
REMIXERS: A Mixer-Transformer Architecture with Compositional
Operators for Natural Language Understanding

Anonymous ACL submission

Abstract
Recent work such as MLP-Mixers (Tolstikhin001
et al., 2021) have demonstrated the promise002
of All-MLP architectures. While All-MLP ar-003
chitectures have demonstrated reasonable per-004
formance in computer vision and garnered re-005
cent interest, we argue that making them ef-006
fective in NLP applications is still an uphill007
battle. Hence, there may be no solid rea-008
son to drop the self-attention modules alto-009
gether. In this paper, we propose a new010
Mixer-Transformer architecture, showing that011
Transformers and Mixer models can be quite012
complementary indeed. Fundamentally, we013
show that Mixer models are capable of act-014
ing as persistent global memory (in a simi-015
lar vein to standard MLPs) while being im-016
bued with global receptive fields at the same017
time. Hence, interleaving sample-dependent018
and input-local self-attention with persistent019
Mixer modules can be an effective strategy.020
Additionally, we propose compositional remix-021
ing, a new way of baking compositional op-022
erators (multiplicative and subtractive compo-023
sition) within the mixing process to improve024
the expressiveness of the model. This allows025
us to effectively model relationships between026
unmixed and mixed representations - an induc-027
tive bias that we postulate is powerful for NLU028
applications. Via extensive experiments on 14029
challenging NLU datasets (e.g., SuperGLUE,030
entailment and compositional generalization),031
we show that the proposed architecture consis-032
tently outperforms a strong T5 baseline (Raf-033
fel et al., 2019). We believe this work paves034
the way for more effective synergies between035
the two families of models.036

1 Introduction037

While Transformers (Vaswani et al., 2017) remain038

as the dominant choice for sequence processing,039

there has been recent surging interest in All-MLP040

architectures (Liu et al., 2021; Tolstikhin et al.,041

2021; Lee-Thorp et al., 2021; Touvron et al., 2021).042

The key idea in these approaches is to imbue the043

MLP layers with global receptive fields and is often 044

referred to as token mixing - a simple but relatively 045

powerful paradigm. Intuitively, the canonical self- 046

attention module can also be subsumed under the 047

family of mixers - although the crucial difference 048

here is that the mixing is input-local and the mixing 049

process is guided by the pairwise dot product of 050

tokens instead. 051

While MLP-Mixers have had moderate success 052

in computer vision tasks, its competitiveness in 053

the domain of language, to this date, is at best 054

just speculative. In recent work, Mixers have only 055

been applied in limited setups (BERT style, en- 056

coder only) (Liu et al., 2021) and it is still uncer- 057

tain if they would work in autoregressive setups 058

(GPT-like (Brown et al., 2020)) or encoder-decoder 059

setups (Raffel et al., 2019). Mixer architectures 060

also lack the pseudo cross-attention inductive bias 061

in the encoder, which is crucial for modeling re- 062

lationship between sentence pairs. This can be 063

mitigated by conveniently adding a tiny bit of self- 064

attention (Liu et al., 2021), but clearly breaks the 065

paradigm and promise of All-MLP architectures. 066

Our early experiments show that MLP-Mixer ar- 067

chitectures only marginally outperform simple neu- 068

ral bag-of-words models (CBoW) on SuperGLUE 069

(Wang et al., 2019a). 070

The benefits of adopting All-MLP paradigms in 071

language is also unclear. In our early experiments, 072

we find that All-MLP architectures are only very 073

marginally faster than Transformers and consume 074

an approximately similar parameter footprint. The 075

token mixing operation is also a function of the 076

sequence length L and is therefore bound to simi- 077

lar quadratic-bottleneck efficiency issues faced in 078

Transformer models (Tay et al., 2020b). On top 079

of all that, we find that MLP-Mixers take a sig- 080

nificant hit in quality when compared to vanilla 081

Transformer models. 082

Fundamentally, the role of interleaving self- 083

attention and MLPs in Transformers can be inter- 084

1



preted as locally-conditioned1 (sample-dependent)085

mixing and then followed by refining these rep-086

resentations point-wise. For this reason, there is087

also evidence that the mixing should happen before088

refinement (Press et al., 2019) and that persistent089

(globally-shared) memory, i.e., shared MLPs for all090

data points is important (Sukhbaatar et al., 2019).091

To this end, Mixers behave at the intersection of092

self-attention and MLPs layers, i.e., they are per-093

sistent (globally-shared) and yet they allow a full094

receptive field. Hence, they can be powerful if used095

correctly.096

In this paper, we propose that there is no solid097

reason to drop the self-attention module altogether.098

Hence, we investigate leveraging lightweight to-099

ken mixing operations to improve Transformers.100

To this end, we propose REMIXER, a new archi-101

tecture for language understanding that marries102

the advantages of Transformers and Mixers. In103

REMIXER, the self-attention acts as a locally condi-104

tioned Mixer and the Remixing block remixes this105

in a globally-shared and persistent fashion. The106

outcome is a Transformer-like architecture with107

interleaved global and local mixing operations at108

every single layer while maintaining a balance of109

persistent and non-persistent memory. This is also110

in similar spirit to the neural global workspace111

model (Goyal et al., 2021) in which the remixing112

operation can be interpreted as trying to achieve113

coherence amongst specialists.114

Given the role of the remixing operation, we fur-115

ther increase the expressiveness of the REMIXER116

architecture by introducing compositional opera-117

tors (e.g., multiplicative, subtractive) to model the118

relationships between mixed and unmixed represen-119

tations - an inductive bias that is lacking in standard120

Transformers and has been shown to be beneficial121

for NLU (Chen et al., 2016; Wang and Jiang, 2016).122

We refer to this as ‘compositional remixing‘. As we123

later show in our experiments, we believe that this124

inductive bias improves the ability of the model to125

compositionally reason and therefore can be ben-126

eficial for NLU and/or language inference tasks,127

along with improving its (compositional) general-128

ization capability.129

We conduct an extensive set of experiments130

across 8 SuperGLUE (Wang et al., 2019a) tasks,131

five entailment tasks (e.g., MultiNLI (Williams132

et al., 2017), Adversarial NLI (Nie et al., 2019),133

1Here, locally conditioned refers to the fact that they de-
pend on the current data point. We distinguish from local
windows with respect to the sequence length.

