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ABSTRACT

Current evaluations of synthetic tabular data mainly focus on how well joint dis-
tributions are modeled, often overlooking the assessment of their effectiveness
in preserving realistic event sequences and coherent entity relationships across
columns. This paper proposes three evaluation metrics designed to assess the
preservation of logical relationships among columns in synthetic tabular data. We
validate these metrics by assessing the performance of both classical and state-of-
the-art generation methods on a real-world industrial dataset. Experimental results
reveal that existing methods often fail to rigorously maintain logical consistency
(e.g., hierarchical relationships in geography or organization) and dependencies
(e.g., temporal sequences or mathematical relationships), which are crucial for
preserving the fine-grained realism of real-world tabular data. Building on these
insights, this study also discusses possible pathways to better capture logical rela-
tionships while modeling the distribution of synthetic tabular data.

1 INTRODUCTION

Tabular data is challenging to synthesize due to its heterogeneity, where columns can contain dif-
ferent variable types, exhibiting diverse distributions and complex interdependencies (Wang et al.,
2024). These characteristics make it difficult to accurately model the joint distribution P (X,Y )
(Margeloiu et al., 2024) of tabular data, where X denotes the feature space and Y denotes the
target variable(s). To address these challenges, Xu et al. (2019) proposed GTGANs, a variant of
generative adversarial netowrk (GAN) that learns the joint distribution P (X,Y ) through a mini-
max game between a generator and a discriminator. While the generator produces synthetic data
xsyn = [x1, x2, . . . , xn] by conditioning on a latent vector (Zhao et al., 2021), it often fails to ex-
plicitly capture specific conditional dependencies, such as P (x1 | x2), because it does not directly
model the logical relationships between features. Building on the success of diffusion models in im-
age generation, recent work has adapted them for tabular data generation. For example, TabDDPM
(Kotelnikov et al., 2023) treats continuous and categorical features in tables separately, while Tab-
Syn (Zhang et al., 2023) embeds them as tokens together for diffusion processes. During training,
those methods approximate the data distribution P (X1, X2, . . . , Xn, Y ) by modeling the transition
between noisy data at each step. In the forward process, noise is added isotropically to each feature
according to q(xt|xt−1) = N (xt;

√
αtxt−1, βtI), where the identity matrix (I) ensures isotropic

noise addition (Lee et al., 2023). However, this isotropic noise assumption limits the model’s ability
to capture semantic dependencies among features. Unlike images, where adjacent pixels exhibit
strong spatial correlations that aid denoising (Nichol & Dhariwal, 2021), tabular data consists of
heterogeneous and non-linear feature relationships without a natural ordering (Ruan et al., 2024),
making it challenging for diffusion models to preserve logic dependencies. Recently, autoregres-
sive models, such as large language models (LLMs), have also been leveraged to approximate the
joint distribution between features and target values through sequential modeling(Fang et al., 2024).
These methods, such as GReaT (Borisov et al., 2022), transform tabular data into sequences of
tokens, enabling the autoregressive models to predict the conditional probability of the j-th token
given the preceding j − 1 tokens in the permuted sequence P (ti,j | Π(ti, k)1:j−1), where each se-
quence of tokens is represented as ti = [ti,1, ti,2, . . . , ti,m], and the sequence is randomly reordered
based on a permutation vector k = [k1, k2, . . . , km]. While LLMs capture column dependencies
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based on pretrained knowledge (Sui et al., 2024), they do not explicitly model the marginal distri-
bution P (ti,j), leading to biased sampling despite the introduction of feature permutations or data
variability.

