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ABSTRACT

Fixed-size learned representations (dense representations, or embeddings) are
widely used in many machine learning applications across language, vision or
speech modalities. This paper investigates the role of the temperature parame-
ter in contrastive training for text embeddings. We shed light on the impact this
parameter has on the intrinsic dimensionality of the embedding spaces obtained,
and show that lower intrinsic dimensionality is further correlated with effective
compression of embeddings. We still observe a trade-off between absolute perfor-
mance and effective compression and we propose temperature aggregation meth-
ods which reduce embedding size by an order of magnitude with minimal impact
on quality.

1 INTRODUCTION

Fixed-sized learned representations (a.k.a., dense representations, or embeddings) are the backbone
of many machine learning applications across language, vision, audio, and other modalities. Em-
beddings play an important role in retrieval applications, where given a user input, vector similarity
is used to retrieve relevant entries from a previously indexed vector store. This in turn is an essential
component of retrieval-augmented generation (RAG; Lewis et al., 2020), which uses retrieval to in-
crease the accuracy and capabilities of generative models. Beyond retrieval, embeddings also have
applications in classification tasks, clustering, or parallel corpus mining, to name just a few.

Most embedding models are trained using a form of contrastive loss, either in the entirety of train-
ing or after an unsupervised pre-training stage. Contrastive loss functions minimize the distance
between an anchor point and other similar data points, while maximizing the distance to a set of
negative examples. For training text embedding models, InfoNCE (van den Oord et al., 2018) is the
standard contrastive loss used (see equation 1).

The temperature parameter (τ in equation 1) plays an important role in embedding model training,
particularly as it modulates the model’s sensitivity to difficult negatives. It has been shown that
smaller values of τ lead to more uniform distribution in the embedding space (i.e., data points are
further apart), while larger values lead to lower uniformity but better alignment (i.e., similar data
points are closer together) (Wang & Liu, 2020). In parallel, smaller τ and high uniformity have been
found to be correlated with better instance-wise discrimination, whereas lower uniformity and better
alignment are correlated with good group-wise discrimination (Kukleva et al., 2023). In this paper,
we build on this work, performing an in-depth analysis of the effects of τ on text embeddings as
well as on post-training embedding compression.

Interaction between temperature and tasks We start off by investigating the impact of the tem-
perature on different text embedding tasks, where we specifically observe a trade-off between per-
formance on retrieval and on clustering tasks as a function of τ . Diving deeper, we show that
temperature directly impacts the intrinsic dimensionality of the embedding space and that lower
temperatures lead to greater intrinsic dimensionality.

Impact of temperature on post-training compression These observations further raise the ques-
tion of whether intrinsic dimension and uniformity properties of embedding spaces impact the ability
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to efficiently apply post-training compression techniques. We test the hypothesis that smaller intrin-
sic dimensionality improves retention at post-training embedding size reduction (or compression).
Embedding compression is essential for reducing costs in practical applications; particularly in re-
trieval, compression is advantageous because it allows trained models to flexibly adapt to different
storage requirements. We show that, as hypothesized, higher temperature does indeed correlate with
higher quality retention after compression, and that the correlation holds for two different methods
of compression: random feature selection or truncation (Kusupati et al., 2024), and quantization via
binarization (Bai et al., 2021).

Techniques for balancing temperature across tasks Finally, while these observations shed light
on the impact of temperature in contrastive learning, they also confirm the difficulty of training an
embedding model that is optimal across multiple tasks and requirements: absolute retrieval results
are at odds with quality retention when compressing embeddings. To remedy this, we propose
several methods for temperature aggregation and specialization that achieve the best of both worlds;
we are able to train models that match the performance of the best single model in retrieval, while
showing 99% quality retention when the dimensions are quartered and when the embeddings is
binarized.