Conjugate NLI (Saha et al., 2020), Abductive NLI 134

(Bhagavatula et al., 2019) and QNLI (Rajpurkar 135

et al., 2016)) and a challenging compositional gen- 136

eralization challenge (Kim and Linzen, 2020). Our 137

experimental results show that Remixers not only 138

substantially outperform a strong T5 baseline but 139

also achieves state-of-the-art on the compositional 140

generalization challenge. 141

2 Remixer Model 142

This section introduces the Remixer model. Figure 143

1 illustrates the proposed model architecture. The 144

overall backbone of the model remains similar to 145

a standard Transformer. Instead of position-wise 146

MLPs, we use the proposed Remixer blocks instead. 147

We keep the self-attention modules unchanged in 148

the REMIXER model. 149

2.1 Remixer Block 150

In the first step, we apply a gated linear unit with 151

GeLU activations (Hendrycks and Gimpel, 2016). 152

Given X` ∈ RL×dmodel , the input to this layer ` for 153

input length L, this is written as follows: 154

X ′` = σg(X`W1,`)�X`W2,` 155

where W1,`,W2,` ∈ Rdmodel×dmodel are learnable 156

parameters. The GLU unit here is analogous to the 157

first MLP layer2 in the Remixer model. Note that 158

this is GLU-based MLP projection is also used in 159

the T5.1.1 baselines (Shazeer, 2020; Raffel et al., 160

2019). The core novelty of our approach lies in the 161

following steps. 162

2.1.1 Remixing of Representations 163

The next step takes X ′ and remixes the represen- 164

tations via a form of global persistent memory. In 165

order to do so, we then apply a multiplication of 166

X ′ with σ(H). 167

XS,` = σs(H`)X
′
` 168

where H` ∈ RL×L is a learnable parameter and 169

is globally and persistently shared across all input 170

samples. σs is an activation function. It is clear that 171

a multiplication of H will allow the input sequence 172

to have a global receptive field since this equation is 173

partially reminiscent of the self-attention operation, 174

albeit H` is learned and shared across all examples 175

2The standard parameter costs of the MLP in vanilla Trans-
formers is 2 × DmodelDFFN . Here we balance parameter
cost by reducing the size of W1 and W2 by 1

3
. This is the

same strategy adopted in T5.1.1 variants.

2



Figure 1: Illustration of a Remixer block in compar-
ison to a standard Transformer block. We propose a
Remixer block that learns to remix using a persistent
global memory. We then use compositional remixing
to learn expressive representations.

instead of being learned via input-dependent dot-176

product attention. Here, the remix operation uses177

σs = Softmax as it’s activation function, which178

simulates a normalized form of mixing and allows179

us to keep the transform bounded. Notably, this180

remixing operation, being persistent and globally181

shared across all examples and can be interpreted182

as a form of persistent memory (Sukhbaatar et al.,183

2019; Geva et al., 2020).184

Global Workspace Perspective In (Goyal et al.,185

2021) the authors proposed the notion of a global186

workspace where specialists (positions in this con-187

text) coordinate with one another. In contrast188

to pairwise relationships in dot product attention189

which may not achieve global coordination, an190

interpretation here is that H acts as a global191

workspace since it is persistent. Specialists (tokens)192

can write and read from H in order to coordinate193

and influence other tokens. Hence, Mixers are a194

form of global workspace.195

2.1.2 Compositional Relationships between196

Mixed and Unmixed Representations197

Intuitively, Xs contains the sequences of X that198

have been re-aligned (or ‘mixed’) by H. At this199

point, we apply compositional operators to capture200

fine-grained information between the unmixed3201

and mixed sequences. This can be written as:202

XC,` = α(XS,` �X ′`) + (1− α)(X ′` −XS,`)203

where XC is the construction of taking XS �X ′204

and adding it with X ′ −Xs. In the token mixing205

3For clarity, we refer to each input that arrives at this layer
as unmixed (before mixing) even if they have been mixed in
subsequent layers.

