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Abstract—Large language models (LLMs) have demonstrated
remarkable capabilities in a wide range of tasks, yet their
application to specialized domains remains challenging due to
the need for deep expertise. Retrieval-Augmented generation
(RAG) has emerged as a promising solution to customize
LLMs for professional fields by seamlessly integrating external
knowledge bases, enabling real-time access to domain-specific
expertise during inference. Despite its potential, traditional
RAG systems, based on flat text retrieval, face three critical
challenges: (i) complex query understanding in professional
contexts, (ii) difficulties in knowledge integration across distributed
sources, and (iii) system efficiency bottlenecks at scale. This
survey presents a systematic analysis of Graph-based Retrieval-
Augmented Generation (GraphRAG), a new paradigm that
revolutionizes domain-specific LLM applications. GraphRAG
addresses traditional RAG limitations through three key in-
novations: (i) graph-structured knowledge representation that
explicitly captures entity relationships and domain hierarchies,
(ii) efficient graph-based retrieval techniques that enable context-
preserving knowledge retrieval with multihop reasoning ability,
and (iii) structure-aware knowledge integration algorithms that
leverage retrieved knowledge for accurate and logical coherent
generation of LLMs. In this survey, we systematically analyze
the technical foundations of GraphRAG and examine current
implementations across various professional domains, identifying
key technical challenges and promising research directions. All
the related resources of GraphRAG, including research papers,
open-source data, and projects, are collected for the community
in https://github.com/DEEP-PolyU/Awesome-GraphRAG,

Index Terms—Retrieval-Augmented Generation, Knowledge
Graphs, Large Language Models, GraphRAG

I. INTRODUCTION

Large language models (LLMs), like the GPT series [1]],
have surprised the world with their remarkable ability across a
wide range of tasks, achieving breakthroughs in text comprehen-
sion [2], question answering [3], and content generation [4]—[6].
Despite their effectiveness, LLMs are always criticized for their
limited ability to handle knowledge-intensive tasks, especially
when faced with questions requiring domain expertise [7].
Specifically, the application of LLMs to specialized domains
remains challenging for three fundamental reasons, including @
Knowledge limitations: LLMs’ pre-trained knowledge is broad
but shallow in specialized fields. Their training data primarily

*Authors contributed equally to this research.

consists of general-domain content, leading to insufficient depth
in professional domains and potential inconsistencies with
current domain-specific standards and practices. ® Reasoning
complexity: Specialized domains require precise, multi-step
reasoning with domain-specific rules and constraints. LLMs
often struggle to maintain logical consistency and professional
accuracy throughout extended reasoning chains, particularly
when dealing with technical constraints or domain-specific
protocols. ® Context sensitivity: Professional fields often
involve context-dependent interpretations where the same terms
or concepts may have different meanings or implications
based on specific circumstances. LLMs frequently fail to
capture these nuanced contextual variations, leading to potential
misinterpretations or inappropriate generalizations.

To adapt LLMs for specific or private domains, initial strate-
gies involved fine-tuning LLMs with specialized datasets [S]].
This method enhances performance by adding a limited number
of parameters while fixing the parameters learned in the pre-
training [9]. However, the significant distribution gap between
the domain-specific dataset and the pre-training corpus makes
it challenging for LLMs to integrate new knowledge without
compromising their existing understanding [10]. A recent study
by Google Research further highlighted the risks associated
with using supervised fine-tuning to update knowledge, particu-
larly in cases where new knowledge conflicts with pre-existing
information; acquiring new knowledge through supervised fine-
tuning can lead to the model generating new hallucinations
and even experiencing severe catastrophic forgetting [11]].

Retrieval-Augmented generation (RAG) offers a promising
solution to customize LLLMs for specific domains [12]. Rather
than retraining LLMs to incorporate updates, RAG enhances
these models by leveraging external knowledge from text cor-
pora without modifying their architecture or parameters. This
approach enables LLLMs to generate responses by leveraging
not only their pre-trained knowledge but also real-time retrieved
domain-specific information, thereby providing more accurate
and reliable answers. The naive RAG systems operate through
three key steps: knowledge preparation, retrieval, and integra-
tion. During knowledge preparation, external sources such as
documents, databases, or webpages are divided into manageable
textual chunks and converted into vector representations for
efficient indexing. In the retrieval stage, when a user submits a
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Fig. 1: The development trends in the field of GraphRAG with representative works.