To evaluate the fidelity of synthetic tabular data, numerous metrics have been proposed to assess
accuracy and diversity, including both low-order statistics (e.g., Density Estimation and Correlation
Score (Zhang et al., 2023), Average Coverage Scores (Zein & Urvoy, 2022)) and high-order statistics
(e.g., α-Precision and β-Recall (Alaa et al., 2022)). However, these metrics operate at a high level
and fail to evaluate whether synthetic data preserves logical relationships, such as hierarchical or
semantic dependencies between features. This highlights the need for a more fine-grained, context-
aware evaluation of multivariate dependencies. To address this, we propose three evaluation metrics:
Hierarchical Consistency Score (HCS), Multivariate Dependency Index (MDI), and Distributional
Similarity Index (DSI). To assess the effectiveness of these metrics in quantifying inter-column rela-
tionships, we select five representative tabular data generation methods from different categories for
evaluation. Their performance is measured using both existing and our proposed metrics on a real-
world dataset rich in logical consistency and dependency constraints. Experimental results validate
the effectiveness of our proposed metrics and reveal the limitations of existing approaches in pre-
serving logical relationships in synthetic tabular data. Additionally, we discuss potential pathways to
better capture logical constraints within joint distributions, paying the way for future advancements
in synthetic tabular data generation.

2 INTER-COLUMN RELATIONSHIPS EVALUATION METRICS

Logical relationships inherently capture both hierarchical consistency (e.g., city → country) and
multivariate dependencies (e.g., temporal or mathematical relationships), reflecting structured inter-
dependencies between columns. To evaluate hierarchical consistency, we define the Hierarchical
Consistency Score (HCS), which quantifies how well synthetic data preserves hierarchical relation-
ships across columns. This metric is defined as:

HCS =
1

M ×N

N∑
k=1

M∑
j=1

1 ((xi,j)i∈Gk
∈ Ck,j) , (1)

where M is the number of rows and N is the number of consistency groups, and xi,j denotes the
i-th attribute in the j-th row of the dataset. The set Gk refers to the k-th group of attributes (e.g.,
G1 = {1, 2, 3}), while Ck,j is a set of tuples, where each tuple represents a valid combination of
attribute values for the group Gk in the j-th row. The indicator function 1(·) returns 1 if the tuple
(xi,j)i∈Gk

belongs to Ck,j , and 0 otherwise. To evaluate multivariate dependencies, we introduce
the Multivariate Dependency Index (MDI), as follows:

MDI =
1

M ×N

N∑
g=1

M∑
j=1

1 (Dg,j) , Dg,j = F({xi,j | i ∈ Gg}, x1,j , x2,j . . . , xn,j). (2)

Where N is the number of dependency groups, M is the number of rows, and Dg,j is the Boolean
dependency condition for the g-th group Gg in the j-th row. For i ∈ Gg , xi,j must satisfy the de-
pendency function F with respect to other n attributes in Gg in j-th row. To capture multivariate
dependencies in non-linear relationships where explicit dependency rules are difficult to define, we
propose the Distributional Similarity Index (DSI), which compares the log-likelihoods of Gaus-
sian Mixture Models fitted to the each row in the synthetic dataset and the real dataset, as follows:

DSI =
1

K

K∑
i=1

1−

∣∣∣logL(X̂∗
syn,i)− logL(X̂∗

real)
∣∣∣∣∣∣logL(X̂∗

real)
∣∣∣

 , (3)

where K is the number of rows, logL(X̂∗
syn,i) and logL(X̂∗

real) are the log-likelihood of the GMM
for the i-th synthetic and real datasets separately. The GMM log-likelihood for a dataset X is
logL(X) =

∑n
j=1 log

(∑K
k=1 πkN (xj | µk,Σk)

)
, where πk is the mixing coefficient, and N (xj |

µk,Σk) is the probability density of the j-th data point under the k-th Gaussian component, with
mean µk and covariance Σk. DSI reflects fine-grained differences between synthetic and real data.
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Table 1: Results on inter-column logical relationship preservation. (Note: Higher values indicate
better performance. The best and second-best results are highlighted in bold and bold, respectively.)

