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Abstract

Recent work such as MLP-Mixers (Tolstikhin
et al., 2021) have demonstrated the promise
of All-MLP architectures. While All-MLP ar-
chitectures have demonstrated reasonable per-
formance in computer vision and garnered re-
cent interest, we argue that making them ef-
fective in NLP applications is still an uphill
battle. Hence, there may be no solid rea-
son to drop the self-attention modules alto-
gether. In this paper, we propose a new
Mixer-Transformer architecture, showing that
Transformers and Mixer models can be quite
complementary indeed. Fundamentally, we
show that Mixer models are capable of act-
ing as persistent global memory (in a simi-
lar vein to standard MLPs) while being im-
bued with global receptive fields at the same
time. Hence, interleaving sample-dependent
and input-local self-attention with persistent
Mixer modules can be an effective strategy.
Additionally, we propose compositional remix-
ing, a new way of baking compositional op-
erators (multiplicative and subtractive compo-
sition) within the mixing process to improve
the expressiveness of the model. This allows
us to effectively model relationships between
unmixed and mixed representations - an induc-
tive bias that we postulate is powerful for NLU
applications. Via extensive experiments on 14
challenging NLU datasets (e.g., SuperGLUE,
entailment and compositional generalization),
we show that the proposed architecture consis-
tently outperforms a strong TS5 baseline (Raf-
fel et al., 2019). We believe this work paves
the way for more effective synergies between
the two families of models.

1 Introduction

While Transformers (Vaswani et al., 2017) remain
as the dominant choice for sequence processing,
there has been recent surging interest in All-MLP
architectures (Liu et al., 2021; Tolstikhin et al.,
2021; Lee-Thorp et al., 2021; Touvron et al., 2021).
The key idea in these approaches is to imbue the

MLP layers with global receptive fields and is often
referred to as foken mixing - a simple but relatively
powerful paradigm. Intuitively, the canonical self-
attention module can also be subsumed under the
family of mixers - although the crucial difference
here is that the mixing is input-local and the mixing
process is guided by the pairwise dot product of
tokens instead.

While MLP-Mixers have had moderate success
in computer vision tasks, its competitiveness in
the domain of language, to this date, is at best
just speculative. In recent work, Mixers have only
been applied in limited setups (BERT style, en-
coder only) (Liu et al., 2021) and it is still uncer-
tain if they would work in autoregressive setups
(GPT-like (Brown et al., 2020)) or encoder-decoder
setups (Raffel et al., 2019). Mixer architectures
also lack the pseudo cross-attention inductive bias
in the encoder, which is crucial for modeling re-
lationship between sentence pairs. This can be
mitigated by conveniently adding a tiny bit of self-
attention (Liu et al., 2021), but clearly breaks the
paradigm and promise of All-MLP architectures.
Our early experiments show that MLP-Mixer ar-
chitectures only marginally outperform simple neu-
ral bag-of-words models (CBoW) on SuperGLUE
(Wang et al., 2019a).

The benefits of adopting All-MLP paradigms in
language is also unclear. In our early experiments,
we find that All-MLP architectures are only very
marginally faster than Transformers and consume
an approximately similar parameter footprint. The
token mixing operation is also a function of the
sequence length L and is therefore bound to simi-
lar quadratic-bottleneck efficiency issues faced in
Transformer models (Tay et al., 2020b). On top
of all that, we find that MLP-Mixers take a sig-
nificant hit in quality when compared to vanilla
Transformer models.

Fundamentally, the role of interleaving self-
attention and MLPs in Transformers can be inter-



preted as locally-conditioned' (sample-dependent)
mixing and then followed by refining these rep-
resentations point-wise. For this reason, there is
also evidence that the mixing should happen before
refinement (Press et al., 2019) and that persistent
(globally-shared) memory, i.e., shared MLPs for all
data points is important (Sukhbaatar et al., 2019).
To this end, Mixers behave at the intersection of
self-attention and MLPs layers, i.e., they are per-
sistent (globally-shared) and yet they allow a full
receptive field. Hence, they can be powerful if used
correctly.

