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Abstract

Tensor decomposition is a canonical non-convex optimization problem that is
computationally challenging, and yet important due to applications in factor
analysis and parameter estimation of latent variable models. In practice, scal-
able iterative methods, particularly Alternating Least Squares (ALS), remain the
workhorse for tensor decomposition despite the lack of global convergence guaran-
tees. A popular approach to tackle challenging non-convex optimization problems
is overparameterization— on input an n X n X n tensor of rank r, the algorithm
can output a decomposition of potentially rank & (potentially larger than r). On the
theoretical side, overparameterization for iterative methods is challenging to reason
about and requires new techniques. The work of Wang et al., (NeurIPS 2020)
makes progress by showing that a variant of gradient descent globally converges
when overparameterized to k = O(r7-® logn). Our main result shows that overpa-
rameterization provably enables global convergence of ALS: on input a third order
n X n X n tensor with a decomposition of rank » < n, ALS overparameterized
with rank k = O(r?) achieves global convergence with high probability under
random initialization. Moreover our analysis also gives guarantees for the more
general low-rank approximation problem. The analysis introduces new techniques
for understanding iterative methods in the overparameterized regime based on new
matrix anticoncentration arguments.

1 Introduction

Iterative heuristics like alternating least squares (ALS), alternate minimization, and gradient descent
are the workhorse for many computational tasks in machine learning and high-dimensional data
analysis. Their simplicity, scalability and empirical success have led to their widespread use, even
for highly non-convex problems. Yet rigorous guarantees have been hard to establish due to the
non-convex nature of these problems.

Tensor decomposition is a prime example of a well-studied non-convex problem where there is a
disconnect between the practical performance of iterative heuristics and known theoretical guarantees.
We are given a third-order tensor 7' € R™*"*" and the goal is to decompose the tensor as a sum of
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a few rank-1 tensors when possible, i.e.,

k
T=Y 0y®z,
i=1
where the {z; ® y; ® 2z; : i € [k]} are the rank-1 terms of the decomposition, and the vectors
{i,yi, 2 : i € [k]} € R™ are called the factors of the decomposition. This is sometimes called the
CP decomposition of the tensor, and is an important tool in factor analysis and parameter estimation
of many latent variable models in machine learning [see e.g.,|[KB09, [Moil8, JGKA19]. Finding the
smallest r for which a rank-r decomposition of 7" exists is NP-hard in the worst case [Has90, [HL13] .
Algorithmic guarantees are known under additional genericity or smoothed analysis assumptions for
more sophisticated but less scalable algorithms like simultaneous diagonalization and other spectral
methods [Har72| [LRA93], algebraic methods [DLCCO7]] and the sum-of-squares hierarchy [BKS15]]
(see [Vij20] for more detailed comparisons).

The most popular algorithms in practice are iterative methods for the optimization problem given by
the least squares objective

ey
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In particular, the Alternating Least Squares (ALS) algorlthm is an iterative algorithm that alternately
updates one set of variables, say x1,...,x; € R", while keeping the rest of them (y1,...,yx
and z1,...,z;) fixed. Note that each update step is a least squares problem (e.g., in the variables
x1,...,x)) when the remaining variables are fixed (see Section 2] for a more detailed description of
the algorithm). The optimization landscape of (1)) is highly non-convex, and such iterative algorithms
can potentially converge to bad local optima. This has even inspired new variants of ALS like
the Orthogonalized ALS algorithm of [SV17]], that come with rigorous guarantees under strong
assumptions like orthogonality or incoherence of the factors. Yet, the ALS algorithm remains the
most popular method for tensor decompositions in practice, despite our poor understanding of when
ALS succeeds [KB09, BK25].

Overparameterization has recently emerged as a powerful approach to mitigating non-convexity.
Introducing more parameters than those of the ground-truth model often improves optimization
dynamics in practice, even in complex settings like training deep neural networks. In our setting, the
given tensor 7" has a rank r decomposition of the form T = 22:1 a; ® b; ® ¢;, and the goal is to
find a decomposition of potentially larger rank k.

It is challenging to reason about overparameterization with iterative methods for tensor decomposition.
Existing approaches based on lazy training and standard mean-field analysis requires an overpa-
rameterization of rank that depends polynomially or even exponentially on the ambient dimension.
Surprisingly, the work of [WWL™20]] makes progress by showing global convergence for a variant of
gradient descent with moderate overparameterization of k = O(r7-> log n) that is nearly independent
of the ambient dimension n. The main question we address in this paper is:

Question. Does ALS admit a polynomial time global convergence guarantee with moderate overpa-
rameterization (a function of v and not n)?

Our main result answers this question in the affirmative. Concretely, our main contributions are the
following:

* We prove that the ALS algorithm on a tensor with a mildly conditioned rank-r decom-
positior][] when overparameterized with k& = O(r?) and with random initialization of
{(x,y:,2) : © € [r]}, converges with high probability to a global minimum (i.e., objective
value 0).

* We also provide rigorous guarantees for ALS under overparameterization for the more
general low-rank approximation problem

2
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'By midly conditioned we mean that the condition numbers of factor matrices are bounded by poly(r)



We prove that ALS when overparameterized with k¥ = O(r?) and initialized randomly, finds
a solution whose objective value is competitive with the OPT, up to a multiplicative factor
that is polynomial in only r (and independent of n).

For both our results, a moderate overparameterization of k = O(r?) suffices. We suspect it may be
challenging to improve the amount of overparameterization necessary. We remark that even for more
computationally-intensive algorithms based on spectral methods, the best polynomial time guarantees
require an overparameterization of k = O(r?) [BCV14,[ISWZI9]. We leave it as a direction for
future work to investigate whether one can prove better upper or lower bounds on the amount of
overparameterization necessary to recover a provable guarantee for ALS.

Recent work has developed a few different techniques for analyzing iterative methods with overparam-
eterization. Techniques based on the lazy training approach argue that when the model is sufficiently
overparameterized, the optimization problem is locally convex and the method will converge to a
good solution near the initialization [COB19|]. Lazy training analyses incur overparameterization
that is polynomial in the ambient dimension n, which can be very large compared to the rank 7.

The work of [WWL™20] makes progress by instead adopting the framework of mean field analysis.
While previous work that introduced this technique analyzes problems in the case of very large,
or even infinite overparameterization [MMNT18]], [WWL™20] was able to show global convergence
for a variant of gradient descent with only moderate overparameterization of k = O(r"- log n)E],
achieving an exponentially better dependence on n than lazy training analyses for small 7.

Our work develops an analysis that is significantly different from previous approaches, based on
new matrix anticoncentration statements. At a high level, we observe that if the iterates X, Y, Z
are sufficiently random and in the span of the components of the true tensor, then due to overpa-
rameterization they will form a basis for an appropriate space related to the components. If this
occurs, then the next iteration of ALS will find a near-exact solution and converge. At initialization,
X.,Y, Z are independently fully random. However, they are random in the ambient space, and not
restricted to the subspace of interest. The first iteration of ALS should in fact update X, Y, Z to be
within the correct space. However, the updated X, Y, Z now exhibit significant dependencies on each
other. Our analysis shows that despite this, the updated X, Y, Z are still random enough to form the
appropriate basis. Thus, the crux of our argument is in showing that this iteration preserves enough
randomness from the initialization. Quantitatively, this requires arguing about the least singular
value of various structured random matrices that arise in the algorithm, along with careful matrix
perturbation analyses. Our techniques are applied to a version of ALS that updates all the factor
matrices in parallel. Similar guarantees, based on these techniques, for the standard ALS will appear
in the arxiv version of the paper.

1.1 Related Work

We now describe related work on tensor decompositions and overparameterization, and place our
work in the context of these prior works.

Tensor decomposition has a rich history going back to at least [Har70,|Har72]]. This decomposition
into a sum of rank-one tensors is also referred to as CP decomposition or PARAFAC decomposition.
See also [KBQ9] for other decomposition notions for tensors including Tucker decompositions.
There are several iterative algorithms that are popular in practice like alternating least squares,
alternate minimization, gradient descent and tensor power method [see [KB09,|/AGH™ 14, JGKAT9,
for more details]. In particular, the ALS algorithm was first introduced by [Har70, |CC70]], and
has been the workhorse algorithm for tensor decomposition in practice [BK25]. While ALS is
popular for its efficiency and steps towards understanding convergence of the iterates have been made
[Usc12, [WC14], we do not have a good understanding of when it converges to a global optimum
solution.

The two results on tensor decompositions that is most relevant to our work are the work of Sharan
and Valiant [SV17] who introduced and gave guarantees for an orthogonalized version of ALS,
and the work of Wang, Wu, Lee, Ma and Ge [WWLT20] on analyzing gradient descent in the
overparameterized regime.

2For order-£ tensors the bound on overparameterization is O(r2-** log(n)). Our work only focuses on the
order-3 case.



Comparison to the Orthogonalized ALS algorithm. The work of Sharan and Valiant [SV17]]
introduced a variant of the ALS algorithm that orthogonalizes the factors in each step, in addition
to the ALS update. As described in [SV17] this allows the ALS algorithm to avoid issues where
multiple components of the decomposition capture the same factor of the tensor, when the rank-1
terms have different magnitudes. Their work also proves guarantees under the assumption that
the factors {a; : ¢ € [r]} of the decomposition are orthogonal or incoherent. The decomposition
computed by the algorithm is not overparameterized i.e., K = r. However, the algorithm is more
suited for settings where the target decomposition has near-orthogonal factors. Our analysis is for
the ALS algorithm in the overparameterized regime. We do not make incoherence or orthogonality
assumptions on the factors; we just need mild conditioning of the factor matrix (condition number
that is polynomial in 7). One can interpret our results as proving that in the overparameterized setting,
ALS does not face some fo the earlier issues pointed out in [SV17].

Overparameterized tensor decompositions using iterative algorithms. The work of [WWL20)]
analyzed a variant of gradient descent in the overparameterized regime of tensor decompositions.
Their techniques were able to go beyond lazy-training analyses, and the standard mean-field analysis
bounds that require overparameterization of polynomial or even exponential in the ambient dimension
n. They were surprisingly able to provide guarantees for overparameterized rank & that is almost
independent of the ambient dimension. Concretely, their guarantees hold for third-order tensors
when the overparameterization is k = O(r"-°logn); for general order-¢ tensors they need k =
O(r?®**logn). In this work, we instead analyze ALS in the overparameterized regime. We can
get guarantees for smaller overparameterized rank & = O(r?). Moreover, we also approximation
guarantees for overparameterized ALS even when the tensor is not exactly of rank r. We get
guarantees for the more general low-rank approximation problem that incurs a loss that is within a
multiplicative factor (depending polynomially only on 7, and independent of k) of the optimum value.
To the best of our knowledge, we are unaware of any such guarantees for gradient descent and other
iterative algorithms.

