WL-test . 14
C.2 The connection between the WL-indistinguishablity and target property 14
C.3 The measurable property of target mapping . 20
C.4 SOCP GNNs ’s separation power’s relation with SOCP-WL test’s separation power 23
C.5 Main theorem’s proof . 25
C.6 Extension to p-order cone programming . 26

D Experiment Settings and Supplementary Results 27
D.1 Data generation . 27

D.1.1 Generation of feasible SOCP instances 27
D.1.2 Generation of (possible) infeasible SOCP instances 28
D.1.3 Data generation for predicting optimal solutions: 28
D.1.4 Data generation for predicting the probability: 28

D.2 Implementations and training settings . 28
D.3 Results . 29

A Discussions on Related Works

A.1 GNN for Constrained Optimization

In response to the growing demand for solving large-scale optimization problems in real-time,
“learning to optimize” paradigms have emerged across multiple domains [16, 17]. Among various
neural approaches, Graph Neural Networks (GNNs) have demonstrated particular effectiveness for
optimization problems with inherent graph structures, leveraging the natural correspondence between
problem formulations and graph representations [8, 6, 9].

To understand the fundamental capabilities of GNNs in optimization contexts, research has examined
multiple theoretical and practical aspects, including expressivity [8, 18], generalization properties
[19, 20], and symmetry preservation [21, 22, 23, 24]. The analysis of GNN expressive power in
optimization is primarily guided by two complementary theoretical paradigms: the Weisfeiler-
Lehman (WL)-test-based framework, which characterizes what optimization properties GNNs
can theoretically distinguish, and the Algorithm-Unrolling (AU)-based framework, which estab-
lishes connections between classical optimization algorithms and GNN architectures through direct
algorithmic simulation.

A.2 WL-based Frameworks

This section reviews optimization problems where GNNs have been proven to achieve universal
approximation capabilities through theoretical frameworks based on Weisfeiler-Leman (WL) tests.

Linear Programming (LP) [8]: It establishes a foundational theoretical framework for analyzing
GNN expressivity in solving LPs through WL-tests. Building upon the bipartite graph representation
introduced by [25], they demonstrate a formal connection between GNN expressivity and WL-tests
on graph structures. Their key theoretical contribution proves that GNNs achieve universality over
the parameter space of LPs. Specifically, they show the existence of message-passing GNNs capable

9

of reliably approximating fundamental LP properties, including feasibility, optimal objective value,
and optimal solutions.

Mixed-Integer Linear Programming (MILP) [9]: The extension to MILP presents significant
theoretical challenges not encountered in the continuous LP setting. The fundamental limitation
arises from the discrete nature of integer variables, where GNN expressivity remains constrained
by the discriminative power of WL-tests. A critical issue emerges: two MILP instances that are
indistinguishable under WL-tests may exhibit fundamentally different properties regarding feasibility
and optimal solutions. To address these challenges, the authors identify a restricted class of MILPs
satisfying the “unfoldable” property, for which universality guarantees can be established. Addition-
ally, they demonstrate that augmenting the graph representation with random node features enables
GNNs to achieve universality over the complete class of MILP problems, effectively circumventing
the limitations imposed by deterministic WL-tests.

Linearly Constrained Quadratic Programming (LCQP) [7]: While modeling linear constraints
through a bipartite graph is relatively straightforward, extending graph-based approaches to handle
quadratic objective functions presents challenges. It addresses this by introducing self-connections
within variable nodes to capture quadratic interactions in the objective function. Their framework
extends a broader class of mixed-integer LCQP problems satisfying the MP-tractable property,
establishing universality results for GNNs on specific computational tasks within this class.

The authors further extend their approach to convex quadratically constrained quadratic programming
(QCQP) through dynamic edge update mechanisms, as detailed in their supplementary materials,
demonstrating the framework’s adaptability to more complex constraint structures.

Convex Quadratically Constrained Quadratic Programming (QCQP) [6]: It provides a compre-
hensive treatment of convex QCQPs, addressing the significant complexity introduced by multiple
convex quadratic constraints. The key innovation lies in their sophisticated design of edge weights and
specialized GNN architecture, which together ensure that the resulting message-passing framework
achieves universality for the complete class of convex QCQP problems. This represents a significant
advancement in handling optimization problems with complex constraint structures through GNNs.

A.3 AU-based Frameworks

Algorithm unrolling represents a fundamental approach in learning-based optimization, enhancing
interpretability by directly simulating classical algorithmic procedures through neural network archi-
tectures. This section reviews successful applications of GNNs in unrolling established optimization
algorithms.

Interior Point Method [10, 12]: The unrolling of Interior Point Methods (IPM) establishes a direct
and interpretable correspondence between classical optimization algorithms and GNNs. Qian et al.
[10] first provide theoretical foundations demonstrating that standard IPM iterations for LPs can be
precisely simulated through sequences of GNN message-passing operations. This framework was
extended to the broader class of LCQPs [12], maintaining the fundamental correspondence between
algorithmic steps and neural computations.

Primal-Dual Hybrid Gradient [11, 13]: The unrolling of Primal-Dual Hybrid Gradient (PDHG)
algorithms provides a scalable framework for accelerating first-order optimization methods through
learning-based approaches. Li et al. [11] introduce PDHG-Net for large-scale LPs, demonstrating
that optimal LP solutions can be approximated using polynomial-sized neural networks. This
foundational work establishes both theoretical guarantees and practical scalability for the unrolled
PDHG framework. The extension to QP represents another advancement [13], which introduces an
innovative unsupervised training methodology that directly incorporates Karush-Kuhn-Tucker (KKT)
optimality conditions into the loss function.

Specialized Algorithms for Structured Problems [26, 27, 14, 28]: For optimization problems
with specialized structures, researchers have developed tailored algorithmic approaches that leverage
problem-specific properties for effective GNN unrolling.

For covering and packing LPs, Li et al. [26] design variants of the Awerbuch-Khandekar algorithm,
successfully unrolling these through careful exploitation of activation function properties. Specifically,
they utilize ELU and sigmoid activation functions to simulate exponential operations and Heaviside

10

step functions, respectively, enabling reproduction of the classical algorithm’s behavior within the
GNN framework.

In the context of sparse binary LPs, Li et al. [27] propose a constant-round distributed algorithm that
applies to almost all sparse binary LP instances. This algorithm naturally aligns with constant-depth,
constant-width GNN architectures, providing theoretical justification for the empirical success of
shallow networks in this domain.

Yau et al. [14] demonstrate that polynomial-sized GNNs can effectively learn powerful approximation
algorithms for Maximum Constraint Satisfaction Problems (Max-CSP). Their approach leverages
the equivalence between projected gradient descent on low-rank vector formulations of relaxed
semidefinite programs and local message-passing operations inherent in GNN architectures.

Additionally, He et al. [28] align GNN architectures with primal-dual algorithmic reasoning for
minimum hitting set problems, achieving empirical success in generalization across problem sizes
and out-of-distribution scenarios.

B Preliminary and Basic Concepts

B.1 Basic concepts of SOCPs

For problem 1, we denote all the feasible solution by:

Xfeasible :=
{
x ∈ Rn | Fx ≤ g; l ≤ x ≤ r; ∥Aix+ bi∥2 ≤ cTi x+ di, ∀i ∈ [m]

}
. (3)

If Xfeasible is not empty, problem 1 is said to be feasible; otherwise, it is said to be infeasible. A
feasible SOCP is bounded if and only if the objective function is bounded from below in Xfeasible,
i.e., ∃a ∈ R such that

eTx ≥ a,∀x ∈ Xfeasible

Otherwise, the SOCP instance is unbounded.

For a feasible and bounded SOCP, its optimal value is defined as: inf {eTx,∀x ∈ Xfeasible}.
Moreover, x∗ is said to be an optimal solution if it’s feasible and

eTx∗ ≤ eTx, ∀x ∈ Xfeasible

Unlike convex QCQP, an SOCP instance may not admit an optimal solution even when it’s feasible
and bounded (corollary 4). Moreover, an SOCP instance can also have multiple solutions.

B.2 Equivalent Formulations of SOCP

Dimension Reduction of SOC Constraints: Consider a second-order cone (SOC) constraint of
the form ∥Ax+ b∥2 ≤ cTx+ d, where A ∈ Rk×n has rank r ≤ min(k, n). Let the singular value
decomposition of A be A = UΣV T , where U ∈ Rk×r has orthonormal columns, Σ ∈ Rr×r is
diagonal with positive entries, and V ∈ Rn×r has orthonormal columns.