In this paper, we propose that there is no solid
reason to drop the self-attention module altogether.
Hence, we investigate leveraging lightweight to-
ken mixing operations to improve Transformers.
To this end, we propose REMIXER, a new archi-
tecture for language understanding that marries
the advantages of Transformers and Mixers. In
REMIXER, the self-attention acts as a locally condi-
tioned Mixer and the Remixing block remixes this
in a globally-shared and persistent fashion. The
outcome is a Transformer-like architecture with
interleaved global and local mixing operations at
every single layer while maintaining a balance of
persistent and non-persistent memory. This is also
in similar spirit to the neural global workspace
model (Goyal et al., 2021) in which the remixing
operation can be interpreted as trying to achieve
coherence amongst specialists.

Given the role of the remixing operation, we fur-
ther increase the expressiveness of the REMIXER
architecture by introducing compositional opera-
tors (e.g., multiplicative, subtractive) to model the
relationships between mixed and unmixed represen-
tations - an inductive bias that is lacking in standard
Transformers and has been shown to be beneficial
for NLU (Chen et al., 2016; Wang and Jiang, 2016).
We refer to this as ‘compositional remixing ‘. As we
later show in our experiments, we believe that this
inductive bias improves the ability of the model to
compositionally reason and therefore can be ben-
eficial for NLU and/or language inference tasks,
along with improving its (compositional) general-
ization capability.

We conduct an extensive set of experiments
across 8 SuperGLUE (Wang et al., 2019a) tasks,
five entailment tasks (e.g., MultiNLI (Williams
et al., 2017), Adversarial NLI (Nie et al., 2019),

"Here, locally conditioned refers to the fact that they de-

pend on the current data point. We distinguish from local
windows with respect to the sequence length.

Conjugate NLI (Saha et al., 2020), Abductive NLI
(Bhagavatula et al., 2019) and QNLI (Rajpurkar
et al., 2016)) and a challenging compositional gen-
eralization challenge (Kim and Linzen, 2020). Our
experimental results show that Remixers not only
substantially outperform a strong TS5 baseline but
also achieves state-of-the-art on the compositional
generalization challenge.

2 Remixer Model

This section introduces the Remixer model. Figure
1 illustrates the proposed model architecture. The
overall backbone of the model remains similar to
a standard Transformer. Instead of position-wise
MLPs, we use the proposed Remixer blocks instead.
We keep the self-attention modules unchanged in
the REMIXER model.

2.1 Remixer Block

In the first step, we apply a gated linear unit with
GeLU activations (Hendrycks and Gimpel, 2016).
Given X, € REXmodel | the input to this layer ¢ for
input length L, this is written as follows:

X;=04,(XeW1ys) © X, Way

where Wy o, Wy € Rmodet Xdmodet are learnable
parameters. The GLU unit here is analogous to the
first MLP layer” in the Remixer model. Note that
this is GLU-based MLP projection is also used in
the 75.1.1 baselines (Shazeer, 2020; Raffel et al.,
2019). The core novelty of our approach lies in the
following steps.

2.1.1 Remixing of Representations

The next step takes X’ and remixes the represen-
tations via a form of global persistent memory. In
order to do so, we then apply a multiplication of
X' with o (H).

Xso=o0s(Hp) X,

where Hy € RY*L is a learnable parameter and
is globally and persistently shared across all input
samples. o is an activation function. It is clear that
a multiplication of H will allow the input sequence
to have a global receptive field since this equation is
partially reminiscent of the self-attention operation,
albeit Hy is learned and shared across all examples

The standard parameter costs of the MLP in vanilla Trans-
formers is 2 X Dp0det Drrn. Here we balance parameter
cost by reducing the size of Wy and W> by % This is the
same strategy adopted in T5.1.1 variants.