Analysis of other iterative algorithms for tensor decompositions. There are several other works
that try to provide guarantees for iterative methods including alternating minimization, the tensor
power method, and other gradient descent based algorithms. The work of [AGH™ 14] analyzes the
tensor power method, and provides guarantees that are specialized to the setting when the factors
are orthogonal or near orthogonal [AGH™ 14, [AGI14,[AGJ17]]. The works of [JO14, JGKAT9] also
analyze a variant of the alternating minimization algorithm, and provides convergence guarantees
under nearby initialization. These works are not in the overparameterized regime (k = r). They
find components one at a time but either require stronger assumptions, or provide local convergence
guarantees. Finally, it is known that for certain matrix factorization problems and special settings of
tensor decomposition (e.g., orthogonal factors), the non-convex optimization landscape is benign i.e.,
it does not have any local optima that are not globally optimal [Ma21]. However, the general tensor
decomposition is highly non-convex with bad local minima as shown in [WWL™20].

Other tensor decomposition algorithms. Theoretical guarantees have been established for the
simultaneuous diagonalization algorithm [Har72,|LRA93|IMoil8] and its variants, algebraic meth-
ods [DLCCO07, JLV23|, [Koi124, [ KMW?24], sum-of-squares algorithms [BKS15, [HSSS16, MSS16]. In
the overparameterized setting, spectral methods and algorithms based on subspace embeddings can
also find decompositions of rank k = 2 in polynomial time even for the more general low-rank
approximation problem with an error that is constant factor competitive with the best rank-r de-
composition [SWZ19,[BCV14]. The focus of our paper is to prove rigorous guarantees for the ALS
algorithm, which is the most popular algorithm in practice.

2 Algorithm, Results, and Preliminaries

The Alternating Least Squares (ALS) algorithm for tensor decomposition has many variants. The
version that we analyze is given in Algorithm ﬂ Given a tensor T, the algorithm randomly initializes

3The version that we analyze is a parallel version of the commonly used ALS method, it however seems like
our techniques can be extended to give guarantees for the standard, sequential version of ALS. Our analysis for
"sequential” ALS will appear in the arxiv version of the paper.



the three modes X, Y, Z € R™** of a decomposition, corresponding to a model tensor
k
T = ZM@%@%-
i=1

On each iteration, the algorithm updates each mode individually in parallel to minimize the least
squares objective:

min |7 — 7|3

Since 7 is multilinear in X , Y, Z, this is a least squares problem with respect to each mode. The
least squares problem could have multiple optima, in fact due to the overparameterization, we expect
this to be the case. Typically, ALS is implemented using a linear system solver for each of these
subproblems [BK23]; this is also what we will analyze. The updates (Algorithm T] Lines|[8] [I2] [T6)
hence correspond to

x (1) — flatten(7T, mode X, modes Y ® Z) (Y(t) O] Z(t))TTy

YD = flatten(T, mode Y, modes X ® 2)(X® @ )™,

ZD = flatten(T, mode Z, modes X @ Y)(X) © Y(t))TT'
)

Here we use the shorthand flatten(7’, mode A, modes B ® C') to mean that the order-3 tensor T
is reshaped into a matrix, by taking each n x n slice in the B, C' modes and vectorizing it into an
n?-dimensional row of the flattened matrix. There will be n such rows corresponding to mode A.
(This is explained in more detail in Section ) Also, M refers to the Moore-Penrose pseudoinverse
of the matrix M.

Algorithm 1 Alternating Least Squares (ALS) for order-3 tensor decomposition

Require: Tensor T" € R™*"™*" rank r of T, error tolerance ¢
I: k+ O(r?) /l rank of overparameterized model

2: X(O) c R7 ¥k <—N(O,1)n><k7 Y(O) c R Xk (_./\/'(071)77,><k7 Z(O) c Rk <_N(O71)n><k
3: // randomly initialize model
4: 10
5: while true do
6: // X,Y, Z updates can be evaluated in parallel
7: I/ X update
2
8 errx, XY « minycpaxr and argminycpaxe of HT —F L X® Y;(t) ® Zi(t)
9: iferrx < e then
10: return X (D y(®) 7z
11:  //'Y update
2
12: erry, YD) « miny cpaxr and argminy cgnxr of HT -y Xi(t) QY 2"
13:  if erry < e then
14: return X () y(+1) z(1)
15:  // Z update
2
16:  errz, ZU+Y) « mingcpaxr and argmingcpaxe of HT -k xP oy e ZZHF
17 iferry < e then
18: return X y(®) z(t+1)
190 t+t+1

We give the following guarantee for Algorithm [I] In what follows, we will assume that ALS
uses a sub-routine for solving the linear system in polynomial time; concretely, it computes the
pseudo-inverse solution up to arbitrary precision € > 0 in Frobenius norm in time polynomial in
n,log(1/e).

Theorem 2.1 (Guarantee for overparameterized ALS). For any constant co > 0, there exists constants
¢ = c(eg) > 1and vy € (0,1), such that the following holds. Let A, B,C € R™*" be the factor



matrices of the decomposition of a rank-r tensor T,

T:i:ai®bi®cia

i=1

and suppose the condition numbers k(A), k(B), k(C) < r. Then, given T, an error parameter
€, and a k € N satisfying r? < k < n, with probability at least 1 — o(1), Algorithm runs in
polynomial time and in O(1) steps finds a rank-k decomposition X,Y,Z € R™ ¥ of T. That is,
XY, Z satisfy
k
IT = 2@y @z|f <e

i=1

The above theorem shows that ALS succeeds from random initialization with overparameterized rank
k = O(r?). For the theorem, we analyze standard Gaussian initializiation, the scale of the random
initialization does not matter much. For the above theorem, we assume that the factor matrices A, B
and C' have condition numbers upper bounded by some large polynomial in r. This assumption on
the condition numbers is quite mild: for example, it is satisfied w.h.p. for a natural smoothed analysis
modelE] It is weaker than incoherence or orthogonality assumptions, as the vectors in our setting can
be quite correlated. Moreover, we believe the assumption to be an artifact of our analysis, and may
not be necessary.

Finally, our analysis also implies approximation guarantees for overparameterized ALS with k =
O(r?) under random initialization, in the more general low-rank approximation problem, where
T=>3!,a®b®c + E, where ||E| g is the error.

Theorem 2.2 (Low-rank tensor approximation using overparameterized ALS). For any constant
co > 0, there exists constants ¢ = c(cg) > 1 and v9 € (0,1), such that the following holds. Let
A, B,C € R™*" be the decomposition of a rank-r tensor T,

TzZai®bi®ci—|—E,
i=1
and suppose the condition numbers k(A),k(B),k(C) < 1. Then, given T, r, and an error
parameter ¢, for cr? < k < n)°, with probability at least 1 — o(1), Algorithm runs in polynomial
time and in O(1) steps finds a rank-k decomposition X,Y, Z € R"* of T. That is, X,Y, Z satisfy

2

k
T-> 20y ®z| <poly(r)|Elr+e.
=1 F

The above theorem gives an ALS guarantee under overparameterization for the optimization problem
in (@) in the general setting when OPT,. > 0, and generalizes Theorem (special case when
OPT, = 0). The multiplicative factor loss in the objective compared to O PT. is polynomial in r
and independent of the ambient dimension n. To the best of our knowledge, such an approximation
guarantee was not known previously for ALS or other iterative algorithms like gradient descent.

2.1 Notation and Preliminaries

We now introduce some notation and preliminaries that will be used in the rest of the paper. We refer
to a tensor 7" by its decomposition into factor matrices. That is, we associate T' with the matrices
XY, Z € R*"*", where r is the rank of T" and

s
T=) 2,0y ®z,
i=1

where z;, y;, 2; refer to columns ¢ of XY, Z respectively, and ® when applied to vectors is the outer
product. That is, each component x; ® y; ® z; is an n X n X n tensor. Since each component is an

“E.g., in the smoothed analysis model, you have an arbitrary matrix which is normalized to have columns of
at most unit length, with a random perturbation of length 1/poly(r).



outer product of 3 vectors, this is an order-3 tensor. Each direction of the outer product is referred
to as a mode, and we will sometimes refer to the modes of the tensor by the corresponding factor
matrix, i.e., the X mode, Y mode, and Z mode. (These are the analogues of the rows and columns of
a matrix/order-2 tensor.) The squared Frobenius norm of a tensor 7 is the sum of the squares of its
entries.

It will also be useful to interact with flattened forms of the tensors we analyze. We use ® to refer to
the Khatri-Rao product of two matrices Y, Z € R™*", which has columns given by

(Y ® Z)z = vec(yi X Zi)7

where vec(-) reformats an n X n matrix as an n2-dimensional vector. This is useful to flatten tensors
into matrices. In particular, we have

1w ew ezl =Y m @ veely: © 2)|3 = | X (Y © 2)T|}.

i=1 i=1

This reshaping into a matrix is exactly what arises in the least squares problem in Algorithm [T] (Lines
[8l 12} [I6). In Section 2] we describe the flattening operation for a tensor 7" with factor matrices
X,Y, Z. The flattening is just a reformatting of the entries of 7', so computing it does not require
explicit access to the factor matrices X, Y, Z. However, it is indeed the case that

flatten(7, mode X, modes Y ® Z) = X(Y © Z) T,
which will be useful for our analysis.

Another useful tensor product on matrices is the Kronecker product which we refer to as ®E] The
Kronecker product of two matrices X € R™"*"| Y € R™** is an nm x rk matrix that satisfies

(X ®Y)vec(a ®b) = vec(Xa ® Yb), Va € R",b € R¥.

(The entries can also be written explicitly as (X @ Y')p (i, —1)4ig,k(j1 — 1) 452 = Xir,ja Yia,jz-) SiNCE
the columns of a Khatri-Rao product are ﬂattenin§s of rank-1 matrices, this gives the following
identity. For A € R™*", B € R™** and X € R"™**|Y € R**9 we have

(A® B)(X ®Y) = (AX ® BY). 3)

We will use the Moore-Penrose pseudoinverse M T € R™*™ of a matrix M € R™*™. This is defined
as a matrix such that

Vo L Null(M), Mz =y = Mly=1x,  Vy¢Im(M), MTy=0.

where the nullspace of M, Null(M), is the subspace of vectors mapped to 0 by M: ({z | Mx = 0}),
and the image of M, Im (M) is the subspace of vectors that can be realized by the linear transformation
M: ({y | 3z, Mz = y}). Here and elsewhere we use (-) to denote the linear span. There are also a
few direct expressions for the pseudoinverse that will be useful to us. For M € R"*", where r < n,
if M is rank r (M is full column rank), we have

M =M"M)"'MT.
For M € R™"™, where r < n, if M is rank r (M is full row rank), we have

Mt =MT"(MMT")™L,

3 Analysis of the Algorithm

Fix atensor T = "', a; @ b; ® ¢; for some rank-r decomposition A, B,C € R"*". Consider
iteration ¢ of ALS on T". Without loss of generality, we focus on the update to mode Z (Algorithm|[T}
Line . ALS will converge on this step if X (), Y Z(+1) fits T' i.e., the error between the model
tensor and the true tensor is below €. For the purposes of the overview, we will ignore the € error
term, and refer to this as perfectly fitting the tensor.