Since U has orthonormal columns, we have UTU = Ir and UUT is the orthogonal projection onto
the column space of A. We can decompose the vector b as

b = b∥ + b⊥, where b∥ = UUT b, b⊥ = (Ik − UUT)b (4)

where b∥ lies in the column space of A and b⊥ is orthogonal to it.

Define A′ = ΣV T ∈ Rr×n and b′ = UT b∥ ∈ Rr. Then:

A = UΣV T = UA′ (5)

and
Ax+ b = UA′x+ UUT b+ (Ik − UUT)b = U(A′x+ UT b∥) + b⊥ (6)

Since U has orthonormal columns and b⊥ is orthogonal to the column space of U , we have:

∥Ax+ b∥2 = ∥U(A′x+ UT b∥) + b⊥∥2 =

∥∥∥∥(A′x+ UT b∥
∥b⊥∥2

)∥∥∥∥
2

(7)

11

This reformulation reduces the constraint to at most r + 1 rows, which is beneficial when k ≫ r.

Reformulation of SOCP to QCQP: A SOC constraint ∥Ax+ b∥2 ≤ cTx+ d can be equivalently
written as the quadratic constraint (may be non-convex) by squaring both sides as:

(Ax+ b)T (Ax+ b) ≤ (cTx+ d)2

xTATAx+ 2bTAx+ ∥b∥22 ≤ xT ccTx+ 2dcTx+ d2

provided that cTx+ d ≥ 0. Rearranging terms yields:

xT (ATA− ccT)x+ 2(bTA− dcT)x+ (∥b∥22 − d2) ≤ 0 (8)

This transformation is valid only when the right-hand side of the original SOC constraint is non-
negative, which must be enforced as an additional linear constraint cTx+ d ≥ 0.

Reformulation of Convex QCQP to SOCP: Conversely, we may transform convex quadratic
constraints of the form x⊤Qx + c⊤x + d ≤ 0 into SOC constraints. Since Q ∈ Sn+ is positive
semidefinite, we can apply matrix decomposition Q = LL⊤ where L ∈ Rn×r with r = rank(Q).
This decomposition can be obtained through Cholesky factorization when Q is positive definite, or
through eigenvalue decomposition in the general case.

The quadratic constraint can then be reformulated as:

x⊤Qx+ c⊤x+ d ≤ 0

x⊤LL⊤x+ c⊤x+ d ≤ 0

∥L⊤x∥22 + c⊤x+ d ≤ 0

Using the rotated second-order cone representation, we can reformulate the constraint as:∥∥∥∥(1+c⊤x+d
2

L⊤x

)∥∥∥∥
2

≤ 1− c⊤x− d

2
(9)

This formulation is valid when 1−c⊤x−d ≥ 0, which ensures that the right-hand side is non-negative.
The constraint c⊤x+ d ≤ 0 from the original quadratic form is automatically satisfied when the SOC
constraint holds.

For the convex quadratic objective function minx x⊤Qx+ c⊤x+ d, we can reformulate it using an
epigraph variable τ :

min
x,τ

τ

s.t. x⊤Qx+ c⊤x+ d ≤ τ

Using the matrix decomposition Q = LL⊤, this becomes:

min
x,τ

τ

s.t.
∥∥∥∥(1−τ+c⊤x+d

2
L⊤x

)∥∥∥∥
2

≤ 1 + τ − c⊤x− d

2

B.3 Target Mappings for SOCP

Then, we propose all our target mappings.
Definition B.1 (Target mappings). Let GSOCP be a graph representation of a SOCP problem. We
define the following target mappings.

• Feasibility mapping: We define Φfeas(GSOCP) = 1 if the SOCP problem is feasible and
Φfeas(GSOCP) = 0 otherwise.

• Boundedness mapping: For a feasible SOCP problem, we define Φbound(GSOCP) = 1 if the
SOCP problem is bounded and Φbound(GSOCP) = 0 otherwise.

12

• Optimal value mapping: For a feasible and bounded SOCP problem, we set Φopt(GSOCP)
to be its optimal objective value.

• Solution Attainability Mapping : For a feasible and bounded SOCP problem, its optimal
value (infimum) is finite, but this value is not necessarily attained by a feasible point.
Therefore, we introduce a mapping Φattain(GSOCP) which equals 1 if an optimal solution
exists, and 0 otherwise.

• Optimal solution mapping: For an SOCP problem that admits a solution, its optimal
solution might not be unique. Therefore, we define the optimal solution mapping to be
Φsol(GSOCP) = x∗, where x∗ is the solution with the smallest l2 norm of the corresponding
SOCP

B.4 An Example for SOCP graphs

Figure 5 is an example of a toy SOCP and its corresponding graph representation:

Figure 5: A toy SOCP instance with its graph representation

B.5 Complexity Comparison with SOTA Works:

Complexity for representing convex QCQP: We discuss further about what we mentioned in remark
1, 2, 3. For a convex QCQP instance with m quadratic constraints and n variables, where the i-th
constraint matrix has rank ri ≤ n, our graph representation requires n + m + 2 +

∑m
i=0(ri + 1)

nodes while the architecture in [6] requires n + m + 1
2n(n + 1) nodes and architecture in [7]

requires m+ n+mn “nodes” that need to be updated dynamically. It’s noteworthy that our graph
representation only uses sparse connections between these nodes via using minor conic nodes as a
sparse intermediate information passing layer between variables and conic constraints. As a result,
our SOCP-GNN requires only O(n(

∑m
i=0 ri)) messages per iteration. This is in sharp contrast to

the architecture by [6], which models each quadratic term explicitly and thus incurs a much higher
per-iteration cost of O(n3 +mn2). And result in [7] use O(mn2) messages each iteration.

Reducing the Node Complexity of SOCP-GNNs: One may note that for SOC constraints ∥Ax+
b∥2 ≤ c⊤x + d with A ∈ Rk×n of a large k ≫ n, the GNN need k minor conic constraint
nodes to represent it. However, as shown in Appendix B.1, we can reduce the complexity to O(n)
by reformulating it into another equivalent SOC constraint with corresponding A′ ∈ Rk′×n of
k′ ≤ n + 1. This reformulation makes SOCP-GNN more scalable for the large and structured
problems in real-world applications.

13

Algorithm 1 The WL test for SOCP-Graphs (denoted by WLSOCP)
1: Require: A graph instance G = (V,E) with node sets V1, V2, V3, V4, initial node features

hv, hs, ho, hq , and an iteration limit L > 0.
2: Initialize initial colors for all nodes:
3: C0,v ← HASH0,V (h

v), ∀v ∈ V1

4: C0,s ← HASH0,S(h
s), ∀s ∈ V2

5: C0,o ← HASH0,O(h
o), ∀o ∈ V3

6: C0,q ← HASH0,Q(h
q), ∀q ∈ V4

7: for l = 1 to L do
8: Update colors for polyhedron constraint nodes (V2):
9: Cl,s ← HASH

(
Cl−1,s,

∑
v∈V1

ws,vHASH(Cl−1,v)
)

10: Update colors for minor conic constraint nodes (V3):
11: C̄l−1,o ← HASH

(
Cl−1,o,

∑
v∈V1

wo,vHASH(Cl−1,v)
)

12: Update colors for major conic constraint nodes (V4):
13: C̄l−1,q ← HASH

(
Cl−1,q,

∑
v∈V1

wq,vHASH(Cl−1,v)
)

14: Update colors for major conic constraint nodes (V4):
15: Cl,q ← HASH

(
C̄l−1,q,

∑
o∈V3

wq,oHASH(C̄l−1,o)
)

16: Update colors for minor conic constraint nodes (V3):
17: Cl,o ← HASH

(
C̄l−1,o,

∑
q∈V4

wo,qHASH(Cl,q)
)

18: Update colors for variable nodes (V1):
19: Cl,v ← HASH

(
Cl−1,v,M1,M2,M3

)
,where:

M1 =
∑
s∈V2

wv,sHASH(Cl,s)

M2 =
∑
o∈V3

wv,oHASH(Cl,o)

M3 =
∑
q∈V4

wv,qHASH(Cl,q)

20: end for
21: Return The multisets of final colors: {{CL,v}}v∈V1

, {{CL,s}}s∈V2
, {{CL,o}}o∈V3

, {{CL,q}}q∈V4

C Proof of Main Theorem

C.1 SOCP WL-test

The separation power of traditional GNNs is closely related to the Weisfeiler-Lehman (WL) test, a
classical algorithm to identify whether two given graphs are isomorphic. To apply the WL test on
SOCP-graphs, we design a modified WL test in Algorithm 1.

