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Abstract

In-Context Learning (ICL) is a technique where large language models (LLMs)
leverage multiple demonstrations (i.e., examples) to perform tasks. With the
recent expansion of LLM context windows, many-shot ICL (generally with more
than 50 demonstrations) can lead to significant performance improvements on
a variety of language tasks such as text classification and question answering.
Nevertheless, ICL faces the issue of demonstration order instability (ICL-DOI),
which means that performance varies significantly depending on the order of
demonstrations. Moreover, ICL-DOI persists in many-shot ICL, validated by our
thorough experimental investigation. Current strategies for handling ICL-DOI
are not applicable to many-shot ICL due to two critical challenges: (1) Most
existing methods assess demonstration order quality by first prompting the LLM,
then using heuristic metrics based on the LLM’s predictions. In the many-shot
scenarios, these metrics without theoretical grounding become unreliable, where
the LLMs struggle to effectively utilize information from long input contexts,
making order distinctions less clear. (2) The requirement to examine all orders
for the large number of demonstrations is computationally infeasible due to the
super-exponential complexity of the order space in many-shot ICL. To tackle
the first challenge, we design a demonstration order evaluation metric based on
information theory for measuring order quality, which effectively quantifies the
usable information gain of a given demonstration order. To address the second
challenge, we propose a hierarchical demonstration order optimization method
named HIDO that enables a more refined exploration of the order space, achieving
high ICL performance without the need to evaluate all possible orders. Extensive
experiments on multiple LLMs and real-world datasets demonstrate that our HIDO
method consistently and efficiently outperforms other baselines. Our code project
can be found at https://github.com/YinhanHe123/HIDO/.
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Figure 1: Accuracy of many-shot ICL (150 shots) in green and few-shot ICL (10 shots) in blue on
dataset TREC. We randomly select demonstration orders and average the number of times the model
predicts the correct answer for 256 queries. See more results in Appendix F.3.

1 Introduction

Large language models (LLMs) have demonstrated remarkable performance in few-shot In-Context
Learning (ICL), where LLMs adapt to new tasks by incorporating demonstrations (examples) in
the input prompt without additional fine-tuning [3, 8, 47]. Recent advances in research have vastly
expanded the context windows of LLMs, paving the way for many-shot ICL [1, 15, 18, 2, 28]. This
approach, typically involving more than 50 demonstrations, has achieved significant performance
gains in various NLP tasks, including text classification [27] and question answering [19]. However,
a critical challenge in few-shot ICL is demonstration order instability (ICL-DOI): the significant
variance in ICL performance when the same set of demonstrations is arranged in different orders [24].
For instance, [24] claims that for a text classification task, different orders can cause performance to
fluctuate dramatically, ranging from random guessing to 90% accuracy. Unfortunately, exploratory
experiments (Fig. 1) show that the ICL-DOI phenomenon persists in many-shot ICL.

Several studies tackle the issue of ICL-DOI in few-shot scenarios. One thread of research design
stabilization methods to reduce ICL performance variance w.r.t. different demonstration orders [4, 45,
41], while others search for the optimal demonstration order that maximizes ICL performance [24,
43, 22]. Although these proposed methods achieve satisfying performance under few-shot ICL, they
cannot be easily adapted to many-shot scenarios [1] due to two fundamental challenges: (1) Lack
of precise quality-measuring metric: Current studies [24, 43] assess order quality by examining
LLM responses to sample queries with ordered demonstrations as context. These evaluations
rely on heuristic properties like answer distribution diversity but suffer from subjective judgments.
Additionally, LLMs exhibit primacy and recency bias, giving more attention to content at the
beginning and end of large context windows [21]. This creates a challenge in many-shot scenarios
where numerous demonstrations in the middle cause only subtle performance differences, making
it difficult to compare different orders. (2) Infeasibility of evaluating all demonstration orders:
Unlike few-shot ICL, it is infeasible to evaluate all demonstration orders in many-shot scenarios
exhaustively. This is because, evaluating one demonstration order requires at least one LLM inference
call, which is both costly and time-consuming. Furthermore, the demonstration order space expands
super-exponentially (n!) with the increase of demonstration numbers.

In this paper, we address the issue of ICL-DOI in many-shot ICL by searching for an effective demon-
stration order. Specifically, to tackle the first challenge, we introduce In-Context Demonstration Order
V -information (ICD-OVI). This metric, grounded in information theory, measures how effectively
an LLM, with a certain ordered demonstration as context, extracts usable information from a query
to infer its corresponding answer. To address the second challenge, we introduce a HIerarchical
Demonstration Order optimization (HIDO) framework that enables more refined exploration in the
order space, thus achieving satisfactory performance without evaluating all possible orders.

We summarize our contributions as follows: (1) Theoretically Justified Novel Metric: We introduce
a novel information-theoretic metric, ICD-OVI, which evaluates the quality of a demonstration order
by the usable information extracted from a query, with the ordered demonstration as context, to infer
its answer. (2) Fundamental Optimization Framework: Based on our ICD-OVI demonstration
order quality metric, we propose an efficient hierarchical demonstration order optimization framework
termed HIDO for in-context learning with vast demonstration permutation spaces. (3) Extensive
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Empirical Evaluations: We conduct extensive experimental investigations on multiple LLMs and
real-world datasets of various semantic scenarios, demonstrating the effectiveness and efficiency of
our demonstration order optimization framework HIDO.

2 Preliminaries and Problem Definition

Notations. We denote a demonstration as d := (q, a), where q is its query, and a is its answer.
Throughout this work, we follow existing literature [24, 43] by considering the query q as a multiple
choice question and a as a single-token answer (e.g., “A,” “B” or “C”) indicating the choice. For
example, in a sentiment classification task, a demonstration (q, a) might have query q as “Please
analyze the sentiment of this sentence: ‘Jerry wins the game!’ A. Positive; B. Negative” with
corresponding answer a as “A.” To transform (q, a) into text format for LLM input, we apply a
transformation T that organizes the pair into a standard format: T (q, a) = “input: ”q, “type: ”a.
Given that Ti = T (qi, ai) denotes the transformed text of the ith in-context demonstration, the
demonstration set to be ordered is written as D := {Ti}ni=1, where n is the number of demonstrations.
Each demonstration is assumed i.i.d. samples drawn from an underlying input data distribution
F that we cannot directly access. We define π ∈ Sn as an order permutation function (Sn is the
collection of all possible permutations), which maps the set {1, ..., n} bijectively to itself. We use
Π(D) := Tπ(1) ⊕ ... ⊕ Tπ(n) to represent concatenated demonstrations ordered by permutation π,
where ⊕ represents text concatenation. Finally, we denote PLLM(·|q) as the LLM prediction (i.e.,
logits vector) when we prompt the LLM with query q.

Preliminaries. We first introduce the existing ICL demonstration order quality metrics, then provide
the theoretical background for our proposed method. All existing metrics measure the demonstration
order quality with an important tool: a set of probing samples D̂ := {(q̂i, âi)}mi=1 (where m is the
number of probing samples) generated by the same LLM that we perform ICL on. These probing
samples mimic samples drawn from the inaccessible distribution F , thus providing insight into F .

The probing samples are generated in two steps: (1) For a given order π of demonstrations, we
concatenate the demonstrations into Π(D) and prompt the LLM with this sequence to generate new
samples that are similar to the demonstrations, which are called probing samples. (2) We repeat this
process for all possible permutations of demonstration orders (π ∈ Sn). The complete set of probing
samples D̂ is then the collection of all samples generated across all permutations.

Existing Method 1: GlobalE. Given ordered demonstrations Π(D), GlobalE first calculates the
frequency distribution of the LLM’s predicted answers for queries in the probing samples with
Π(D) as context: f = 1

m

∑
i I[argmaxPLLM(·|Π(D) ⊕ q̂i)]. Here, I[·] is the indicator function

that transforms an integer to its corresponding one-hot vector with length equal to the number of
possible answers. GlobalE measures the diversity of answers by the distribution entropy HX∼f (X).
Lu et.al [24] claim that answer diversity maintains a high positive correlation with the accuracy of
LLM predictions empirically. Therefore, demonstrations with higher GlobalE values are considered
preferable.