2 PREREQUISITES AND RELATED WORK

Contrastive losses in representation learning Most embedding training algorithms employ a
form of contrastive learning, where an anchor point (a word token, sentence, image, etc.) is brought
closer to positive examples and sent further away from negative examples. Examples of positive
data points are co-occurring words for word embeddings (Mikolov et al., 2013), similar sentences or
neighboring sentences for sentence representations (Kiros et al., 2015; Devlin et al., 2019), or noisy
versions of the anchor image in vision.1

Several variations on contrastive losses have been proposed, most of them inspired by noise con-
trastive estimation introduced by Mnih & Kavukcuoglu (2013) and Gutmann & Hyvärinen (2012).
Here, we use InfoNCE (van den Oord et al., 2018), the contrastive loss most commonly used in
embeddings for text and image retrieval. InfoNCE is defined as:

LInfoNCE(f, x, τ) = E(x,x+)∼ppos

[
−log

es(f(x),f(x
+))/τ

es(f(x),f(x+))/τ +Σx−es(f(x),f(x−))/τ

]
(1)

where f is the embedding function to be learned, and x is an anchor point compared with a positive
x+ and a set of negatives x− via a similarity function s. We choose s to be cosine similarity, which
has been repeatedly shown to outperform Euclidean or plain (un-normalized) scalar product for both
language and vision applications. This is further scaled by the temperature parameter 1/τ .

Many studies have found that the contrastive power of InfoNCE and similar losses increases with
the number of negatives and the difficulty of negatives (Tian et al., 2020; Khosla et al., 2020). In
addition to this, it has been shown that InfoNCE loss itself, when used with normalized representa-
tions (i.e., using cosine similarity), performs hard negative mining implicitly (Khosla et al., 2020).
More precisely, it upweights the negative samples that are further away from the anchor in the em-
bedding space. However, whether these are indeed difficult samples or false negatives depends on
the supervision signal.

Impact of temperature The temperature parameter is commonly tuned in InfoNCE and related
losses in order to obtain better representations. Several studies have shown that temperature further
modulates the impact of difficult samples.

Khosla et al. (2020) and Wang & Liu (2020) showed that the difficult negatives have large gradient
contributions in InfoNCE. They further investigated the relationship between InfoNCE and other
losses when varying τ . When τ → 0+, it becomes a triple loss with a margin of 0 using only one
negative, the nearest negative:

Ltriple(f, x) = max[s(f(x), f(x∗−)− s(f(x), f(x+), 0] (2)

1For a full review of this work, please see surveys such as Kashyap et al. (2024).
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where x∗− is the negative that is maximally similar to the anchor point x. When τ → ∞, InfoNCE
converges to the simple loss, which uses all negatives but does not apply a softmax transformation:

Lsimple(f, x) = −s(f(x), f(x+)) + λΣx−s(f(x), f(x−)) (3)

In a similar vein, Robinson et al. (2021a) show that one can upweight the difficult negatives by
introducing a new concentration parameter β in the normalizer of the InfoNCE loss. Empirically,
this acts the same as fixing the temperature parameter used for positive samples and varying the
temperature used for negatives, where β = 1/τ . They show that large β leads to upweighting the
contribution of the difficult samples, which corroborates the previous results.

One way to visualize this effect is to measure the impact that each negative sample has on the
loss normalization factor. The plots in Figure 2 show this impact in two settings: one with random
vectors, which is similar to the beginning of training, and a mid-training setting, in which the vectors
are drawn from real batches when models are trained with different τ values (see Section 3 for
training details). We use 1024-dimensional embeddings and a batch size of 100 negative samples.

Figure 1: The impact of individual negative samples, computed relative to all negatives in the batch,
under different temperature settings. Left: using random vectors; Right: using vectors mid-training.

When the vectors are random the effect is very clear: when τ = 0.4, most data points contribute
similarly to the loss, and as τ decreases, some negatives become outliers, with their contribution
being either enhanced or diminished. When the vectors are drawn from real training batches mid-
training, the distributions look similar for all τ , with the exception of outliers: with smaller τ we see
that the difficult negatives have a larger impact (note that the batch is identical for all models).

Choosing the optimal temperature parameter In computer vision, several works point to per-
formance trade-offs when choosing small vs. large temperature values; despite difficult negatives
being preferred in general, a small temperature is not universally superior. Wang & Liu (2020)
highlight that while temperature modulates the impact of difficult negatives, there are other ways to
do so, such as by explicitly selecting difficult negatives. As such, a large τ value, which weights
all negatives the same way, can be coupled with difficult negatives, leading to better performance
overall. Also in vision, Kukleva et al. (2023) show that smaller temperatures are better at modeling
tail classes while larger temperatures work best for the head of the distribution. They summarize
this as a trade-off between instance- and group-wise discrimination, where smaller temperatures
favor finer-grained instance-level discrimination. As a solution, they propose varying the tempera-
ture during training and show optimal results when a large range is used, with τ from 0.07 to 1.0.
Similarly, Robinson et al. (2021b) empirically show that larger temperatures promote the learning
of easy features, while other features that could provide finer-grained distinctions are ignored.