query, the system searches for relevant chunks using keyword
matching or vector similarity measures. The integration stage
then combines these retrieved chunks with the original query to
create an informed prompt for the LLM’s response. Recently,
some advanced RAG systems have evolved beyond simple
text chunk retrieval to offer more sophisticated knowledge
augmentation approaches. These include hierarchical RAG that
preserves document structure through multi-level retrieval [[13]],
[14], re-ranking systems that implement two-stage retrieval for
higher recall and precision [15], [[16]], self-querying RAG that
automatically decomposes complex queries [[17]], and adaptive
RAG that dynamically adjusts retrieval strategies based on
query types [18], [19]. These advanced RAG systems aim to
address the limitations of naive RAG approaches by improving
context awareness, retrieval accuracy, and handling complex
queries more effectively.

The emergence of RAG has offered a promising approach for
customizing LLMs with domain-specific knowledge. However,
despite its potential, RAG faces several critical limitations
that impact its effectiveness in practical applications. These
limitations can be broadly categorized into four main challenges
that significantly affect the performance and utility of RAG-
enhanced LLMs. The primary challenge lies in complex query
understanding. Specialized domains often involve intricate
terminology and industry-specific jargon that requires precise
interpretation [20]]. User queries in these areas typically contain
numerous technical terms and industry-specific expressions,
with solutions often requiring reasoning across multiple re-
lated concepts. Traditional RAG approaches, which rely on
simple keyword matching and vector similarity techniques,
are inadequate for capturing the deep semantic nuances and
multi-step reasoning processes necessary for accurate and
comprehensive [21f]. For instance, when queried about the
connection between concept A and concept D, these systems

typically retrieve only directly related information, missing
crucial intermediate concepts like B and C that could bridge the
relationship. This narrow retrieval scope limits RAG’s ability
to a broad contextual understanding and complex reasoning.

Another key challenge involves integrating domain knowl-
edge from distributed sources. Domain knowledge is usually
collected from different sources, such as textbooks, research
papers, industry reports, technical manuals, and maintenance
logs. These textual documents may have varying levels of
quality, accuracy, and completeness. The retrieved knowledge is
often flattened, extensive, and intricate, while domain concepts
are typically scattered across multiple documents without clear
hierarchical relationships between different concepts [7], [22],
[23]. Although RAG systems attempt to manage this complexity
by dividing documents into smaller chunks for effective and
efficient indexing, this approach inadvertently sacrifices crucial
contextual information, significantly compromising retrieval
accuracy and contextual comprehension. This limitation ham-
pers the ability to establish robust connections between related
knowledge points, leading to fragmented understanding and
reduced efficacy in leveraging domain-specific expertise.

The third limitation stems from the inherent constraints of
LLMs. While RAG systems can retrieve relevant information
from vast knowledge bases, the LLM’s ability to process
this information is constrained by its fixed context window
(typically 2K-32K tokens) [1], [24]. Long-range dependencies
in complex documents cannot be fully captured, as the content
exceeding the context window must be truncated or summa-
rized, disrupting natural semantic units and logical flow. The
challenge of maintaining coherence across extensive knowledge
contexts becomes increasingly problematic in professional
domains, as critical information may be lost during context
window truncation. This fundamental limitation directly impacts
the system’s ability to process and synthesize comprehensive



information from large-scale knowledge bases.

The last challenge relates to system efficiency and scalabil-
ity. The entire RAG pipeline - from initial corpus preprocessing
and indexing to real-time retrieval and generation - faces signif-
icant efficiency bottlenecks [25]], [26]. The external knowledge
base contains a lot of domain-irrelevant information, while
domain-specific terminologies are always sparsely distributed
over these documents. RAG systems can be computationally
expensive and time-consuming [25], especially when dealing
with large-scale knowledge sources, as the model needs to
search through vast amounts of unstructured text to find relevant
information. Moreover, real-time retrieval and cross-document
reasoning can introduce considerable latency, negatively im-
pacting user experience. The scalability of RAG is further
constrained by declining retrieval quality and accuracy as the
size of the knowledge base grows [20], thereby limiting its
practical deployment in extensive and dynamic professional
environments.