Existing Method 2: LocalE. LocalE measures the average conditional entropy of an LLM’s predic-
tions (i.e., the logits vectors) when prompted with the ordered demonstrations and probing queries. It
is calculated as 1

m

∑
i HX∼PLLM(X|Π(D), q̂i). Unlike GlobalE, which examines answer frequency

distribution across all probing samples, LocalE focuses on the uncertainty in the model’s predictions
for individual samples. A higher LocalE value indicates that the LLM is less confident in its pre-
dictions, which helps prevent overconfidence and poor calibration. However, GlobalE and LocalE
are heuristic metrics derived from empirical observations. They also do not utilize the answers from
probing samples since they cannot verify the correctness of these answers.

Existing Method 3: PDO. Another metric is the probability distribution optimization (PDO) met-
ric [43]. This metric is designed based on the assumption that well-ordered in-context examples
should produce answer frequency distributions that match a prior distribution, which is believed to
approximate the actual answer distribution. PDO measures demonstration quality by calculating
the discrepancy between the answer frequency distribution produced by the LLM and the prior
distribution, formally written as KL

(
1
m

∑
i PLLM(·|Π(D)⊕ q̂i)||UA

)
. In this formula, KL(·||·) rep-

resents the KL divergence, and UA is the human-determined prior probability distribution (typically
a uniform distribution) over the answer space A. However, this approach has limitations because
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the prior distribution of probing samples’ answers may not accurately reflect the actual input data
distribution. This discrepancy has led to debates about the effectiveness of the PDO metric.

Theoretical Foundation: V−usable information. Our design of ICL demonstration order metric
is inspired by information theory, specifically V-usable information [42, 20], a widely recognized
information-theoretic metric measuring the amount of information an ML model f can capture from
input queries random variable (r.v.) Q to predict their corresponding answers r.v. A. Specifically, for
a predictive family V (i.e., the set of a model’s all possible parameter configurations), the V-usable
information is defined as HV(A|∅)−HV(A|Q), where

HV(A|Q) = inf
f∈V

E(q,a)∼F [− log2 f(·|q)],

HV(A|∅) = inf
f∈V

E(q,a)∼F [− log2 f(·|∅)].
(1)

Here, F is the input data distribution, f(·|q) is the predicted answer distribution given query q, and
f(·|∅) represents the model’s prediction without seeing the query (using only prior knowledge).
HV(A|Q) and HV(A|∅) measures the expected log-loss of the optimal predictor in the family V
when it has access to the query and when it does not have access to the query, respectively. Therefore,
this metric, HV(A|∅)−HV(A|Q), quantifies how much additional information about the answer the
model can extract when it sees the query compared to when it does not. This metric has multiple
advantages: (1) Interpretable: It measures information amount (in units of “bits”) that a model with
predictive family V can capture from Q to predict A, which is easily human-comprehensive. (2)
Computationally Viable: Although the data distribution F is not accessible, the V−usable information
can be efficiently approximated by Monte Carlo with a theoretical precision guarantee [42]. (3)
Empirically Effective: the metric is empirically proven with a high correlation with the correctness
of the predicted answer [20, 44, 38]. Note that the HV(·) is similar in format compared with entropy
H(·), however, existing work proves that using entropy H(·) will lose the advantage (2) and (3) for
the V-usable information [42, 20, 44, 38].

Problem Definition. Here, we formulate the in-context learning demonstration order optimization
task as finding the order that minimizes the distribution discrepancy between the LLM output and the
original input. Specifically, we have the following definition:
Definition 1. For a demonstration data distribution F , where each data sample is in the shape
of (query, answer), given n demonstrations i.i.d. drawn from F , denoted as D, we aim to find the
demonstration order π̂ of the n demonstrations such that the answer prediction distribution produced
by LLM approximates F (measured by “KL divergence [5]”), i.e.,

π̂ = min
Π

KL(PLLM(·|Π(D)⊕ q)||F(·|q)). (2)

3 In-Context Demonstration Order V-usable Information

Before introducing our proposed HIDO framework, we first present a novel evaluation metric called
In-Context Demonstration Order V-Usable Information (ICD-OVI). Unlike existing heuristic
metrics such as GlobalE [24], LocalE [24], and PDO [43], our ICD-OVI is grounded in information
theory and measures how effectively an LLM extracts useful information from queries to predict their
answers when given a specific demonstration order. Previous metrics rely primarily on empirical
observations and often lack theoretical justification, making them less reliable for many-shot ICL
scenarios. In these scenarios, similar demonstration orders produce only subtle differences in LLM
performance, resulting in very similar metric values that make it difficult to distinguish quality
between different orders. Our approach addresses this limitation by providing a information-theoretic
metric that quantifies exactly how much a demonstration order helps the LLM learn from inputs.

3.1 Intuition and Definition

The key intuition behind ICD-OVI is simple: the optimal demonstration order should help the
LLMs extract maximum information from queries to produce correct answers. Our metric
quantifies this information extraction capability. ICD-OVI measures the usable information that
an LLM can capture from ordered demonstrations Π(D). First, we follow the theory of V−usable
information and define the predictive family corresponding to the ordered demonstrations as

VΠ := {PLLM(·|Π(D)⊕ q)|q ∈ QF} ∪ {PLLM(·|q)|q ∈ QF}. (3)
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This represents all possible LLM configurations achievable with the given ordered demonstrations as
context. Here, QF is the set of all possible queries from the data distribution, and the second term of
Equ 3 is included to ensure VΠ satisfies the technical requirements of a valid predictive family [42].
With the predictive family VΠ, we follow the theory of V−usable information to derive the in-context
demonstration order V−usable information, i.e., ICD-OVI, as (see full derivation in Appendix D):

ICD-OVI = E(q,a)∼F [log2 PLLM(a|Π(D)⊕ q)− log2 PLLM(a|Π(A)⊕ ∅)], (4)

where Π(A) is the concatenation of all answers in the order of π. Equ. 4 captures the difference
between the model’s ability (1) to predict answers when seeing both the ordered demonstrations and
the query (first term); and (2) to predict answers without seeing any queries (second term). Essentially,
this equation quantifies the expected information the LLMs can capture from a query for prediction
with the ordered demonstrations as context.

3.2 Practical Implementation

Since we cannot directly access the data distribution F , we approximate ICD-OVI using probing
samples D̂ generated by the LLM. They effectively mimic samples that are drawn from F . Formally,

ICD-OVI ≈ 1

|D̂|

m∑
i=1

[log2 PLLM(âi|Π(D)⊕ q̂i)− log2 PLLM(âi|Π(A)⊕ ∅)]. (5)

However, this approximation involves LLM-generated labels (â) from probing samples, which may
be incorrect and introduce bias. To address this, we use a technique from V-usable information theory
called the point-wise V-usable information threshold (PVI threshold, denoted as τ ).

Denoting PVI(q̂,â) as the probability subtraction in Equ. 5 for a single probing sample, the PVI
threshold helps us determine if the label â of a probing sample (q̂, â) is reliable: (1) If PVI(q̂,â) ≥ τ ,
the label â is highly likely correct; (2) If PVI(q̂,â) < τ , the label â is possibly incorrect. Prior
work [9, 23] show empirically that this threshold effectively separates correct from incorrect labels
across various datasets and LLMs. Hence, when calculating ICD-OVI with Equ. 5, we keep the
original term for probing samples with reliable labels â. For unreliable labels, we replace the term
with its expectation over all possible labels to avoid relying on a single, potentially incorrect answer.
If we call the above computation procedure for a probing sample as point-wise ICD-OVI (PICD-OVI),
our ICD-OVI is the average of PICD-OVIs across all probing samples.

3.3 Theoretical Properties

The ICD-OVI enjoys properties summarized in the following theorem (see proof in Appendix E)
Theorem 1. Given an LLM and demonstrations D drawn from data distribution F , for any
two ordered demonstrations Π1(D) and Π2(D), under mild conditions, if ICD-OVI(Π1(D)) >
ICD-OVI(Π2(D)), then the LLM achieves better performance with Π1(D) as context than with
Π2(D) when predicting answers for queries drawn from F .