Metrics Interpolation-based Latent Space Representation-based LLM-based
SMOTE CTGAN TabDDPM TabSyn GReaT

Density Estimation 98.02±0.02 90.38±0.03 33.11±0.02 96.38±0.04 89.58±0.02
Correlation Score 96.21±0.62 74.41±0.14 36.78±0.01 94.81±0.04 71.00±1.16

Average Coverage Scores 99.41±0.08 82.27±0.14 76.23±0.23 99.52±0.11 92.34±0.15
α-Precision Scores 93.54±0.01 88.90±0.14 0.00±0.00 98.48±0.10 82.18±0.15
β-Recall Scores 72.21±0.13 1.71±0.01 0.00±0.00 22.62±0.12 24.05±0.14

HCS 98.09±0.01 39.23±0.03 16.07±0.01 71.63±0.08 98.01±0.01
MDI 87.03±0.03 38.87±0.05 59.08±0.05 68.34±0.08 97.37±0.02
DSI 77.46±0.01 11.10±0.00 68.38±0.01 83.62±0.02 85.55±0.01

3 EXPERIMENTS AND DISCUSSION

We selected five representative synthetic tabular data generation methods for experiments. Origi-
nally introduced in early 2000s to address dataset imbalance (Chawla et al., 2002), the interpolation-
based method—SMOTE—continues to outperform many generative models (Margeloiu et al.,
2024). As such, we include it as a strong baseline, alongside the four state-of-the-art methods
from different categories: CTGAN (Xu et al., 2019), TabDDPM (Kotelnikov et al., 2023), TabSyn
(Zhang et al., 2023), and GReaT (Borisov et al., 2022). Each method generates around 140,000
samples from the DataCo dataset1 (see more about this dataset in Section A.1). To ensure robust-
ness, each evaluation was repeated ten times (see more experimental settings in Section A.2). We
reported the mean and standard deviation of these ten runs in Table 1. As shown in Table 1, SMOTE
and TabSyn achieve the best overall performance in terms of low-order statistical accuracies. With
the highest accuracy in α-precision, TabSyn excels in accurately modeling the joint distribution
among columns. Meanwhile, SMOTE significantly outperforms others in balancing data categories,
achieving the highest β-recall scores. However, generative model-based methods, such as CTGAN,
TabDDPM, and GReaT, struggle to accurately capture the distribution when synthesizing this com-
plex and large-scale dataset, resulting in low values for low-order statistical metrics. Regarding
inter-column relationship preservation, the results differ marginally. For data consistency, SMOTE
and GReaT achieve the highest HCS of 98.09% and 98.01%, respectively, outperforming all other
approaches. For data dependency, the MDI results indicate that GReaT effectively captures tempo-
ral and mathematical dependencies, achieving approximately 97.37% accuracy, considerably higher
than the second-best method—SMOTE. Additionally, GReaT outperforms others in terms of DSI,
however, it may generate unseen values for certain attributes, resulting in uncontrollable generation.
In comparison, latent space-based generative models (CTGAN, TabDDPM, and TabSyn) are more
reliable but struggle to effectively capture inter-column logical relationships in real-world tabular
data. See the details and examples of generated data by each method in Section A.3.

4 CONCLUSION AND RESEARCH DIRECTIONS

We introduce three metrics—HCS, MDI, and DSI—for evaluating inter-column logical relationship
in synthetic tabular data generation. Our experiments show that existing methods often fail to strictly
maintain hierarchical consistency and multivariate dependencies—essential characteristics of real-
world datasets. Our future work will focus on enhancing the preservation of inter-column logical
relationships in synthetic tabular data generation. For LLM-based methods, the column serializa-
tion format and order are crucial for the model’s ability to learn the joint distribution of logically
related features. Knowledge graphs (Dong & Wang, 2024) or Bayesian networks (Ling et al., 2024)
would be employed to reorder tokenization sequences or restructure the serialization of columns in
natural language, leveraging prior knowledge to guide the synthetic tabular data generation. For
latent space-based methods, LLM reasoning (Hegselmann et al., 2023; Dong & Wang, 2024) can
be utilized to analyze column names and descriptions, identifying semantic or logical relationships
without prior knowledge. Additionally, inspired by CTSyn (Lin et al., 2024), grouping data by log-