We denote Algorithm 1 by WLSOCP(·) and we assume that there is no collision of Hash functions
and we say that two SOCP-graphs G, Ĝ can be distinguished by Algorithm 1 if and only if there exist
a positive integer L and injective hash functions mentioned above such that the output multisets of
G, Ĝ are different.

C.2 The connection between the WL-indistinguishablity and target property

Here, we analyze the WL test’s convergence and corresponding stable properties to lead to the core
lemma

Lemma 1. Assume all hash functions are real-valued and collision-free, and we terminate the SOCP
WL-test when the number of distinct colors no longer changes in an iteration. Then the SOCP WL-test
terminates in finite iterations.

14

Proof. Here, notice that the SOCP WL-test satisfies the following two properties:

• If two nodes v, w have different colors in one (sub)iteration, then they will always have
different colors in the following (sub)iterations.

• If after one full iteration, the nodes’ color doesn’t change under some one-to-one color
mapping, then for all iterations after this iteration, the algorithm will always return the same
result.

These two facts have shown that, after one iteration, the color collections either get strictly finer or
remain unchanged. Since the number of nodes is finite, the algorithm terminates in finite iterations.

And now, we study the convergence properties of the SOCP-WL test
Lemma 2. Given the SOCP graph G, assume the SOCP WL-test stabilizes after T ≥ 0 iterations.
The sum of weights from a certain node of one color to all nodes of another color only depends on the
color of the given node. Specifically, the sum (taking W1 for variable nodes and W2 for polyhederon
constraint nodes as an example) is:

S(W2,W1;G) :=
∑

CT,v=W1

ws,v

and is well-defined for all s, such that CT,s = W2

Similarly, for any color of variables W1, color of polyhedron constraints W2, color of minor conic
constraints W3 and color of major conic constraints W4, the following sums are well-defined:

S(W3,W1;G) :=
∑

CT,v=W1

wo,v, CT,o = W3

S(W4,W3;G) :=
∑

CT,o=W3

wq,o, CT,q = W4

S(W1,W2;G) :=
∑

CT,s=W2

wv,s, CT,v = W1

S(W1,W3;G) :=
∑

CT,o=W3

wv,o, CT,v = W1

S(W1,W4;G) :=
∑

CT,q=W4

wv,q, CT,v = W1

S(W4,W1;G) :=
∑

CT,v=W1

wq,v, CT,q = W4

Proof. Let v1, v2 be two nodes with color W1 = CT,v1 = CT,v2 . Since the SOCP WL-test has
stabilized, the node pairs won’t be finer, i.e.∑

s

wv1,sHASH(CT,s) =
∑
s

wv2,sHASH(CT,s).

Rearranging according to W2 = CT,s, we get:∑
W2

∑
CT,s=W2

wv1,sHASH(W2) =
∑
W2

∑
CT,s=W2

wv2,sHASH(W2).

Assuming that the hash function is collision-free and maps different colors into different linearly
independent vectors, we conclude that:∑

CT,s=W2

wv1,s =
∑

CT,s=W2

wv2,s,

15

i.e., S(W1,W2;G) :=
∑

CT,s=W2
wv,s, CT,v = W1 is well-defined.

Other proofs are similar.

An immediate conclusion is listed following.

Corollary 1. If The SOCP WL-test cannot separate the two instances: I, Î (with given sizes
n,m, , k1, ..., km, b, encoded by G, Ĝ ∈ Gn,m,,k1,...,km,b

SOCP), then: All the sum in lemma 3 is well
defined for G and Ĝ and equal each other respectively.

Meanwhile, we define: Wij to be the collection of nodes with node type i and color j. By summing
the cross terms and rearranging the sum, we have:

S(W1j ,W2k;G)|W1j | = S(W2k,W1j ;G)|W2k|

S(W1j ,W3l;G)|W1j | = S(W3l,W1j ;G)|W3l|
S(W1j ,W4m;G)|W1j | = S(W4m,W1j ;G)|W4m|

.

Now, we begin to prove the following lemma.

Lemma 3. Let I, Î (with given sizes n,m, , k1, ..., km, b, encoded by G, Ĝ ∈ Gn,m,,k1,...,km,b
SOCP) be

two SOCP instances. If the following holds:

• The SOCP WL-test cannot separate the two instances;

• x is a feasible solution of I.

Then there exists a feasible solution x̂ for Î whose objective and ℓ2-norm are controlled by x, such
that:

ê · x̂ ≤ e · x
||x̂||2 ≤ ||x||2

Proof. The key to this proof is to take the average among the nodes in the same node pair. Formally,
we define x̂v = 1

|W1j | (
∑

CT,v′=W1j
xv′) for all v, such that: CT,v = W1j

By the Cauchy-Schwarz inequality, we have:

∑
CT,v′=W1j

x2
v′ ≥ |W1j |[

1

|W1j |
(

∑
CT,v′=W1j

xv′)]2

Summing over all possible W1j , we get: ||x̂||2 ≤ ||x||2

Meanwhile, notice that: for all v′, such that: CT,v′
= W1j , their corresponding ev′ , lv′ , rv′ and

êv′ , l̂v′ , r̂v′ are the same, respectively.

Hence, we have: ∑
CT,v′=W1j

ev′xv′ =
∑

CT,v′=W1j

êv′ x̂v′

x̂v ∈ [l̂v, r̂v]

for all possible variable node v and color W1j .

Summing over W1j yields: ∑
v′

ev′xv′ =
∑
v′

êv′ x̂v′

16

Further, consider the edge properties brought by the above lemma, we get:

For the l-th and t-th polyhedron constraint both with color W2k, l, t ∈ {1, 2, · · · , b} (Here, we assume
in both G and Ĝ,the l-th and t-th polyhedron constraint are both with color W2k respectively) the
following inequality holds:

n∑
j=1

Fl,jxj ≤ gt, ⇒ 1

|W2k|
∑

l∈W2k

∑
W1j

∑
v∈W1j

Fl,vxv ≤ gt,

Exchange the order of the sum, we get:

1

|W2k|
∑
W1j

∑
v∈W1j

∑
l∈W2k

Fl,vxv ≤ gt,

Notice that:

1

|W2k|
∑
W1j

∑
v∈W1j

∑
l∈W2k

Fl,vxv =
1

|W2k|
∑
W1j

∑
v∈W1j

∑
l∈W2k

Fl,vx̂v

=
1

|W2k|
∑
W1j

∑
v∈W1j

∑
l∈W2k

F̂l,vx̂v

=
∑
W1j

∑
v∈W1j

F̂l,vx̂v

Thus,
∑

W1j

∑
v∈W1j

F̂l,vx̂v ≤ gt = ĝt = ĝl, which shows that the polyhedron constraint is satisfied.

Similarly, for the u-th and r-th conic constraints both with color W4m, we have:

• After proper rearranging of nodes ousu and orsr , where su = 1, 2, ..., ku; sr = 1, 2, ..., kr,
the color of ousu and orsr , where su = 1, 2, ..., ku; sr = 1, 2, ..., kr, are the same regarding
the order, i.e. CT,oui = CT,ori ,∀i = 1, 2, ..., ku (Notice that :ku = kr).

• du=dr.

• For any node ohi and ojk ∈ V3 with the same stable color, either h = j or the color of node
qh and qj are the same.