This theorem establishes that our metric correctly identifies better-performing demonstration orders,
providing theoretical justification for its use in optimizing ICL performance. Our ICD-OVI is
the first information-theoretic metric for evaluating ICL demonstration orders, and inherits the
beneficial properties of V-usable information theory. We conduct extensive experiments in Section 5
to demonstrate the effectiveness of the ICD-OVI metrics.

Remark. Although each probing sample (q̂, â) seems to require two separate LLM inference calls
(one for Π(D)⊕ q̂ and another for Π(A)⊕∅), we can optimize this process. For a given demonstration
order, the term PLLM(â|Π(A) ⊕ ∅) only needs to be computed once and can be reused across all
probing samples. This optimization ensures that ICD-OVI’s computational complexity remains
comparable to traditional heuristic metrics despite its theoretical advantages.

4 Methodology

Our HIDO, shown in Fig 2, first clusters the embeddings of the input demonstration texts and then
performs k iterations of hierarchical order optimizations. In each iteration, the process first determines
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Figure 2: Overview of our proposed HIDO framework.

the near-optimal order within each demonstration cluster. Then, while maintaining these intra-cluster
orders, it searches for the most effective order of the clusters themselves. This alternating focus
on intra- and inter-cluster optimization may be iterated multiple rounds during which the probing
samples are imporved (see detailed rationale in Section 4.4) to achieve more accurate assessment of
the demonstration order quality using ICD-OVI.

4.1 Demonstration Clustering

Clustering demonstrations dramatically reduce the permutation space, allowing for more efficient
search of the optimal order. Additionally, as the demonstrations within the same cluster are ap-
proximate in embedding space, varying demonstration orders cause less ICL performance variance.
Thus, we apply a K-means algorithm [26] to the text embeddings of the demonstrations. These text
embeddings are generated using the text embeddings API from [31]. We limit the number of clusters
to be small (typically no more than four), as a larger number would cause a combinatorial explosion
during HIDO’s inter-cluster order optimization stage, where all possible orders are evaluated.

4.2 Intra-cluster Order Optimization

In Section 4.1, we restrict the cluster number to be small, which implies that demonstrations within
one cluster, despite sharing similar LLM embeddings, can be large in quantity (e.g., 30 intra-
cluster samples). Nevertheless, the intra-cluster demonstrations share proximate embeddings, which
significantly decreases ICL performance variance when demonstration orders vary. This allows a less
thorough order search while still achieving satisfactory precision. Hence, we design an intra-cluster
demonstration order exploration strategy as follows (see the lower right hand side of Fig. 2): we
first randomly generate a demonstration order, then in each iteration, we explore its “neighborhood”
by randomly flipping 10% of its positions, which ensures variation between selected orders while
constraining exploration within a radius of the original order, as measured by rank correlations [16].
Theorem 2. Randomly flipping K entries from a sequence of length N keeps the rank correlation
within a range characterized by the lower bound 1− 6

∑K
i=1(ai − aK+1−i)

2/N(N2 − 1) and upper
bound 1. The upper bound is achieved with a extremely low probability of 1/K! when the perturbed
sequence is identical to the original sequence. (see proof in Appendix E)

We evaluate each candidate intra-cluster order’s quality using the ICD-OVI metric with a probing
set generated by the examined LLM. We generate the probing samples with input demonstrations as
context in three steps: We start with the top k (a predefined hyperparameter) effective intra-cluster
orders for the target cluster from the previous optimization iteration. For each of these k intra-cluster
order, we expand them to k distinct orders for the entire set of the demonstrations by combining: (i)
The optimal inter-cluster order from the previous iteration (fixed); (ii) The optimal intra-cluster orders
for all other clusters from the previous iteration (fixed); (iii) The current candidate intra-cluster order
for the target cluster being optimized. The k distinct ordered demonstrations differ only in the order
of demonstrations within the target cluster. We prompt the LLM with each ordered demonstrations to
generate k different probing sample sets. All probing samples collectively serve as the probing sample
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Table 1: Metadata of the LLMs tested. “Lan. models”, “Con. window” indicates the language models,
and context window size.

Lan. models GPT-3.5T GPT4oM SciPhi Zephyr LlaMa3
Con. window 16,385 128,000 32,768 32,768 1,048,576
Max output 4,096 16,384 n/a n/a n/a
Model size 175B n/a 7B 7B 8B

set to evaluate the candidate intra-cluster order using the ICD-OVI metric. By using probing samples
derived from previous top-performing orders, we achieve more robust candidate order evaluation.

4.3 Inter-cluster Order Optimization

Having obtained the near-optimal demonstration orders within each cluster, we now find the optimal
order of the clusters themselves. As we have limited the number of clusters (typically no more than
four), it becomes feasible to evaluate all possible cluster orders, as illustrated in upper right hand side
of the Fig. 2. Similar to the intra-cluster optimization process, we generate a probing set to evaluate
each possible inter-cluster order with ICD-OVI metric. However, in this case, we employ all possible
inter-cluster orders, while fixing the optimal intra-cluster demonstration orders obtained from the
previous iteration. Specifically, we first consider all possible permutations of cluster orders, then
prompt the LLM with this complete set of ordered demonstrations (combining the inter-cluster order
being evaluated and the fixed optimal intra-cluster orders) to generate a probing set. This approach
allows us to comprehensively assess different cluster arrangements while leveraging the optimized
intra-cluster orders, potentially leading to a globally optimized demonstration order.

4.4 Dynamic Update of the Score Function

We perform multiple rounds of intra- and inter-cluster optimization, during which the score function
(ICD-OVI) is refined through updated probing sets (see the upper and lower right hand side of Fig. 2).
A higher-quality probing set reduces distribution discrepancy between probing and input data samples,
enabling more precise ICD-OVI estimation. This further improves accuracy in identifying effective
demonstration orders for answer prediction.

The procedure is separately introduced in the Section 4.2 and Section 4.3, therefore, we briefly
conclude it as follows. In each iteration of in-context demonstration order optimization, we cache
the top k intra-cluster demonstration orders for all clusters. For intra-cluster optimization in the
subsequent iteration, we apply the cached top k intra-cluster demonstration orders for the cluster being
optimized, while maintaining the optimal intra-cluster orders from the previous iteration for all other
clusters. We combine these with the optimal inter-cluster order from the previous iteration to generate
new probing sets. For inter-cluster optimization, we consider all possible cluster arrangements. For
each arrangement, we apply the optimal intra-cluster demonstration orders obtained from the previous
iteration to generate probing sets for evaluating each inter-cluster arrangement. By iteratively refining
our probing sets for both intra-cluster and inter-cluster optimizations, we improve the evaluation
accuracy progressively, leading to optimized orders over time.

5 Experiments

We first introduce our experimental setup. Then, we answer the following research questions about
our proposed hierachical demonstration order optimization method HIDO via extensive experiments:
RQ1: How does HIDO perform compared to existing demonstration order optimization methods
across different datasets and language models? RQ2: What is the impact of each key component in
HIDO on its overall performance? RQ3: How sensitive is HIDO to its main hyperparameters such as
the number of clusters and the maximum number of optimization iterations?

5.1 Experiment Setup

Here, we introduce the various settings for our experimental evaluation.
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Table 2: Performance of HIDO vs. baselines across datasets (best results in bold).