operation, very vector in position i in XS,` would 206

correspond to
∑`

j=0 hijx
′
`, a sum of all vectors in 207

X ′ weighted by matrix H . The intuition is here 208

is that H would align globally relevant tokens to 209

X ′ and the composition operator would model the 210

similarity (or difference) between these unmixed 211

and mixed representations. An alternative interpre- 212

tation is to allow global information to influence 213

each position in X ′. The term α refers to a vector 214

or scalar value ∈ [0, 1] to control the weight be- 215

tween multiplicative and subtractive composition. 216

αmay be parameterized (via gating or conditioning 217

on X ′) or may be set as a hyperparameter. 218

Multiplicative Composition Multiplicative rela- 219

tionships form the bedrock of modern gating mech- 220

anisms (Dauphin et al., 2017; Cho et al., 2014) and 221

are extremely powerful in the field of deep learning. 222

The first term in constructing XC,` corresponds to 223

a Hadamard product between pre-mixed and post- 224

mixed representations and is in similar fashion to 225

gating. This can be either be interpreted as model- 226

ing the multiplicative relationship (similarity) be- 227

tween unmixed and mixed representations and/or 228

influencing/conditioning the original unmixed se- 229

quence with sequence-wise information. This is in 230

similar spirit to how (Liu et al., 2021) motivates 231

the spatial gating unit in the gMLP model. 232

Subtractive Composition In standard Trans- 233

formers, there is no subtractive (e.g., a− b) inter- 234

actions between aligned or mixed sequences, an in- 235

ductive bias which may be important for NLI/NLU 236

models (Chen et al., 2016) since the subtraction 237

operator is known to be able to model negation 238

(Zhu et al., 2014). Notably, the negation opera- 239

tion is also asymmetrical, which makes it uniquely 240

distinct in Transformer models. This is unlike 241

regular dot products, which are fully symmetrical 242

f(a, b) = f(b, a). It is worth to note that asym- 243

metrical f(a, b) 6= f(b, a) operations further helps 244

to model a sense of direction since there is a clear 245

direction of unmixed and mixed relationships. 246

Output Finally, the output of the Remixer block 247

is computed as: 248

Y` = XC,`W3,` +X ′` 249

where W3,` ∈ Rdmodel×dmodel are trainable param- 250

eters. In short, this equation describes a linear 251

transform across XC,` followed by a residual con- 252

nection with X ′`. 253

3



Remixer Stack The entire Remixer architecture254

is stacked blocks of Self-Attention followed by255

Remixer blocks that replace the original MLP lay-256

ers.257

X ′` = ψ(MHSA`(X`))258

Y` = ψ(RemixerBlock`(X
′
`))259

where ψ(.) are submodule wrapper operations (i.e.,260

layer norm + residual connections) and MHSA261

is a standard multi-headed self-attention block262

(Vaswani et al., 2017).263

Parameter Complexity The Remixer block264

takes up slightly more parameters compared to265

standard Transformer blocks. Concretely, there266

is an addition of a L2 parameters to each layer. We267

explore options to compensate for this parameter268

increase. In particular, we found that sacrificing269

some decoder layers to balance the increase cost of270

H to be useful in practice. In experiments, we refer271

to this as the scaled base model that matches the272

parameters of the T5 base model. Given `E and `D273

layers in the standard T5 model where `E = `D,274

we adopt `′E = `E + `D
2 and `′D = `D

4 . This ef-275

fectively drops a quarter of the decoder layers to276

compensate for the increase in parameters due to277

H . See compute metrics in experimental setup for278

more details.279

3 Experiments280

This section describes our experiments. To ascer-281

tain the effectiveness of Remixers, we conduct ex-282

periments on 8 NLU tasks in the SuperGLUE suite,283

5 entailment tasks and a challenging compositional284

generalization task.285

3.1 Experimental Setup286

This section describes our experimental setup.287

Most of our experiments follow the seq2seq288

paradigm (Sutskever et al., 2014) and uses the T5289

architecture (Raffel et al., 2019). This is largely290

because the seq2seq paradigm is fundamentally su-291

perior given its ability to subsume encoder-only292

tasks and decoder-heavy tasks (generation, transla-293

tion) within the same model architecture.294

3.1.1 Pre-training Setup295

We follow the setup of (Raffel et al., 2019) and pre-296

train all our models from scratch for 524K steps297

with the Cleaned Colossal CommonlyCrawl Cor-298

pus (C4;Raffel et al. (2019)) using a batch size of299

128 and an input sequence length of 512. We use 300

the span corruption objective with a span size of 3 301

and 15% corruption rate. The pretraining task opti- 302

mizes the seq2seq loss and is trained with teacher 303

forcing. We pretrain our models on 16 TPU-V3 304

chips. 305

3.1.2 Baselines and Implementation Details 306

Baselines For all experiments, we compare our 307

model with a very competitive state-of-the-art T5 308

model (Raffel et al., 2019). We use the T5.1.1 309

version which no longer shares input and output 310

embeddings, and uses GeLU activations with gated 311

linear units (Dauphin et al., 2017; Shazeer, 2020). 312

We also compare with a MLP-Mixer model adapted 313

for language tasks. Since there is no prior work that 314

adapts MLP-Mixer for encoder-decoder setups, we 315

compare with two variants - using the MLP-Mixer 316

encoder only and/or adapt the MLP-Mixer model 317

to a seq2seq setup. In the decoder, we simply adapt 318

the token mixing to a fixed window size w. All 319

models that we evaluate have been pretrained in 320

the same setup as the REMIXER model. Whenever 321

applicable, we also directly compare with a BERT 322

(Devlin et al., 2018) baseline from prior work. The 323

compute metrics (FLOPS, speed and parameter 324

count) of the baselines are reported below in Ta- 325

ble 1. The FLOPs is the number of floating point 326

operations for a single forward pass of the model. 327

We denote the scaled version of REMIXERBase as 328

REMIXERSBase. 329

Implementation Details All models use the 330

same 32K sentencepiece (Kudo and Richardson, 331

2018) vocabulary. We use the default sentence- 332

piece from (Raffel et al., 2019). Our code is imple- 333

mented in Mesh Tensorflow4 (Shazeer et al., 2018) 334

and train all models with the Adafactor optimizer. 335

We apply a dropout of 0.1 during finetuning on all 336

MLP layers. We also experimenting with applying 337

dropout on H amongst {0.0, 0.1, 0.2} and find that 338

dropping out values from H on some downstream 339

tasks. Models are trained with bfloat16 precision. 340

3.2 Natural Language Understanding 341

We conduct experiments on the SuperGLUE bench- 342

mark (Wang et al., 2019a) where we finetune our 343

model on all SuperGLUE tasks in a co-training 344

setup. SuperGLUE comprises of 8 tasks includ- 345

ing BoolQ (Clark et al., 2019), CommitmentBank 346

(De Marneff et al., 2019), CoPA (Roemmele et al., 347

4https://github.com/tensorflow/mesh

4

https://github.com/tensorflow/mesh


Table 1: Compute Metrics for different models in our
experiments.