>This overloads the notation that we use for the outer product on vectors. When applied to vectors we will
always mean the outer product. When applied to matrices with dimensions larger than 1 we will always mean
the Kronecker product.



The least-squares problem for Z at time ¢ + 1 is to reconstruct the slices of T" as linear combinations
of the Xi(t) ® Yi(t). That is, slice j of T is given by

T.;= Z Ci,j(a; ®b;).

i=1
The least-squares problem along mode Z is then

Za: ®ylt)®z Zmln ZZJ ( (t))

i=1
which is n independent least-squares problems, one for each slice of 7" or row of Z. Thus, ALS
will fit T and converge if, for every slice j, T.. ; is realizable as a linear combination of the
{x(f) ® y(f) : i € [k]}. Since every slice j of T is a linear combination of {a; ® b; : i € [r]}, a
sufficient condition for convergence is that

Haiwbi s ey ({oP 0l ieh})
i.e., colspan(A ® B) C colspan(X o Y®). 4)

The two lines are reshapings of the same statement. Now suppose for a moment that the columns
of YY) and X() were each drawn independently and randomly from colspan(A) and colspan(B)
respectively (for example, from standard Gaussians over the r-dimensional spaces). Then we would
have that since k € Q(r?), with high probability

colspan(A ® B) C colspan(X® @ Y®), Q)

where A® B denotes the Kronecker product of A with itself. Since colspan(A® B) C colspan(A®
B), because the Khatri-Rao product is a subset of the columns of the Kronecker product, (3) is
sufficient to ensure convergence.

2

)

F

min
A

Of course, the columns of X and Y are not initialized randomly in the span of A and B, instead
they are random in the whole n-dimensional space. This means that at initialization, each column
of X (Y) can be thought of as the sum of a random vector in the span of A (B), and a component
orthogonal to A (B). Components orthogonal to the span of A (B) only make the Frobenius error
of the decomposition higher, since they contribute terms that are orthogonal to T'. That is, denote
X = X + X+, where the columns of X are in the column span of A, and the columns of X are
orthogonal to the column span of A. Then

k 2 k k
—Zlfi@yi@z’i —Zﬂ'@yi@z’i Z%L@yi@zi
p p P ]

The first step of ALS (Algorlthmm Line[8) will set X so that the second term is 0, Wthh since Y and
Z are randomly initialized means setting X = 0. If the first step of ALS only set X+, Y+, Z+ =0

and did not modify X,Y, Z, then on the second step ( . would hold, and ALS would converge.

2 2

This is however not the case as ALS updates X as the minimizer of the least squares objective. Thus

Y(l) = X no longer has independent random columns. Instead it is a function of X (©), Y0 Z(0)/
and A, B,C. Our main technical insight is that, despite X(*), Y (1) Z(1) having this complex
dependence on each other and A, B and C, () holds with high probability. It is straightforward
to show that after the first iteration, each of the factor matrices will be in the span of A, B and
C respectively, which means that X () © Y1) will be in the span of A ® B. Thus, proving that
X®W © YW has rank r? implies that colspan (X © Y (V) = colspan (4 ® B), then condition
follows since colspan(A @ B) C colspan(A ® B). This is captured by Theorem [4.1] which is
the main technical component of our proof, and the focus of the next section.

4 Least Singular Value Bound through Anti-Concentration

For the proofs, we will refer to X1, Y1), Z() a5 X V', Z. In this section we give an overview of
the proof of our claim that X ©® Y spans A ® A when X, Y and Z are initialized randomly with their



entries being i.i.d. standard Gaussians and, in particular, show that this statement is true in a robust
sense. Formal statements of this claim as well as detailed proofs can be found in Appendix [C] We
give an inverse polynomial in n lower bound on the least singular value of the matrix. Our main
technical contribution is proving the following theorem.

Theorem 4.1. Under the assumptions of Theorem with probability at least 1 — o(1) we have that:

. 1
(XOY)> ———
(X oY) npoly (k)

Assuming that A and B are mildly conditioned we can in fact turn our attention to showing least
singular value bounds for the following matrix:

((B o0) (Yo Z)TT) ® ((A@C’)T(X o Z)TT) c R R

One main challenge is that the entries of the matrices (Y ® Z)' and (X ® Z)' are random but highly
dependent. While there have been powerful techniques developed recently for proving least singular
value bounds of matrices with polynomial entries [BESV24], the random matrix in our setting does
not exhibit such structure and is therefore difficult to reason about directly.

We proceed by first arguing about the matrix pseudoinverse by showing in Lemma [C.1] that with
probability at least 1 — o(1),

ozl = (o E)

where ||E1]| < O ( log(k) | klog(k)) (and similarly for (X ® Z)TT).

n n

The high level intuition is that if the columns of the matrix that we are taking the pseudoinverse
of were Gaussian vectors then they would be mostly orthogonal, meaning that the pseudoinverse
would be close to the transpose of the matrix. Our analysis shows that the same intuition translates to
matrices whose columns are tensor products of Gaussian vectors.

Using that, it suffices, up to poly(n) factors, to analyze the least singular value of the matrix:

L=(BoC)'(YOZ)I+E))o (A0C) (X0 2)I + E,))
Furthermore, let:
L=(BoO) Yo2)o(AeC) (X 2)

Assume for now that we have a guarantee stating that o2 (L) > m . As we will discuss later,
this is challenging, and much of our technical work is devoted to proving this. We can now use this to
prove the existence of a matrix M such that:

IM=(BoC)"(Yo2)e(AcC) (X 2))
Matrix M expresses the columns of the Kronecker product of matrices (B ® C) (Y ® Z) and
(A® )T (X ® Z) as linear combinations of the columns of their Khatri-Rao product. Such a matrix

is guaranteed to exist only because we have assumed that L spans R". Using (3) we can express L
as:

L=(BoC)'(YOZ)I+E)) e (AeC) (X ®Z)(I + E,))
=(BoO)'Yo2)e(Ae0) (X02)(IoI+E)

where E =1 ® Ey + E1 © I + Ey © Ey; further by Lemma IE|l <O < % + bgg”’“)
We can now leverage the existence of matrix M to get that:

L=L(I+ ME)
wherE: we have crucially used that, by definition of M, M(I ®I) =1I.In Lemma we use that
o,2(L) > 1/poly(k) to prove that the spectral norm of M is also bounded by a polynomial in k.
Hence

ly(k
a28) < ) -] < B oy,



when n is a sufficiently large compared to k. We now have that:

(1+0(1))

2 (L) = 0,2 (fi(z n ME)) > 0,2(L) - omin (I + ME) > SE

thus establishing the main least singular value claim.

In the above proof overview, we assumed a lower bound on the least singular value of L. The proof
of this claim is quite technical and involves a careful net argument along with anti-concentration of
low-degree polynomials of independent random variables [CWOI1[]. We first express the columns
of the matrix in a convenient way that factors the dependency of having Z on both sides of the
Khatri-Rao product. We then argue by applying an e-net argument and showing that for every fixed
vector in R’"2, the probability that the inner products between the fixed vector and all the columns of

Lis negligible is exponentially small in k. The formal statement with a detailed proof of it can be
found in LemmalC2]

5 Conclusion

Our work proves rigorous polynomial-time global convergence guarantees of the popular ALS method
for tensor decomposition with moderate overparameterization of O(r?). It has been challenging
to establish rigorous guarantees for iterative heuristics that are the state-of-the-art in practice. Our
analysis is based on new matrix anticoncentration techniques to argue about the iterates, that differs
significantly from previous approaches. Our theoretical results on overparameterization are also
supported by empirical evaluations in Appendix [D} It would be compelling to use these techniques to
analyze gradient descent, or prove global convergence guarantees for other non-convex optimization
heuristics.
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A More Preliminaries

Our analysis involves various operations involving Khatri-Rao products, which are quite challenging
to reason about. We also make extensive use of the Kronecker product defined in subsection [2.1}
which are more natural products for matrices, and easier to reason about. We have the following
simple facts about the Kronecker product:

Fact A.1. Let A, B € R™** then for the Kronecker product of A and B, it holds that:

1.
[A® B = ||All - [|B] (6)

2.
|A® Bllp = [|AllF - Blr )

3.
Omin (A ® B) = omin(A) - omin(B) ®)

The proof follows easily by noting that if U, X, V, and U3V}, are the singular value decompositions
of A and B respectively then (U, ® Up)(Z, ® X)(V, ® V}) is a singular value decomposition of
matrix A ® B.

We now introduce some additional notation that we use in our analysis. For a matrix A we use 114
to denote the projection matrix onto the subspace spanned by the columns of A. We use A;(A) to
denote the i-th eigenvalue of matrix A, we also use 0;(A) to denote the i-th singular value of matrix
A and k(A) to denote the condition number of A. For the factor matrices A, B and C' of the ground
truth we use xk = max (k(A), k(B), k(C)).

For X, Y and Z being the random initializations of our algorithm we use:
i=(Boc) (veoz)e (o) (Xo2)
and also:
ix=(Boo) voz)e(Uoo)  (xo2)

notice that L is the Khatri-Rao product of matrices (B® C)' (Y ® Z) and (A® C)" (X ® Z)
while L is their Kronecker product. Furthermore, we use D, to denote the:

D,, = diag{{c;,z:)}_,
The following expression is useful in our analysis:
Lemma A.2. For the columns of matrices (B® C)' (Y ® Z) and (A® C)" (X ® Z) we have that:
(BoC)' (YO Z);=D., By and
(A0C) (X ©2);=D., A"z
Proof. We first observe that the j-th entry of vector (B ® C’)—r (Y ® Z), is given by (b, y;){c;, ).

The vector whose j-th entry is given by (b, y;) is BTy,. Left multiplying this by D, gives the
result. O

We now prove some useful claims.
Claim A.3. Given matrices A € R™*™ B € R™*™ we have

min { | Allr - o (B), o (A) - 1Blr } < 4© Bllw < min {4l sl Bl | A B¢ }

where | A|| = o1(A) is the spectral norm and o, (A) is the least singular value of the matrix A.
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Proof. We have that

jA0Bl} =u((A0B) (A0 B)) = 3 (@ b,aeb) = |alflblE  ©

i1€[m)]

For the upper bound, from (9)

lA® BlE < max b 13> Naills = -AI% max|[b: 15 < IAIE1BI.