Mixer-Transformer
Block

Transformer Block

Figure 1: Illustration of a Remixer block in compar-
ison to a standard Transformer block. We propose a
Remixer block that learns to remix using a persistent
global memory. We then use compositional remixing
to learn expressive representations.

instead of being learned via input-dependent dot-
product attention. Here, the remix operation uses
0s = Softmax as it’s activation function, which
simulates a normalized form of mixing and allows
us to keep the transform bounded. Notably, this
remixing operation, being persistent and globally
shared across all examples and can be interpreted
as a form of persistent memory (Sukhbaatar et al.,
2019; Geva et al., 2020).

Global Workspace Perspective In (Goyal et al.,
2021) the authors proposed the notion of a global
workspace where specialists (positions in this con-
text) coordinate with one another. In contrast
to pairwise relationships in dot product attention
which may not achieve global coordination, an
interpretation here is that H acts as a global
workspace since it is persistent. Specialists (tokens)
can write and read from H in order to coordinate
and influence other tokens. Hence, Mixers are a
form of global workspace.

2.1.2 Compositional Relationships between
Mixed and Unmixed Representations

Intuitively, X contains the sequences of X that
have been re-aligned (or ‘mixed’) by H. At this
point, we apply compositional operators to capture
fine-grained information between the unmixed?
and mixed sequences. This can be written as:

Xep=a(Xse ® Xp) + (1 — a)(X; — Xsp)
where X is the construction of taking Xg ® X’
and adding it with X’ — X. In the token mixing

3For clarity, we refer to each input that arrives at this layer

as unmixed (before mixing) even if they have been mixed in
subsequent layers.

operation, very vector in position 7 in X, would
correspond to Z§:0 hijx}, a sum of all vectors in
X' weighted by matrix H. The intuition is here
is that H would align globally relevant tokens to
X' and the composition operator would model the
similarity (or difference) between these unmixed
and mixed representations. An alternative interpre-
tation is to allow global information to influence
each position in X’. The term « refers to a vector
or scalar value € [0, 1] to control the weight be-
tween multiplicative and subtractive composition.
« may be parameterized (via gating or conditioning
on X’) or may be set as a hyperparameter.

Multiplicative Composition Multiplicative rela-
tionships form the bedrock of modern gating mech-
anisms (Dauphin et al., 2017; Cho et al., 2014) and
are extremely powerful in the field of deep learning.
The first term in constructing X¢ ¢ corresponds to
a Hadamard product between pre-mixed and post-
mixed representations and is in similar fashion to
gating. This can be either be interpreted as model-
ing the multiplicative relationship (similarity) be-
tween unmixed and mixed representations and/or
influencing/conditioning the original unmixed se-
quence with sequence-wise information. This is in
similar spirit to how (Liu et al., 2021) motivates
the spatial gating unit in the gMLP model.

Subtractive Composition In standard Trans-
formers, there is no subtractive (e.g., a — b) inter-
actions between aligned or mixed sequences, an in-
ductive bias which may be important for NLI/NLU
models (Chen et al., 2016) since the subtraction
operator is known to be able to model negation
(Zhu et al., 2014). Notably, the negation opera-
tion is also asymmetrical, which makes it uniquely
distinct in Transformer models. This is unlike
regular dot products, which are fully symmetrical
f(a,b) = f(b,a). It is worth to note that asym-
metrical f(a,b) # f(b, a) operations further helps
to model a sense of direction since there is a clear
direction of unmixed and mixed relationships.

Output Finally, the output of the Remixer block
is computed as:

Yy = Xc Wi+ X,

where W3, € RmoderXdmodel gre trainable param-
eters. In short, this equation describes a linear
transform across X ¢ followed by a residual con-
nection with X.



Remixer Stack The entire Remixer architecture
is stacked blocks of Self-Attention followed by
Remixer blocks that replace the original MLP lay-
ers.