Model Params FLOPS Steps/s
T5.1.1Base 248M 3.4× 1013 9
MixerBase 212M 1.2× 1013 11
RemixerSBase 224M 1.3× 1013 8
RemixerBase 324M 2.1× 1013 6

2011), MultiRC (Khashabi et al., 2018), ReCoRD348

(Zhang et al., 2018), RTE (Dagan et al., 2005), WiC349

(Pilehvar and os’e Camacho-Collados, 2018) and350

WSC (Levesque et al., 2012). This is similar to351

(Narang et al., 2021; Raffel et al., 2019). Likewise,352

we do the same for all T5 baselines that we run.353

Hyperparameters and Setup We finetune our354

models for 200K steps with a batch size of 128 and355

a constant learning rate of 10−3 using the Adafac-356

tor optimizer. We use a dropout of 0.1. Similar357

to (Raffel et al., 2019), we also compare both T5358

and Remixer in the setup where we co-trained on359

a downstream mixture of GLUE, SuperGLUE and360

SQuAD tasks along with the C4 span corruption361

task. We pretrain and co-train for 1M steps in this362

setup. We label this co-train variant as MT in our363

experiments which stands for multi-task pretrain-364

ing.365

3.2.1 Results on SuperGLUE366

The results of Remixer on SuperGLUE are gener-367

ally very positive. Without multi-task pretraining,368

the RemixerBase outperforms the T5.1.1Base by369

+1.5% absolute points on the SuperGLUE average.370

It also outperforms T5 on 7 out of 8 SuperGLUE371

tasks. With multi-task pretraining (denoted MT ),372

RemixerBase,MT outperforms T5.1.1Base,MT by373

+3.1% absolute percentage points. Similarly, it374

also outperforms T5 on 7 out of 8 tasks considered.375

It is also noteworthy that performance gains on cer-376

tain tasks such as WSC are almost an increment377

of +6% and +4% for CB task. Finally, we note378

that the performance of Mixers5 on this task is only379

slightly better than the CBoW model.380

3.3 Entailment Tasks381

Entailment, or natural language inference, is a core382

NLU task that aims to predict of two sentences383

entail or contradict each other. We use five well-384

5We verified that our Mixers are correctly implemented,
as they achieve reasonable negative log perplexity during pre-
training.

established entailment tasks, namely MultiNLI 385

(Williams et al., 2017), Adversarial NLI (Nie et al., 386

2019) and Conjugate NLI (Saha et al., 2020), Ab- 387

ductive NLI (Bhagavatula et al., 2019) and Ques- 388

tion Answering NLI (QNLI) (Rajpurkar et al., 389

2016; Wang et al., 2019b). For each dataset we 390

finetune all models for 100K steps with a learning 391

rate of 10−3 using 16 TPU-v3 chips. 392

3.3.1 Experimental results on Entailment 393

Table 3 reports results on entailment. On all five 394

datasets, we observe that Remixer (both sizes) 395

outperforms the T5.1.1 model. Notably, the 396

RemixerSBase model (≈220M) parameters outper- 397

forms a BERT large model (335M parameters). 398

The RemixerBase model substantially outperforms 399

T5. This shows that Remixer is a powerful induc- 400

tive bias for entailment tasks. We note that Mixers 401

generally are incapable of performing this task to a 402

reasonable level because they lack the pseudo cross- 403

attention inductive bias in the encoder. Hence, the 404

tokens across premise and hypothesis sentences are 405

often blindly mixed. 406

3.4 Compositional Generalization Challenge 407

(Semantic Parsing) 408

We conduct experiments on compositional gener- 409

alization challenge (Kim and Linzen, 2020). Com- 410

positional generalization (or systematic generaliza- 411

tion (Bahdanau et al., 2018)) is the task of gener- 412

alizing to unseen combinations of seen objects in 413

training. The challenge is framed as a semantic 414

parsing task in which the task is to generate a se- 415

mantic representation given natural language. We 416

refer interested readers to (Kim and Linzen, 2020) 417

for examples and details. Here, all models evalu- 418

ated are sequence-to-sequence models. We finetune 419

our pre-trained models on this task for 50K steps 420

with a constant learning rate of 10−3 and batch size 421

of 128. Models are evaluated on exact match (EM). 422

3.4.1 Experimental Results on Compositional 423

Generalization 424

Table 4 report results on the compositional gener- 425

alization challenge. We show that the proposed 426

Remixer achieves state-of-the-art performance on 427

this dataset. Remixers outperform T5Base by 428

+2.3% relative percentage points and even out- 429

performs T5Large which has more than double 430

the parameters of Remixer. The MixerEnc model 431

does decently but is outperformed by the T5Base 432

model. We failed to produce decent results with 433

5



Table 2: Results on SuperGLUE dev set for base models. BERT results reported from SuperGLUE paper. Remixer
outperforms state-of-the-art T5 model consistently across all setups. On average, there is a +2.0% to +4.1%
relative performance gain across apples to apples comparisons/setups.

Model BQ CB CP MultiRC ReC RTE WiC WSC Avg
CBoW 62.4 71.4/49.6 63 20.3/ 0.3 14.4/13.8 54.2 55.3 61.5 47.7
BERTLarge 77.7 94.6/93.7 69 70.5/24.7 70.6/69.8 75.8 74.9 68.3 72.2
BERT+Large 80.1 96.4/95.0 78 70.5/24.7 70.6/69.8 82.3 74.9 68.3 74.6
MixerEnc 67.9 65.7/66.1 59 56.6/9.7 53.8/52.4 54.5 56.4 64.4 56.8
MixerEncDec 62.2 79.9/80.4 56 53.3/0.3 52.7/48.7 49.1 50.0 64.4 54.9
T5Base 77.8 92.4/92.9 75 72.2/30.4 73.7/72.8 75.8 69.7 82.7 74.8
T5.1.1Base 79.3 92.4/92.9 72 74.2/32.8 74.9/73.9 79.8 70.2 81.7 75.4
T5.1.1Base,MT 82.8 89.2/92.9 65 78.6/44.2 77.9/77.1 84.1 68.3 79.8 76.2
RemixerSBase 80.2 98.7/98.2 65 76.0/35.9 75.6/74.8 81.6 69.1 82.7 76.0
RemixerBase 80.5 96.4/98.1 68 74.4/32.7 77.8/77.0 81.2 72.3 84.6 76.9
RemixerBase,MT 81.4 94.3/96.4 77 77.5/42.6 78.1/77.2 85.2 69.4 88.5 79.3
Rel. GainBase +1.5% +4.3/5.6% -5.9% ±0% +3.9/4.2% +1.8% +3% +3.5% +2.0%