1€[m]
A similar proof shows that ||[A ® B||% < ||B||% - | A||*.

For the lower bound, from @) we have

|A® B|% > mlng 15 ) llasll3 = 14117 mlnllb 15 < A% - om(B)*.
i€[m]

O

The following claim shows that for a mildly conditioned decomposition, the Frobenius norm of the
ground-truth tensor 7" can be sandwiched up to poly(r) factors by the corresponding norms of the
factor matrices.

Claim Ad4. Let T = Z _1a; @b ®¢;. Then
or(A)or(B)|Cllr < [TNlr < IAIIBIIC] F,

where | A|| = o1(A) is the spectral norm and o,.(A) is the least singular value of the matrix A. A
symmetric statement also holds with the Frobenius norm of A or B instead of C being used.
Proof. First, we note that by considering an appropriate flattening of the tensor,

T

H E a; ®b; R ¢
y F
1=1

We prove the lower bound first. Note that A has full column rank. Hence

=[ABoC) |F. (10)

IAB ©C)Mlp = 0:(A)|B© Cllr = 0r(A)or(B)IIC]F,

by using lower bound in Claim [A:3] Similarly for the upper bound, we use the upper bound in
Claim[A3]to conclude

ITlr = AB©C) r < o1(A)|B Cllr = |A[IBIIC]|F,

as required. O

We will use the classic perturbation bound for top-% singular space of a matrix due to Davis and
Kahan. The following is a consequence that we use in our robust analysis [see Theorem VII.3.2
Bha97].

Fact A.S. Let M, M e R*™ and let TI denote the projection matrix onto the column space of M,

and let 11 denote the left singular space of M corresponding to the singular values larger than §
respectively. Then for a universal constant ¢ > 0

oM — M|

| < ,
[ [ ca(M) =

(11

where | M || refers to the operator norm of M.
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B Formal statements of the theorems

We give the formal versions of the main theorems below.

Theorem B.1 (Guarantee for General decompositions). For any constant co > 0, there exists a
constant ¢ = ¢(co) > 1 such that the following holds. Let A, B,C € R™*" be the decomposition of
a rank-r tensor T,

T
Tzzaz‘@bi@%
i=1
and suppose the condition numbers k(A),k(B),k(C) < r® < nY where v9 = 7o(co) is a
constant. Then, given T, r, and an error parameter €, for k = Cp, - r2, Cop = Cop(co) is a constnant,
Algorithmruns in polynomial time and in O(1) steps finds a rank-k decomposition XY, Z € R"*k

of T, ie, X,Y, Z satisfy
2

<e.
F

k
T-Z@@Z]i@ii
i=1

As discussed in the proof overview, Theorem [B.T] uses the following theorem, generalized for
asymmetric decompositions

Theorem B.2 (Generalization of Theorem .1 for asymmetric decompositions). Under the assump-
tions of Theoremwith probability at least 1 — o(1), we have that:

02 (X@Y) Zm

We give a proof of this Theorem in[C.1]

The following theorem is a robust version of Theorem and gives a guarantee for low rank
approximations

Theorem B.3 (Guarantee for low-rank approximations). For any constant cy > 0, there exists a
constant ¢ = ¢(cg) > 1 such that the following holds. Let A, B, C' € R™*" be matrices such that for
tensor tensor T':

-
T:Zai®bi®ci+Err,
i=1
and suppose the condition number k(A), k(B),k(C) < r® < n, where 79 = ~o(co) is a
constant. Then, given T, r, and an error parameter ¢, for k = C’(,pr2 with Cyp, = C’Op(co) being a
constant, Algorithmmns in polynomial time (in n, k,log(1/¢) ) and in O(1) steps finds a rank-k
decomposition X,Y ,Z € R"** of T, i.e., X,Y, Z satisfy

2
< ||Err|\2Fpoly(k, r)+e.
F

k
T*Z@@)ﬂz‘@gi
i=1

We note that Theorem [B.T]is a special case of Theorem [B.3] We give a proof of [B.3]in subsection
[C.Z} this also implies the correctness of the more specialized Theorem [B.1]

C Analysis and Proofs

C.1 Least singular value bound for Xovy

In this subsection we give a proof of Theorem [B.2]. In particular we show that under the assumptions
of Theorem B.1} with probability 1 — o(1):

We use the following lemmas in our analysis.
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Lemmaallows us to go from the (X © Z )TT to matrix X ® Z times 1/n? multiplied by identity
plus an error matrix £ whose spectral norm we bound. It is much easier to argue about matrix X © Y
when we express (X ® Z)! " and (V' ® Z) " like that.

Lemma C.1 (Pseudoinverse transpose simplification). Let X, Z € R"™** be matrices with i.i.d.
standard Gaussian random variables as entries, then there exists an absolute constant C such that,
with probability at least 1 — % :

(xo2)h) = % (X ®2Z)I+E)

where ||E|| < 64/ %%(k) + 2 Clog(k)

Proof. We have that, with probability 1, the columns of matrix (X ® Z) are linearly independent,
meaning that we can express the pseudoinverse as :

X02)=(X02) (X02)  (Xo2)T
Taking transpose:

((X ® Z)*)T —X02)(X02) (X0z2)

It therefore suffices to show that:
1 -1
<n2(X 02 (Xoe Z)> =I+FE
where E has small spectral norm. Let for convenience:
1 T
W:E(XG)Z) (Xo2)

We show that all the eigenvalues of matrix W are close to 1 and use that to show that the inverse is
close to identity in spectral norm. Specifically, let for convenience:

a(n, k) =3 Clng(k) + SClog(k)

By Lemma we have that with probability at least 1 — %, for every eigenvalue of W:
A (W) 1] < aln, k)

We condition on that event. The eigenvalues of matrix W ! are the reciprocals of the eigenvalues W,
meaning that assuming that a(n, k) < 1, we get that:

1 1
) =[5
1
= ‘)M(W)’ [ Ap—i (W) =1
a(n, k)
~1—an,k)
< 2a(n, k)

Now let E = W~! — I and note that:
k - k
Furthermore, F is a symmetric matrix meaning that:
k k
{oi(E)}icy = {IM(B) )iy
- k
=) =1},
which in turn implies that:
IE| = o1(E)
< 2a(n, k)

the lemma follows. O
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Lemma @] is the main technical lemma for the proof, it gives us a least singular value bound for
matrix L and a bound on the Frobenius norm of matrix L K- This allows us to bound matrix M by
poly(k). Putting everything together we show that L = L(I + ME) where L has non-negligible
least singular value and | M E'|| = o(1) giving us a non-negligible bound on the least singular value

of L which in turn gives us the bound on 0,2 (X ©Y)

Lemma C.2 (Bound on least singular value of L and Frob. norm of Lg). With probability at least
7,_2
1—2 —exp(—4r) — (1) . the following hold:

1. For the least singular value of matrix L, we have that:

iy o 0r(A)ar(B)or(C)?
ora(l) 2 20% ., k5r?

(12)

where Cow is an absolute constant coming from the Carbery-Wright inequality, Theorem

2. For the matrix:
ix=(Boo) voz)s (Moo (xo2)

we have that its Frobenius norm is bounded by:

ILx|lF < 32 log(k)o1(A)or (B)or (C)*r? (13)
Proof. We first focus on item 1. We condition on the event of Lemma [C.5| which happens with
probability at least 1 — £ and we have that for every 7, j:
o (C)

" < e, )| < VBlog(R)n (€).

We will prove the claim using the variational characterization of singular values, in particular we will
show that for very v € RT2, we have that:
or(A)o.(B)o,.(C)?

2C (QJW k512

|Zv]| >

We consider a fine enough e-net, A/, of 57'2_1, where ¢ = (k) is an inverse polynomial to be

2
determined later. Note that by Corollary 4.2.13 in [Ver18]], we have that |N] < (g)r .Letu e N,
we will bound the probability that:

o.-(A)o.(B)o,.(C)?
LAr2

where § is a parameter to be specified later. We have that:

<||LT I<d (A)4> g]P’(Vi: ’@um‘ SéUr(A)JT(B)UT(C)2>

1L Tl <6

k42 k42

“I1® <]<L-,u>\ < 5”"(‘4)""(3)"’“(0)2) (14)

k42

where we have used that all the columns of matrix L are independent. W now fix an ¢ and bound the
probability that ’(L, u)‘ <d M We use that, by Lemma we can express the ¢-th

column of matrix L as:
Li= (D, B"y) ® (D, A" z;)
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where D, = diag ({(a;, z;) }), we can write the inner product with u as:

(Li,u) = (D2, B y;) @ (D2, A ;) u)
= (((D;B") @ (D, A")) (yi @ z:),u)
= (yi ® i, (BDz,) ® (AD:,)u)
For the least singular value of matrix BD,, ® AD,, we have that:
9,2 ((BD>;) @ (AD.,)) = o, (BD.,) o, (AD;)

> 0,(A)o, (B)o,(Ds,)?
= o, (Ao, (B) min (e ) )
_ el d)or(B)or(C)°

let for convenience v = (AD,,) ® (AD,, )u, for the norm of v we have that:
ol = I(ADz;) @ (AD:,)ull

o, (A)o,.(B)o,(C)?
. oo dor(Bla(CF

We are interested in bounding the probability that |{y; ® x;,v)| < § %W. We will
use the Carbery Wright inequality ([CWOL1], [Lov10]) to bound the probability. We have that
flz,y) = Hv\l (y ® z,v) is a degree 2 polynomial, satisfying:

V: »Yi) =1
wwfv‘r(o,m[f(x Yi)]

Applying Theorem we get that there exists a constant Coyy:
P (| f(zi,9:)| < 0) < Cow - 6'/2
which in turn gives us that:

or(A)o.(B)o,.(C)?

k42

IP)(|<yi®ﬂ%v>|<5 ><C'cw-51/2

We can now use equation[T4]to get that:

P (HLTUH < 52D (D) UT(C)Q) < (Cow-a2)’

We now take a union bound over all elements of the e-net \V, to get that with probability at least

"'2 . g
1— (Cow -6/ Q)k (2)" . the bound holds. By Lemma we have that with probability at least
1 — exp(—4r), for every i:

[(BoC)"(Y ®2)),|| <3¢ rlog(k)oi(A)ai(C) and
(Ao ) (X © 2)),|| < /3¢ rlog(k)ai(A)or(C)
We use that to bound the spectral norm of L. We first bound the norm of every column, we have that:

1Ll = (BoCO)T(Y o 2), |[(Aec) (X 2)),|
< 3¢-rlog(k)oi(A)oy(B)oy(C)?