1https://data.mendeley.com/datasets/8gx2fvg2k6/3
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ical relationships and embedding them into a shared latent space could potentially capture inherent
structures, improving joint distribution modeling. Lastly, incorporating interpolation techniques like
SMOTE may help can help balance data classes (Yang et al., 2024), particularly in learning minority
logical relationships. These directions are worthy to explore for designing generative models that
effectively capture inter-column logical relationships in synthetic tabular data generation.
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A APPENDIX

A.1 DATASET

DataCo is a large real-world dataset that includes complex, high-dimensional features and a wide
variety of values for each feature. A summary of this complex dataset’s characteristics is presented
in Table 2. The dataset contains around 140,000 samples designed for model training, and each
method generate same number of samples for synthetic tabular data evaluation. Notably, certain
categorical columns contain over 3,000 unique values, reflecting the dataset’s complexity.

This dataset represents a series of events related to purchasing, production, sales, and commercial
distribution for an e-commerce company operating in global markets. This dataset is crucial and
representative for synthetic tabular data generation in because its high-dimensional features, diverse
inter-column relationships, and extensive unique values in categorical columns provide a realistic
and challenging benchmark for evaluating the ability of synthetic data models to capture complex
real-world patterns.

Table 2: Statistics of the Dataco dataset. “Numerical” represents the number of numerical columns,
and “Categorical” stands for the number of categorical columns.

Dataset Rows Numerical Categorical Train Validation Test
Dataco 172,766 26 15 138,213 17,277 17,277

A.1.1 HIERARCHICAL CONSISTENCY

For hierarchical consistency in the Dataco dataset, there are three sets of tuples, C1, C2, and C3,
which represent the sets of valid tuples for specific attribute groups in the dataset. Here, i represents
the attribute index (e.g., the i-th attribute in the dataset), and j represents the row index (e.g., the j-th
row in the dataset). The tuple ((xi,j)i∈G1) representing the geographical information of orders in
each row j includes the following features :

• x1,j (order city),
• x2,j (order state),
• x3,j (order country),
• x4,j (order region),
• x5,j (order market).

The tuple ((xi,j)i∈G2
) representing the product information in each row j includes the following

features :

• x6,j (category ID),
• x7,j (category name),
• x8,j (department ID),
• x9,j (department name),
• x10,j (product card ID),
• x11,j (product category ID),
• x12,j (product name).

The tuple ((xi,j)i∈G3
) representing the geographical information of customers in each row j

includes the following features :

• x13,j (customer city),
• x14,j (customer state),
• x15,j (customer country).

To ensure hierarchical consistency, we verify whether each tuple ((xi,j)i∈Gk
) belongs to its cor-

responding valid set of tuples Ck,j , where k ∈ N+ and j represents the row index (i.e., the j-th
row in the dataset). For example, the tuple ((xi,1)i∈G3

), where G3 = {13, 14, 15} represents the
combination of geographical information of customers, must belong to C3,1 in the first row. This
validation ensures that all attribute values are consistent with their hierarchical relationships.

6



Published as a Tiny Paper at ICLR 2025

A.1.2 TEMPORAL DEPENDENCY

Temporal dependencies are evident in the order information, where order dates and delivery times
are sequentially linked. Let G1 represent the temporal group, which includes x1 as the order date
and x2 as the delivery time. The Boolean dependency condition D1,j for the j-th row in G1 is
defined as:

D1,j : x1,j < x2,j ,
where x1,j (order date) must be earlier than x2,j (delivery time) to satisfy the temporal dependency.

A.1.3 MATHEMATICAL DEPENDENCY

Mathematical dependencies are presented in financial data. Let G2 represent the financial group,
which includes x1 as the products quantity, x2 as the products price, x3 as the discount rate, x4

as the discount value, x5 as the original price, and x6 as the sales price. The Boolean dependency
conditions D1,j , D2,j , and D3,j for the j-th row in G2 are defined as:

D1,j : x5,j = x1,j × x2,j ,

D2,j : x5j = x1,j × x2,j × x3,j ,
D3,j : x4,j = x7,j − x5,j ,

where the discount value should be equal to the product of the product price and the discount rate.
The sales price should be calculated as the original price minus the discount value. Additionally, the
original price should be determined by multiplying the product’s quantity by its unit price.