Rel. GainMT -1.2% +5.7/3.7% +19% -1.4/3.8% ±0% +1.3% +1.6% +11% +4.1%

Table 3: Experimental results on entailment (natural language inference). For ConjNLI and ANLI, we do not train
on MNLI/SNLI. We observe a +0.9% to +2.7% improvement across NLI tasks.

Model MNLI AdvNLI ConjNLI AbNLI QNLI
BERTBase 84.6 / 84.8 - 58.1 - 88.4
BERTLarge 86.6 / - 57.2 / 49.0 / 43.5 - - 92.3
T5.1.1Base 86.1 / 86.0 59.5 / 48.3 / 48.0 67.4 67.8 91.6
MixerBase 59.2 / 58.2 45.9 / 43.5 / 43.6 62.6 51.1 59.3
RemixerSBase 86.6 / 86.9 60.3 / 48.4 / 48.8 67.4 66.8 92.3
RemixerBase 87.4 / 87.2 60.7 / 49.5 / 48.2 68.5 69.6 92.4
Relative Gain +1.5%/1.4% +2.0%/+2.5%/+0.4% +1.6% +2.7% +0.9%

Table 4: Results on Compositional Generalization
Challenge Benchmark. Remixer base outperforms both
T5 base and T5 large on generalization performance.

Model Params Gen. EM
Results from (Kim and Linzen, 2020)

LSTM 11M 32.0
BiLSTM 10M 16.0
Transformer 9.5M 35.0
MixerEnc,Base 212M 76.5
MixerEncDec,Base 212M N/A
T5.1.1Base 248M 77.4
T5.1.1Large 738M 77.8
RemixerBase 302M 79.2 (+2.3%)

the MixerEncDec model.434

4 Analysis435

In this section, we provide some analysis such as436

ablations and visualisations. We also discuss some437

limitations with our understanding of the model.438

4.1 Ablation 439

Table 5 reports the results of ablation studies in 440

which we demonstrate the effect of some of our 441

design choices. In ablation (1), we skip the compu- 442

tation of compositional remixing equation XC . We 443

show that performance when doing that is lowered. 444

We also tried another ablation (2), that learns a gat- 445

ing vector σ(G(x)) to parameterize α. Intuitively, 446

this gate controls whether the model decides to use 447

the compositional remixing module. Our findings 448

show that (1) compositional remixing is helpful 449

and (2) a simple formulation works best and gating 450

worsen performance. 451

Table 5: Ablation experiments on SuperGLUE dataset.

Ablation Avg
RemixerBase 76.9
(1) - w/o comp. remixing 74.8
(2) w gating between Xc and Xs 75.6

6



Figure 2: Visualization of σs(Q`K
T
` ), top row, and σs(H`), bottom row, at ` = 1, 9, 18 of a REMIXER model

finetuned on MNLI. To simplify the visualization, we show the mean of all self-attention heads.