We now use that the spectral norm is bounded by the Frobenius norm which is in turn bounded by
\/r times the largest norm of a column to get that:

LI < L] P < /7 max || L] < 3¢ log(k)o1(A)or(B)o1 (C)*r*/?
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Again applying the union-bound, we get that with probability at least 1 — exp(—4r) —
(Cow - 6/2) g (2)" both of these events happen. We now take an arbitrary vector v € S =1 we
have that there exists a vector v € A such that ||u — v|| < e:
IL ol = IL 7w+ LT (v — )|
> [LTull = |27 (v —w)|
(A)o, (B), (C)?

oy .
> g7 W B O _yp.

o, (A)o,.(B)o,(C)? N
=4 (4) kELTQ) ©)° _ 3élog(k)o1(A)oy (B)oy(C)*r3/ %

We take 0 = m and ¢ so that we can take || Lv]| to be at least half as large as what we get on the
e-net. In particular, we take:
1
€< 6CZ.y - ¢ - k2o t6.75
1
. pdeo |5 LT/4
1
k4 - log(k)kdr7/2
_ o,(A)or(B)or(C)?
~ 6C2é01(A)or(B)a1(C)2 log(k)kdr7/2

[oX

<
~ 6CLy, -

™

<
~ 6CEy, -

we get that:

o 5 S AT B (CF  3eloa(os(4)'r 20, (4)0, (B)o, (C) _
CZy - kor? 6C%y, - ¢ o1(A)* log(k)k5r7/2

_ UT(A)UT(B)UT(C)Q UT(A)UT(B)UT(C)Q _

N C%y kor? B 202, kor? N

- UT<A)‘7T(B)UT(C)2

N 202, kor?

The failure probability is upper bounded by:

2 "
z + exp(—4r) + (CCW51/2)k (i)

We analyze the third term. For convenience, let C’ = 18C ¢y ¢, we have that:

3\" 1\" 2
1/2\k _ 2cp+6.75\"
(Cowd'/?) (€> = (km) (Ck2e0t65)

O |2c0+6.T5\ "
- ( KCor /2 )
We can now take C,), = 2(C” 4 2¢, + 6.75 + 1) to get that:

s (3 < (1)

The first item of the claim follows.

For the second item, recall that we have conditioned on the event that for every i:

[(B® o)'(Y o Z))ZH < /3é-rlog(k)oi1(A)o1(C) and
[((A® ) (X o Z))ZH < /3é-rlog(k)oi(A)or(C)
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We have that:
[BoO) (v o 2)], < Vi max|[(BoO) (v 0 2),|

< /3¢ - log(k)a1(A)a1(C)r

and similarly:
[(AeC) (X 2)|, <Vr- max [|((A® O)'(X©2)|

< /3¢ -log(k)o1(A)or (C)r

We can now easily bound the Kronecker product of the two matrices:
[(BooTwez ) e(Uee)xoz))| =Boo) ¥o), [4ec) (Xo2),
< 3¢-log(k)o1(A)a1(B)ai(C)*r?
O

Assuming that the events of Lemma@l hold, this lemma bounds the Frobenius norm of matrix M:

Lemma C.3 (Existence and properties of M). Assuming that[I2)and[I3|of Lemma[C.2) hold, then
there exists a matrix M such that

1.
LM = Lg (15)

2.
MIOI) =1 (16)

3
| M| p < 6C2yck®r* log(k)k* + VE (17)

Proof. We first observe that L, by Equation spans R™* which in particular implies that it spans the
columns of matrix L x which lie in this space. This gives us the existence of a matrix M satisfying
We now observe that the i-th column of matrix L is equal to the ((i — 1)k + i)-th column of
matrix L k. In other words we have that:

IA/ c € = (£K>
(i—1)k+i

where e; is the i-th standard basis vector. This implies that we can take:

M- 1ykti = €
which in turn gives us that:

MIoI)=1I

and[T8lalso holds. The rest of the columns of M we select them to be the minimum norm vectors
such that M satisfies equation In other words, for j # (¢ — 1)k + i for every i, we let

My =L (L),

J

We now analyze the Frobenius norm of matrix M, defined as above. For j for which there exists an ¢
such that j = (¢ — 1)k + ¢, we have that:

[ M; ]| =1
For j such that no such 7 exists, we have that:
Il =2 (i),
<[] | zx)
J
al
<




‘We can now bound the Frobenius norm of matrix M:

2
1My = > 1)
i

where we have used that the square root is a subadditive function. Using the bounds from [I2]and [I3]
we get the result:

M|l <V +6C2y¢log(k)k°rik(A)k(B)k(C)?
<Vk + 6C%, élog(k)k>rtr?

O

In Lemmawe argue that the eigenvalues of matrix (X ® Z)T (X ® Z) are all close to 1 with

T
high probability, we use this to show in Lemma that we can replace the matrix (X ©® Y)Jr by
LXoY)I+E)

Lemma C.4 (Eigenvalues close to 1). Let X, Z € R"** be random matrices with i.i.d standard
Gaussian random variables as entries, then with probability at least 1 — %, we have that, for every i:

log(k k
Clog(k) + ZClog(k)
n n

A <7;(X®Z)T(X®Z)) — 1’ <3

where C' is an absolute constant

Proof. We will analyze the diagonal and non diagonal entries of the matrix (X © Z)" (X ® Z)
and will show that the diagonal entries are concentrated very close to 1 while the off-diagonal entries
are concentrated very close to 0. We will then use Gersgorin disk theorem (Theorem 6.1.1 in [HJ12]))
to get the result. For convenience, we let W = (X © Z) " (X ® Z). For the off-diagonal entries

we observe that:
1
Wij = 3 (i, 25){zi, %)

For the inner product (z;, x;) we have:
(i ;) =Y wi(Da; ()
=1

By Lemma 2.2.7 in [[Ver18] each summand is a subexponential random variable with subexponential
norm:

lzi(Dz; (Dlles < 2@l - 1250 ]|,
< K?,

where K is the sub-Gaussian norm of the standard Gaussian. Using Bernstein’s inequality, Theorem
2.8.1 in [Ver18], (the inner product is a sum of sub-exponential random variables) we get that:

1 t 2t
P (‘n(x“x]> > n) < 2exp (—cmin (W’K))

21




for some absolute constant c. Setting ¢t = /C1nlog(k), for C; being a large enough constant we
have that with probability at least 1 — -

’i<xi,xj> < /Lo (k) (18)

Similarly, we have that, with probability at least 1 — 75

<\ /%W log (k%) (19)

For the diagonal entries of the matrix M we have that:

Wii = ll@ll” - ||z

‘ 1

E<Zi7 Zj>

We write ||z]|? = S°_, #2(1) and use the fact that there exists an absolute constant C' such that
x;(1)? — 1 is subexponential random variable with subexponential norm:

23 (1) = |y, < CK®
We apply Bernstein’s inequality again, to get that:

: 2t
P( Zt) < 2exp (—cmm (CN'KQrL’K2)>

We set t = \/Canlog(k) for large enough constant Cs, to get that with probability at least 1 — k%,

we have that:
1 C5 log(k
’||xi||2—1’ <,/ Celoelt) 0)
n n

Similarly, with probability at least 1 — k%, we have that:

1 [Colog(k
n n

We get that, by the union bound, with probability at least 1 — % equations and hold for
every 4, j. Setting C' = max(C1, C5), with probability at least 1 — % for the off-diagonal entries of
matrix (Z ® X)T(Z ® X) we get that:

n

Z%xf(l) 4

=1

w, | < Cloa)
3,7 = n

And for all diagonal entries, assuming that Clng(k) < 1, we get that:

C'log(k)

n

(Wi —1 <3

We now apply Gershgorin disc theorem (Theorem 6.1.1 in [HJ12]) and the the fact that #(Z ®
X)"(Z ® X) is symmetric and therefore all its eigenvalues are real to get that, for every i:

NWyelJgseRe s =W <> Wl
j=1 I#j

1
Q{SGR:|S—1§3 C(f(k)—&-zClog(k)}

where from the first to the second line we use the triangle inequality. O

In Lemma we give bounds upper and lower bounds for the inner products (c;, z;), needed to
bound the least singular value of matrix L and the Frobenius norm of matrix L.
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Lemma C.5. With probability at least 1 — over the randomness in Z, we have that for every i and
forevery j:
a-(C)
k2r

< [ejs 2zi)| < V/6log(k)or(C)

Proof. For fixed i, j, the inner product between c¢; and z; has distribution (c;, z;) ~ N(0, | c;[|?).
For the lower bound, we have that:

a-(C) 1 a.(C)
P (I 201 < %5y )ZPQHCJ-“”Z” < B al)
~ V2r kel
UT(C)
= k2|

where we have used that ﬁ(cj, zi) ~ N(0, 1) and that the density of the standard Gaussian is
-]
upper bounded by \/% We now use the union bound to get that:

) ZZ k2r||c ||

=1 j=1

P (Hi,j e, zi)] <

—_

S,

o~

where We have used that for every j, ||c;|| > o,.(C). For the upper bound we again fix ¢, j and use
that ‘C 0 (¢, ;) ~ N(0,1). Using Proposition 2.1.2 in [Ver18]l, we have that:

C ,Z»L = S - exp{ —
i tvar P\

Letting t = y/2log(k3) > 1, we get that:
2log(k3) ) <4/ —-
08( )> — Vo k3T k3

Ci, Z;
(’IIJI 55

k
P(az‘,j:|<cj,zi>\z 2log(k3)~01(0)>§_ Zis

<

Using again the union bound we have that with probability at least 1 — % for every ¢, j:

o, (C)
k2r

< (¢j, zi)| < V/6log(k) - 01(C)

O

Lemma C.6 (Bound on columns). Assume that for every i,j, we have that |(cj,z;)| <
6log(k)o1(C), then with probability at least 1 — exp(—4r) we have that for every i:

[(BoCO) (Y ©2),| < Ve rlog(k®)oi(B)oy(C) and
[(AeC) (X o 2)),|| < Vé-rlog(k?)oi(A)oy(C)

where ¢ is a large enough constant.
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Proof. Fix an i and recall that by Lemma|[A.2}
(Ae0)(X©2),=D., ATz,
‘We focus on the norm of DZiATxi, we have that:
D, ATz =D, (II4A) " z;
=D, ATl 5x;

where we have used that IT4 A = A and that any projection matrix is symmetric. We have that:
1D, AT ]| = || D, AT (Tazs) |
<D AT - | TLaz |
<Dz - [[AI - [Tz |
= max|[{cj, z)| - o1 (A) [Lazi]

< V/21og(k?)o(C)or (A)[TLaz||
where from line 2 to line 3 we have used that the operator norm is submultiplicative. From line 3 to

line 4 that the operator norm of a diagonal matrix is equal to the largest entry in absolute value and
from line 4 to line 5 our assumption on |{c;, z;)|. Similarly, we get that:

ID=, B yill < v/2log(k*)o1(B)o1 (C) [ Upy|
We now use that ||IL 42;|| has the same distribution as that of a norm of an r dimensional random
vector with i.i.d. standard Gaussian entries, by Theorem 3.1.1 in [Ver18]], we get that:

P (|| Tazi|| — v/r| > ) < 2exp(—ct?)