Now let’s prove the conic part. For the u-th and r-th major conic constraint node both with color
W4m in both G and Ĝ and the minor conic node j1 corresponds to r-th major conic constraint node
in both G and Ĝ, we have:

Right constraint:

1

|W4m|
∑

CT,u=W4m

cTux+ du

= (
1

|W4m|
∑

CT,u=W4m

∑
W1j

∑
v∈W1j

cuvxv) + d̂r

= (
1

|W4m|
∑
W1j

∑
v∈W1j

∑
CT,u=W4m

cuvxv) + d̂r

= (
1

|W4m|
∑
W1j

∑
v∈W1j

S(W1j ,W4m;G)xv) + d̂r

= (
1

|W4m|
∑
W1j

∑
v∈W1j

S(W1j ,W4m;G)x̂v) + d̂r

17

= (
1

|W4m|
∑
W1j

|W1j |S(W1j ,W4m;G)x̂v) + d̂r

= (
1

|W4m|
∑
W1j

|W4m|S(W4m,W1j ;G)x̂v) + d̂r

= (
∑
W1j

S(W4m,W1j ;G)x̂v) + d̂r = (
∑
W1j

∑
v∈W1j

ĉrvx̂v) + d̂r = ĉTr x̂+ d̂r

Left Constraint: Recall: two nodes in V3 has the same stable color W3l if their corresponding major
conic constraint node’s stable color is the same. So for each stable color W3l in V3, the corresponding
major conic node’s stable colors are all the same, denoted by W4m. And each major conic node
have |W3l|

|W4m| minor nodes with stable color W3l. And we use j ∈ u denotes a minor conic node j

corresponds to node u

1

|W4m|
∑

CT,u=W4m

∑
j∈W3l,j∈u

|W4m|
|W3l|

(Aux+ bu)j

= (b̂r)j1 +
1

|W3l|
∑

CT,u=W4m

∑
j∈W3l,j∈u

(Aux)j

= (b̂r)j1 +
1

|W3l|
∑

CT,u=W4m

∑
j∈W3l,j∈u

∑
W1h

∑
v∈W1h

(Au)jvxv

= (b̂r)j1 +
1

|W3l|
∑
W1h

∑
v∈W1h

∑
CT,u=W4m

∑
j∈W3l,j∈u

(Au)jvxv

= (b̂r)j1 +
1

|W3l|
∑
W1h

∑
v∈W1h

S(W1h,W3l;G)xv

= (b̂r)j1 +
1

|W3l|
∑
W1h

∑
v∈W1h

S(W1h,W3l;G)x̂v

= (b̂r)j1 +
1

|W3l|
∑
W1h

|W1h|S(W1h,W3l;G)x̂v

= (b̂r)j1 +
1

|W3l|
∑
W1h

|W3l|S(W3l,W1h;G)x̂v

= (b̂r)j1 +
∑
W1h

S(W3l,W1h;G)x̂v

= (b̂r)j1 +
∑
W1h

∑
v∈W1h

(̂Ar)j1vx̂v

= (b̂r)j1 + (Ârx̂)j1 = (b̂r + Ârx̂)j1

Conic feasibility for Î

For the u-th conic constraint with stable color W4mand its corresponds minor conic node j with color
W3l, without loss of generality, we assume (Aux+ bu) ’s first N = |W3l|

|W4m| rows’ corresponding to
all the minor conic nodes with color W3l for such u and j, Thus, we have:∑

j1∈r,j1∈W3l

||(b̂r + Ârx̂)j1 ||22 =
|W3l|
|W4m|

|| 1

|W4m|
∑

CT,u=W4m

N∑
j=1

|W4m|
|W3l|

(Aux+ bu)j ||22

≤
N∑
j=1

|| 1

|W4m|
∑

CT,u=W4m

(Aux+ bu)j ||22

18

Hence, summing over all possible W3l for fixed W4m, we have:

||b̂r + Ârx̂||22 =
∑
W3l

∑
j1∈r,j1∈W3l

||(b̂r + Ârx̂)j1 ||22 ≤ ||
1

|W4m|
∑

CT,u=W4m

(Aux+ bu)||22

This yields that:

||b̂r + Ârx̂||2 ≤ ||
1

|W4m|
∑

CT,u=W4m

(Aux+ bu)||2 ≤
1

|W4m|
∑

CT,u=W4m

||(Aux+ bu)||2

≤ 1

|W4m|
∑

CT,u=W4m

cTux+ du = ĉTr x̂+ d̂r

Since r is arbitrarily chosen from W4m, the conic feasibility holds obviously.

Corollary 2. If two SOCP instances I, Î with their graph representations are indistinguishable by
the SOCP-WL test, then the two problems share the same feasibility.

Proof. Let x be a feasible solution for I, then by lemma 3, there exists a feasible solution x̂ for
Î.

Corollary 3. If two SOCP instances I, Î with their graph representations are indistinguishable by
the SOCP-WL test, then the two problems share the same boundness.

Proof. • If one instance is infeasible, by corollary 2, the other instance is infeasible as well,
i.e., they are not bounded.

• If one instance is not bounded from below, denoted by I . Since we can always find a feasible
solution of Î which has a smaller objective value than any fixed feasible solution of I by
Lemma 3, the conclusion is obvious.

Corollary 4. If two SOCP instances I, Î with their graph representations are indistinguishable by
the SOCP-WL test, then the two problems share the same optimal objective value.

Proof. By corollary 3, we only need to consider the case when both instances are feasible and
bounded.

Notice that the feasibility with boundness may not lead to the existence of an optimal solution for
SOCP problems, for example:

min
x1,x2

x1 s.t. ||(2, x1 − x2)||2 ≤ x1 + x2 , x1 ≥ 0, x2 ≥ 0

So, we prove by ”infimum” argument, let p and p̂ be the optimal value of I and Î respectively. Then
for any ϵ > 0, there exists feasible solution x, s.t. eTx ≤ p+ ϵ. By lemma 4, there exists a feasible
solution x̂ of Î, such that p̂ ≤ êT x̂ ≤ eTx ≤ p + ϵ. Let ϵ → 0 yields p̂ ≤ p. Similarly, we have:
p̂ ≥ p, which finishes the proof.

Corollary 5. If two SOCP instances I, Î with their graph representations are indistinguishable by
the SOCP-WL test and one of these instances admits an optimal solution, then the other instance has
an optimal solution as well.

Proof. See the proof of corollary 6.

Corollary 6. If two SOCP instances I, Î with their graph representations are indistinguishable by
the SOCP-WL test, then the two problems share the same optimal solution with the smallest Euclidean
norm if one instance admits an optimal solution up to permutation.

19

Proof. Without loss of generality, we assume that for each variable j, its corresponding stable color in
I, Î after the SOCP-WL test is the same, and I has an optimal solution x with the smallest Euclidean
norm. By using lemma 3 twice, we can construct a feasible solution x̂ for Î and construct a feasible
solution ˆ̂x for I again with

eTx ≥ êT x̂ ≥ eT ˆ̂x and ||x||2 ≥ ||x̂||2 ≥ ||ˆ̂x||2

Hence, x = ˆ̂x. Recall the proof of the lemma 3, the variables in x̂ with the same stable color after
SOCP-WL test already have the same value, so averaging them again won’t change it anymore, i.e.
x̂ = ˆ̂x. Hence, x = x̂ = ˆ̂x. By corollary 4, x̂ is an optimal solution of Î

Now, if there exists an optimal solution y of Î with ||y||2 < ||x̂||2 = ||x||2, by similar proof above,
we can get: y is also an optimal solution of I, which contradicts the fact that: x is the optimal
solution of I with the smallest Euclidean norm. Hence, x̂ is an optimal solution of Î with the smallest
Euclidean norm

C.3 The measurable property of target mapping

Definition C.1. For an SOCP instance G:

minimize eTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . ,m

Fx ≤ g

li ≤ xi ≤ ri, i = 1, ..., n

Its parameter is defined as (e, {Ai}mi=1, {bi}mi=1, {ci}mi=1, {di}mi=1, F, g, l, r), and all the parameter
form the parameter space P

Notice that: For an SOCP instance, there exists a bijective mapping I : Gn,m,,k1,...,km,b
SOCP → P with

I(G) = (e, {Ai}mi=1, {bi}mi=1, {ci}mi=1, {di}mi=1, F, g, l, r) for any SOCP instance G parametrized by
(e, {Ai}mi=1, {bi}mi=1, {ci}mi=1, {di}mi=1, F, g, l, r). And we equip both Gn,m,,k1,...,km,b

SOCP andP with the
standard Euclidean topology and product topology in its feature space. Then I is a homeomorphism.

Remark: If we can prove that Φtarget : P → R is measurable, then Φtarget ◦ I : Gn,m,,k1,...,km,b
SOCP →

R is measurable as well.

Theorem 2. For any Borel regular measure µ defined on P , Φfeas : P → {0, 1} is µ−measurable.

Proof. Below, we use measurable to denote µ−measurable for simplicity.