4.2 What does H learn?452

To investigate what H , the global persistent mem-453

ory used to remix representations, actually learns454

in practice, we provide a visualization of H trained455

on the MNLI task in Figure 2. We compare this456

global memory to the input-conditioned QKT457

found in the multi-headed self-attention module.458

We see that self-attention begins local in the first459

layer, and grows to be more distant and specific in460

the last layer. Likewise, REMIXER memory begins461

local and grows to global in the length dimension462

(however consistently avoiding self-relationships).463

We also observe that distribution of H does not464

vary greatly between pretraining and finetuning,465

or between different finetuning tasks. However,466

we do observe some differences with the degree467

of remixing that the model decides to do between468

tasks. E.g., for a model finetuned on MNLI, there469

are three layers where H is near-zero, versus only470

one layer for the same model finetuned on COGS471

(Kim and Linzen, 2020).472

4.3 Limitations473

The proposed architecture takes a step forward to-474

wards integrating persistent memory modules that475

have global receptive fields (e.g., Mixers) with476

Transformer architectures. There are still many477

open questions regarding the adoption of H as a478

global remixing matrix. There are natural ques-479

tions of whether we are able to scale to a large480

number of tasks or languages by keeping a single481

H across all tasks/languages. While we observe482

that (1) H remains static regardless of the input 483

and that it is correct and (2) it differs distinctly from 484

self-attention, not much can be interpreted from H . 485

We are also puzzled by why H remains similar ir- 486

regardless of the nature of the task. We believe that 487

further and deeper understanding and investigation 488

of this type of architecture is warranted. 489

5 Related Work 490

This section describes the background and related 491

work for this paper. We briefly describe attention 492

and Transformers, followed by works that question 493

the need for self-attention in Transformers. We 494

then move on to discuss recent trends in All-MLP 495

architectures. Finally, we touch on some works that 496

explain the importance of MLPs in Transformers. 497

5.1 Attention is All you Need 498

Transformer (Vaswani et al., 2017) architectures 499

are the dominant choice for sequence processing. 500

A myriad of variants have been proposed over the 501

years (So et al., 2019; Dehghani et al., 2018; Fe- 502

dus et al., 2021; Lan et al., 2019). We refer in- 503

terested readers to a comprehensive survey and 504

empirical evaluation of many of these models at 505

(Narang et al., 2021). A key defining characteristic 506

of Transformers is the self-attention mechanism 507

that learns locally conditioned alignment weights 508

via dot product attention. Owing to the quadratic 509

complexity nature of self-attention, many variants 510

have been proposed to tackle this problem (Choro- 511

manski et al., 2020; Wang et al., 2020). See (Tay 512

7



et al., 2020b) for a detailed review of these archi-513

tectures.514

5.2 Do we need attention?515

The true utility of self-attention has been ques-516

tioned numerous times across the literature. (Ra-517

ganato et al., 2020) proposed fixed encoder atten-518

tion and shows that one can attain reasonable or519

better performance on machine translation. (Tay520

et al., 2020a) proposed the notion of random syn-521

thetic attention matrices and show competitive per-522

formance on machine translation. (You et al., 2020)523

proposed random Gaussian attention which also524

sets attention matrices to be random.525

5.3 You don’t need Attention.526

A recent trend shows that one may not need atten-527

tion after all! The key idea behind MLP-Mixers528

(Tolstikhin et al., 2021) is to imbue the MLP lay-529

ers with a token mixing operation. In practice,530

this is simply done by transposing the length (L)531

dimension and dmodel dimension before applying532

the MLPs. Essentially, the model is a learned pro-533

jection across the length dimension. By applying534

a linear projection across L, dimensions across535

each token in the sequence are effectively ‘mixed’536

and therefore are sequence-aware / obtain a global537

receptive field. There have been other types of538

mixers that have been proposed, including FNet539

(Lee-Thorp et al., 2021) which performs fourier540

transform based mixing and/or gMLP (Liu et al.,541

2021) which proposes a spatial gating mechanism542

for mixing. In parallel, (Wu et al., 2019) proposed543

lightweight and dynamic convolutions that outper-544

form Transformers on a range of sequence gen-545

eration tasks and (Tay et al., 2021) demonstrated546

pretrained convolutions may be competitive to pre-547

trained Transformers.548

5.4 The role of MLPs in Transformers549

At least two thirds of a Transformer’s parameters550

are in the MLPs. This can be significantly more551

in sparse models (Fedus et al., 2021). We look at552

works that study the influence and importance of553

MLPs in Transformers. (Sukhbaatar et al., 2019)554

proposed the notion of persistent memory vectors555

and argues that MLPs in Transformers act as a form556

of persistent memory that is globally shared. They557

then go on to propose All-Attention networks that558

fold the MLP layers into the self-attention module.559

(Geva et al., 2020) showed that MLPs in Trans-560

formers are key-value memories and react to dif-561

ferent types of knowledge. (Goyal et al., 2021) 562

proposed a neural shared workspace and suggests 563

that alignment learned via pairwise interactions 564

cannot achieve global coordination. 565

5.5 Natural Language Inference and 566

Understanding 567

The task of NLI (natural language inference) (Mac- 568

Cartney and Manning, 2008) is to determine if two 569

sentences entail or contradict each other. Before 570

the advent of large pretrained Transformer models 571

(Devlin et al., 2018; Raffel et al., 2019), researchers 572

and practitioners have spent tremendous effort de- 573

signing custom inductive biases (Chen et al., 2016; 574

Wang and Jiang, 2016; Tay et al., 2017) for a myr- 575

iad of natural language understanding tasks. Today 576

the domain of NLU can be broadly used to refer 577

to question answering reading comprehension or 578

language inference tasks. Models that performed 579

well on these problems also relied quite a lot on the 580

inductive bias of composition operators between 581

aligned sequences, e.g., the ESIM model (Chen 582

et al., 2016) explicitly models contradiction and 583

agreement using [a, a′, a � a′, a − a′] where a′ 584

is the newly re-aligned sequence. The Compare- 585

Aggregate model (Wang and Jiang, 2016) similarly 586

adopts this formulation. We note that this inductive 587

bias is specifically missing in modern Transformer 588

architectures. 589

6 Conclusion 590

In this paper, we first showed that MLP-Mixers 591

perform poorly on language tasks, achieving only 592

roughly similar performance to the neural bag-of- 593

words baseline in SuperGLUE. We highlight the 594

limitations of the Mixer model and show that there 595

might be a tremendous amount of effort required 596

to make Mixers work in an All-MLP style for lan- 597

guage (i.e., such as adding tiny attention (Liu et al., 598

2021)). To this end, we postulate that Mixers are 599

best employed as a form of persistent global mem- 600

ory that has a full receptive field. To this end, we 601

propose Remixers, a Mixer-Transformer architec- 602

ture that marries the benefit of self-attention and 603

Mixers. We conduct extensive experiments over 604

8 SuperGLUE tasks, 5 natural language inference 605

tasks and a challenging compositional generaliza- 606

tion tasks. Our experimental results show that 607

Remixers consistently outperform strong T5 base- 608

line models. 609

8



References610

Dzmitry Bahdanau, Shikhar Murty, Michael611
Noukhovitch, Thien Huu Nguyen, Harm de Vries,612
and Aaron Courville. 2018. Systematic generaliza-613
tion: what is required and can it be learned? arXiv614
preprint arXiv:1811.12889.615

Chandra Bhagavatula, Ronan Le Bras, Chaitanya616
Malaviya, Keisuke Sakaguchi, Ari Holtzman, Han-617
nah Rashkin, Doug Downey, Scott Wen-tau Yih, and618
Yejin Choi. 2019. Abductive commonsense reason-619
ing. arXiv preprint arXiv:1908.05739.620

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie621
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind622
Neelakantan, Pranav Shyam, Girish Sastry, Amanda623
Askell, et al. 2020. Language models are few-shot624
learners. arXiv preprint arXiv:2005.14165.625