X} = ¢¥(MHSA((Xy))
Y, = 1 (RemixerBlock(X}))

where 1)(.) are submodule wrapper operations (i.e.,
layer norm + residual connections) and MHSA
is a standard multi-headed self-attention block
(Vaswani et al., 2017).

Parameter Complexity The Remixer block
takes up slightly more parameters compared to
standard Transformer blocks. Concretely, there
is an addition of a L? parameters to each layer. We
explore options to compensate for this parameter
increase. In particular, we found that sacrificing
some decoder layers to balance the increase cost of
H to be useful in practice. In experiments, we refer
to this as the scaled base model that matches the
parameters of the TS5 base model. Given ¢ and £p
layers in the standard T5 model where (g = (D,
we adopt ¢}, = (g + %D and 0/, = %D. This ef-
fectively drops a quarter of the decoder layers to
compensate for the increase in parameters due to
H. See compute metrics in experimental setup for
more details.

3 Experiments

This section describes our experiments. To ascer-
tain the effectiveness of Remixers, we conduct ex-
periments on 8§ NLU tasks in the SuperGLUE suite,
5 entailment tasks and a challenging compositional
generalization task.

3.1 Experimental Setup

This section describes our experimental setup.
Most of our experiments follow the seq2seq
paradigm (Sutskever et al., 2014) and uses the TS
architecture (Raffel et al., 2019). This is largely
because the seq2seq paradigm is fundamentally su-
perior given its ability to subsume encoder-only
tasks and decoder-heavy tasks (generation, transla-
tion) within the same model architecture.

3.1.1 Pre-training Setup

We follow the setup of (Raffel et al., 2019) and pre-
train all our models from scratch for 524 K steps
with the Cleaned Colossal CommonlyCrawl Cor-
pus (C4;Raffel et al. (2019)) using a batch size of

128 and an input sequence length of 512. We use
the span corruption objective with a span size of 3
and 15% corruption rate. The pretraining task opti-
mizes the seq2seq loss and is trained with teacher
forcing. We pretrain our models on 16 TPU-V3
chips.

3.1.2 Baselines and Implementation Details

Baselines For all experiments, we compare our
model with a very competitive state-of-the-art TS
model (Raffel et al., 2019). We use the T5.1.1
version which no longer shares input and output
embeddings, and uses GeLU activations with gated
linear units (Dauphin et al., 2017; Shazeer, 2020).
We also compare with a MLP-Mixer model adapted
for language tasks. Since there is no prior work that
adapts MLP-Mixer for encoder-decoder setups, we
compare with two variants - using the MLP-Mixer
encoder only and/or adapt the MLP-Mixer model
to a seq2seq setup. In the decoder, we simply adapt
the token mixing to a fixed window size w. All
models that we evaluate have been pretrained in
the same setup as the REMIXER model. Whenever
applicable, we also directly compare with a BERT
(Devlin et al., 2018) baseline from prior work. The
compute metrics (FLOPS, speed and parameter
count) of the baselines are reported below in Ta-
ble 1. The FLOPs is the number of floating point
operations for a single forward pass of the model.
We denote the scaled version of REMIXER gse as
REMIXER S Bgse-

Implementation Details All models use the
same 32K sentencepiece (Kudo and Richardson,
2018) vocabulary. We use the default sentence-
piece from (Raffel et al., 2019). Our code is imple-
mented in Mesh Tensorflow* (Shazeer et al., 2018)
and train all models with the Adafactor optimizer.
We apply a dropout of 0.1 during finetuning on all
MLP layers. We also experimenting with applying
dropout on H amongst {0.0,0.1,0.2} and find that
dropping out values from H on some downstream
tasks. Models are trained with bfloat16 precision.

3.2 Natural Language Understanding

We conduct experiments on the SuperGLUE bench-
mark (Wang et al., 2019a) where we finetune our
model on all SuperGLUE tasks in a co-training
setup. SuperGLUE comprises of 8 tasks includ-
ing BoolQ (Clark et al., 2019), CommitmentBank
(De Marneff et al., 2019), CoPA (Roemmele et al.,

*https://github.com/tensorflow/mesh
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Table 1: Compute Metrics for different models in our
experiments.