To prove that Φfeas is measurable, it suffices to show that the preimage of {1}, denoted Pfeas = {P ∈
P | Φfeas(P) = 1}, is a measurable set.

First, we define a feasibility violation function Vfeas : P × Rn → R≥0. Let (y)+ = max(0, y).

Vfeas(P, x) =

m∑
i=1

(
∥Aix+ bi∥2 − (cTi x+ di)

)
+
+

p∑
j=1

((Fx)j − gj)+ +

n∑
k=1

((lk − xk)+ + (xk − rk)+)

This function Vfeas(P, x) is continuous with respect to both P and x, as it is a sum and composition
of continuous functions (norms, linear maps, max function). Furthermore, Vfeas(P, x) = 0 if and only
if x is a feasible point for the problem instance P .

A problem P is feasible if and only if there exists an x ∈ Rn such that Vfeas(P, x) = 0. This is
equivalent to the condition ∃R ∈ N+, s.t. infx∈Rn∩BR

Vfeas(P, x) = 0.

We can now express the set of feasible problems Pfeas by restricting the infimum to a countable dense
set. Let BR be the closed ball of radius R centered at the origin. By continuity of Vfeas in x, we have:

Pfeas =
⋃

R∈N+

{
P ∈ P | inf

x∈Rn∩BR

Vfeas(P, x) = 0

}

20

=
⋃

R∈N+

⋂
k∈N+

{
P ∈ P | ∃x ∈ Rn ∩BR, s.t.Vfeas(P, x) <

1

k

}

So, Pfeas can be written as:

Pfeas =
⋃

R∈N+

⋂
k∈N+

⋃
x∈BR∩Qn

{
P ∈ P | Vfeas(P, x) <

1

k

}
For any fixed x ∈ Qn, the function P 7→ Vfeas(P, x) is continuous. Thus, for each tuple (R, k, x), the
set {P | Vfeas(P, x) < 1/k} is a Borel set. Since Pfeas is formed by countable unions and intersections
of measurable sets, it is itself a measurable (Borel) set. Therefore, Φfeas is a measurable function.

Theorem 3. For any Borel regular measure µ defined on P , Φbound : P → {0, 1} is µ−measurable.

Proof. Below, we use measurable to denote µ−measurable for simplicity.

Let Pfeas = Φ−1
feas(1), which is a measurable set. We only need to show that the set Pbdd = {P ∈

Pfeas | Φbound(P) = 1} is measurable.

A problem P ∈ Pfeas is bounded if and only if there exists M ∈ Z such that for all feasible solutions
x of P , eTx ≥M . This can be stated as:

Pbdd =
⋃

M∈Z

{
P ∈ Pfeas | ∀x ∈ Rn, s.t.Vfeas(P, x) = 0⇒ eTx ≥M

}
=

⋃
M∈Z

{
P ∈ Pfeas | inf

x∈Rn,s.t.Vfeas(P,x)=0
eTx ≥M

}
Let’s define the boundness violation function:

Vbdd(P, x) = inf
x∈Rn,s.t.Vfeas(P,x)=0

eTx

Now,we have:
Pbdd =

⋃
M∈Z

{P ∈ Pfeas | Vbdd(P, x) ≥M}

So it suffices to prove Vbdd(P, x) is measurable and we only need to show that: for any M ∈ R, the
sublevel set {P ∈ Pfeas | Vbdd(P) < M} is a measurable set.

The condition Vbdd(P) < M is equivalent to the existence of a feasible point z such that e⊤z < M .
This can be expressed as:

{P ∈ Pfeas | Vbdd(P) < M} =
⋃

k∈N+

{
P ∈ Pfeas | ∃z ∈ Rn s.t. e⊤z ≤M − 1

k
and z is feasible

}
.

Let us define an auxiliary violation function Vbdd viol : P × Rn × R→ R≥0:

Vbdd viol(P, z,M) = max
(
(e⊤z −M)+, Vfeas(P, z)

)
.

This function is continuous in (P, z,M). The condition Vbdd viol(P, z,M
′) = 0 holds if and only if z

is a feasible point and its objective value satisfies e⊤z ≤M ′.

Thus, similar to the proof of feasibility, the condition Vbdd(P) < M is equivalent to:⋃
k∈N+

⋃
R∈N+

{
P ∈ Pfeas | inf

z∈Rn∩BR

Vbdd viol

(
P, z,M − 1

k

)
= 0

}
.

By continuity of Vbdd viol in z, we can restrict the infimum to the countable dense set Qn:⋃
k∈N+

⋃
R∈N+

{
P ∈ Pfeas | inf

z∈Qn∩BR

Vbdd viol

(
P, z,M − 1

k

)
= 0

}
.

21

For any fixed z ∈ Qn , R ∈ N+ and M ′ ∈ R, the function P 7→ Vbdd viol(P, z,M
′) is continuous,

hence measurable. The infimum of a countable collection of such measurable functions is also
measurable. Therefore, the set {P | infz∈Qn Vbdd viol(P, z,M

′) = 0} is measurable for any fixed
M ′.

Since the sublevel set {P ∈ Pfeas | Vbdd(P) < M} is a countable union of such measurable sets, it is
measurable. This holds for all M ∈ R, so Vbdd is a measurable function.

Theorem 4. For any Borel regular measure µ defined on P , Φobj : P → R is µ−measurable.

Proof. Below, we use measurable to denote µ−measurable for simplicity.

To prove that Φobj is measurable, we only need to show that for any ϕ ∈ R, the sublevel set
{P ∈ P | Φobj(P) < ϕ} is measurable.

Let us define an objective violation function Vobj : P × Rn × R→ R≥0:

Vobj(P, x, ϕ) = max
(
(eTx− ϕ)+, Vfeas(P, x)

)
This function is continuous in (P, x, ϕ). Vobj(P, x, ϕ) = 0 if and only if x is a feasible point and its
objective value satisfies eTx ≤ ϕ.

The condition Φobj(P) < ϕ is equivalent to the existence of a feasible point x such that eTx < ϕ.
This can be expressed as:

{P ∈ P | Φobj(P) < ϕ} =
⋃

k∈N+

{P ∈ P | ∃x ∈ Rn s.t. eTx ≤ ϕ− 1

k
and x is feasible}

Similar to the previous proof, this is equivalent to:⋃
k∈N+

⋃
R∈N+

{
P ∈ P | inf

x∈Rn∩BR

Vobj

(
P, x, ϕ− 1

k

)
= 0

}
=

⋃
k∈N+

⋃
R∈N+

{
P ∈ P | inf

x∈Qn∩BR

Vobj

(
P, x, ϕ− 1

k

)
= 0

}

For any fixed x ∈ Qn, the function P 7→ Vobj(P, x, ϕ
′) is continuous, hence measurable.

The infimum of a countable collection of measurable functions is measurable. Hence, the set
{P | infx∈Qn Vobj(P, x, ϕ

′) = 0} is measurable for any fixed ϕ′. Since the sublevel set {P |
Φobj(P) < ϕ} is a countable union of such measurable sets, it is measurable. This holds for
all ϕ ∈ R, so Φobj is a measurable function.

Theorem 5. For any Borel regular measure µ defined on P , Φattain : P → {0, 1} is µ−measurable.

Proof. Below, we use measurable to denote µ−measurable for simplicity.

Let Pfin = Φ−1
obj (R), which is a measurable set. We only need to show that the set Psol = {P ∈ Pfin |

Φattain(P) = 1} is measurable.

A problem P ∈ Pfin attains its optimal solution if and only if there exists a point x ∈ Rn such that x
is feasible and its objective value is equal to the optimal value, Φobj(P). This can be stated as:

Psol =
{
P ∈ Pfin | ∃x ∈ Rn s.t. Vfeas(P, x) = 0 and eTx = Φobj(P)

}
Let’s define the optimality violation function:

Vsolu(P, x) = max
(
(eTx− Φobj(P))+, Vfeas(P, x)

)
Notice that:

• For a fixed x, the function P 7→ Vsolu(P, x) is measurable because it is a ”composition” of
continuous functions and the measurable function Φobj.

• For a fixed P , the function x 7→ Vsolu(P, x) is continuous.