As a way of explaining these results, several studies (Wang & Liu, 2020; Wang & Isola, 2020) relate
their finding to the observation that contrastive losses navigate a trade-off between uniformity and
alignment as defined in Wang & Isola (2020). They show that when the number of negatives M
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converges to infinity, the normalized loss (−log M ) converges to:

lim
M→inf

L(f, τ)− log M =− 1

τ
E(x,x+)∼ppos

[f(x)T f(x+)] Alignment

+ Ex∼pdata
[logEx−∼p−

data
[ef(x)

T f(x−)/τ ]] Uniformity
(4)

Alignment measures the similarity of the anchor to the positive points, while uniformity measures
the similarity to the negatives. The goal is to maximize distances between arbitrary points (have a
uniform space) while improving alignment.

3 TEMPERATURE IN CONTRASTIVE TRAINING OF TEXT EMBEDDINGS

Inspired by the performance trade-offs previously observed in computer vision tasks, we first inves-
tigate the impact of temperature in training text embeddings.

3.1 EXPERIMENTAL SETUP

Text embeddings are typically trained to be able to solve a range of applications, from retrieval to
classification and clustering. This is achieved by employing two or more training stages: in a first
stage, training is performed on large amounts of raw text using a reconstruction objective such as
masked language modeling (MLM; Devlin et al., 2019). This is followed by one or more other
stages where supervision consists of a mix of explicit contrastive data, examples including question
answering data, semantically similar sentences or documents, documents and their summaries, and
so on. We follow the same procedure here, employing two-stage training. We start from a fixed
model pre-trained using the MLM objective. We then follow this with InfoNCE contrastive learning;
this second stage is the only training stage that we vary in the following experiments.

Model architecture We use the CodeSage architecture introduced in Zhang et al. (2024).2 Our
models are trained with 356M parameters and 1024 embedding dimensions. Additional training
parameters are given in Appendix A.

Data For the MLM training stage, we use 2T tokens of data consisting of 80% English data, with
the remaining 20% spanning over 100 languages. We tokenize the text with tiktoken to build a 100k
vocabulary3. For the contrastive stage, we train on MS Marco (Bajaj et al., 2018; Wang et al., 2023),
NQ (Karpukhin et al., 2020; Gao & Callan, 2021), NLI (Gao et al., 2022), HotpotQA (Yang et al.,
2018), FEVER (Thorne et al., 2018), MIRACL (Zhang et al., 2023), and Mr. TyDi (Zhang et al.,
2021), totaling approximately 2 million data points (see details in Appendix A). We use the training
splits of these datasets released by Thakur et al. (2021). We use in-batch negatives and a batch size
of 256 data points. Negatives are obtained by randomly sampling other data points from the same
training set (homogeneous sampling). Sampling from the same dataset is a common technique used
to ensure that the in-batch negatives are not too easy. If a contrastive negative example is explicitly
provided with the training data set, that data point it is added to the batch of negatives.

Evaluation We evaluate using the standard English MTEB benchmark (Muennighoff et al., 2023),
which contains a total 56 datasets categorized into eight tasks:4 classification (12 datasets), clustering
(11), pair classification (3), re-ranking (4), retrieval (15), semantic text similarity (STS; 10) and
summarization (1). We evaluate on all these tasks but focus on retrieval and clustering, which are
evaluated using nDCG@10 and v-measure, respectively.

Note on MTEB instruction models It is common in the literature to test embeddings using addi-
tional information regarding the downstream task or the text to be embedded, in order to reduce the
inherent ambiguity of modeling different tasks (Wang et al., 2024a). Common procedures include
using different prefixes for different tasks, or using free-form text (instructions; Su et al., 2023;
Wang et al., 2024b; Muennighoff et al., 2024). However, when used in MTEB evaluations, it is
often the case that: 1) instructions are individually tailored for each of the 56 MTEB test sets and
2) test set instructions are paired with the train set ones, thus mapping train to test sets. We believe

2Available at https://huggingface.co/codesage/codesage-base.
3cl100k base, available at https://github.com/openai/tiktoken.
4A leaderboard in maintained at https://huggingface.co/spaces/mteb/leaderboard.
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this runs the risk of MTEB over-fitting and thus goes against the original goal of the MTEB bench-
mark, which is to test robustness across different tasks. For the purposes of this study, we do not use
instructions at train or inference time, similarly to models such as Neelakantan et al. (2022).