AGNews CB CR DBPedia MPQA MR RTE SST-5 TREC

GPT-3.5T

GlobalE 87.24 ± 0.60 46.43 ± 9.28 93.36 ± 0.39 95.70 ± 1.41 90.76 ± 0.81 93.62 ± 0.98 81.90 ± 0.90 54.56 ± 2.83 77.47 ± 6.56

LocalE 89.06 ± 0.39 46.43 ± 9.28 93.10 ± 0.81 95.83 ± 1.37 89.97 ± 0.60 93.49 ± 1.19 80.86 ± 0.39 52.60 ± 4.77 78.65 ± 6.72

PDO 89.32 ± 0.45 48.21 ± 7.78 93.23 ± 0.60 96.22 ± 1.80 89.97 ± 0.98 93.62 ± 0.98 80.60 ± 0.45 53.65 ± 3.52 76.69 ± 6.08

HIDO 89.45 ± 0.39 51.19 ± 2.73 94.27 ± 0.23 97.92 ± 0.23 91.02 ± 0.78 94.27 ± 0.45 81.90 ± 0.60 54.95 ± 1.48 82.29 ± 1.63

GPT-4oM

GlobalE 83.07 ± 3.37 55.95 ± 1.03 93.36 ± 0.39 92.19 ± 2.17 87.50 ± 1.79 92.71 ± 0.45 85.16 ± 0.78 53.39 ± 2.48 83.33 ± 2.15

LocalE 84.77 ± 0.78 55.95 ± 1.03 93.36 ± 0.68 92.19 ± 2.56 86.33 ± 3.73 92.32 ± 2.22 85.55 ± 1.35 53.26 ± 2.60 84.11 ± 1.76

PDO 85.03 ± 2.00 55.36 ± 0.00 92.84 ± 0.60 92.19 ± 2.34 81.64 ± 1.41 92.84 ± 1.13 85.42 ± 1.63 52.86 ± 2.22 84.51 ± 2.60

HIDO 85.81 ± 2.22 56.55 ± 1.03 93.36 ± 0.68 92.84 ± 0.81 86.85 ± 1.13 93.23 ± 0.60 86.33 ± 0.68 56.64 ± 3.20 86.59 ± 1.37

SciPhi

GlobalE 85.29 ± 0.81 92.26 ± 1.03 91.67 ± 0.60 96.09 ± 1.41 83.59 ± 0.68 93.88 ± 0.45 83.72 ± 2.39 54.69 ± 2.38 76.17 ± 7.32

LocalE 86.59 ± 0.23 92.26 ± 1.03 92.32 ± 1.13 96.22 ± 0.81 85.16 ± 0.68 93.88 ± 0.23 83.98 ± 0.39 55.08 ± 1.70 76.69 ± 3.16

PDO 86.07 ± 0.60 92.26 ± 1.03 91.02 ± 1.70 96.09 ± 1.41 84.77 ± 0.39 94.01 ± 0.23 83.72 ± 2.39 54.69 ± 2.38 76.17 ± 7.32

HIDO 86.98 ± 0.45 90.48 ± 1.03 92.71 ± 0.60 96.88 ± 0.68 87.50 ± 0.78 94.27 ± 0.45 85.94 ± 0.78 57.16 ± 1.85 80.47 ± 0.78

Zephyr

GlobalE 89.71 ± 0.98 77.38 ± 5.15 93.23 ± 0.90 94.66 ± 2.00 86.07 ± 1.26 94.40 ± 0.45 82.16 ± 1.13 50.00 ± 0.68 84.38 ± 1.17

LocalE 88.15 ± 0.23 73.21 ± 4.72 93.10 ± 1.13 96.22 ± 1.97 86.98 ± 0.60 94.66 ± 0.23 82.55 ± 0.81 48.18 ± 1.85 81.90 ± 4.30

PDO 88.80 ± 0.81 77.38 ± 5.15 93.23 ± 0.90 94.66 ± 2.00 86.07 ± 0.60 93.10 ± 0.98 81.51 ± 1.93 50.00 ± 0.68 84.38 ± 1.17

HIDO 89.32 ± 0.90 78.57 ± 1.79 94.01 ± 0.45 97.27 ± 0.68 87.76 ± 0.98 94.79 ± 0.60 82.55 ± 1.37 50.78 ± 2.07 86.46 ± 1.48

LlaMa3

GlobalE 80.34 ± 4.95 94.64 ± 1.79 85.94 ± 3.20 93.49 ± 1.48 58.20 ± 2.34 92.84 ± 0.81 82.42 ± 0.39 39.19 ± 1.93 72.92 ± 1.48

LocalE 83.72 ± 4.49 91.67 ± 2.06 85.68 ± 4.77 93.23 ± 0.23 54.82 ± 1.26 90.49 ± 0.81 82.81 ± 1.03 40.36 ± 4.21 73.18 ± 6.79

PDO 77.73 ± 1.03 94.64 ± 1.79 85.16 ± 2.38 93.49 ± 1.48 52.21 ± 1.26 91.02 ± 1.35 82.94 ± 0.23 39.19 ± 1.93 72.92 ± 1.48

HIDO 86.20 ± 2.29 94.64 ± 3.09 87.24 ± 2.39 94.27 ± 1.58 63.80 ± 7.64 93.49 ± 0.98 83.07 ± 0.98 40.62 ± 3.58 77.34 ± 3.73

Baselines: (1) GlobalE: Randomly select 24 orders and measure the entropy of the frequency
distribution of the prediction labels on probing datasets [24]; (2) LocalE: Analogously to [24],
randomly select 24 demonstration orders and calculate the average entropy of their predicted logits
given by LLM. (3) Probability Distribution Ordering (PDO) [43]: Calculates the score function
of a demonstration order as the KL divergence between the frequency distribution of the prediction
labels generated by the LLM on probing datasets and the uniform distribution as the prior distribution.

Datasets: We adopt nine text classification datasets: AG’s News Corpus (AGNews) [46], Commit-
mentBank (CB) [7], Customer Review (CR) [11], DBPedia Ontology Classification (DBPedia) [46],
Multi-Perspective Question Answering (MPQA) [39], Movie Review (MR) [33], Recognizing Textual
Entailment (RTE) [6], Stanford Sentiment Treebank-5 (SST-5) [35], and Text REtrieval Conference
Question Classification (TREC) [37]. They cover various semantic scenarios, including sentiment
classification and textual entailment. We sub-sample 256 instances from each dataset due to budget
constraints.

Large Language Models: We adopt “GPT-3.5-Turbo-0125” [29] and “GPT-4o-Mini-2024-07-
19” [30] from OpenAI, “SciPhi-Mistral-7B-32k” [13], “Zephyr-7b-beta” [14] and “LlaMa-3-8B-
Instuct-Gradient-1048k” [12] from HuggingFace. We select those OpenAI models due to their
affordability and the HuggingFace models due to their large context windows.

5.2 Effectiveness of HIDO

In this section, we aim to answer RQ1. In Table 2, we measure the accuracy of the output demon-
stration orders produced by HIDO and the baselines on various datasets and LLMs. We observe
that HIDO achieves the highest prediction accuracy in most settings, proving the effectiveness of
our framework. Notably, our method can achieve significant performance leads in GPT-3.5T on
CB (51.19%), GPT-4oM on SST-5 (56.64%), SciPhi on TREC (80.47%), and LlaMa3 on MPQA
(63.80%). Additionally, we make the following observations from Table 2: (1) Model-agnostic:
HIDO achieves the best performance on both large and small LLMs, implying that our framework
is model agnostic; it can be used on different models and find relatively high-performing orders.
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(a) HIDO vs. variants using Zephyr on Trec. (b) Parameter analysis of HIDO using Sciphi on Trec.

Figure 3: Combined results of ablation study and parameter analysis.

(2) Low variance: In general, HIDO has a smaller variation in performance on most dataset model
combinations in contrast to that of the baselines, especially in GPT-3.5T on CB (2.73%), GPT-4oM
on DBPedia (0.81%), and SciPhi on TREC (0.78%). This indicates that HIDO can consistently find
the order that gives the best performance. (3) Runner-up on non-optimal datasets: In those cases
that HIDO does not perform the best, the results are still comparable to the best-performing baseline.

5.3 Ablation Study

We address RQ2 by examining four variants of our HIDO: (1) HIDO-NC: tests the utility of clustering
by randomly assigning samples to clusters. We maintain the same number of clusters and demon-
strations per cluster as in the original model. (2) HIDO-NIntra: randomly selects demonstration
orders within clusters while keeping all other components the same. (3) HIDO-NInter randomly
selects an inter-cluster order after intra-cluster optimization as the optimal inter-cluster order. (4)
HIDO-ND: removes the dynamic update scheme for the score function. It outputs the best demon-
stration order after one iteration. From Fig. 3 (a), we observe that removing each component causes
performance degradation. Specifically, we have the following observations: (1) HIDO-NC has the
largest difference, indicating that grouping the samples based on distance allows HIDO to find the best
order while maintaining efficiency. (2) HIDO-ND has relatively small increase, which implies that
HIDO is able to find the best order within a small number of optimization iterations. (3) HIDO-NInter
and HIDO-NIntra have similar impacts on the performance. This highlights the significance of our
method in finding the best order. See more results in Appendix F.2.