22

A SOCP instance P attains its solution if and only if there exists R ∈ N+, s.t. the infimum of
Vsolu(P, x) over x ∈ BR is zero, i.e. :

Psol =
⋃

R∈N+

{
P ∈ Pfin | inf

x∈Rn∩BR

Vsolu(P, x) = 0

}

Following the same logic used for Φfeas, we can write:

Psol =
⋃

R∈N+

{
P ∈ Pfin | inf

x∈Rn∩BR

Vsolu(P, x) = 0

}
=

⋃
R∈N+

⋂
k∈N+

{
P ∈ Pfin | inf

x∈BR∩Qn
Vsolu(P, x) <

1

k

}
For any fixed x, P 7→ Vsolu(P, x) is measurable. The infimum over a countable set of measurable
functions is measurable. Therefore, the set{

P ∈ Pfin | inf
x∈BR∩Qn

Vsolu(P, x) <
1

k

}
is a measurable subset of Pfin. Since Psol is formed by countable unions and intersections of
measurable sets, it is measurable. Thus, Φattain is a measurable function.

Theorem 6. For any Borel regular measure µ defined on P , Φsolu : P → Rn is µ−measurable.

Proof. Below, we use measurable to denote µ−measurable for simplicity.

For any P ∈ Psol = Φ−1
solu(Rn), Φsolu is well-defined. And if suffices to prove that:(Φsolu)i is

measurable for any i ∈ [n], i.e. for any ϕ ∈ R, the set: {P ∈ Psol | (Φsolu)i < ϕ} is measurable.

Notice that: the followings are equivalent for P ∈ Psol:

• P ∈ {P ∈ Psol | (Φsolu)i < ϕ}.

• There exists x ∈ Rn with xi < ϕ, such that Vsolu(P, x) = 0 and Vsolu(P, x
′) > 0, ∀x′ ∈

B∥x∥, x′
i ≥ ϕ.

• There exists R ∈ Q+, r ∈ N+, and x ∈ BR with xi ≤ ϕ− 1/r, such that Vsolu(P, x) = 0
and Vsolu(P, x

′) > 0, ∀x′ ∈ BR, x′
i ≥ ϕ.

• There exists R ∈ Q+ and r ∈ N+, such that for all r′ ∈ N+, ∃x ∈ BR ∩Qn, xi ≤ ϕ− 1/r,
s.t. Vsolu(P, x) < 1/r′ and that ∃r′′ ∈ N+, s.t., Vsolu(P, x

′) ≥ 1/r′′, ∀x′ ∈ BR ∩ Qn,
x′
i ≥ ϕ.

Hence, we can rewrite {P ∈ Psol | (Φsolu)i < ϕ} as:

⋃
R∈Q+

⋃
r∈N+

 (⋂
r′∈N+

⋃
x∈BR∩Qn, xi≤ϕ− 1

r

{
P ∈ Psol | Vsolu(P, x) <

1
r′

})
∩
(⋃

r′′∈N+

⋂
x′∈BR∩Qn, x′

i≥ϕ

{
P ∈ Psol | Vsolu(P, x

′) ≥ 1
r′′

})


,

which is measurable.

C.4 SOCP GNNs ’s separation power’s relation with SOCP-WL test’s separation power

Remark 4. Thanks to the universality of MLPs, it’s noteworthy that we can assume all learnable
functions in SOCP-GNN are continuous in the following proof without loss of generality, since they
are always parametrized by MLPs.
Theorem 7. SOCP GNN has the same separation power as the SOCP-WL test.

Proof. We only need to show: For any SOCP instance I and Î , encoded by G, Ĝ, respectively, the
following holds:

23

• For graph-level output, two instances can’t be separated by Fn,m,,k1,...,km,b
SOCP (R), i.e.,

F (G) = F (Ĝ), ∀F ∈ Fn,m,,k1,...,km,b
SOCP (R)

if and only if the two instances can’t be separated by the SOCP-WL test either.

• For node-level output, the two instances can’t be separated by Fn,m,,k1,...,km,b
SOCP (Rn), i.e.,

F (G) = F (Ĝ), ∀F ∈ Fn,m,,k1,...,km,b
SOCP (Rn)

if and only if the two instances can’t be separated by the SOCP-WL test either with
CT,vj = CT,v̂j hold for all j ∈ [n], i.e. the variables are reindexed according to the
SOCP-WL test for both instances.

We first prove that SOCP-GNN can simulate the SOCP WL-test for any fixed SOCP instance. This
can be proved by showing that: For any special SOCP-WL test and given graph G, there exists an
SOCP-GNN that can simulate arbitrary iterations of this test given the same input for G under the
one-hot encoding.

Let F denote the set of all the initial features for all nodes in G. Then we select ĝ0i , i = 1, 2, 3, 4 to
map these features in F to their one-hot encoding respectively by theorem 3.2 of [29]. So for any
initial round in the SOCP-WL test, there exists an SOCP-GNN that can simulate it.

Assume now, we already have: we get an SOCP-GNN which can simulate the first t rounds
of a special SOCP-WL test, so that: ht,n is just the one-hot encoding of Ct,n for all nodes n.
For the first refinement round for the polyhedron constraint node s, we choose f t

1 as an identity
mapping, so that: if

(
Ct,s,

∑
v∈V1

ws,vHASH(Ct,v)
)

and
(
Ct,s′ ,

∑
v∈V1

ws′,vHASH(Ct,v)
)

are

different, then
(
ht,s,

∑
v∈V1

ws,vf
t
1(h

t,v)
)

and
(
ht,s′ ,

∑
v∈V1

ws′,vf
t
1(h

t,v)
)

are different. Then,

by Theorem 3.2 of [29], there exists 4-layered MLP gt1(·) with ReLU activation can map these
inputs:

(
ht,s,

∑
v∈V1

ws,vf
t
1(h

t,v)
)

to their corresponding output in SOCP-WL test’s one-hot encod-
ing.

Similarly, we can prove that: there exists {gti(·)} and {f t
j (·)}, such that the corresponding SOCP-

GNN can simulate the t+1 round of the SOCP-WL test for G. By mathematical induction, for any
possible output of G for SOCP-WL test, there exists SOCP-GNNs can output the corresponding
one-hot encoding of the stable color, respectively. Consider the two possible outputs:

• Graph-level scalar output. In this case, we set

y = fout (I1, I2, I3, I4)

• Node-level vector output. In this case, we only consider the output associated with the
variable nodes in V1, given by

yi = fout
(
hT,vi , I1, I2, I3, I4

)
, i ∈ [n]

where, I1 =
∑

v∈V1
hT,v , I2 =

∑
s∈V2

hT,s, I3 =
∑

o∈V3
hT,o, and I4 =

∑
q∈V4

hT,q .

If two instances I and Î can’t be separated by any SOCP-GNNs but can be separated by some
SOCP-WL test W . By applying the results discussed above to the disjoint union of these two
instances’ corresponding graphs, we get: hT,· is just one-hot encoding of CT,·, respectively. Then we
can conclude that their output multisets underW are the same, which causes a contradiction. Hence,
if two instances I and Î can’t be separated by any SOCP-GNNs, then they can’t be separated by any
SOCP-WL testW as well. Similarly, we have:

For any node n′, n′′ in SOCP instance I, Î respectively, if ht,n′
= ĥt,n′′

,∀F ∈ Fn,m,,k1,...,km,b
SOCP (R)

holds for any t ∈ N, then n′, n′′ have the same stable color for any possible SOCP-WL test.

Now, assume wo instances I and Î can’t be separated by any SOCP-WL test. Now, we show that:

24

Ct,s = Ĉt,s =⇒ ht,s = ĥt,s′ , ∀ polyhedron constraint s, s′ and F ∈ Fn,m,,k1,...,km,b
SOCP (R),

while a similar result can be derived for other sublayer-iterations using the same method.

When t = 0, the conclusion holds obviously.

When t ≥ 1, assume the conclusion for all nodes holds for t − 1, then we have:(
Ct−1,s,

∑
v∈V1

ws,vHASH(Ct−1,v)
)
=

(
Ĉt−1,s′ ,

∑
v∈V1

ŵs′,vHASH(Ĉt−1,v)
)

Hence, we have:

• Ct−1,s = Ĉt−1,s′ ⇒ ht−1,s = ĥt−1,s′

• For any color W1j ,
∑

v∈W1j
ws,v =

∑
v∈W1j

ŵs′,v. This can be shown by assuming Hash
function maps different colors to linearly independent vectors.