Applying this bound with ¢ = (1/¢/2 — 1)+/r (we will specify ¢ later) as well as the union bound,
we get that:

st P! 2
P <3¢ M az > ,/% or |y | > ,/‘Z") < 4k exp(— (\/5/2 - 1) r)

We take ¢ to be a large enough constant so that 4k exp(—(1/¢/2 — 1)?r) < exp(—4r). The definition
of k in Lemmadepends on ¢, because Cop, = 2(18Ccw - €+ 2¢co + 7.75), we can nevertheless
select ¢ large enough so that, for every r:

2
2 - (18Cowé + 2¢ + 8.75) r# exp (— <\/5/2 - 1) 7‘> < exp(—4r).
We conclude that, with probability at least 1 — exp (—4r), for every i:
|D., AT z;|| < /érlog(k3)o,(A)o1(C) and
1=, BTyl < v/érlog(k?)o1(B)a(C).
The claim follows. O

Theorem C.7. Let f(x) = f(x1,22,...,2y) be a degree d polynomial such that Var[f] = 1 when x
is a standard n-dimensional Gaussian vector, then for every t € R and for every € > 0, we have that:

P —t|<e)<0(d) eV
INN(OJ),,L(If(x) |<e)<0(d)-¢

Claim C.8. Let A, B € R"** then:
[A® B[ < [IA]l-|B]

Proof. We first observe that the columns of A ® B are a subset of the columns of the matrix A ® B,

meaning that:
Ao B|| < [[A® B

we now use that:
[A® B| = Al - Bl
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Proof of Theorem R WeAanalyze the least singular value of matrix Xov. Using Equation|3{we
can rewrite the matrix X ® Y as:
Xov=(uep (((Boo) (vo Z)TT) oo (xe Z)TT))
We now have that:
e (X0V) 200 (A@B)os ((BoO) (v e Z)TT) oA (xe Z)TT))
=0, (4)or(Blo ((BoO)T (v o Z)*T) o((Ae0)T(xe Z)TT))

We can, without loss of generality, using our assumption on the condition numbers of A, B and C,
assume that for the least singular values of A,B and C, we have that o,.(A) > ,o0.(B) >

1
= poly(r)
and o, (C) > ﬁ (otherwise we can rescale the tensor 7' so that this holds):

_ 1
poly(r) = po

02 (X@Yf) Zm

It therefore suffices to analyze the least singular value of matrix:

os((Booy ez ) o (Mo xez))

((B 00T (Yo Z)TT) © ((A ©0)T(X o Z)TT)

By Lemma we have that with probability at least 1 — %:

T 1
Yo 2) = 5 (YO 2)(I+ ) and

(X@Z)TT:%(XQZ)(IJrEg)

where || E1||, | E2]| < 64/ Clng(k) +2C%E log(k) (C is an absolute constant). We now have that:

(Boo) (vo Z)TT) o((Ae0)T(xe Z)TT) =L

where we have used L to denote:
L=(Boo) veozu+E))e(A00) (X6 2)(I+E)

we therefore, have that:

T 7 T AN
o ((Boo) oz o (Uee) (X0 )) = —a.1)
Hence, it suffices, in order to prove the claim, to bound the least singular value of matrix L by ﬁ(k).
We first analyze the matrix: ‘
i=(Boo) veoz)e(Heo) (xo2).
2
ﬁ\: y Lemmawe have that with probability at least 1 — 2 — exp(—4r) — (%)T :
T T A T B T 2
e (1) 2 2 A Box(C) o
2C&y kor
and that for matrix:
L= ((B o0 (Yo Z)) ® ((A 00)T (X6 Z))
Its Frobenius norm is bounded:
|Lx| . < se108R)or (Ao (B)or ()22 (23)

%[, would be equalto Lif By = E> =0
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By Lemma|[C.3] assuming that equations 22] and 23] hold, there exists a matrix M such that[T3] [T6]
2
andhold. By the union bound, with probability at least 1 — % — exp (—4r) — (%) =1 —o(1)
the events of Lemma|C.1]and[C.2] both hold. We now have that, using Equation [3}
L=(Boo) veozu+E))e(Aec) (Xo2)(I+ER)
=(Boo) voz)e((4e0) (X02) (U +E)6 (I +E)

= Lx(IOI+IOE +E,0l)
=Lg(IOI+E)

where we have used E to denote the matrix I ® Es + By © I+ E; © Es. By Claim|C_78'| and assuming
that n is large enough compared to k, it follows that:

IE| <1 ® Es|| + |Ey O 1|+ ||Ey © Es|
< Bl + 1Bl + [|Erl - | B2l
Clog(k) 2k
<3 <6 Clog(k) | nC’log(k))

n

We can now use matrix M:
L=Lx(I®I+E)
=IM(I®I+E)
=L(I+ME)

where we have used that M is such that M (I ® I) = I. We will use this expression to analyze the
least singular value of matrix L. We use the variational characterization of singular values:

2 (L) = o2 (L (I + ME))
= 0,0 ((1 n (ME)T)ET)

= min H(I—i— (ME)T)ﬁTuH
uE]Rk7
flull=1

> mirll Omin (I + ME) - \\ﬁTu||

u€eR”,
flull=1

> ouin (I + ME) - 0,2 (L)
We have the bound on the least singular value of L, we only have to analyze the least singular value
of matrix I + M E. We argue by showing that M E has small spectral norm. We have that:
IME| < [|M]- | E]
Assuming n° > k for a small enough constant vy, we get that:
M| [|E]] = o(1)
Using the variational characterization of the singular values, we have that:
Omin { + ME) = min (I + ME)ul
u€eR”,
flull=1
> min [[Tu] — [[M Eull
u€eR¥,
flull=1
> 1—||ME]|
=1-o0(1)

This concludes the proof.
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C.2 Robust Analysis

Recall that the tensor 7" has a decomposition of rank r given by factor matrices A, B, C' € R™*" that
approximates T'i.e., T = >.._, a;®b;®c;+Err withOPT = |[T—Y""_, a;®b;®c¢;||% = ||Err|%.
The following lemma relates the objective value to singular values of different matrices related to the
updates.

Lemma C.9. [Objective value in the second iteration] Suppose XDy @) pe the iterates ofAlgO-

rithm 1 after the updates of the first iteration. Let d=XD oYW andd =X oY where X Y
are the updates after the first iteration when there is no error. Then we have that the loss ob]ecnve
value in the second iteration is at most

o(lle— &2 |7)3)
+2
o,2(P)?

k
2
|7-> eV ey @ HF < OPT. 24)
=1

Proof. We prove this statement using the above lemmas, and using Davis-Kahan theorem for pertur-
bations of top singular spaces.

To bound the objective value in the second iteration as in (24), we use the characterization of least
squares value being the squared perpendicular distance of the target vector from the span of the
columns i.e., if Hg is the projection matrix onto the subspace orthogonal to the column span of

d=XD oYW, then

HT Zm Ve y(l) ® 2(2 H HHl flatten(7", modes X ® Y, mode Z)H

= [ (e BT+ 5) H2F

where E3 € R™* X7 ig the flattening of the tensor Err. Let Ilg be the projection matrix on to the
span of the columns of X ® Y, and I be the projection matrix for the subspace orthogonal to it.

HT Zaz b ® y(l) ® 2(2 H HHl( (A® B)CT + Eg) H

= Hné(r[q, + H$)((A® B)C" + E3) Hi
< (0 mer) [ g (ac mi) s
<3l|uims (a0 BT+ 2180,

where we have used that I3 (A ® B)C'T = 0, since ® = X ®Y contains A ® B w.h.p. from the
previous non-robust analysis. Furthermore, since the top r? singular values of M are separated from

the least singular value of ® corresponding to Hé (i.e., 0, since this corresponds to the nullspace of
®), we have by the Davis-Kahan theorem (see Fact |
o(|@ - @)
MMy | < —— 2
5| < o2 (D)

k 2 2
[7->aP ey 02| <2Anime||((eBCcT)| +20Bl}
=1

c||®— @[ |7 %
7r2(D)2

for some constant ¢ > 0. O

< + 20PT,

The following claims bound the different terms in Lemma
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Lemma C.10. [Projections onto the column space of Y © Z] Let Q) € R™ " be an arbitrary matrix
andY, Z € R™ ¥ be random matrices with i.i.d N (0, 1) entries. There exists a universal constant
¢ > 0 such that with probability at least 1 — o(1)

o (v o2y) ], < (VREED) g o5)

n2
Proof. From Lemma|[C.T|we have that
1
(V02T = (¥ © Z)(I + E), where | B]| = or.0(1) < 1

for our choice of parameters. Hence, it will suffice to upper bound [|QT (Y © Z)||r.

Each of the k columns of Y ® Z is an i.i.d. random vector distributed identically to y ® z where
Y,z ~ N(0, I,xrn). Consider a fixed j € [r],i € [k]. For any ¢ > 1, from concentration of quadratic
multivariate polynomials due to Hanson-Wright inequality [see e.g.,[Ver18]l, we have that the (j,7)th
entry of QT (Y ® Z) can be written as

@i vo 2| >ilir] = B [lw7 @zl > tlsls]
211013 !

t
<2exp( — =——=I0E ) <2exp( —=) < ,
< 2exp ( %%ﬁﬁﬂ@ﬂ)‘ dl 9—3ww

for t = O(log(kr)). The lemma follows after a union bound to get an upper bound on the magnitude
of each of the kr entries of the matrix. O

Y,Z

This in turns leads to the following claim.

Lemma C.11. [Perturbation of the spectrum with noise] Let X W, YD) pe the iterates of Algorithm
1 after the updates of the first iteration. Let ® = X © Y () and X, Y denote the updates after the

first iteration when there is no error. Then with high probability 1 — o(1), we have for ® = XoY
that

VOPT - O(klog? (kr))

n4

|o-0| =[xDovm-Reov| < (20411 BIIC]l»+ VOPT). (26)

A similar claim holds for YV @ ZMW and Z(M) © XM as well.