5.4 Parameter Sensitivity

Here, we address RQ3. Although our model has numerous hyperparameters, we focus our analysis on
two we consider most significant: the number of clusters k and the maximum number of optimization
iterations l. Fig. 3 (b) illustrates our model’s performance with varying k and l on the TREC and
MPQA datasets using the Sciphi model. We observe that performance improves as l increases,
indicating that more iterations of HIDO tend to produce better-performing demonstration orders.
Regarding the number of clusters, we find that performance peaks at k = 2 for MPQA and k = 3 for
TREC. This suggests that different datasets require specific cluster numbers for best performance.

6 Related Work

Many-Shot In-Context Learning. With the expanded context window of developed LLMs, the
models can process a larger number of demonstrations within a single prompt, resulting in further
research observing the effect of large number of demonstrations (i.e. more than 50) on ICL [1, 15, 18,
2, 28]. [18] develop a long-range language model EVALM that achieves higher accuracy when using
many shot ICL; however, the model cannot maintain the same performance consistently, indicating
that ICL-DOI still exists. Some emprirical results from [1] provides early evidence for many-shot
demonstration order sensitivity by showing how one order that gives the best performance on one
subset of a dataset can perform poorly on a different subset of the same original dataset.
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Optimization Techniques for Vast Permutation Spaces. Finding optimal orderings in large permu-
tation spaces is not unique to ICL. This problem has been studied in various domains. Traditional
approaches like simulated annealing [17] and genetic algorithms [36] are applied to similar combina-
torial optimization problems. However, these methods often struggle with the scale of permutations
encountered in ICL scenarios. Recent work in combinatorial optimization introduces hierarchical
and decomposition-based approaches to tackle large-scale permutation problems [10, 25, 32]. For in-
stance, [32] proposes a hierarchical optimization framework for solving large-scale traveling salesman
problems, demonstrating the effectiveness of dividing the problem into manageable sub-problems.
Enlightened by those ideas, we tackle specific challenges of ICL demonstration ordering.

7 Conclusion

We take the initial step on demonstration order instability in many-shot in-context learning. We first
propose a score function, ICD-OVI, with solid information theoretical foundation for evaluating
demonstration orders. We subsequently design an efficient hierarchical optimization framework HIDO
that navigates the vast permutation space while maintaining computational feasibility. Extensive
experiments verify that HIDO achieves significant performance gains across diverse tasks. Our
information-theoretic approach provides both theoretical guarantees and practical benefits, opening
new avenues for unleashing ICL performance.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer:[Yes] .
Justification: The abstract and introduction accurately describe the paper’s contributions:
(1) introducing a new information-theoretic metric (ICD-OVI) for evaluating demonstra-
tion order quality, and (2) developing a hierarchical optimization framework (HIDO) for
many-shot in-context learning. These claims are supported by the theoretical analysis and
experimental results presented in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: The paper includes a dedicated “Limitations” section that acknowledges key
limitations including: clustering complexity, computational costs of the dynamic update
mechanism, instability factors in LLMs that may affect results, and potential noise in probing
set generation.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] .
Justification: The paper provides complete theoretical proofs in Appendix for the main
theoretical results, including Theorem 1 (relationship between ICD-OVI and demonstration
order performance) and Theorem 2 (rank correlation bounds when randomly flipping entries).
All assumptions are clearly stated before each theorem.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: The paper provides detailed methodology in Section 4, along with experi-
mental settings in Section 5.1 that specify datasets, models, metrics, and baselines. The
hyperparameters and implementation details are provided, and the code will is released at
the specified repository link in abstract.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: The paper states that code will be made available at the specified GitHub
repository link: "https://anonymous.4open.science/r/HIDO-B2DE/". The datasets used are
all publicly available standard benchmarks in the field (AGNews, CB, CR, etc.).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: Section 5.1 provides details on the experimental setup, including datasets used,
models evaluated, and baselines. Section 5.3 and Figure 3 discuss parameter sensitivity
analysis. The methods section (Section 4) describes how the hyperparameters are set and
how they affect performance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .
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Justification: Table 2 reports the standard deviation (variance) along with the mean for all
experimental results. The ablation studies (Figure 3) also include performance differences
to show the significance of each component’s contribution to the overall approach.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] .
Justification: While the paper mentions the models used (including their parameters and
context window sizes in Table 1), it does not provide specific details about the computational
resources required for experiments, such as GPU types, memory requirements, or execution
times.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: The research complies with the NeurIPS Code of Ethics. It uses publicly
available datasets and models, does not involve human subjects, does not promote harmful
applications, and discusses broader impacts in Appendix.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: The paper includes a “Broader Impact” section in the Appendix that discusses
both positive impacts (enhancing AI applications in education, healthcare, and research)
and potential negative impacts (reinforcing biases, increasing compute requirements, and
widening capability gaps).

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The paper does not introduce high-risk models or datasets that would require
safeguards. It presents an optimization method for existing models rather than releasing new
models or datasets that could be misused.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: While the paper cites the sources of datasets and models used, it does not
explicitly mention the licenses or terms of use for these assets. The paper should include
this information for completeness.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] .
Justification:The code are provided at the repository link, and the method itself is thoroughly
documented in the paper. The ICD-OVI metric and HIDO framework are described in detail
with algorithms and implementation specifics.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The research does not involve crowdsourcing or human subjects. All experi-
ments are computational and use existing datasets and models.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The research does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes] .
Justification: The paper clearly describes the use of LLMs (GPT-3.5-Turbo, GPT-4o-Mini,
SciPhi-Mistral, Zephyr, and LlaMa-3) as they are integral to the research. Table 1 lists all
models with their details, and Section 5.1 explains how they were used in experiments.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Limitations

In this work, several limitations exist that should be acknowledged for a balanced understanding of
the results and methodology. First, while the Hierarchical Demonstration Order Optimization (HIDO)
framework effectively reduces the search space for many-shot in-context learning (ICL), its reliance
on clustering introduces an additional layer of complexity that may not always generalize well to
all datasets or language models. The clustering process itself, especially with a limited number of
clusters, may not capture intricate interdependencies between demonstrations. Furthermore, although
the dynamic update mechanism improves the accuracy of the score function, it also increases the
overall computational cost, particularly when applied to very large datasets or when running a high
number of optimization iterations.

Additionally, the current framework assumes that performance improvements arise primarily from the
optimized demonstration order, but factors such as the inherent instability of large language models
(LLMs) across varying contexts might also contribute to observed fluctuations. Finally, the probing
set generation step introduces potential noise, and while the system attempts to mitigate this through
iterative updates, inaccuracies in probing may still affect the final demonstration order selection.

B Broader Impact

This work on Hierarchical Demonstration Order Optimization (HIDO) for many-shot in-context
learning has significant potential societal implications. Positively, by improving the performance
and reliability of large language models across diverse domains, HIDO could enhance AI applica-
tions in education, healthcare, and scientific research, making these systems more accessible and
effective for users without extensive prompt engineering expertise. However, potential negative
impacts include reinforcing existing biases in training data through optimized demonstration orders,
increasing compute requirements for determining optimal orderings (raising environmental and
resource accessibility concerns), and potentially widening capability gaps between organizations with
resources to implement such optimization techniques and those without. As many-shot in-context
learning becomes more widely deployed, careful consideration should be given to monitoring how
optimization techniques like HIDO affect fairness, bias, and resource distribution in AI systems.

C Licenses for existing assets

Datasets:

• AGNews [46]: publicly available for research use.

• CB [7]: released under MIT License.

• CR [11]: publicly available for research use.

• DBPedia [46]: available under Creative Commons Attribution-ShareAlike License.

• MPQA [39]: available under GNU General Public License.