• For any color W1j ,
∑

v∈W1j
ws,vf

t−1
1 (ht−1,v) =

∑
v∈W1j

ŵs′,v f̂
t−1
1 (ĥt−1,v) (By induc-

tive assumption for node v at iteration t− 1)

•
∑

W1j

∑
v∈W1j

ws,vf
t−1
1 (ht−1,v) =

∑
W1j

∑
v∈W1j

ŵs′,v f̂
t−1
1 (ĥt−1,v).

Therefore, ht,s = ĥt,s′ , which finishes the proof.

An immediate corollary is:

Corollary 7. For any node n, n′ in SOCP instance I, Î respectively, Ct,n = Ĉt,n′
holds for all

possible SOCP-WL test and any t ∈ N if and only if ht,n = ĥt,n′
,∀F ∈ Fn,m,,k1,...,km,b

SOCP (R) holds
for any t ∈ N.

By the proof of lemma 3, you can see that:

Corollary 8. For any node n, n′ in SOCP instance I, Î respectively, Ct,n = Ĉt,n′
holds for all

possible SOCP-WL test and any t ∈ N if and only if ht,n = ĥt,n′
,∀F ∈ Fn,m,,k1,...,km,b

SOCP (R) holds
for any t ∈ N. Under such assumption, (Φsolution(I))n = (Φsolution(Î))n′

C.5 Main theorem’s proof

Consider the following theorems, which play an important role in real analysis:

Lusin theorem: Let µ be a Borel regular measure on Rn and let f : Rn → Rm be µ-measurable.
Then for any µ-measurable X ⊂ Rn with µ(X) < ∞ and any ϵ > 0, there exists a compact set
E ⊂ X with µ(X \ E) < ϵ, such that f |E is continuous.

By this fundamental but important theorem, we get ∀ϵ > 0, ∃ compact X ⊂ Gn,m,,k1,...,km,b
SOCP with

µ(Gn,m,,k1,...,km,b
SOCP \X) < ϵ, such that Φtarget|X is continuous holds for any Φtarget mentioned in

Definition B.1.

Moreover, using similar tricks in [8], we can assume that: X remains the same under the action of
the permutation group Sn without loss of generality.

Generalized Stone-Weierstrass theorem:[Theorem 22 of [30]] Let X be a compact topology space
and let G be a finite group that acts continuously on X and Rn. Define the collection of all equivariant
continuous functions from X to Rn as follows:

CE(X,Rn) = {F ∈ C(X,Rn) : F (g ∗ x) = g ∗ F (x), ∀x ∈ X, g ∈ G}.
Consider any F ⊂ CE(X,Rn) and any Φ ∈ CE(X,Rn). Suppose the following conditions hold:

(i) F is a subalgebra of C(X,Rn) and 1 ∈ F .
(ii) For any x, x′ ∈ X , if f(x) = f(x′) holds for any f ∈ C(X,R) with f1 ∈ F , then for any

F ∈ F , there exists g ∈ G such that F (x) = g ∗ F (x′).

25

(iii) For any x, x′ ∈ X , if F (x) = F (x′) holds for any F ∈ F , then Φ(x) = Φ(x′).

(iv) For any x ∈ X , it holds that Φ(x)j = Φ(x)j′ , ∀(j, j′) ∈ J(x), where

J(x) = {{1, 2, . . . , n}n : F (x)j = F (x)j′ , ∀F ∈ F}.

Then for any ϵ > 0, there exists F ∈ F such that

sup
x∈X
∥Φ(x)− F (x)∥ < ϵ.

Now we leverage the theorems listed above to give a proof of the main theorem. And we let the
group G to be permutation group Sn. Since our SOCP-GNNs are permutation-equivariant, they are
obviously G− equivariant continuous functions. (The following a refers to 1 or n)

Property (i): Fn,m,,k1,...,km,b
SOCP (Ra) is a subalgebra of CE(X,Ra)

Proof. If suffices to prove this by using similar channel expansion techniques mentioned in [8].

Property (ii): For any x, x′ ∈ X , if f(x) = f(x′) holds for any f ∈ C(X,R) with f1 ∈
Fn,m,,k1,...,km,b

SOCP (Ra), then for any F ∈ Fn,m,,k1,...,km,b
SOCP (Ra), there exists g ∈ G such that F (x) =

g ∗ F (x′).

Proof. First notice that: Fn,m,,k1,...,km,b
SOCP (R) ∈ C(X,R) with f1 ∈ Fn,m,,k1,...,km,b

SOCP (Ra),∀f ∈
Fn,m,,k1,...,km,b

SOCP (R). Then applying theorem 7 and corollary 7 is enough.

Property (iii) and (iv):

• For any x, x′ ∈ X , if F (x) = F (x′) holds for any F ∈ Fn,m,,k1,...,km,b
SOCP (Ra), then

Φ(x) = Φ(x′).

• For any x ∈ X , it holds that Φ(x)j = Φ(x)j′ , ∀(j, j′) ∈ J(x), where

J(x) = {{1, 2, . . . , a}2 : F (x)j = F (x)j′ , ∀F ∈ Fn,m,,k1,...,km,b
SOCP (Ra)}

.

Proof. Applying theorems in Appendix C.2, theorem 7, and corollary 8 is enough.

Applying the generalized Stone-Weierstrass theorem gives us Theorem 1 immediately.

C.6 Extension to p-order cone programming

A general p-order cone programming can be stated as:

minimize e⊤x

subject to Fx ≤ g, l ≤ x ≤ r,

∥Aix+ bi∥p ≤ cTi x+ di, i ∈ [m]

(10)

where decision variables are x ∈ Rn and the problem parameters are e ∈ Rn, Ai ∈ Rki×n, bi ∈ Rki ,
ci ∈ Rn, di ∈ R, F ∈ Rb×n, g ∈ Rb, lj ∈ ({−∞} ∪ R)n, and r ∈ ({+∞} ∪ R)n. Here, we only
consider the case: p ∈ [1,+∞].

Here, we formally define some concepts that are helpful to the extension of p-order cone programming.
Definition C.2. A function f : Rn → R is said to be separable if f(x) can be expressed as a sum
f(x) =

∑n
j=1 fj(xj), where each function fj only depends on the scalar xj . (This definition is

stricter than traditional “block separable”.)
Definition C.3. A function f : Rn → R is said to be equivalent (w.r.t. permutation group Sn) if
for any rearranging {σ(1), σ(2), · · · , σ(n)} of {1, 2, · · · , n} and any x ∈ Rn, f(x1, x2, · · · , xn) =
f(xσ(1), xσ(2), · · · , xσ(n))

26

For p ∈ [1,+∞), we have: ∥x∥pp =
∑n

i=1 |xi|p, which is separable and equivalent according to
Definition C.2 and C.3.

Situation 1:Use p as a fixed parameter: We don’t need to make any modifications to our archi-
tectures. As for the proof of the universality, we just need to change ||.||2 to ||.||p for p ≥ 1 in
our proof of lemma 3 and other theorems in Appendix C, since our proof only uses the convexity,
permutation-invariant property, continuous property, and separability of the l2 norm, which holds
for the lp norm as well when p ∈ [1,+∞). As for p = +∞, lemma 3 can be directly validated by
noticing that:

|(b̂r + Ârx̂)j1 | = |
1

|W4m|
∑

CT,u=W4m

∑
j∈W3l,j∈u

|W4m|
|W3l|

(Aux+ bu)j |

≤ 1

|W4m|
∑

CT,u=W4m

∑
j∈W3l,j∈u

|W4m|
|W3l|

|(Aux+ bu)j |

≤ 1

|W4m|
∑

CT,u=W4m

∑
j∈W3l,j∈u

|W4m|
|W3l|

(cux+ du) =
1

|W4m|
∑

CT,u=W4m

(cux+ du)

≤ ĉTr x̂+ d̂r

, where the notions follow the settings in lemma 3. Since the above equation holds for all j1, we can
see that: lemma 3 still holds. Since ∥ · ∥∞ is continuous, the measurability holds as well.

Situation 2:Use p as a continuous parameter: Here, we need a little modification on our ar-
chitectures and proofs, while we only consider p ∈ [1,+∞) since ∥x∥p is continuous in p when
p ∈ [1,+∞).

For the graph representation, we only need to augment our variable features from (ei, li, ri) to
(ei, li, ri, p). 7 And the GNN and related WL test don’t need any modification. As for the proof, it
suffices to notice that:

• To prove lemma 3, we just need to observe that: If two instances I and Î can’t be distin-
guished by the WL test, then their corresponding p must be the same. Then what remains is
just the situation one’s proof mentioned above. Other related results hold as well, like the
equivalence of the WL test and GNN in separation power.