A.2 EXPERIMENTS SETTINGS

To ensure reproducibility and fairness, all experiments are conducted on an open-source industrial
dataset—DataCo. For SMOTE, synthetic data is sampled ten times to ensure robustness and account
for variability in the interpolation-based generation process. For other methods (CTGAN, TabD-
DPM, TabSyn, and GReaT), models are trained on 80% of the dataset, with 10% used for validation
and 10% for testing, following the default hyperparameter settings from their respective papers. The
trained models are then used to generate synthetic tabular data. Each method is evaluated ten times,
and the results are reported as the mean and standard deviation to account for variability.

To comprehensively evaluate the quality of synthetic data, each method is assessed using a set of
metrics designed to measure different aspects of data fidelity and utility. These metrics include:

• Hierarchical Consistency Score (HCS): Measures the preservation of hierarchical rela-
tionships in the data.

• Multivariate Dependency Index (MDI): Quantifies the preservation of multivariate de-
pendencies between features.

• Distributional Similarity Index (DSI): Evaluates the overall similarity between the syn-
thetic and real data distributions, where we embed both categorical and numerical features
into a shared continuous space.

Additionally, we also adopted existing statistical metrics for evaluation:

• Density Estimation: Measures how well the synthetic data matches the probability density
of the real data, with higher values indicating better alignment (Zhang et al., 2023).

• Correlation Score: Quantifies the preservation of pairwise correlations between features,
with higher scores reflecting better retention of feature relationships (Zhang et al., 2023).

• Average Coverage Score: Evaluates the extent to which the synthetic data covers the range
of values in the real data, with higher scores indicating better diversity (Zein & Urvoy,
2022).

• α-Precision Score: Evaluates the fidelity of synthetic data by determining whether each
synthetic example originates from the real-data distribution, providing a measure of how
well the synthetic data aligns with the true underlying data structure.(Alaa et al., 2022).

• β-Recall Score: Evaluates how well the synthetic data captures the real data distribution,
with higher values indicating better representation (Alaa et al., 2022).

As current experiments were conducted over a single dataset, our future work will validate these
three metrics (HCS, MDI, and DSI) on broader datasets to ensure their generalizability and robust-
ness across different domains.
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A.3 ADDITIONAL RESULTS ON LOGICAL RELATIONSHIPS PRESERVATION

To further examine the generated tabular data, we randomly select 10 rows from the generated
dataset produced by each method to illustrate how effectively they preserve logical relationships.
Specifically, we examine three types of relationships: mathematical dependencies, geographical
hierarchies, and temporal sequences.

Mathematical Dependencies For mathematical dependency, as shown in Table 3, it is evident
that CTGAN and TabDDPM produce numerous errors in maintaining these relationships, with none
of randomly selected samples preserve mathematic dependency. In contrast, TabSyn successfully
captures the mathematical relationships for all sampled rows. GReaT performs fairly good, preserv-
ing most of the mathematical relationships completely across the ten samples, followed closely by
SMOTE.

Geographical Hierarchies For geographical relationship preservation, as shown in Table 4, CT-
GAN and TabDDPM fail to maintain any correct consistency in the logical chains. TabSyn, however,
preserves the hierarchical consistency for some samples. GReaT and SMOTE achieve nearly 100%
accuracy in maintaining geographical consistency, though GReaT exhibits a small number of errors,
including generating incorrect names for order cities.

Temporal Relationships For temporal relationship(see Table 5), latent space-based methods (e.g.,
CTGAN, TabDDPM) preserve only about half of the correct temporal relationships, with results
appearing somewhat random. In contrast, GReaT and SMOTE achieve near-perfect performance in
preserving temporal relationships, although minor errors occur when the delivery and order dates
are very close.