Model Params FLOPS Steps/s
T5.1.154sc 248M 3.4 x 1013 9
Mixerggse 212M 1.2 x 10%3 11
Remixergpgse | 224M 1.3 x 1013 8
Remixerpqse | 324M 2.1 x 10'3 6

2011), MultiRC (Khashabi et al., 2018), ReCoRD
(Zhang et al., 2018), RTE (Dagan et al., 2005), WiC
(Pilehvar and os’e Camacho-Collados, 2018) and
WSC (Levesque et al., 2012). This is similar to
(Narang et al., 2021; Raffel et al., 2019). Likewise,
we do the same for all T5 baselines that we run.

Hyperparameters and Setup We finetune our
models for 200K steps with a batch size of 128 and
a constant learning rate of 10~ using the Adafac-
tor optimizer. We use a dropout of 0.1. Similar
to (Raffel et al., 2019), we also compare both T5
and Remixer in the setup where we co-trained on
a downstream mixture of GLUE, SuperGLUE and
SQuAD tasks along with the C4 span corruption
task. We pretrain and co-train for 1M steps in this
setup. We label this co-train variant as MT in our
experiments which stands for multi-task pretrain-
ing.

3.2.1 Results on SuperGLUE

The results of Remixer on SuperGLUE are gener-
ally very positive. Without multi-task pretraining,
the Remixerp,s. outperforms the T5.1.15,5. by
+1.5% absolute points on the SuperGLUE average.
It also outperforms T5 on 7 out of 8 SuperGLUE
tasks. With multi-task pretraining (denoted MT),
Remixerggse, v outperforms T5.1.1ggse, m7 by
+3.1% absolute percentage points. Similarly, it
also outperforms TS on 7 out of 8 tasks considered.
It is also noteworthy that performance gains on cer-
tain tasks such as WSC are almost an increment
of +6% and +4% for CB task. Finally, we note
that the performance of Mixers> on this task is only
slightly better than the CBoW model.

3.3 Entailment Tasks

Entailment, or natural language inference, is a core
NLU task that aims to predict of two sentences
entail or contradict each other. We use five well-

SWe verified that our Mixers are correctly implemented,

as they achieve reasonable negative log perplexity during pre-
training.

established entailment tasks, namely MultiNLI
(Williams et al., 2017), Adversarial NLI (Nie et al.,
2019) and Conjugate NLI (Saha et al., 2020), Ab-
ductive NLI (Bhagavatula et al., 2019) and Ques-
tion Answering NLI (QNLI) (Rajpurkar et al.,
2016; Wang et al., 2019b). For each dataset we
finetune all models for 100K steps with a learning
rate of 1073 using 16 TPU-v3 chips.

3.3.1 Experimental results on Entailment

Table 3 reports results on entailment. On all five
datasets, we observe that Remixer (both sizes)
outperforms the T5.1.1 model. Notably, the
Remixergp,se model (=2220M) parameters outper-
forms a BERT large model (335M parameters).
The Remixerp,s. model substantially outperforms
T5. This shows that Remixer is a powerful induc-
tive bias for entailment tasks. We note that Mixers
generally are incapable of performing this task to a
reasonable level because they lack the pseudo cross-
attention inductive bias in the encoder. Hence, the
tokens across premise and hypothesis sentences are
often blindly mixed.

3.4 Compositional Generalization Challenge
(Semantic Parsing)

We conduct experiments on compositional gener-
alization challenge (Kim and Linzen, 2020). Com-
positional generalization (or systematic generaliza-
tion (Bahdanau et al., 2018)) is the task of gener-
alizing to unseen combinations of seen objects in
training. The challenge is framed as a semantic
parsing task in which the task is to generate a se-
mantic representation given natural language. We
refer interested readers to (Kim and Linzen, 2020)
for examples and details. Here, all models evalu-
ated are sequence-to-sequence models. We finetune
our pre-trained models on this task for 50K steps
with a constant learning rate of 10~3 and batch size
of 128. Models are evaluated on exact match (EM).