• As for the measurability, we just need to repeat what we do in Appendix C.3 while taking p
as a parameter in the new parameter space.

Situation 3:Mix order conic programming: Here, similar to situation 2, we need to augment
features for minor constraint nodes. For the constraint ∥Aix+ bi∥p ≤ cTi x+ di, we reset the minor
conic node j’s feature to be ((bi)j , p). Then we can prove Lemma 3 by noticing that: two major conic
constraints have the same color if and only if their corresponding p are the same. The measurability
holds as well, similar to situation 1.

D Experiment Settings and Supplementary Results

D.1 Data generation

D.1.1 Generation of feasible SOCP instances

Following the SOCP generating scheme in CVXPY, we use the following steps to generate feasible
and random SOCP instances, which admit at least an optimal solution.

(I) : Generate a secret point xs ∈ Rn by sampling from a standard normal distribution, i.e.,
xs ∼ N (0, I). Then generate the objective coefficient e ∼ N (0, 0.25I).

(II) : Impose lower bounds and upper bounds on variables l ≤ xs ≤ r for the problem. Here
l = xs − |∆1| − 0.1, r = xs + |∆2|+ 0.1, where ∆i are sampled i.i.d. from N (0, 0.25I)
and | · | denotes component-wise absolute value.

7Here, we use p = −1 to encode +∞ into feature.

27

https://www.cvxpy.org/examples/basic/socp.html

(III) : Generate F ∈ Rb×n, whose nonzero entries are sampled i.i.d. from N (0, 0.01) and
components are nonzero with probability 0.5. The vector g is subsequently sampled by
g = Fxs + |∆3|+ 0.1, where ∆3 ∼ N (0, 0.25I).

(IV) : For each conic constraint, randomly sample the cone dimension (the number of rows
of Ai, bi) in [1, 7] with equal probability. Then, generate Ai, ci, bi, whose nonzero entries
are sampled i.i.d. from N (0, 0.0025). Each component of the coefficient matrix Ai, ci
is nonzero with probability 0.5. Then, generate di = ∥Aixs + bi∥2 − c⊤i xs + ϵ, where
ϵ ∼ U(0.5, 1).

Step (II) ensures that the generated SOCP instances always have an optimal solution. Furthermore,
the coefficients are intentionally sampled from distributions with different variances, introducing
varying numerical scales to create more challenging test instances.

D.1.2 Generation of (possible) infeasible SOCP instances

We use the following steps to generate a (possible) infeasible SOCP instance with pre-determined
probability h ∈ [0, 1].

(I) : Sample a feasible SOCP instance by methods in Appendix D.1.1.
(II) : Execute step III-IV with probability h and execute step V-VI with probability 1− h.

(III) : Sample a random integer p in [3, 20] and a scale coefficient a ∼ U(0, 1). Then repeat step
IV for p times

(IV) : Randomly choose a type of constraint to break with equal probability. If the polyhedral
constraint is chosen, we randomly choose one component of g with equal probability,
denoted by gi, and then replace gi by (Fxs)i − δ − 3. If the conic constraint is chosen,
we randomly choose one with equal probability and then replace its corresponding di by
∥Aixs + bi∥2 − c⊤i xs − δ − 3. Here δ ∼ U(0, a).

(V) : Sample a random integer p in [3, 20] and a scale coefficient a ∼ U(0, 1). Then repeat step
VI for p times

(VI) : Randomly choose a type of constraint to enhance with equal probability. If the polyhedral
constraint is chosen, we randomly choose one component of g with equal probability,
denoted by gi, and then replace gi by gi + δ. If the conic constraint is chosen, we randomly
choose one with equal probability and then replace its corresponding di by di + δ. Here
δ ∼ U(0, a).

D.1.3 Data generation for predicting optimal solutions:

We randomly generate 5000 feasible SOCP instances by methods in Appendix D.1.1 of size
(50,10,10), (100,50,50), and (500,100,100) respectively. Each instance is solved in CVXPY to obtain
a ground truth solution as the label. 8 Then, we divide these instances into training, validation, and
test data classes by the ratio 8 : 1 : 1.

D.1.4 Data generation for predicting the probability:

We randomly generate 5000 infeasible SOCP instances with probability h = 0.5 by methods in
Appendix D.1.2 of size (50,10,10), (100,50,50) and (500,100,100) respectively. We use CVXPY to
detect the feasibility of these instances as well. Then, we divide these instances into training class
and validation class by the same ratio.

D.2 Implementations and training settings

For predicting the optimal solution, our SOCP-GNN is implemented with two message-passing layers.
The learnable functions, denoted by g0l1 , gtl2 , f t

l3
, and fout (where l1 ∈ {1, . . . , 4}, l2 ∈ {1, . . . , 6},

and l3 ∈ {1, . . . , 8}), are all parameterized by neural networks. Specifically, g0l1 and gtl2 are simple
linear layers, while f t

l3
and fout are constructed with a single hidden layer containing 128 neurons.

8We denote an SOCP instance by a tuple (n, b,m), where n represents the number of decision variables, b
denotes the number of polyhedral constraints, and m indicates the number of second-order cone constraints.

28

For comparison, our baseline FCNN is implemented with three hidden layers, each containing 128
neurons. We use normalized MSE loss (Section 6) as the loss function.

For predicting the feasibility, our SOCP-GNN follows a similar structure to the one in solution
prediction. Since the binary classification is simpler than the solution regression, we set the hidden
layer with 16 neurons. For comparison, our baseline FCNN is implemented with three hidden layers,
each containing 16 neurons. We use binary cross-entropy loss as the loss function.

All MLPs mentioned above use ReLU as the activation function. We use AdamW to optimize
our learnable parameters with a maximum learning rate of 5 × 10−4 and a batch size of 40. All
experiments are executed on an NVIDIA H200 GPU.

D.3 Results

(a) Small SOCP: (50, 10, 10) (b) Medium SOCP (100, 50, 50) (c) Large SOCP (500, 100, 100)

Figure 6: Comparison between the proposed GNN and FCNN for feasibility classification for random
SOCP instances. The GNN uses approximately 0.01M parameters across three scales, while the
FCNN uses approximately 0.07M, 0.7M, and 7M parameters for all three problem scales, respectively.

As shown in Figures 4 and 6, the proposed SOCP-GNN surpasses the baseline FCNNs in both optimal
solution prediction and feasibility classification tasks. Across all problem scales—small, medium, and
large—the GNN achieves substantially lower relative MSE and binary cross-entropy loss compared to
the FCNN baseline. This superior performance is particularly evident in its parameter efficiency: on
large-scale problems, the GNN, with only approximately 0.6M parameters, outperforms the FCNN,
which requires 58M parameters for the solution prediction task, representing a nearly 100-fold
reduction in model complexity. We also observe similar trends in the feasibility classification tasks.

This dramatic improvement in both performance and efficiency validates the effectiveness of exploit-
ing the inherent sparse geometric structure of optimization problems through graph representations
and message passing. These results confirm the potential of our approach as a scalable, data-driven
framework for solving complex optimization problems.

29

	Introduction:
	Related Work
	Problem and Open Issues
	Methodology
	Graph Representation of SOCPs
	Message Passing in SOCP-GNNs

	Universality of GNN for SOCPs
	Formal Definitions
	Universal Approximation of SOCP-GNNs

	Numerical Experiments
	Conclusions, Limitations, and Future Works
	Discussions on Related Works
	GNN for Constrained Optimization
	 WL-based Frameworks
	 AU-based Frameworks

	Preliminary and Basic Concepts
	Basic concepts of SOCPs
	Equivalent Formulations of SOCP
	Target Mappings for SOCP
	An Example for SOCP graphs
	Complexity Comparison with SOTA Works:

	Proof of Main Theorem
	SOCP WL-test
	The connection between the WL-indistinguishablity and target property
	The measurable property of target mapping
	SOCP GNNs 's separation power's relation with SOCP-WL test's separation power
	Main theorem's proof
	Extension to p-order cone programming

	Experiment Settings and Supplementary Results
	Data generation
	Generation of feasible SOCP instances
	Generation of (possible) infeasible SOCP instances
	Data generation for predicting optimal solutions:
	Data generation for predicting the probability:

	Implementations and training settings
	Results