These results demonstrate that GReaT and SMOTE outperform other methods in preserving logical
relationships, with GReaT showing slight inconsistencies in geographical and mathematical rela-
tionships. TabSyn performs moderately well in capturing temporal dependencies but struggles with
geographical and mathematical consistency. In contrast, CTGAN and TabDDPM exhibit significant
limitations across all types of logical relationships.
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Table 3: Mathmatical dependency preservation in synthetic tabular data

Tabular Data
Generation

Methods

Group 1(Financial Data)
PreservedAttribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6

Quantity Product Price Discount Rate Discount Values Original Price Sales Price

Original Tables
5 49.98 0.09 22.49 249.90 227.41 ✓
2 49.98 0.04 4.00 99.96 95.96 ✓
1 129.99 0.05 6.50 129.99 123.49 ✓

CTGAN

5 48.40 0.02 2.53 191.56 463.84 ✗

1 199.83 0.04 8.63 201.26 204.72 ✗

4 297.48 0.15 46.76 200.08 198.92 ✗

4 57.67 0.02 0.20 249.58 192.38 ✗

5 46.77 0.15 20.41 254.27 239.82 ✗

1 302.36 0.17 88.55 301.53 292.56 ✗

1 129.02 0.04 0.57 131.43 100.26 ✗

1 402.32 0.03 7.43 200.15 378.42 ✗

2 52.56 0.16 3.34 100.02 100.01 ✗

2 53.91 0.10 8.71 23.39 151.86 ✗

TabDDPM

1 1999.99 0 500 1999.99 1939.99 ✗

5 9.99 0 500 9.99 7.99 ✗

5 1999.99 0.25 500 1999.99 1939.99 ✗

5 1999.99 0 500 9.99 1939.99 ✗

1 9.99 0 500 1999.99 1939.99 ✗

1 9.99 0 500 1999.99 1939.99 ✗

1 9.99 0 0 9.99 1939.99 ✗

1 1999.99 0 500 1999.99 7.99 ✗

5 1999.99 0 500 9.99 7.99 ✗

1 9.99 0 500 9.99 7.99 ✗

TabSyn

1 299.98 0.01 3 299.98 299.96 ✗

1 129.99 0.06 7.2 129.99 123.66 ✗

1 199.99 0.04 8 199.99 191.97 ✓
1 251.37 0.04 10.72 299.95 254.67 ✗

4 99.99 0.03 10.82 399.96 387.98 ✓
3 50 0.05 7.46 179.96 139.50 ✗

5 99.99 0.13 70.68 499.95 427.09 ✗

5 50 0.05 12.5 250 239.98 ✗

2 50 0.25 24.60 100 73.19 ✗

1 50 0.09 9 100 92.93 ✗

GReaT

3 99.99 0.03 9 299.97 290.97 ✓
4 50 0.15 30 200 170 ✓
1 199.99 0.09 18 199.99 181.99 ✓
1 129.99 0.13 16.90 129.99 113.09 ✓
1 50 0.16 8 50 42 ✓
1 199.99 0.04 8 199.99 191.99 ✓
4 49.98 0.10 19.99 199.92 179.93 ✓
2 49.98 0.04 12 99.96 95.96 ✗

1 399.98 0.03 12 399.98 387.98 ✓
2 50 0.07 7 100 93 ✓

SMOTE

1 129.99 0.04 5.40 129.99 124.22 ✗

1 50 0.16 8 50 42 ✓
1 49.98 0.13 4.80 39.99 34.84 ✗

5 17.99 0.02 1.60 89.95 87.97 ✗

1 199.99 0 0 199.99 199.99 ✓
1 24.99 0.09 2 24.99 21.65 ✗

1 210.85 0 0 210.85 210.85 ✓
1 50 0.25 12.5 50 37.5 ✓
3 79.99 0.13 30 249.90 217.42 ✗

1 129.99 0.03 3.53 129.99 126.09 ✗
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Table 4: Hierachical consistency (geographical relationships) preservation in synthetic tabular data

Methods
Group 1(Geographical Data)

PreservedAttribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5
Order City Order State Order Country Order Region Order Market