• MR [33]: publicly available for research use.

• RTE [6]: publicly available for research use.

• SST-5 [35]: released under Stanford CoreNLP License.

• TREC [37]: released under Creative Commons Attribution 4.0 license.

Models:

• GPT-3.5-Turbo and GPT-4o-Mini [29, 30]: used under the OpenAI API Terms of Use.

• SciPhi-Mistral-7B-32k [13]: released under Apache 2.0 License.

• Zephyr-7b-beta [14]: Cite Huggingface [14], released under MIT License.

• LlaMa-3-8B-Instuct-Gradient-1048k [12]: released under Llama 3 Community License.
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We have added this license information in Section 5.1 and ensured proper attribution throughout the
paper. All assets are used in accordance with their respective licenses and terms of use.

D Complete Development of ICD-OVI Metric

Enlightened by V-usable information, our ICD-OVI, measures the usable information that an LLM
can capture from ordered demonstrations Π(D). First, we define the predictive family corresponding
to the ordered demonstrations Π(D) as

VΠ :={PLLM(·|Π(D)⊕ q)|q ∈ QP } ∪ {PLLM(·|q)|q ∈ QP }, (6)

where QP represents the set of all possible queries in the sample space of input demonstrations’ data
distribution P , and {PLLM(·|q)|q ∈ QP } is added to satisfy the optimal ignorance requirement for a
predictive family [42]. Then, ICD-OVI, the information that the model can capture from Π(D), can
be defined as the expected information the model with predictive family VΠ can capture from query
random variable (r.v.) Q for predicting label r.v. A, i.e.,

ICD-OVI =HVΠ(A)−HVΠ(A|Q),

= inf
f∈VΠ

Eq,a∼D[− log f [∅](a)]− inf
f∈VΠ

Eq,a∼D[− log f [q](a)],

=E(q,a)∼P [log2 PLLM(a|Π(A)⊕ ∅)− log2 PLLM(a|Π(D)⊕ q)],

(7)

where Π(A) :=
⊕n

i=1 T (∅, aπ(i)). The third equation follows the definition of in-context V-
information from Eq. 1 of [23]. Practically, denoting P i

LLM(â) := PLLM(â|q̂i), we may approximate
the Eq. 7 with the probing samples D̂ generated by LLM with

1

|D̂|
Σi(− log2 P

Π,i
LLM(â) + log2 P

i
LLM(â)). (8)

However, Eq. 8 involves the LLM-generated labels âs for the probing samples, which can be factually
incorrect. Utilizing those incorrect labels may lead to bias in the computation of ICD-OVI. Fortunately,
the theory of V -usable information [9, 23] provide a effective tool called point-wise V-informationn
threshold (PVI threshold) which assists deciding if one generated sample label is reliable. Here, PVI
is defined as

PVIΠ(D)
(q̂,â) =− log2 PLLM(â|Π(D)⊕ q̂) + log2 PLLM(â|Π(A)⊕ q̂). (9)

By Eq. 9, the ICD-OVI is the mean of PVIs for all probing samples D̂. Built upon PVI, the PVI
threshold is a scalar characterizing the likelihood of the correctness of the sample label. Specifically,
when the PVI of a probing sample (q̂, â) is smaller than a constant τ , the label â is possibly incorrect;
otherwise, the label â is highly likely to be correct for query q̂. Actually, the fact of the existence of
a PVI threshold is extensively validated by [9] and [23] in multiple LLMs and datasets of various
semantic scenarios.

With the aid of the PVI threshold, we can address the potential bias caused by incorrect LLM-
generated labels. Specifically, for a probing sample (q̂, â), we first calculate its PVI; if it is higher
than a predefined V-information threshold τ , then we adopt the PVI of the sample (q̂, â) into the
ICD-OVI calculation of ordered demonstrations Π(D). Otherwise, we relax the PVI to its expectation
for labels set {a|a ∈ A}, i.e.,

EPVIΠ(D)
(q̂,â) =Σa∈A[−PΠ,q̂

LLM(a) log2 P
Π,q̂
LLM(a) + P q̂

LLM(a) log2 P
q̂
LLM(a)]. (10)

Conclusively, by denoting point-wise ICD-OVI (PICD-OVI) as

PICD-OVIΠ(D)
(q̂,â) =I(PVI(q̂,â) ≥ τ)PVI(q̂,â) + I(PVI(q̂,â) < τ)EPVI(q̂,â), (11)

our ICD-OVI can be approximated as

ICD-OVI(Π(D)) ≈ 1

|D̂|
Σ(q̂,â)PICD-OVI(q̂,â). (12)

Thus, our proposed ICD-OVI can effectively estimate the V -usable information despite noisy labels.
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E Theorems and Proofs

Lemma 1. Let f(x1, . . . , xn) =
∑n

i=1 xi log xi be defined for xi > 0, with the constraint∑n
i=1 xi = c, where 0 < c < 1

e . Then:

1. f reaches its minimum when all xi are equal, i.e., xi =
c
n for all i.

2. f reaches its maximum when one xi equals c and the rest are zero.

Proof. We will use the method of Lagrange multipliers.

Let g(x1, . . . , xn) =
∑n

i=1 xi − c = 0 be our constraint. The Lagrangian is:

L(x1, . . . , xn, λ) =

n∑
i=1

xi log xi − λ(

n∑
i=1

xi − c)

We set the partial derivatives to zero:

∂L

∂xi
= log xi + 1− λ = 0 for i = 1, . . . , n

∂L

∂λ
=

n∑
i=1

xi − c = 0

From ∂L
∂xi

= 0, we get:
xi = eλ−1

This shows that all xi are equal at the critical points.

Minimum Point: When all xi are equal, let xi =
c
n for all i. The function value is:

f(
c

n
, . . . ,

c

n
) = c log

c

n

Maximum Point: Consider x1 = c and xi = 0 for i > 1. The function value is:

f(c, 0, . . . , 0) = c log c

To show that f( c
n , . . . ,

c
n ) < f(c, 0, . . . , 0), we need to prove:

c log
c

n
< c log c

This is equivalent to fraccn < c, which is true for n > 1 and c > 0. Therefore, we have shown that
the minimum occurs when all xi =

c
n , and the maximum occurs when one xi = c and the rest are

zero.

Theorem 1 We assume that given a LLM, a probing sample (q̂, â) and an ordered demonstration text
Π(D),

• When PVIΠ(D)
(q̂,â) ≥ τ , then â = a∗, where the a∗ is the ground-truth label corresponding to

the generated query q̂.

• The LLM predict the label â with the highest probability when query by q̂ with Π(D) as its
context, i.e., P (â|Π(D)⊕ q̂) = argmaxa∈A P (a|Π(D)⊕ q̂).

• Assume that for any two ordered demonstration texts Π1(D) and Π2(D), the
PLLM (a|Π1(A)⊕ ∅) = PLLM (a|Π2(A)⊕ ∅) for all a ∈ A.

Without loss of generalizability, for any two ordered demonstrations Π1(D) and Π1(D), there is a
ϵ( 1e ≤ ϵ ≤ 1) such that P (â|Πi(D)⊕ q̂) > 1− ϵ. We additionally assume that when PVIΠ(D)

(q̂,â) < τ :
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• The a∗ is the second most probable label given by the LLM when prompted by
query q̂ with any ordered demonstration context Π(D), i.e., P (a∗|Π(D) ⊕ q̂) =
argmaxa∈A\{â} P (a|Π(D)⊕ q̂); we write P (a∗|Πi(D) ⊕ q̂) = λiϵ, where 0 ≤ λi ≤ 1,
i ∈ {1, 2}.

• By symmetry, we only consider the case λ1 < λ2. In this case, we assume that 1
2 − δ <

λ1 < 1
2 + δ (δ is a constant) such that

(λ1ϵ) log λ1ϵ+ (1− λ1ϵ) log (1− λ1ϵ) < ϵ log ϵ− (2− λ1)ϵ. (13)

Meanwhile, we require λ2 − λ1 > (1− 1
log(n−2) )(1− λ1).