3.2 PERFORMANCE WHEN VARYING TEMPERATURE

We start by measuring the impact of the τ (temperature) parameter by varying τ from 0.04 to 0.4
and measuring performance on MTEB.5

Results for retrieval and clustering are shown in Figure 2, while results for the other MTEB tasks
are provided in Appendix B. We separate retrieval and clustering from the other tasks due to the
interesting trend we observe: retrieval performance monotonically decreases with τ while clustering
shows the opposite trend. This result seems to confirm the hypothesis that temperature affects group
vs. instance-wise discrimination and that there is a traded-off between the two.

Figure 2: MTEB performance on Retrieval and Clustering tasks, as a function of the temperature
value used in contrastive learning.

Building on previous work, we attempt to characterize the distinction between embedding spaces
obtained when using different temperature values. For this purpose we use two techniques. We per-
form t-SNE projection of the embedding spaces by randomly sampling 5000 datapoints and plotting
their 2-D representation (van der Maaten & Hinton, 2008). We further implement a uniformity met-
ric similar to the definition in Equation 4: we modify it to use the normalized scalar product instead,
in order to match our InfoNCE objective which uses cosine. In both cases we sample datapoints
from the RedditClustering test set in MTEB; however, results are consistent across other data sets.

t-SNE projections and uniformity values for different temperatures are shown in Figure 3. t-SNE
projections indicate the appearance of better defined clusters as τ increases, which is similar to ob-
servations made in previous work for image embeddings. However, the uniformity metric increases
when τ goes from 0.04 to 0.06, but shows a slow downward trend after that. Wang & Liu (2020)
also measure uniformity and note that uniformity decreases with large τ ; however, the trend does
not hold when negatives are selected to be more difficult. Our results also indicate that there is
no monotonic relationship between temperature values and uniformity as defined this way. Indeed,
uniformity measures mean cosine similarities: if the space becomes more clustered as t-SNE visual-
izations indicate, this metric can increase or can decrease.

5We were unable to train strong models with lower temperature values due to numerical instability, a phe-
nomenon also reported by Khosla et al. (2020).
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Figure 3: Embeddings projected into 2 dimensions using t-SNE and uniformity values across differ-
ent temperatures.

Based on the t-SNE visualization and clustering performance, we hypothesize that the temperature
likely modulates the intrinsic dimensionality of the resulting embedding space, and a vector space
that is more “clusterable” has a lower intrinsic dimensionality. We investigate this by adopting
a measure of intrinsic dimensionality based on PCA, which identifies principal components that
explain the variance in the data. We perform PCA on the embedding spaces and plot the variance
explained by each principal component. Furthermore, we can compute the number of principal
components required to explain a certain amount of variance in the data. We use this number as a
metric of intrinsic dimensionality and set the variance threshold to 95%.

Figure 4 shows the explained variance of the first 300 principal components under different temper-
ature values and plots the intrinsic dimensionality as defined above. The results indeed show the
intrinsic dimension decreasing when larger τ is employed.

Figure 4: Impact of temperature on the intrinsic dimensionality of the embedding spaces as com-
puted by applying PCA to 5000 datapoints. Left: Explained variance for each principal component.
Right: Intrinsic dimensionality calculated as the number of principal components needed to explain
95% of the variance in the data; this number is 896 for random vectors.

4 POST-TRAINING EMBEDDING COMPRESSION

The previous section showed that the temperature parameter impacts the intrinsic dimensionality of
the resulting space, thus explaining why clustering results improve with large τ . This result brings
up a related question: can embeddings with lower intrinsic dimensionality be compressed more
efficiently?

Compressing embeddings Compression is essential to reduce computational costs associated
with storing embeddings for retrieval applications. Furthermore, flexible compression, meaning
embeddings that perform optimally at full size as well as when compressed, offers even more ad-
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vantages. When training representations, the computational constraints for each downstream task are
often unknown, and in such cases fixed-capacity representations may be too complex or too simple
for the task at hand. This section focuses evaluation on retrieval datasets due to the significant costs
associated with storing embeddings (Shakir et al., 2024); other tasks are discussed in Appendix B.