Original Tables
Providence Rhode Island United States East of USA USCA ✓

Porirua Wellington New Zealand Oceania Pacific Asia ✓
Tegucigalpa Francisco Morazan Honduras Central America LATAM ✓

CTGAN

Aurangabad Yalova Nicaragua Central America LATAM ✗

Rustenburg Sao Paulo Netherlands Western Europe Europe ✗

Rasht Maluku Mexico Central America LATAM ✗

San Pedro Kano Morocco West Africa Africa ✗

Medan Victoria Australia Oceania Pacific Asia ✗

Birobidzhan Alsace-Champagene-Ardenne France Western Europe Europe ✗

Lagos Kinshasa Turkmenistan East Africa Africa ✗

Yakarta Punjab India Southeast Asia Pacific Asia ✗

Roermond Mersin Turkey West Asia Pacific Asia ✗

Houston Auckland Mexico Central America LATAM ✗

TabDDPM

Detmold Zagrebacka Detmold Southeast Asia LATAM ✗

Detmold Zagrebacka Detmold Southeast Asia LATAM ✗

Detmold Zagrebacka Detmold Southeast Asia LATAM ✗

Detmold Zagrebacka Detmold Southeast Asia LATAM ✗

Detmold Zagrebacka Detmold Southeast Asia LATAM ✗

Detmold Zagrebacka Detmold Southeast Asia LATAM ✗

Detmold Zagrebacka Detmold Southeast Asia LATAM ✗

Detmold Zagrebacka Detmold Southeast Asia LATAM ✗

Detmold Zagrebacka Detmold Southeast Asia LATAM ✗

Detmold Zagrebacka Detmold Southeast Asia LATAM ✗

TabSyn

Manila Capital Nacional Filipinas Southeast Asia Pacific Asia ✓
Tokio Tokyo Japan Eastern Asia Pacific Asia ✓

Concord New Hampshire United States East of USA USCA ✓
Piedecuesta Henan China Eastern Asia Pacific Asia ✗

Miguel Hidalgo New Mexico Mexico Central America LATAM ✓
Lakeville Mecklenburg-Western Pomerania China Eastern Asia Pacific Asia ✗

Baguio City Osjecko-Baranjska Norway Northern Europe Europe ✗

Gaziemir Vilnius Iraq Southeast Asia Pacific Asia ✗

Yucaipa Guangdong China Eastern Asia Pacific Asia ✗

Erftstadt Uusimaa Italy Southern Europe Europe ✗

GReaT

Puebla Puebla Mexico Central America LATAM ✓
Zhuzhou Liaoning China Eastern Asia Pacific Asia ✗

Nicolas Romero Mexico Mexico Central America LATAM ✓
Munich Bavaria Germany Western Europe Europe ✓
Seattle Washington United States West of USA USCA ✓

Culiacan Sinaloa Mexico Central America LATAM ✓
Vitoria Basque Country Spain Southern Europe Europe ✓
Reims Alsace-Champagne-Ardenne-Lorraine France Western Europe Europe ✓
Cuneo Piedmont Italy Southern Europe Europe ✓
13551 North Rhine-Westphalia Germany Western Europe Europe ✗

SMOTE

Coyoacan Federal District Mexico Central America LATAM ✓
Lancaster California United States West of USA USCA ✓

Wiesbaden Hesse Germany Western Europe Europe ✓
Ciego de Avila Ciego de Avila Cuba Caribbean LATAM ✓

Grodno Grodno Belarus Eastern Europe Europe ✓
Bugia Buja Argelia North Africa Africa ✓

Nagpur Maharashtra India South Asia Pacific Asia ✓
Nacka Stockholm Sweden Northern Europe Europe ✓

Aachen North Rhine-Westphalia Germany Western Europe Europe ✓
Oyonnax Auvergne-Rhone-Alpes France Western Europe Europe ✓
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Table 5: Temporal dependency preservation in synthetic tabular data

Methods
Group 3 (Temporal Data)