In the above expression vOPT < ||Al||| B||||C]| -

Proof. Recall that T = Y, a; ® b; ® ¢; + Err, where ||Err||p = vOPT. Moreover, for the
flattening E4, Ey € Rnxn’ along the first and second modes of Err, we have with probability

1 —o(1) from Lemma that that
X0 =(ABoC) +E) ((voz))
—ABOC)T+E (Yoz))
=X+E(Yoz)hTt
- X + EX»

T log(k
where | Ex | < [ Ex s < VOPT . YA150T)
_ T log(k
And similarly, YV = ¥ + By, where | Ey || < VOPT - fiz(r)
n
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Furthermore,
1Xlr = [aBoO)T (Vo 2))T|

<JAl-1BoC) (Y ©2)!) |x

vk log(kr
(SR 5 6 0 A by LemmaTO)

< (C\/Eff(kr) )

<

lAlIBIICE,

by Claim We have a similar bound for ||}A/|| r. Hence, we have
|- XoV|=(X+Ex)0 (Y +Ey)-XoY|<||[ExoX|+|Y©Ey|+|Ex ©Ey||
IEx eI+ 1By 2| X] + 1 Ex[lFl Byl (using Claim[A.3)

c?klog(kr)? - /OPT
4
n

IN

(2141 -1 B]- €]l + VOPT).

We now finish the proof of Theorem [B23]

Proof of Theoremﬁ Without loss of generality, we can assume that ||T'|| = 1 (for scaling), and
|All7 = ||Bllr = ||C||F (since we can redistribute the mass among the factors of any decomposition
arbitrarily). Let us denote by OPT = || Err||%, and k = max{x(A), x(B), (C)}. By Claim
we have that 1 < ||A||3. < rkx? < r!*2¢_ For our purposes, we can think of OPT > &, since the
guarantee and proof works up any upper bound on || Err||%. The algorithm in every iteration solves a
least squares problem up to precision € in time polynomial in n, d, log(1/<). We can ignore this ¢ in
this robust analysis, since it is dominated by the error terms in the tensor, and the intermediate steps.
Also note that OPT < 1; in fact, it will be useful to think of OPT < 1/poly(k, ), since otherwise
the trivial bound suffices.

We can bound the objective value in the second iteration using Lemma [C.9) and combine it with
Lemma [C.T1]to get

o) - || — |- |73
o2 ()2

O(k? 10g4(rk))
n8o,.2(P)2

O (k2r2k* log* (rk
(OPT) <1+ ( nsgﬂ(s); )))

<0
< O(OPT) - poly(k,r),

k
2
HT S P eyMe z§2>HF < 20PT +
=1

<o) (14 (haIP1BIPICIE + 0PT)

by using the bound of 7,2 (®) > (n'poly(k,r))~! from Theorem and the bound on & in the
assumptions on Theorem[B.3] This concludes the proof.
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D Experimental Evaluation

Our theoretical results guarantee convergence of Algorithm [I|when the overparameterization k =
O(r?). In our experiments we investigate whether this overparameterization factor is also observed
in practice, and what the leading constant in the dependence is. The second question is how much
overparameterization is needed i.e., does ALS require k = €(r?) to succeed? Our experiments
suggests that both these questions are true.

Algorithm|T]is a non-standard version of the ALS algorithm because in each iteration, it performs the
updates to each mode in parallel. That is, X *+1) Yy (¢+1)  Z(t+1) are all a function of X ) Y ()| Z(*)
This is in contrast to the standard version of ALS which updates the modes sequentially. That
is, X1 will depend on Y, Z(*) as in the parallel version, but then Y **1) will depend on
XD 7®) and Z#D will depend on X ¢+1) | Y (+1) | Our theoretical results focus on the parallel
update version (Algorithm [I) because it is easier to analyze. In our experiments, we evaluate
both the parallel-update and the standard sequential versions of ALS, to see what the effect of
overparameterization is.

D.1 Experimental setup

To evaluate the parallel-update version of ALS (Algorithm [I)), we implemented a non-optimized
version using the scipy least squares solver. For each n, r, k that we analyze, we run 20 trials. For
each trial we generate 3 random n X r factor matrices (each entry is an independent Gaussian) to
make up our ground truth tensor. We initialize the factors of our model to be fully random n x k
matrices. For all n = 200 and n = 500 we set the maximum number of iterations to be 20, due to
computational constraints.

To evaluate standard ALS, we used the parafac method from the TensorLy library [KPAP19], which
provides an optimized version of the standard (sequential) ALS method. As for parallel-update ALS,
for each n, r, k that we analyze we run 20 trials, and for each trial we generate 3 random (Gaussian)
n X r factor matrices to make up our ground truth tensor. We then call parafac on this tensor with
random initializationﬂ For n = 500 we set the maximum number of iterations to be 100, and for
n = 1000 we set the maximum number of iterations to be 20, due to computational constraints.

We provide python code to run both experimental setups as part of the supplementary material.

D.2 Parallel-updated ALS discussion

k = r? suffices. Our theoretical results guarantee that parallel-update ALS (Algorithm should
converge in O(1) steps as long as k = Q(r?). Our experiments validate that this holds for k = 72,
with no leading constant. In Figure [T} we plot the errors of running Algorithm [I] for n = 200,
r € {8,11,14,17,20}, and various values of k that depend on the setting of r. We see that
consistently across all settings of , Algorithmconsistently fails to converge for any value of k < 72

and consistently converges for k > r2.

Our theoretical results guarantee that, once n is sufficiently larger than k, the overparameterized rank
necessary for parallel-update ALS (Algorithm|[I)) to succeed has no dependence on n. In Figure[2]
we plot the errors of running Algorithm [1]for 7 = 8, and n € {200, 500}. We observe that there is
indeed no apparent difference in the results.

D.3 Standard ALS discussion

k < r? suffices for standard ALS. While our theoretical results apply to the parallel-update version
of ALS, we observe that overparameterization k = r2 seems to suffice to ensure convergence for the
standard sequential version of ALS as well. We run this experiment for n = 500 and various values
of r and k, and the results can be found in Figure 3| Figure d] Figure 5] Figure[6] Figure[7] Figure
Figure 9] In all of these experiments, we see that ALS starts to converge for values of k that are less
than r“. Our theoretical result for the parallel-update ALS guarantees that the overparameterization
necessary to ensure convergence should have no dependence on n. To evaluate whether this is true for

"We use fully random initialization as opposed to the default SVD initialization, which deviates significantly
from what we analyze in this work.
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standard ALS, we provide Figure[9]and Figure[I0] which both evaluate » = 20 and the same values
of k for two different values of n (n = 500 and n = 1000). We observe that the different choices
of n do not appear to have any significant impact on the error of standard ALS as a function of the
overparameterization.

Comparison to parallel-update ALS. We see that in comparison to the parallel-update version
of ALS, the standard version has a more graceful degradation of error as a function of k. While
we do not have a theoretical result that proves that standard ALS performs only better than the
parallel-update version we analyze, it does appear in our experiments that this is the case. Even
though standard ALS converges for smaller values of k than the parallel-update ALS, we note that
many of our experiments, including Figure[7} Figure[8] Figure[9] and Figure[I0] seem to display that
standard ALS experiences instability at values of k very close to 72, that it does not experience for
other nearby values of k. We view this as an interesting phenomenon to investigate in future work.

Necessary overparameterization. Our theoretical results guarantee that parallel-update ALS
converges for k = Q(r?). Our experimental results suggest that parallel-update ALS converges
exactly when & > r? (with no leading constant). Our experiments also suggest that standard
(sequential) ALS converges for values of k& < r2. However, we observe that even though the input
tensors in our experiment are chosen randomly from a nicely-behaved distribution , standard ALS still
requires k significantly larger than  to converge. Our results are inconclusive as to what dependency
k must have on r to ensure convergence. We view it as an exciting future direction of both theoretical
and experimental work to understand the overparameterization necessary to ensure convergence of
standard ALS.

D.4 Data
Parallel-update ALS relative error (n = 200)
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Figure 1: Results of running the parallel-update version of ALS (Algorithm |I[) for n = 200, various
values of 7, and various values of k that depend on r. We see that this method consistently fails to
converge for k < 2 and consistently converges for & > 2. For this experiment we run ALS for a
maximum of 20 iterations per trial. For trials where the method converged, it always converged in 2
iterations, which is consistent with our theoretical result. The reported values are aggregated over 20
independent trials, with error bars corresponding to one standard deviation. The data for this plot can
be found in Figure [T}
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Parallel-update ALS relative error (r = 8)

----- Threshold = 0.01
35 —#— n=200
n =500
3.0
= 25
<
i
@
2 20
©
[}
i
@
o
o
2
I
62.5 65.0 67.5 70.0 72.5 75.0 7.5 80.0

Overparameterization k

Figure 2: Results of running the parallel-update version of ALS (Algorithm |1) for r = 8, two
values of n, and various values of k that depend on . We see that this method consistently fails to
converge for k < 2 and consistently converges for & > 2. For this experiment we run ALS for a
maximum of 20 iterations per trial. For trials where the method converged, it always converged in 2
iterations, which is consistent with our theoretical result. The reported values are aggregated over 20
independent trials, with error bars corresponding to one standard deviation. The data for this plot can
be found in Figure T2}

Standard ALS forr = 8, n = 500

0.40 A

0.35 ~

0.30 A

0.25 A

0.20

0.15

Mean Relative Error

0.10 A

0.05 ~

0.00 A

T T
10 20 30 40 50 60 70 80
(Over)parameterization k

Figure 3: Results of running standard ALS (parafac by TensorLy [KPAP19]) for n = 500, r = 8
and various values of k. We observe that the error degrades gracefully as a function of k. The
minimum % necessary to ensure convergence seems to be significantly larger than » = 8, but smaller
than 72 = 64. For this experiment we run ALS for a maximum of 100 iterations per trial. The
reported values are aggregated over 20 independent trials, with error bars corresponding to one
standard deviation. The data for this plot can be found in Figure @
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Standard ALS forr = 10, n = 500
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Figure 4: Results of running standard ALS (parafac by TensorLy [KPAP19])) for n = 500, = 10
and various values of k. We observe that the error degrades gracefully as a function of k. The
minimum & necessary to ensure convergence seems to be significantly larger than r = 10, but smaller
than 72 = 100. For this experiment we run ALS for a maximum of 100 iterations per trial. The
reported values are aggregated over 20 independent trials, with error bars corresponding to one
standard deviation. The data for this plot can be found in Figure @

Standard ALS forr = 12, n = 500
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Figure 5: Results of running standard ALS (parafac by TensorLy [KPAP19]) for n = 500, r = 12
and various values of k. We observe that the error degrades gracefully as a function of k. The
minimum k necessary to ensure convergence seems to be significantly larger than » = 12, but smaller
than 72 = 144. For this experiment we run ALS for a maximum of 100 iterations per trial. The
reported values are aggregated over 20 independent trials, with error bars corresponding to one
standard deviation. The data for this plot can be found in Figure @
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Standard ALS forr = 14, n = 500
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Figure 6: Results of running standard ALS (parafac by TensorLy [KPAP19]) for n = 500, r = 14
and various values of k. We observe that the error degrades gracefully as a function of k. The
minimum k necessary to ensure convergence seems to be significantly larger than » = 14, but smaller
than 72 = 196. For this experiment we run ALS for a maximum of 100 iterations per trial. The
reported values are aggregated over 20 independent trials, with error bars corresponding to one
standard deviation. The data for this plot can be found in Figure @