For flexible compression, simple, computationally efficient operations are preferable: dimensionality
reduction via vector truncation (Kusupati et al., 2024) and quantization (Bai et al., 2021; Zafrir et al.,
2019) are two such methods to compress embeddings. We investigate random feature selection and
binarization (quantization to 1 bit) using the sign function.

Random feature selection We expect embedding spaces with low intrinsic dimensionality to retain
their quality when dimensionality reduction methods are applied; we hypothesize that this also holds
for simple methods such as random feature selection due to the fact that low intrinsic dimensionality
implies more redundancy in the feature space. In these experiments, we truncate vectors x to x[1:k]

with k ∈ {256, 512}. This reduces the size of the vectors by a factor of d/k where d is the original
size of the embedding space (1024 in our experiments).6

Binarization We perform post-training binary quantization using the commonly used sign function.
This leads to representations that require only d bits for storage. This is a more aggressive com-
pression, reducing storage by 32x assuming 32-bit original precision. For binary embeddings, we
replace cosine similarity with Hamming similarity (the number of positions where the two vectors
are identical), as recommended by previous work.

Figure 5: MTEB Retrieval performance when embeddings are truncated: Absolute performance
(left) and quality retention computed relative to full-size performance (right). In terms of absolute
performance, at full dimensionality (1024), retrieval scores decrease as τ increases. However, after
truncation, optimal performance is obtained with larger τ values of 0.08 and 0.1, due to the increase
in retention as shown in the right figure.

Results for random feature selection are shown in Figure 5. We show both absolute performance as
well as quality retention measured with respect to full size embeddings (1024 dimensions). Larger
temperatures lead to increased quality retention when reducing the embedding size. The effect is
more pronounced when truncating to 256 dimensions, where the quality retention goes from 93%
with τ = 0.04 to 99% for τ = 0.4.

Figure 6 shows a similar trend in the case of binarization, with larger τ promoting better retention.
This is surprising given that lower temperatures lead to embeddings that are sprea more widely.
For example, Kukleva et al. (2023) discretize an embedding space into 500 bins and look at the
distribution of embeddings across these bins. Lower temperatures show more uniform distribution
across these bins, which would have suggested better quantization properties. However, empirically
we observe the opposite effect.

Finally, when comparing the two methods of reducing embedding size, binarization is far superior:
with τ = 0.1 it achieves a 32x size reduction with 97.8% quality retention versus 4x with 96.4%

6For the rest of the paper we will continue to the terms truncation and random feature selection interchange-
ably as they are identical in this work.
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Figure 6: MTEB Retrieval performance when embeddings are binarized: Absolute performance (at
1024) and quality retention computed relative to full precision performance (at 256, 512 and 1024).
Same as with truncation, peak absolute performance is obtained with the lowest temperature in the
un-compressed case; however mid-range values are optimal after binarization due to the increase in
quality retention associated with larger τ (right-hand side figure).

quality retention when truncating to 256. When the two methods are combined, despite obtaining a
reduction of 128x in size, quality drops significantly with a retention of 87% for the same τ = 0.1.

Matryoshka representation learning (MRL) The prior experiments tested if larger temperatures
lead to embeddings that can be compressed better for free, meaning without a training-aware algo-
rithm. We perform an additional set of experiments, this time using MRL (Kusupati et al., 2024),
which is a simple method that has been shown to work well in practice. MRL uses a loss function
that additionally optimizes for smaller vectors obtained by truncating the original vectors:

LMRL(f, x, τ) = Σk
i=1λiLInfoNCE(f[1:di], x, τ) (5)

where f[1:di] truncates vectors to dimensions di ≤ d, the original dimensionality of the space. We
set k = 3 and di to [256, 512, 1024], and we use uniform λi weights.

Results are shown in Table 1. We first observe that MRL training improves over the best retrieval
results even for full size embeddings. As expected it also improves both absolute performance and
quality retention at 256; this effect is more pronounced for smaller τ , but it is present across the
entire temperature range. Interestingly, MRL training also improves binary performance, but only
at small τ values, taking quality retention from 95.3 to 96.1 for τ = 0.04. Finally, it is interesting
to observe that MRL training lowers the intrinsic dimensionality of the space across all temperature
values. This further strengthens the observed correlation between lower intrinsic dimensionality and
improved truncated representations.