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei,626
Hui Jiang, and Diana Inkpen. 2016. Enhanced627
lstm for natural language inference. arXiv preprint628
arXiv:1609.06038.629

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-630
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger631
Schwenk, and Yoshua Bengio. 2014. Learning632
phrase representations using rnn encoder-decoder633
for statistical machine translation. arXiv preprint634
arXiv:1406.1078.635

Krzysztof Choromanski, Valerii Likhosherstov, David636
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-637
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,638
Lukasz Kaiser, et al. 2020. Rethinking attention639
with performers. arXiv preprint arXiv:2009.14794.640

Christopher Clark, Kenton Lee, Ming-Wei Chang,641
Tom Kwiatkowski, Michael Collins, and Kristina642
Toutanova. 2019. Boolq: Exploring the surprising643
difficulty of natural yes/no questions. In NAACL.644

Ido Dagan, Oren Glickman, and Bernardo Magnini.645
2005. The pascal recognising textual entailment646
challenge. In Machine Learning Challenges Work-647
shop, pages 177–190. Springer.648

Yann N. Dauphin, Angela Fan, Michael Auli, and649
David Grangier. 2017. Language modeling with650
gated convolutional networks.651

Marie-Catherine De Marneff, Mandy Simons, and Ju-652
dith Tonhauser. 2019. The commitmentbank: Inves-653
tigating projection in naturally occurring discourse.654
proceedings of Sinn und Bedeutung 23.655

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,656
Jakob Uszkoreit, and Łukasz Kaiser. 2018. Univer-657
sal transformers. arXiv preprint arXiv:1807.03819.658

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and659
Kristina Toutanova. 2018. Bert: Pre-training of deep660
bidirectional transformers for language understand-661
ing. arXiv preprint arXiv:1810.04805.662

William Fedus, Barret Zoph, and Noam Shazeer. 2021. 663
Switch transformers: Scaling to trillion parameter 664
models with simple and efficient sparsity. arXiv 665
preprint arXiv:2101.03961. 666

Mor Geva, Roei Schuster, Jonathan Berant, and Omer 667
Levy. 2020. Transformer feed-forward layers are 668
key-value memories. 669

Anirudh Goyal, Aniket Didolkar, Alex Lamb, Kar- 670
tikeya Badola, Nan Rosemary Ke, Nasim Rahaman, 671
Jonathan Binas, Charles Blundell, Michael Mozer, 672
and Yoshua Bengio. 2021. Coordination among 673
neural modules through a shared global workspace. 674
arXiv preprint arXiv:2103.01197. 675

Dan Hendrycks and Kevin Gimpel. 2016. Gaus- 676
sian error linear units (gelus). arXiv preprint 677
arXiv:1606.08415. 678

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, 679
Shyam Upadhyay, and Dan Roth. 2018. Looking 680
beyond the surface:a challenge set for reading com- 681
prehension over multiple sentences. In Proceedings 682
of North American Chapter of the Association for 683
Computational Linguistics (NAACL). 684

Najoung Kim and Tal Linzen. 2020. Cogs: A compo- 685
sitional generalization challenge based on semantic 686
interpretation. arXiv preprint arXiv:2010.05465. 687

Taku Kudo and John Richardson. 2018. Sentencepiece: 688
A simple and language independent subword tok- 689
enizer and detokenizer for neural text processing. 690
arXiv preprint arXiv:1808.06226. 691

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, 692
Kevin Gimpel, Piyush Sharma, and Radu Soricut. 693
2019. Albert: A lite bert for self-supervised learn- 694
ing of language representations. arXiv preprint 695
arXiv:1909.11942. 696

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and 697
Santiago Ontanon. 2021. Fnet: Mixing to- 698
kens with fourier transforms. arXiv preprint 699
arXiv:2105.03824. 700

Hector Levesque, Ernest Davis, and Leora Morgen- 701
stern. 2012. The winograd schema challenge. In 702
Thirteenth International Conference on the Princi- 703
ples of Knowledge Representation and Reasoning. 704

Hanxiao Liu, Zihang Dai, David R So, and Quoc V 705
Le. 2021. Pay attention to mlps. arXiv preprint 706
arXiv:2105.08050. 707

Bill MacCartney and Christopher D Manning. 2008. 708
Modeling semantic containment and exclusion in 709
natural language inference. In Proceedings of the 710
22nd International Conference on Computational 711
Linguistics (Coling 2008), pages 521–528. 712

Sharan Narang, Hyung Won Chung, Yi Tay, William 713
Fedus, Thibault Fevry, Michael Matena, Karishma 714
Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong 715

9

http://arxiv.org/abs/1612.08083
http://arxiv.org/abs/1612.08083
http://arxiv.org/abs/1612.08083
http://arxiv.org/abs/2012.14913
http://arxiv.org/abs/2012.14913
http://arxiv.org/abs/2012.14913


Lan, et al. 2021. Do transformer modifications trans-716
fer across implementations and applications? arXiv717
preprint arXiv:2102.11972.718

Yixin Nie, Adina Williams, Emily Dinan, Mohit719
Bansal, Jason Weston, and Douwe Kiela. 2019. Ad-720
versarial nli: A new benchmark for natural language721
understanding. arXiv preprint arXiv:1910.14599.722

Mohammad Taher Pilehvar and os’e Camacho-723
Collados. 2018. Wic: 10, 000 example pairs for724
evaluating context-sensitive representations. CoRR,725
abs/1808.09121.726

Ofir Press, Noah A Smith, and Omer Levy. 2019. Im-727
proving transformer models by reordering their sub-728
layers. arXiv preprint arXiv:1911.03864.729

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine730
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,731
Wei Li, and Peter J Liu. 2019. Exploring the limits732
of transfer learning with a unified text-to-text trans-733
former. arXiv preprint arXiv:1910.10683.734