To address these limitations, graph retrieval-augmented
generation (GraphRAG) has recently emerged as a new
paradigm to customize LLMs with well-organized background
knowledge and improved contextual reasoning [25], [27]-[29].
Based on the utilization of graph structures, existing GraphRAG
models can be categorized into three main categories: @
Knowledge-based GraphRAG, which uses graphs as knowl-
edge carriers. ® Index-based GraphRAG uses graphs as index
tools to retrieve relevant raw texts from the corpus, and &
Hybrid GraphRAG which combines the strengths of both
knowledge-based and index-based frameworks, providing more
advanced solutions for complex reasoning tasks. Knowledge-
based and Index-based GraphRAG represent two distinct
paradigms for enhancing LLMs with structured knowledge.
Knowledge-based GraphRAG focuses on transforming unstruc-
tured textual documents into explicit and structured KGs, where
nodes represent domain concepts and edges capture semantic
relationships between them, enabling better representation of
hierarchical relationships and complex knowledge dependencies.
In contrast, Index-based GraphRAG maintains the original
textual form while utilizing graph structures primarily as
an indexing mechanism to organize and retrieve relevant
text chunks efficiently. By incorporating graph structures
into text indexing, Index-based GraphRAG methods establish
semantic connections between text chunks for efficient look-up
operations and retrieval. While Knowledge-based GraphRAG
emphasizes the explicit modeling of domain knowledge and
semantic relationships through graph transformation, Index-
based GraphRAG prioritizes efficient information retrieval
and global navigation through the graph-based organization
of the raw text. This fundamental difference in approach
reflects their distinct purposes: Knowledge-based GraphRAG
aims to create a structured knowledge representation for a
better understanding of complex relationships with graph-based
reasoning capability, whereas Index-based GraphRAG focuses
on optimizing the retrieval and accessibility of relevant textual
information through graph-based indexing strategies.

In this survey, we systematically analyze the technical foun-
dations of GraphRAG and examine current implementations
across various professional domains, identifying key technical

challenges and promising research directions. All the related
resources of GraphRAG, including research papers, open-
source data, and projects, are collected for the community
in https://github.com/DEEP-PolyU/Awesome-GraphRAG.

II. OVERVIEW

This survey provides a comprehensive analysis of GraphRAG,
detailing its taxonomy, mechanisms, challenges, and future
research directions, which is organized into seven main
sections that progress from foundational concepts to practical
implementations. Specifically, we begin in Section 2 [II] by
establishing the foundational framework, tracing GraphRAG’s
evolution from traditional RAG systems, examining RAG’s
limitations in handling structured knowledge, and introduc-
ing GraphRAG’s core concepts and advantages in complex
reasoning tasks. The following three sections systematically
explore the key components of GraphRAG systems: two
primary paradigms for structured knowledge organization,
including knowledge carrier graphs and index graphs (Section
3 [[V), retrieval techniques for extracting query-relevant factual
information from structured knowledge bases (Section 4 , and
knowledge integration methods for effectively incorporating
retrieved knowledge into LLMs (Section 5 [VI). Moving toward
practical applications, Section 6 addresses implemen-
tation aspects by providing detailed guidelines, reviewing
open-source projects, and presenting domain-specific case
studies supported by comprehensive datasets and evaluation
benchmarks. Finally, Section 7 concludes by identifying
future research directions and discussing potential challenges
in knowledge quality, retrieval efficiency, system generalization,
and security, alongside practical guidance for building domain-
specific GraphRAG systems. Throughout the survey, we balance
fundamental concepts, the current state of the art, and practical
implementations, making it valuable for researchers advancing
the field and practitioners developing GraphRAG applications
in real-world scenarios.