Table 1: MTEB Retrieval performance across different τ values for InfoNCE (Baseline) and MRL
objectives. Full performance (first row) stands for performance at full dimensionality (1024) and at
full precision. The rest of the results reduce embedding size by truncating to 256 (while keeping full
precision) and binarizing (while keeping 1024 dimensions).

Baseline MRL
Temperature Temperature

.04 0.1 0.3 .04 0.1 0.3
Perf. full 46.7 45.9 38.6 47.2 45.4 38.8
Perf. at 256 43.6 44.2 38.2 45.2 44.4 38.5
Perf. at binary 44.6 44.9 37.9 45.3 44.3 38.1
Perf. 256/1024 93.2 96.4 98.8 95.8 97.8 99.0
Perf. binary/full prec. 95.3 97.8 98.1 96.1 97.7 98.0
Intrinsic dim. 654 623 430 626 616 396
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Overall, the main findings of this section can be summarized as:

1. Larger temperature values in InfoNCE lead to lower intrinsic dimensionality of the result-
ing space; however, the mechanism through which this happens is still not clear. Larger
temperatures lead to all negative samples contributing similarly to the loss. It may be the
case that multiple (and heterogeneous) negatives lead to a larger number of smaller up-
dates in the embedding space, subsequently resulting in redundant encoding of information
across dimensions. In future work, we plan to investigate this hypothesis and experiment
with different batch sizes and methods for negatives selection.

2. Lower intrinsic dimensionality is correlated with better quality retention when embeddings
are compressed. This holds both for random feature selection and for binarization.

3. MRL training, which promotes embeddings that can be truncated with minimal perfor-
mance loss, further reduces the intrinsic dimensionality of the resulting space. This happens
across different temperature values and leads to better quality retention when compressing
with both truncation and binarization.

Related work on embedding compression There is a large body of literature on dimensionality
reduction and quantization for embeddings. Most recent work proposes training-aware methods,
where losses or architectures are modified such that either 1) compressed embeddings or 2) both
full and compressed embeddings are predictive of the task at hand (Kusupati et al., 2024; Bai et al.,
2021; Zafrir et al., 2019; Lin et al., 2017; Yamada et al., 2021; Izacard et al., 2020; Chen et al.,
2022). In the case of quantization, most studies focus on quantizing model weights, which also
reduces inference time. It is difficult to assess where our results fit within this body of work, due to
differences in experimental settings, benchmarking, and goals.

More relevant to our experiments is the report by Shakir et al. (2024) which evaluates open source
and proprietary models when vector truncation and binarization are used to reduce the size of em-
beddings post-training. Specifically, the authors highlight the cost of storing large embeddings and
test several models after binarization. They show that some models can achieve 92% performance
retention with binarization, and 96% when binarization and reranking is applied. These are lower
than the retention scores we obtain, indicating that other differences, most likely in the way nega-
tives are selected, further impact this property of the embedding spaces. When truncation is applied,
results vary depending on the model used and the compression ratio obtained. For example, the au-
thors report 90% with 6x compression for one model and 93.1% with 12x compression with another,
which places our results in a similar range: we obtain 94% retention with 4x reduction at τ = 0.04.

5 MULTIPLE TEMPERATURES IN TRAINING

The previous section shows that larger temperatures lead to embeddings that can be more efficiently
compressed. However, there is still a trade-off between this desirable property and performance in
absolute terms. In this section, we investigate the use of multiple temperature values during training
in order to obtain a better trade-off between the two. We opt for aggregating loss terms which use
individual temperature values, which is simpler than temperature schedules (employed for example
in Kukleva et al., 2023).

Plain temperature aggregation For this setup, we replace the standard InfoNCE loss with a sum
over losses, each using individual temperature values.

LTempAgg(f, x, τ) = ΣT
t=1wtLInfoNCE(f, x, τt) (6)

where we use τ to stand for a vector of temperature values. In our experiments, we sum over T = 3
temperature values τ ∈ [0.03, 0.06, 0.1], which cover the best range of values observed in previous
sections. We set wi = 1.0.

MRL temperature aggregation Previous experiments showed that MRL can further improve per-
formance at reduced dimensions with no degradation at full dimensionality. We test a loss that
combines the two; it differs from the original MRL loss by allowing for temperature aggregation at
all dimensions in training:

LTempAggMRL(f, x, τ) = Σk
i=1λiLTempAgg(f[1:di], x, τ) (7)

9
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Table 2: MTEB Retrieval (Ret.) and Clustering (Clust.) performance across different models. “Full”
stands for performance at full dimensionality (1024) and at full precision. The rest of the results
report retrieval when: 1) truncating to 256 while keeping full precision and 2) binarizing both with
re-ranking (bin re-rnk) and without, while keeping 1024 dimensions.