3.4.1 Experimental Results on Compositional
Generalization

Table 4 report results on the compositional gener-
alization challenge. We show that the proposed
Remixer achieves state-of-the-art performance on
this dataset. Remixers outperform TS5p,s. by
+2.3% relative percentage points and even out-
performs T574.gc Which has more than double
the parameters of Remixer. The Mixerg,. model
does decently but is outperformed by the T'5 g4 se
model. We failed to produce decent results with



Table 2: Results on SuperGLUE dev set for base models. BERT results reported from SuperGLUE paper. Remixer
outperforms state-of-the-art TS5 model consistently across all setups. On average, there is a +2.0% to +4.1%
relative performance gain across apples to apples comparisons/setups.

Model BQ CB CP  MultiRC ReC RTE WiC WSC | Avg
CBoW 624 714/496 63  203/03 14.4/13.8 542 553 615 | 477
BERT 1.4rge 7777 94.6/93.7 69  70.5/2477 70.6/69.8 758 749 683 | 72.2
BERT+747ge 80.1 96.4/95.0 78  70.5/2477 70.6/69.8 823 749 683 | 74.6
Mixer gy 67.9 65.7/66.1 59 56.6/9.7 53.8/52.4 545 564 644 | 56.8
Mixer gpeDec 62.2 79.9/804 56 53.3/0.3 52.7/48.77 49.1 50.0 644 | 549
T5Base 77.8 92.4/929 75 72.2/304 73.7/72.8 758 697 827 | 74.8
T5.1.1Bgse 793 92.4/929 72 74.2/32.8 749/739 798 702 81.7 | 754
T5.1.1Base, MT 82.8 89.2/929 65 78.6/44.2 779/77.1 84.1 683 798 | 76.2
Remixergpgse 80.2 98.7/98.2 65 76.0/359 75.6/74.8 81.6 69.1 827 | 76.0
Remixerpgge 80.5 96.4/98.1 68 74.4/327 77.8/770 812 723 84.6 | 769
Remixerggse, v | 81.4  94.3/96.4 77  77.5/42.6 78.1/77.2 852 694 885 | 79.3
Rel. Gainpgse +1.5% +4.3/5.6% -59% +0% +3.9/42% +18% +3%  +3.5% | +2.0%
Rel. Gainysr -12%  +5.7/3.7%  +19%  -1.4/3.8% +0% +13% +1.6% +11% | +4.1%

Table 3: Experimental results on entailment (natural language inference). For ConjNLI and ANLI, we do not train

on MNLI/SNLI. We observe a +0.9% to +2.7% improvement across NLI tasks.

Model MNLI AdvNLI ConjNLI AbNLI QNLI
BERT Bgse 84.6/84.8 - 58.1 - 88.4
BERT 1.47ge 86.6/ - 57.27/49.0/43.5 - - 92.3
T5.1.1Bgse 86.1/86.0 59.5/48.3/48.0 67.4 67.8 91.6
Mixerpgse 59.2/58.2 459/43.5/43.6 62.6 51.1 59.3
Remixerspgse | 86.6/86.9 60.3/48.4/48.8 67.4 66.8 92.3
Remixerpyse | 87.4/87.2 60.7/49.5/48.2 68.5 69.6 92.4
Relative Gain | +1.5%/1.4%  +2.0%/+2.5%/+0.4% +1.6% +2.7% +0.9%

Table 4: Results on Compositional Generalization
Challenge Benchmark. Remixer base outperforms both
TS5 base and TS5 large on generalization performance.

Model Params Gen. EM
Results from (Kim and Linzen, 2020)

LSTM 11M 32.0
BiLSTM 10M 16.0
Transformer 9.5M 35.0
Mixer gne, Base 212M 76.5
MixerEncDec,Base 212M N/A
T5.1.14se 248M 77.4
T5.1.1 Large 738M 77.8
Remixerpggge 302M 79.2 (+2.3%)

the Mixer gncpec model.