Alessandro Raganato, Yves Scherrer, and Jörg Tiede-735
mann. 2020. Fixed encoder self-attention patterns736
in transformer-based machine translation. arXiv737
preprint arXiv:2002.10260.738

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and739
Percy Liang. 2016. Squad: 100,000+ questions740
for machine comprehension of text. arXiv preprint741
arXiv:1606.05250.742

Melissa Roemmele, Cosmin Adrian Bejan, and An-743
drew S Gordon. 2011. Choice of plausible alterna-744
tives: An evaluation of commonsense causal reason-745
ing. In 2011 AAAI Spring Symposium Series.746

Swarnadeep Saha, Yixin Nie, and Mohit Bansal. 2020.747
Conjnli: Natural language inference over conjunc-748
tive sentences. arXiv preprint arXiv:2010.10418.749

Noam Shazeer. 2020. Glu variants improve trans-750
former. arXiv preprint arXiv:2002.05202.751

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin752
Tran, Ashish Vaswani, Penporn Koanantakool, Peter753
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff754
Young, et al. 2018. Mesh-tensorflow: Deep learning755
for supercomputers. In Advances in Neural Informa-756
tion Processing Systems, pages 10414–10423.757

David R So, Chen Liang, and Quoc V Le.758
2019. The evolved transformer. arXiv preprint759
arXiv:1901.11117.760

Sainbayar Sukhbaatar, Edouard Grave, Guillaume761
Lample, Herve Jegou, and Armand Joulin. 2019.762
Augmenting self-attention with persistent memory.763
arXiv preprint arXiv:1907.01470.764

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.765
Sequence to sequence learning with neural networks.766
arXiv preprint arXiv:1409.3215.767

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, 768
Zhe Zhao, and Che Zheng. 2020a. Synthesizer: Re- 769
thinking self-attention in transformer models. arXiv 770
preprint arXiv:2005.00743. 771

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald 772
Metzler. 2020b. Efficient transformers: A survey. 773
arXiv preprint arXiv:2009.06732. 774

Yi Tay, Mostafa Dehghani, Jai Gupta, Dara Bahri, 775
Vamsi Aribandi, Zhen Qin, and Donald Met- 776
zler. 2021. Are pre-trained convolutions better 777
than pre-trained transformers? arXiv preprint 778
arXiv:2105.03322. 779

Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2017. 780
Compare, compress and propagate: Enhancing 781
neural architectures with alignment factorization 782
for natural language inference. arXiv preprint 783
arXiv:1801.00102. 784

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, 785
Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, 786
Jessica Yung, Daniel Keysers, Jakob Uszkoreit, 787
Mario Lucic, et al. 2021. Mlp-mixer: An 788
all-mlp architecture for vision. arXiv preprint 789
arXiv:2105.01601. 790

Hugo Touvron, Piotr Bojanowski, Mathilde Caron, 791
Matthieu Cord, Alaaeldin El-Nouby, Edouard Grave, 792
Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, 793
and Hervé Jégou. 2021. Resmlp: Feedforward net- 794
works for image classification with data-efficient 795
training. arXiv preprint arXiv:2105.03404. 796

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 797
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 798
Kaiser, and Illia Polosukhin. 2017. Attention is all 799
you need. In Advances in neural information pro- 800
cessing systems, pages 5998–6008. 801

Alex Wang, Yada Pruksachatkun, Nikita Nangia, 802
Amanpreet Singh, Julian Michael, Felix Hill, Omer 803
Levy, and Samuel R Bowman. 2019a. Super- 804
glue: A stickier benchmark for general-purpose 805
language understanding systems. arXiv preprint 806
arXiv:1905.00537. 807

Alex Wang, Amanpreet Singh, Julian Michael, Felix 808
Hill, Omer Levy, and Samuel R. Bowman. 2019b. 809
GLUE: A multi-task benchmark and analysis plat- 810
form for natural language understanding. In the Pro- 811
ceedings of ICLR. 812

Shuohang Wang and Jing Jiang. 2016. A compare- 813
aggregate model for matching text sequences. arXiv 814
preprint arXiv:1611.01747. 815

Sinong Wang, Belinda Li, Madian Khabsa, Han 816
Fang, and Hao Ma. 2020. Linformer: Self- 817
attention with linear complexity. arXiv preprint 818
arXiv:2006.04768. 819

Adina Williams, Nikita Nangia, and Samuel R Bow- 820
man. 2017. A broad-coverage challenge corpus for 821
sentence understanding through inference. arXiv 822
preprint arXiv:1704.05426. 823

10

http://arxiv.org/abs/1808.09121
http://arxiv.org/abs/1808.09121
http://arxiv.org/abs/1808.09121


Felix Wu, Angela Fan, Alexei Baevski, Yann N824
Dauphin, and Michael Auli. 2019. Pay less attention825
with lightweight and dynamic convolutions. arXiv826
preprint arXiv:1901.10430.827

Weiqiu You, Simeng Sun, and Mohit Iyyer. 2020.828
Hard-coded gaussian attention for neural machine829
translation. arXiv preprint arXiv:2005.00742.830

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng831
Gao, Kevin Duh, and Benjamin Van Durme. 2018.832
Record: Bridging the gap between human and ma-833
chine commonsense reading comprehension. arXiv834
preprint arXiv:1810.12885.835

Xiaodan Zhu, Hongyu Guo, Saif Mohammad, and Svet-836
lana Kiritchenko. 2014. An empirical study on the837
effect of negation words on sentiment. In Proceed-838
ings of the 52nd Annual Meeting of the Association839
for Computational Linguistics (Volume 1: Long Pa-840
pers), pages 304–313, Baltimore, Maryland. Associ-841
ation for Computational Linguistics.842

11

https://doi.org/10.3115/v1/P14-1029
https://doi.org/10.3115/v1/P14-1029
https://doi.org/10.3115/v1/P14-1029