τ = 0.04 τ = 0.1 TempAgg TempAggMRL TempSpecMRL
Ret. (full) 46.7 45.9 46.4 46.6 46.0
Clust. (full) 34.1 37.7 36.4 36.9 37.4
Ret. 256 43.6 44.2 44.6 45.1 44.6
Ret. bin 44.6 44.9 45.2 45.2 44.8
Ret. bin re-rnk 45.6 45.6 45.9 46.1 45.5
Ret. 256/1024 93.2 96.4 96.2 96.9 97.1
Ret. bin/full prec 95.3 97.8 97.4 97.1 97.4
Ret. bin re-rnk /full prec 97.6 99.0 98.9 98.9 99.0
Intrinsic dim. 654 623 629 623 617

In this setup we use the same temperature range as above, which we apply at 256, 512 and 1024
dimensions, using uniform λi = 1.0 weights.

Temperature specialization We implement a third setup which uses the observation that lower
temperatures are more beneficial for retrieval. Since reduced embeddings are mostly crucial in
retrieval applications, we perform MRL training using a small τ at 256 and a larger τ at 1024. The
small temperature will promote good retrieval performance at 256 while the larger value at 1024
will provide a temperature aggregation effect (note that a loss applied at 1024 will impact the first
256 dimensions, but not viceversa):

LTempSpec(f, x, τ) = Σk
i=1λiLInfoNCE(f[1:di], x, τi) (8)

We set τ = {256 : 0.03, 512 : 0.06, 1024 : 0.1}. In this last set of experiments, we also add
re-ranking for binary embeddings, which is an effective method to improve performance in the bina-
rization setup with minimal speed impact and no vector storage impact. This consists of comparing
binary passage vectors with full-precision query vectors (Yamada et al., 2021). Specifically, we
retrieve the top 100 passages using binary representations and then re-rank them using the full-
precision query.

Results are shown in Table 2. We compare the aggregation methods with the baseline InfoNCE
models using the best τ for retrieval (0.04) as well as the best τ across both retrieval at full size and
compressed retrieval (0.1). Both TempAgg and TempAggMRL reach performance that is very close
the best retrieval model while improving on clustering by a large margin. In parallel, the quality
retention after compression also increases: from 95% to over 97% for binarization and from 93% to
96% for truncation to 256. Among these, TempSpecMRL is the best model w.r.t. quality retention.
Best binarization results are obtained when adding the re-ranking stage: for several aggregation
models, retention reaches an impressive 99% while reducing the size by a factor of 32x.

Finally, the intrinsic dimensionality of the resulting spaces is similar for all aggregation models and
is lower than that of the τ = 0.04 models. This is in line with previous observations that intrinsic
dimensionality correlates with quality retention when compressing.

6 FUTURE WORK

In future work, we plan to further explore the intrinsic dimensionality of embeddings spaces, and
the subsequent relationship with compression under different training regimes. Additionally, an in-
teresting question that arises from this work is why binarization (and presumably quantization in
general) is a better method for flexible compression than dimensionality reduction. In our experi-
ments, both methods shows similar quality retention across different settings, albeit with different
compression ratios (32x and 4x for binarization and truncation, respectively). We will further ex-
plore whether this observation can be applied not only to obtain flexible embeddings, but also to
improve performance overall as a form of over-parametrization in training.
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A FULL TRAINING SETTINGS

Figure 7 shows the training parameters used to train the models. Additionally, note that we assign
weights to the negative samples based on similarity to the anchor, following Dong et al. (2024).

--max_seq_length 1024
--max_steps 3000
--warmup_steps 58
--base_global_batch_size 4096
--weight_decay 0.1
--base_learning_rate 5e-06
--lr_min_ratio 1e-01
--base_max_steps 3000
--lr_scheduler_type cosine
--gradient_clip_val 1.0
--optimizer FusedAdam

Figure 7: Additional training parameters. We use in-batch negatives with a batch size of 256 and
homogenous sampling, meaning that the negative sample are drawn from the same training set. All
models are tested after 2000 training steps.

Table 3 lists the datasets used in the contrastive training stage.