PreservedAttribute 1 Attribute 2
Order Date Delivery Date

Original Tables
19/08/2015 12:59:00 24/08/2015 12:59:00 ✓
16/06/2015 13:46:00 19/06/2015 13:46:00 ✓
14/04/2016 23:41:00 15/04/2016 11:41:00 ✓

CTGAN

10/07/2016 07:38:18 04/03/2015 04:52:46 ✗

14/03/2017 08:57:22 24/02/2015 03:31:49 ✗

02/08/2017 12:26:03 08/11/2015 04:32:00 ✗

14/01/2015 17:23:01 30/01/2015 21:37:26 ✓
09/03/2015 03:13:50 21/04/2016 01:04:10 ✓
24/08/2015 21:04:44 29/10/2016 00:46:55 ✓
15/01/2017 21:17:56 21/05/2015 17:55:06 ✗

24/08/2015 12:22:23 13/02/2016 09:49:48 ✓
20/03/2017 02:38:29 01/03/2017 19:23:58 ✗

26/09/2016 10:14:31 02/12/2015 15:52:12 ✗

TabDDPM

31/01/2018 23:36:58 03/01/2015 00:00:00 ✗

01/01/2015 00:00:00 03/01/2015 00:00:00 ✓
01/01/2015 00:00:00 03/01/2015 00:00:00 ✓
01/01/2015 00:00:00 03/01/2015 00:00:00 ✓
01/01/2015 00:00:00 06/02/2018 18:43:12 ✓
31/01/2018 23:36:58 03/01/2015 00:00:00 ✗

01/01/2015 00:00:00 06/02/2018 18:43:12 ✓
31/01/2018 23:36:58 06/02/2018 18:43:12 ✓
31/01/2018 23:36:58 03/01/2015 00:00:00 ✗

31/01/2018 23:36:58 06/02/2018 18:43:12 ✓

TabSyn

25/08/2017 02:09:36 31/08/2017 06:43:12 ✓
06/06/2015 04:24:58 13/06/2015 00:43:12 ✓
22/10/2015 06:43:12 27/10/2015 05:54:14 ✓
01/12/2016 03:00:00 01/12/2016 10:30:43 ✗

19/12/2015 08:24:00 16/12/2015 18:14:24 ✗

01/02/2017 08:42:43 06/02/2017 01:29:17 ✓
17/07/2016 16:19:12 18/07/2016 23:16:48 ✓
13/08/2016 11:48:29 10/08/2016 12:57:36 ✗

05/07/2015 22:33:36 12/07/2015 04:33:36 ✓
07/10/2016 14:03:50 15/10/2016 15:28:48 ✓

GReaT

21/07/2017 11:18:00 23/07/2017 11:18:00 ✓
14/06/2016 15:22:00 16/06/2016 15:22:00 ✓
23/06/2017 01:00:00 28/06/2017 01:00:00 ✓
31/01/2015 10:49:00 02/02/2015 10:49:00 ✓
16/10/2016 00:50:00 19/10/2016 00:50:00 ✓
16/08/2017 04:36:00 22/08/2017 04:36:00 ✓
03/08/2016 11:47:00 09/08/2016 11:47:00 ✓
10/03/2015 22:40:00 13/03/2015 22:40:00 ✓
16/01/2015 22:19:11 16/01/2015 10:19:00 ✗

21/03/2016 21:16:00 25/03/2016 21:16:00 ✓

SMOTE

31/05/2016 01:07:42 04/06/2016 13:20:19 ✓
21/07/2016 11:38:00 23/07/2016 11:38:00 ✓
06/05/2017 01:00:54 08/05/2017 16:36:31 ✓
15/10/2016 00:37:28 16/10/2016 22:47:19 ✓
22/07/2017 04:52:12 24/07/2017 03:10:12 ✓
10/02/2016 05:15:24 15/02/2016 14:55:47 ✓
10/01/2015 00:27:21 14/01/2015 04:51:29 ✓
16/01/2016 00:38:18 19/01/2016 09:41:35 ✓
22/05/2015 11:33:20 25/05/2015 11:19:17 ✓
17/03/2015 19:08:39 19/03/2015 08:27:54 ✓
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