With the assumptions above, if

PICD-OVIΠ1(D)
(q̂,â) > PICD-OVIΠ2(D)

(q̂,â) , (14)

then we have
PVIΠ1(D)

(q̂,a∗) > PVIΠ2(D)
(q̂,a∗) . (15)

Therefore, if Π1(D) is more performant demonstration order than Π2(D), i.e., Eq. 15 establish for
any probing sample (q̂, â), then

ICD-OVI(Π1(D)) > ICD-OVI(Π2(D)). (16)

Proof. First, in the case that PV I
Π(D)
(q̂,â) ≥ τ , by Assumption 1, we have â = a∗. Therefore, we have

PICD-OVIΠ(D)
q̂,â = P (â|Π(D)⊕ q̂)− P (â|Π(A)⊕ ∅) = PVIΠ(D)

q̂,â = PVIΠ(D)
q̂,a∗ . (17)

Eq. 17 enforces the establishment of Eq. 15.

Next, in the case where PVIΠ(D)
(q̂,â) < τ , with Assumption 3, it suffices to prove that |λ1ϵ log λ1ϵ| ≥

|λ2ϵ log λ2ϵ| gives rise to

|λ1ϵ log λ1ϵ+ΣΣixi=(1−λ1)ϵxi log xi+xâ,1| ≥ |λ2ϵ log λ2ϵ+ΣΣixi=(1−λ1)ϵxi log xi+xâ,2|. (18)

Now, by utilizing the Assumption 5, we claim that Eq. 18 establish, thus the theorem is proved.

To prove Eq. 18, we start from the known inequivality

λ2 − λ1 > (1− 1

log (n− 2)
)(1− λ1). (19)

For simplicity, we represent λ2 − λ1 as ∆ in the following texts. We rewrite the Eq. 19 as

∆ >
1 + 1/ϵ log e−ϵ(1−λ1)−ϵ+log 2/2

log (n− 2)
+ (1− λ1),

=
1

ϵ
[
ϵ(log ϵ− log 2) + (ϵ log 2− ϵ(2− λ1))

log (n− 2)
]− log ϵ

log (n− 2)
+ (1− λ1) +

1

log (n− 2)
.

(20)

By Assumption 5, we substitute terms appears in Eq. 20 with left hand side (LHS) of Eq. 13 and
log [1− λ1ϵ] > log [(1− λ1)ϵ], further relax the bound as

∆ >λ1
log λ1ϵ

log (n− 2)
− log ϵ

log (n− 2)
+ (1− λ1) +

1− λ1

log (n− 2)
log [(1− λ1)ϵ] +

1

log (n− 2)

= − 1

ϵ log (n− 2)
{−λ1ϵ log λ1ϵ+ ϵ log ϵ− [(1− λ1)ϵ] log (n− 2)− (1− λ1)ϵ log [(1− λ1)ϵ]− ϵ}.

(21)
By multipling ϵ log (n− 2) to both sides of the inequivality, we have

−λ1ϵ log (λ1ϵ) + ϵ log ϵ− [log (n− 2)](1− λ1 −∆)ϵ− (1− λ1)ϵ log (1− λ1)ϵ− ϵ > 0. (22)

Eq. 22 is equivalent to

−λ1ϵ log λ1ϵ+log ϵ(λ1+∆)ϵ+(n−2)
(1− λ1 −∆)ϵ

n− 2
log

ϵ

n− 2
−(1−λ1)ϵ log (1− λ1)ϵ−ϵ > 0.

(23)
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Figure 4: Illuestration of the observation of Eq. 24 and Equ 25. The red, orange, and blue curves are
x log x, log ϵx and log ϵ

n−2x (where n = 6 and ϵ = 0.2), respectively. It is clear that x log x ≤ log ϵx

between point E and A; x log x ≤ log 1
n−2ϵx between point E and B.

Now, we observe that since λ1 +∆ = λ2 < 1, thus (λ1 +∆)ϵ < ϵ. Therefore

(λ1 +∆)ϵ log (λ1 +∆)ϵ ≤ − log ϵ(λ1 +∆)ϵ. (24)

Here, the log ϵ is the slope of the linear function composed by (0, 0) and (ϵ, ϵ log ϵ). Analogously,
we have

1− λ1 −∆

ϵ
log

1− λ1 −∆

n− 2
ϵ ≤ log

ϵ

n− 2

(1− λ1 −∆)ϵ

n− 2
. (25)

By substituting the terms of RHS of Equ 24 and Equ 25 appeared in Equ 23 with the LHS of Equ 24
and Equ 25, we further relax our inequivality as

−λ1ϵ log λ1ϵ+ (λ1 +∆)ϵ log (λ1 +∆)ϵ+ (1− λ1 −∆)ϵ log (
1− λ1 −∆

n− 2
ϵ)−

(1− λ1)ϵ log (1− λ1)ϵ+ (1− ϵ) log 1− ϵ > 0.
(26)

We now rearrange the Eq. 26 and substitute λ1 +∆ with λ2, we have

−λ1ϵ log λ1ϵ− (1− λ1)ϵ log (1− λ1)ϵ >

−(λ2ϵ) log (λ2ϵ)− (1− λ2)ϵ log (
1− λ1 −∆

n− 2
ϵ)− (1− ϵ) log (1− ϵ).

(27)

We observe that, by Lemma 1, we have that

min
(x1,...,xn−2)

ΣΣxi=(1−λ2)ϵxi log xi = (1− λ2)ϵ log (
1− λ2

n− 2
ϵ),

max
(x1,...,xn−2)

ΣΣxi=(1−λ1)ϵxi log xi = (1− λ1)ϵ log (1− λ1ϵ).
(28)

In other words,

max
(x1,...,xn−2)

|ΣΣxi=(1−λ2)ϵxi log xi| = −(1− λ2)ϵ log (
1− λ2

n− 2
ϵ),

min
(x1,...,xn−2)

|ΣΣxi=(1−λ1)ϵxi log xi| = −(1− λ1)ϵ log (1− λ1ϵ).
(29)

Besides, it is direct to show that

(1− ϵ) log (1− ϵ) ≤ xâ,i log xâ,i ≤ 0, (30)
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i.e.,
−(1− ϵ) log (1− ϵ) ≥ |xâ,i log xâ,i| ≥ 0, (31)

Hence, we rewrite the Eq. 27 to

|λ1ϵ log λ1ϵ|+ min
(x1,...,xn−2)

|ΣΣxi=(1−λ1)ϵxi log xi|+min |xâ,1 log xâ,1| >

|(λ2ϵ) log (λ2ϵ)|+ max
(x1,...,xn−2)

|ΣΣxi=(1−λ2)ϵxi log xi|+max |xâ,2 log xâ,2|.
(32)

Therefore, we are able to write that

|λ1ϵ log λ1ϵ+ΣΣixi=(1−λ1)ϵxi log xi+xâ,1| ≥ |λ2ϵ log λ2ϵ+ΣΣixi=(1−λ1)ϵxi log xi+xâ,2|, (33)

which is exactly Eq. 18.

Theorem 2. Randomly flipping K entries from a sequence of length N will always keep the rank
correlation within a range characterized by the lower bound 1− 6

∑K
i=1(ai − aK+1−i)

2/N(N2 − 1)
and upper bound 1. Here ai is the original position index of the i-th perturbed element. The lower
bound is achieved with a probability of 1/K! when the perturbed sequence is the reverse of the
original sequence. The upper bound is achieved with a probability of 1/K! when the perturbed
sequence is identical to the original sequence.

To prove the above theorem, we first present the lemma:
Lemma 2. Given a list of N integers {a1, a2, . . . , aN} with ai < ai+1, i = 1, 2, . . . , N − 1 and its

random perturbation {a∗1, a∗2, . . . , a∗N}, the maximum value of
N∑
i=1

(ai−a∗i )
2 is achieved by reversing

the list, i.e., a∗i = aN+1−i.

Proof. To prove that the maximum value of the sum:

S =

N∑
i=1

(ai − a∗i )
2

is achieved by reversing the list {a∗i }Ni=1, we need to show that this arrangement maximizes the
squared differences between the original list {ai}Ni=1 and the perturbed list {a∗i }Ni=1, where a∗i is the
perturbed element in the i-th position.