Table 3: Datasets used in the contrastive training stage. MsMarco is downsampled to the size listed
in the table. MIRACL and MrTydi are multilingual while the others are En only. References are
given in the main text.

Dataset Size (in k entries)
MsMarco 1,000k
NQ 150k
NLI 247k
HotPotQA 90k
FEVER 108k
MIRACL 600k
MrTyDi 40k

B RESULTS ON OTHER TASKS

The main results in section 3.2 focus on the effect of temperature on retrieval and clustering tasks
(see Figure 2). In this section we discuss the performance and compression rate of other MTEB
tasks.

Figure 8 shows performance (on the MTEB benchmark) as a function of temperature for the remain-
ing MTEB tasks. Reranking performance is not affected by temperature. Performance on other tasks
shows a similar but much smaller effect to what we observed in retrieval, with higher temperature
values leading to lower performance.

In Figure 9, we show retention of full-precision performance when truncating to 256 dimensions at
different temperature values. Overall, we see a similar pattern to what we observed in Figure 4 for
retrieval, with higher temperature generally leading to higher performance retention, although this
trend is particularly pronounced for clustering.

C RESULTS WITH ADDITIONAL TRAINING SETTINGS

In this section, we vary the training settings to see whether our results generalize to different settings.
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Figure 8: MTEB performance as a function of the temperature value used in the contrastive learning
training stage.

Figure 9: Retention of overall MTEB performance when truncating to 256 dimensions as a function
of temperature value used in the contrastive learning training stage.

C.1 SAMPLING STRATEGY

By default in our experiments, we use homogeneous sampling (i.e., sampling negative examples
from the same dataset as the positives) to increase the difficulty of the negatives. Here, we compare
homogeneous vs. heterogeneous sampling to see the effect of easier negatives on our experiments.
Given that with lower temperatures, more difficult negatives receive a higher weight, we hypothesize
that hetereogeneous sampling could have a similar effect to using higher temperatures.

Table 4 compares homogeneous and heterogeneous sampling results. We find that heterogeneous
sampling yields worse results than homogeneous sampling, particularly for retrieval. In addition,
heterogeneous sampling slightly increases retention of retrieval performance at lower values of τ .
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Table 4: MTEB retrieval (Ret.) and Clustering (Clust.) performance with homogeneous (default)
and heterogeneous sampling. “Full” stands for performance at full (1024) dimensionality and full
precision. The remaining results report retention of retrieval performance when: 1) truncating to 256
while keeping full precision and 2) binarizing without re-ranking while keeping 1024 dimensions

τ = 0.04 τ = 0.3
sampling homogeneous heterogeneous homogeneous heterogeneous
Clust. (full) 34.14 33.81 39.24 38.94
Ret. (full) 46.73 45.70 38.64 35.80
Ret. 256/1024 93.10 93.46 98.80 98.59
Ret. bin/full prec 95.34 95.53 98.06 97.20

Table 5: MTEB retrieval (Ret.) and Clustering (Clust.) performance with different numbers of
training steps. “Full” stands for performance at full (1024) dimensionality and full precision. The
remaining results report retention of retrieval performance when: 1) truncating to 256 while keeping
full precision and 2) binarizing without re-ranking while keeping 1024 dimensions

τ = 0.04 τ = 0.3
steps 1k 2k 3k 4k 1k 2k 3k 4k
Clust. (full) 34.57 34.14 33.93 34.69 37.42 39.24 37.85 37.77
Ret. (full) 46.05 46.73 46.55 46.69 37.53 38.64 38.36 38.33
Ret. 256/1024 93.86 93.10 94.14 94.43 98.89 98.8 98.77 98.61
Ret. bin/full prec 95.62 95.32 94.96 95.79 97.90 98.14 97.70 97.88

However, given that the absolute performance is worse than with homogeneous sampling, this is not
useful in practice. Overall, the major patterns (improved clustering and compression at higher τ ,
improved retrieval at lower τ ) remain the same regardless of the sampling method.

C.2 NUMBER OF TRAINING STEPS

By default, we train our models with 2000 training steps. In Table 5, we report retrieval and clus-
tering performance as well as retention of retrieval performance after truncating or binarizing when
training for 1000, 2000, 3000, and 4000 steps. We see no major differences in either full or com-
pressed performance for different number of steps, and the major findings of the paper remain the
same regardless of the number of steps. This indicates that our findings are not an artifact of the
stage of training.
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