4 Analysis

In this section, we provide some analysis such as
ablations and visualisations. We also discuss some
limitations with our understanding of the model.

4.1 Ablation

Table 5 reports the results of ablation studies in
which we demonstrate the effect of some of our
design choices. In ablation (1), we skip the compu-
tation of compositional remixing equation X . We
show that performance when doing that is lowered.
We also tried another ablation (2), that learns a gat-
ing vector o(G(x)) to parameterize «. Intuitively,
this gate controls whether the model decides to use
the compositional remixing module. Our findings
show that (1) compositional remixing is helpful
and (2) a simple formulation works best and gating
worsen performance.

Table 5: Ablation experiments on SuperGLUE dataset.

Ablation Avg
Remixerpggse 76.9
(1) - w/o comp. remixing 74.8
(2) w gating between X, and X | 75.6
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Figure 2: Visualization of o,(Q,K7 ), top row, and ¢, (Hy), bottom row, at £ = 1,9,18 of a REMIXER model
finetuned on MNLI. To simplify the visualization, we show the mean of all self-attention heads.

4.2 What does H learn?

To investigate what H, the global persistent mem-
ory used to remix representations, actually learns
in practice, we provide a visualization of H trained
on the MNLI task in Figure 2. We compare this
global memory to the input-conditioned QKT
found in the multi-headed self-attention module.
We see that self-attention begins local in the first
layer, and grows to be more distant and specific in
the last layer. Likewise, REMIXER memory begins
local and grows to global in the length dimension
(however consistently avoiding self-relationships).
We also observe that distribution of H does not
vary greatly between pretraining and finetuning,
or between different finetuning tasks. However,
we do observe some differences with the degree
of remixing that the model decides to do between
tasks. E.g., for a model finetuned on MNLI, there
are three layers where H is near-zero, versus only
one layer for the same model finetuned on COGS
(Kim and Linzen, 2020).

4.3 Limitations

The proposed architecture takes a step forward to-
wards integrating persistent memory modules that
have global receptive fields (e.g., Mixers) with
Transformer architectures. There are still many
open questions regarding the adoption of H as a
global remixing matrix. There are natural ques-
tions of whether we are able to scale to a large
number of tasks or languages by keeping a single
H across all tasks/languages. While we observe

that (1) H remains static regardless of the input
and that it is correct and (2) it differs distinctly from
self-attention, not much can be interpreted from H.
We are also puzzled by why H remains similar ir-
regardless of the nature of the task. We believe that
further and deeper understanding and investigation
of this type of architecture is warranted.

5 Related Work

This section describes the background and related
work for this paper. We briefly describe attention
and Transformers, followed by works that question
the need for self-attention in Transformers. We
then move on to discuss recent trends in All-MLP
architectures. Finally, we touch on some works that
explain the importance of MLPs in Transformers.

5.1 Attention is All you Need

Transformer (Vaswani et al., 2017) architectures
are the dominant choice for sequence processing.
A myriad of variants have been proposed over the
years (So et al., 2019; Dehghani et al., 2018; Fe-
dus et al., 2021; Lan et al., 2019). We refer in-
terested readers to a comprehensive survey and
empirical evaluation of many of these models at
(Narang et al., 2021). A key defining characteristic
of Transformers is the self-attention mechanism
that learns locally conditioned alignment weights
via dot product attention. Owing to the quadratic
complexity nature of self-attention, many variants
have been proposed to tackle this problem (Choro-
manski et al., 2020; Wang et al., 2020). See (Tay



et al., 2020b) for a detailed review of these archi-
tectures.