Standard ALS forr = 16, n = 500
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Figure 7: Results of running standard ALS (parafac by TensorLy [KPAP19]) for n = 500, r = 16
and various values of k. We observe that the error degrades gracefully as a function of k. The
minimum & necessary to ensure convergence seems to be significantly larger than » = 16, but smaller
than r2 = 256. We also observe that standard ALS seems to experience some instability for values of
k very close to 7% = 256. For this experiment we run ALS for a maximum of 100 iterations per trial.
The reported values are aggregated over 20 independent trials, with error bars corresponding to one
standard deviation. The data for this plot can be found in Figure @
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Standard ALS forr = 18, n = 500
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Figure 8: Results of running standard ALS (parafac by TensorLy [KPAP19]) for n = 500, r = 18
and various values of k. We observe that the error degrades gracefully as a function of k. The
minimum k necessary to ensure convergence seems to be significantly larger than » = 18, but smaller
than r2 = 324. We also observe that standard ALS seems to experience some instability for values of
k very close to r? = 324. For this experiment we run ALS for a maximum of 100 iterations per trial.
The reported values are aggregated over 20 independent trials, with error bars corresponding to one
standard deviation. The data for this plot can be found in Figure @
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Standard ALS forr = 20, n = 500
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Figure 9: Results of running standard ALS (parafac by TensorLy [KPAPI9]) for n = 500, r = 20
and various values of k. We observe that the error degrades gracefully as a function of k. The
minimum k necessary to ensure convergence seems to be significantly larger than » = 20, but smaller
than 72 = 400. We also observe that standard ALS seems to experience some instability for values of
k very close to 2 = 400. For this experiment we run ALS for a maximum of 100 iterations per trial.
The reported values are aggregated over 20 independent trials, with error bars corresponding to one
standard deviation. The data for this plot can be found in Figure @

Standard ALS forr = 20, n = 1000
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Figure 10: Results of running standard ALS (parafac by TensorLy [KPAPI9]]) for n = 1000,
7 = 20 and various values of k. We observe the results of this experiment are very similar to Figure[J]
suggesting that convergence of standard ALS is a function of k and not n. For this experiment we
run ALS for a maximum of 100 iterations per trial. The reported values are aggregated over 20
independent trials, with error bars corresponding to one standard deviation. The data for this plot can
be found in Figure [T9}
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r k mean std. dev
8 r2-2 135 1.07

8 r2-1 13 0.855

8 72 5.99¢e-13  9.46e-13
8 1241 32le-14 1.85e-14
8 r24+2 286e-14 1.8%-14
8 r24yr 49214 1.66e-14
8 r2492r 3.09-14 4.6e-15
11 72—-2 1.18 0.813
11 r2-1 121 0.511
11 72 3.38¢-13  8.14e-13

11 7241  4.66e-14 4.06e-14
11 7242 28le-14 1.2le-14
11 r24r  1.25e-14 2.le-15

11 r242r 946e-15 1.23e-15

14 722 1.03 0.659
14 r2-1 1.73 1.69
14 7r? 9.44e-13  3.14e-12

14 r2+1 693e-14 1.03e-13
14 242 396e-14 1.49e-14
14 r24r  1.54e-14 1.53e-15
14 124921 3.67e-14 4.32e-15

17 r2-2 1.22 0.628
17 r?-1 1.18 0.731
17 72 2.55e-13  5.84e-13

17 r2+1 583e-14 3.82¢-14
17 2 +4+2 444e-14 1.36e-14
17 r24r  1.56e-14 1.29e-15
17 r24+2r 945e-15 6.06e-16

20 r2-2 1.02 0.376
20 7?2 -1 1.43 1.07
20 12 9.33e-13  1.04e-12

20 r2+1 834e-14 3.87e-14
20 242  7.58e-14 2.77e-14
20 r247r  1.49e-14 8.28e-16
20 r2492r 3.83e-14 3.45e-15

Figure 11: Data used to generate Figure For these experiments n = 200, and the maximum number
of iterations of ALS is 20. The reported values are aggregated over 20 independent trials.
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n r k mean std. dev
200 8 r2—2 135 1.07
200 8 r2—-1 13 0.855
200 8 72 5.99-13 9.46e-13
200 8 7241 3.2le-14 1.85e-14
200 8 1242 2.86e-14 1.8%-14
200 8 71247 492e-14 1.66e-14
200 8 r242r 3.09-14 4.6e-15
500 8 r2—-2 15 1.31

500 8 r2—1 181 1.88
500 8 2 2.67e-12  1.11e-11
500 8 7241 3.36e-14 19le-14
500 8 1242 272-14 1.25e-14
500 8 r2+4r 1.1le-14 2.17e-15
500 8 7242r 6.7e-15 1.29%-15

Figure 12: Data used to generate Figure For these experiments the maximum number of iterations
of ALS is 20. The reported values are aggregated over 20 independent trials.

r k mean std. dev.
8 8 0.279915 0.111048
8 16 0.106255 0.071116
8 32 0.0293 0.032489
8 48 0.00011 0.000177
8 56 00 0.0

8 60 00 0.0

8 63 00 0.0

8 64 00 0.0

8 65 00 0.0

8 72 00 0.0

8 80 5e-06 2.2e-05

Figure 13: Data used to generate Figure For this experiment n = 500, and the maximum number
of iterations of ALS was 100. The reported values are aggregated over 20 independent trials.

r k mean std. dev.
10 10 0.237 0.100775
10 20 0.105275 0.073401
10 40 0.03214 0.025882
10 50 0.01725 0.014379
10 60 0.009715 0.01181
10 80 5e-05 6.1e-05
10 90 0.0 0.0

10 95 0.0 0.0

10 99 3.5e-05 0.000157
10 100 4.6e-05 0.000113

Figure 14: Data used to generate Fi gureE] For this experiment n = 500, and the maximum number
of iterations of ALS was 100. The reported values are aggregated over 20 independent trials.
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T k mean std. dev.
12 12 0.241995 0.075478
12 24 0.10385 0.057524
12 48 0.052115 0.037644
12 72 0.020825 0.015514
12 96 0.006375 0.006497
12 120 1.5e-05 3.7e-05
12 132 0.0 0.0

12 138 0.0 0.0

12 143 0.0 0.0

12 144 0.0 0.0

12 145 0.0 0.0

12 156 2e-05 8.9e-05
12 168 0.0 0.0

Figure 15: Data used to generate Figure|5| For this experiment n = 500, and the maximum number
of iterations of ALS was 100. The reported values are aggregated over 20 independent trials.

r k mean std. dev.
14 14  0.1976 0.08427
14 28 0.081565 0.065547
14 56  0.054265 0.03741
14 86  0.037515 0.023547
14 98 0.02151 0.015892
14 112 0.01377 0.011933
14 140 0.001525 0.002253
14 168 1e-05 3.1e-05
14 182 0.0 0.0

14 189 0.0 0.0

14 195 0.0 0.0

14 196 5e-06 2.2e-05
14 197 1e-05 3.1e-05
14 210 0.0 0.0

14 224 0.00027 0.001207

Figure 16: Data used to generate Figure @ For this experiment n = 500, and the maximum number
of iterations of ALS was 100. The reported values are aggregated over 20 independent trials.

T k mean std. dev.
16 16 0.20394 0.078098
16 32 0.07173 0.045191
16 64 0.065095 0.039075
16 96 0.04665 0.02052
16 128 0.023405 0.015258
16 160 0.008025 0.007481
16 192 0.000725 0.001254
16 224 5e-06 2.2e-05
16 240 0.0 0.0

16 248 0.0 0.0

16 255 0.00012 0.000537
16 256 3.5e-05 7.5e-05
16 257 0.00272 0.011766
16 272 5e-06 2.2e-05
16 288 0.000575 0.001772

Figure 17: Data used to generate Fi gure For this experiment n = 500, and the maximum number
of iterations of ALS was 100. The reported values are aggregated over 20 independent trials.
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T k mean std. dev.

18 18  0.201895 0.075775
18 36 0.04922  0.060002
18 72 0.058525 0.041778
18 108 0.045035 0.020357
18 144 0.02728  0.016545
18 162 0.02057 0.011974
18 180 0.01624  0.009968
18 216 0.004095 0.004536
18 252 0.000635 0.001181
18 288 5e-06 2.2e-05
18 306 0.0 0.0

18 315 0.0 0.0

18 323 0.000965 0.004269
18 324 3.5e-05 6.7e-05
18 325 0.00613  0.027297
18 342  5e-06 2.2e-05
18 360 3e-05 0.000134

Figure 18: Data used to generate Figure|8| For this experiment n = 500, and the maximum number
of iterations of ALS was 100. The reported values are aggregated over 20 independent trials.

r k mean std. dev.

20 20  0.222785 0.087655
20 40  0.103795 0.062048
20 80  0.085645 0.040937
20 120 0.06505  0.023917
20 160 0.037505 0.014094
20 200 0.027705 0.013622
20 220 0.02015  0.009954
20 240 0.0129 0.007192
20 260 0.00727  0.004

20 280 0.005775 0.003874
20 300 0.001783 0.001685
20 340 0.000275 0.000197
20 360 4.5e-05 5.1e-05
20 380 0.0 0.0

20 390 0.0 0.0

20 399 6.5e-05 0.000208
20 400 0.005205 0.023042
20 401 0.000145 0.000417
20 420 0.0 0.0

20 440 0.00019  0.00085

Figure 19: Data used to generate Figure@ For this experiment n = 500, and the maximum number
of iterations of ALS was 100. The reported values are aggregated over 20 independent trials.
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T k mean std. dev.

20 20  0.239725 0.102431
20 40  0.13363  0.059243
20 80  0.096775 0.033897
20 120 0.0835 0.029776
20 160 0.044465 0.01832
20 200 0.02991  0.01427
20 220 0.024735 0.011906
20 240 0.01598  0.00924
20 260 0.011645 0.008376
20 280 0.00604  0.004469
20 300 0.002445 0.002042
20 320 0.00157  0.001794
20 340 0.00025  0.000173
20 360 5e-05 5.1e-05
20 380 0.0 0.0

20 390 0.0 0.0

20 399 7.5e-05 0.000251
20 400 0.001155 0.004456
20 401 0.0001 0.000296
20 420 2e-05 8.9e-05
20 440 0.0 0.0

Figure 20: Data used to generate Figure For this experiment n = 1000, and the maximum number
of iterations of ALS was 20. The reported values are aggregated over 20 independent trials.
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