We know that
a1 < a2 < · · · < aN .

Considering the sum S =
∑N

i=1(ai − a∗i )
2, each term in this sum is of the form (ai − a∗i )

2, which
measures how far apart ai and a∗i are. Thus, to maximize the sum, we need to maximize each
individual squared difference (ai − a∗i )

2.

The largest possible difference between any two elements of the list {ai}Ni=1 occurs when the largest
element aN is paired with the smallest element a1, the second largest element aN−1 is paired with
the second smallest element a2, and so on. In other words, the maximum possible difference occurs
when a∗i = aN+1−i for all i. This arrangement is precisely the reverse of the original list.

To prove that reversing the list maximizes the sum, we propose to prove that when swapping any two
elements in the perturbed list, the sum will always decrease. Suppose we swap two elements a∗p and
a∗q (with p < q, without loss of generality) in the reversed list. Before the swap, the contributions to
the sum from the two positions are:

(ap − a∗p)
2 + (aq − a∗q)

2.

After swapping a∗p and a∗q , the new contributions become:

(ap − a∗q)
2 + (aq − a∗p)

2.

The change in the sum, ∆S, is the difference between these two expressions:

∆S =
(
(ap − a∗q)

2 + (aq − a∗p)
2
)
−

(
(ap − a∗p)

2 + (aq − a∗q)
2
)
.
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We expand these terms as follows:

- Before the swap:

(ap − a∗p)
2 + (aq − a∗q)

2 = (ap − aN+1−p)
2 + (aq − aN+1−q)

2

- After the swap:

(ap − a∗q)
2 + (aq − a∗p)

2 = (ap − aN+1−q)
2 + (aq − aN+1−p)

2

Because ap < aq and the list is ordered, swapping two elements in the reversed list decreases the
squared differences, leading to a decrease in the sum S. Thus, reversing the list maximizes the
absolute differences |ai − a∗i | for all i, and any deviation from the reversed order will result in a
smaller sum.

With this lemma, now we prove Theorem 2.

Proof. Given two ranking sequences {si}Ni=1 and {s∗i }Ni=1, the Spearman’s rank correlation coeffi-
cient is represented as follows:

ρ = 1−
6

N∑
i=1

(si − s∗i )
2

N(N2 − 1)
. (34)

In our case, one ranking sequence is obtained by perturbing K elements in another ranking sequence.
Denote the selected elements as {ai}Ki=1, and the elements after perturbation as {a∗i }Ki=1

according to Lemma 2, we know the maximum value of
K∑
i=1

(ai−a∗i )
2 is achieved when a∗i = aK+1−i.

For other elements that are not perturbed satisfy that their di equals 0. Therefore, the Spearman’s
rank correlation coefficient reaches the minimum value:

ρmin = 1−
6

K∑
i=1

(ai − aK+1−i)
2

N(N2 − 1)
. (35)

Similarly, the maximum value is ρmax = 1 when the perturbed sequence is exactly the same as
the original sequence. Since each perturbation has an equal probability, and there are K! different
perturbations, we know the probabilities are both 1/K!.

F Supplementary Experiments

F.1 Implementation Details

Our conduct experiments using a system equipped with four NVIDIA A100 80GB PCIe GPUs.
The system ran NVIDIA driver version 550.54.14 and CUDA 12.4. We implement the project with
Python, mainly relying on the PyTorch [34] and Transformers [40] packages for the implementation.

F.2 Ablation Experiment Results

Please see the supplementary ablation experiment results in Fig. 5. We have consistent observations
from those results with the main paper.

F.3 Accuracy difference between few-shot (10 shots) and many-shot (150) ICL

We want to confirm that ICL-DOI still exists in many shot ICL. Thus, we randomly select orders
with 10 or 150 demonstrations and measure the model accuracy. The following figures present the
distribution of model performance under few-shot and many-shot settings on various datasets.
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Figure 5: The performance of our proposed HIDO and its variants tested with different LLMs on
various datasets. The first one or two characters indicate the dataset (i.e. ’t’ represents TREC and
’mp’ represents ’MPQA’). The remaining characters represent the model (i.e. ’z’ represents Zephyr
and ’3.5’ represents GPT-3.5T).
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Figure 6: AGNews. Many shot ICL generally improves the best model accuracy (i.e. increases
maximum accuracy), which causes the range to be larger.

Figure 7: CB. Here, the figure shows that many shot learning causes model performance to degrade.
This could be a result of CB having less test samples (56 samples compared to 256 samples for other
datasets). Regardless, there is large variance in the results, indicating demonstration order instability.

Figure 8: CR. SciPhi and Zephyr exhibit a wider variance in accuracy. In Zephyr, there is an extremely
low outlier, emphasizing the importance of order on model performance.
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Figure 9: DBPedia. Many shot learning improved model performance for all models; however,
for LlaMa3, the variance becomes smaller but stays the same or increases for the other models.
Taking a look at DBPedia, the samples in general give more context in comparison to the others,
which suggests that LlaMa3 is better at retaining and exploiting the information given from the
demonstrations when completing the task of interest.

Figure 10: MPQA. Again, many shot ICL improved model accuracy, but also caused the variance to
increase in general. LlaMa3 especially exhibits the problem of ICL-DOI with over 25% difference
between the best and worst accuracy.

Figure 11: MR. Model performance only improved for LlaMa3, but the other two models illustrate a
wider variance. For SciPhi and Zephyr, the model performance under the few-shot and many shot
settings is comparable, but in many-shot, the worst accurcy is much lower than that of few-shot
performance.
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Figure 12: TREC. Increasing the number of demonstrations increased average accuracy for all models,
and the variance did not improve much, other than for LlaMa3. LlaMa3 has 8 billion paramters,
compared to only 7 billion for the other two models, which means that it has more capability to learn
and retain information. This can potentially be the reason for its superior performance against the
other two LLMs.

F.4 Quantitative Analysis of Generated Probing Sets

In the method development, we assume that the demonstration order optimized for answer prediction
can also be used for sample generation. Since each additional iteration of HIDO optimizes the order
such that it can achieve a higher accuracy, the probing set from the inter-cluster optimization round is
generated from the current optimized order. Thus, we can compare the probing set to the original
demonstrations, which should be of high quality. Ideally, as the number of iterations increases (i.e.
the order becomes more optimized), the distance between the two should decrease (i.e. the quality
of the probing set increases). The following figures measure the average L2 norm between the
demonstration embeddings and the probing set embeddings generated by various LLMs on different
datasets. In general, the experiments support the assumption, presenting a negative trend between
iterations and distance.
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Figure 13: AGNews. Embedding distance for both LlaMa3 and Zephyr consistently decrease as the
number of iterations increase; however, Zephyr reaches its optimal at three iterations, and additional
iterations will cause the resulting order to deviate, as indicated by the spike at the fourth iteration.
SciPhi has a peak at three iterations but decreases after that point.

Figure 14: CR. Similar to the previous figure, the probing sets generated by LlaMa3 and Zephyr
consistently drop, and SciPhi displays a peak and then a major drop in embedding distance. The
figures suggest that after some iterations (i.e. as the order becomes more optimal), the LLM can
generate samples close to the original text.

Figure 15: DBPedia. All models demonstrate a negative trend between distance and iteration. The
figure for SciPhi displays a plateau between the second and third iteration, which could imply that
the probing set (i.e. the actual text) or the semantics did not change much.
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Figure 16: MPQA. The figures in general demonstrate a negative trend. For SciPhi, the distance
increases first then drops after the second iteration. However, the difference is relatively small, about
0.05 difference, indicating that the generated samples are similar to the demonstrations.

Figure 17: MR. For LlaMa3, the distance peaks at iteration two and iteration four, but generally
decreases. This could be due to HIDO trying to find the best order in the neighborhood space but
selecting one that does not perform well; however, it is able to find the best order in the end.

Figure 18: TREC. Like before, the genearl trend is negative in all the figures. However, the plots for
SciPhi and Zephy both have a peak but drops in the next iteration, which indicates that the model
diverges from the optimial and corrects itself.
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