5.2 Do we need attention?

The true utility of self-attention has been ques-
tioned numerous times across the literature. (Ra-
ganato et al., 2020) proposed fixed encoder atten-
tion and shows that one can attain reasonable or
better performance on machine translation. (Tay
et al., 2020a) proposed the notion of random syn-
thetic attention matrices and show competitive per-
formance on machine translation. (You et al., 2020)
proposed random Gaussian attention which also
sets attention matrices to be random.

5.3 You don’t need Attention.

A recent trend shows that one may not need atten-
tion after all! The key idea behind MLP-Mixers
(Tolstikhin et al., 2021) is to imbue the MLP lay-
ers with a token mixing operation. In practice,
this is simply done by transposing the length (L)
dimension and d,,,,4¢; dimension before applying
the MLPs. Essentially, the model is a learned pro-
jection across the length dimension. By applying
a linear projection across L, dimensions across
each token in the sequence are effectively ‘mixed’
and therefore are sequence-aware / obtain a global
receptive field. There have been other types of
mixers that have been proposed, including FNet
(Lee-Thorp et al., 2021) which performs fourier
transform based mixing and/or gMLP (Liu et al.,
2021) which proposes a spatial gating mechanism
for mixing. In parallel, (Wu et al., 2019) proposed
lightweight and dynamic convolutions that outper-
form Transformers on a range of sequence gen-
eration tasks and (Tay et al., 2021) demonstrated
pretrained convolutions may be competitive to pre-
trained Transformers.

5.4 The role of MLPs in Transformers

At least two thirds of a Transformer’s parameters
are in the MLPs. This can be significantly more
in sparse models (Fedus et al., 2021). We look at
works that study the influence and importance of
MLPs in Transformers. (Sukhbaatar et al., 2019)
proposed the notion of persistent memory vectors
and argues that MLPs in Transformers act as a form
of persistent memory that is globally shared. They
then go on to propose All-Attention networks that
fold the MLP layers into the self-attention module.
(Geva et al., 2020) showed that MLPs in Trans-
formers are key-value memories and react to dif-

ferent types of knowledge. (Goyal et al., 2021)
proposed a neural shared workspace and suggests
that alignment learned via pairwise interactions
cannot achieve global coordination.

5.5 Natural Language Inference and
Understanding

The task of NLI (natural language inference) (Mac-
Cartney and Manning, 2008) is to determine if two
sentences entail or contradict each other. Before
the advent of large pretrained Transformer models
(Devlin et al., 2018; Raffel et al., 2019), researchers
and practitioners have spent tremendous effort de-
signing custom inductive biases (Chen et al., 2016;
Wang and Jiang, 2016; Tay et al., 2017) for a myr-
iad of natural language understanding tasks. Today
the domain of NLU can be broadly used to refer
to question answering reading comprehension or
language inference tasks. Models that performed
well on these problems also relied quite a lot on the
inductive bias of composition operators between
aligned sequences, e.g., the ESIM model (Chen
et al., 2016) explicitly models contradiction and
agreement using [a,a’,a ® a',a — a'] where o
is the newly re-aligned sequence. The Compare-
Aggregate model (Wang and Jiang, 2016) similarly
adopts this formulation. We note that this inductive
bias is specifically missing in modern Transformer
architectures.

6 Conclusion

In this paper, we first showed that MLP-Mixers
perform poorly on language tasks, achieving only
roughly similar performance to the neural bag-of-
words baseline in SuperGLUE. We highlight the
limitations of the Mixer model and show that there
might be a tremendous amount of effort required
to make Mixers work in an All-MLP style for lan-
guage (i.e., such as adding tiny attention (Liu et al.,
2021)). To this end, we postulate that Mixers are
best employed as a form of persistent global mem-
ory that has a full receptive field. To this end, we
propose Remixers, a Mixer-Transformer architec-
ture that marries the benefit of self-attention and
Mixers. We conduct extensive experiments over
8 SuperGLUE tasks, 5 natural language inference
tasks and a challenging compositional generaliza-
tion tasks. Our experimental results show that
Remixers consistently outperform strong TS5 base-
line models.
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