Our survey advances beyond the existing survey [28]-[30]]
through a more systematic and comprehensive approach to
GraphRAG systems. While the previous survey offered a
basic workflow description covering Graph-based Indexing,
Graph-guided Retrieval, and Graph-enhanced Generation, we
introduce a more sophisticated and comprehensive taxonomy
that clearly categorizes GraphRAG approaches into three
distinct categories (Knowledge-based, Index-based, and Hybrid
GraphRAG), providing a more nuanced understanding of
the field. Our survey features a more systematic six-section
structure that progresses logically from theoretical founda-
tions to practical implementations, offering a more detailed
exploration of each component, including knowledge organiza-
tion paradigms, retrieval techniques, and integration methods.
Unlike the previous survey, we provide extensive practical
guidance through detailed review of open-source projects,
and domain-specific case studies supported by comprehensive
datasets and evaluation benchmarks. We also offer a more
thorough analysis of challenges and solutions across multiple
dimensions, including knowledge quality, retrieval efficiency,
system generalization, and security concerns. Finally, while the
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Fig. 2: A comprehensive overview of traditional RAG and two typical GraphRAG workflows. Non-graph RAG organizes the
corpus into chunks, ranks them by similarity, and retrieves the most relevant text for generating responses. Knowledge-based
GraphRAG extracts detailed knowledge graphs from the corpus using entity recognition and relation extraction, offering
fine-grained, domain-specific information. Index-based GraphRAG summarizes the corpus into high-level topic nodes, which
are linked to form an index graph, while fact linking maps topics to text. This two-layer structure combines efficient topic
retrieval with detailed text knowledge, offering scalability and performance compared to Knowledge-based GraphRAG.

existing survey broadly discussed potential applications, we
provide actionable insights supported by empirical evidence and
implementation examples, making our survey a more valuable
resource for practitioners deploying GraphRAG systems in
production environments.

III. WHAT 1S GRAPHRAG

This section provides an overview of RAG with LLMs,
including the traditional RAG pipeline, the GraphRAG, and
the advantages GraphRAG offers over traditional RAG systems.

A. Traditional RAG Pipeline

A RAG framework begins by retrieving relevant information
from pre-constructed external knowledge bases based on
the query. This information is then used to prompt LLMs,
guiding them in constructing credible reasoning chains. As
a result, RAG enables LLMs to generate more substantiated
and accurate content, effectively minimizing hallucinations
and inconsistencies. The traditional RAG pipeline typically
comprises three core components: knowledge organization,
knowledge retrieval, and knowledge integration.

1) Knowledge organization: In traditional RAG systems,
knowledge organization involves structuring and preparing
external knowledge repositories to facilitate rapid and relevant
retrieval when provided with a query. A common strategy is
to split the large-scale text corpus into manageable chunks.
These chunks are then transformed into embeddings using an
embedding model, where the embeddings serve as keys of
original text chunks in a vector database [81]—[83]]. This setup
enables efficient look-up operations and retrieval of relevant
content via distance-based search in the semantic space.

As a crucial step in the pre-retrieval process, several
methods [[84]], [85]] have been proposed to optimize knowledge
organization, focusing on two main aspects: granularity opti-
mization and indexing optimization. Granularity optimization

aims to balance relevance and efficiency, as coarse-grained units
provide richer context but risk redundancy and distraction,
while fine-grained units may lack semantic integrity and
increase the retrieval burden [86]], [87]]. To control granularity,
chunking strategies are employed to split documents into
chunks based on token limits. Methods such as recursive
splits, sliding windows, and Small-to-Big [85]], [88] strive
to maintain semantic completeness while optimizing context
length. Indexing optimization seeks to improve the structure and
quality of content for retrieval. Metadata-addition techniques,
which attach chunk text with metadata like titles, timestamps,
categories, and keywords, enable filtering and re-ranking
operations during the post-retrieval process [85]. Another
type of technique is hierarchical indexing, which organizes
files into parent-child relationships with summaries at each
node, facilitating faster and more efficient data traversal while
reducing retrieval errors [89]]. Such tree-like indexing methods
represent early attempts at structured knowledge organization
and have inspired successors to harness the power of graph
structures for knowledge organization, i.e., GraphRAG.

In summary, knowledge organization is foundational to the
retrieval process. By carefully constructing the knowledge
resources, RAG systems can ensure the fidelity and reliability
of retrieved content.

2) Knowledge retrieval: The knowledge retrieval stage
encompasses various methods and strategies designed to
efficiently access and retrieve the necessary knowledge from
pre-organized repositories, ensuring the selection of relevant
information that can enhance the quality of generated outputs.

Current RAG works usually involve retrieval methods such
as k-nearest neighbor retrieval (KNN), term frequency-inverse
document frequency (TF-IDF), and best matching 25 (BM25)
to retrieve the relevant content. RETRO [81]] employs KNN
to extract approximate relevant neighbors from the conducted
key-value database by calculating the L2 distance. RETRO-
prompt [90] extends this approach to construct a few-shot
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Fig. 3: The taxonomy for existing GraphRAG methods in the survey.

knowledge store, tailoring it specifically for prompt learning
scenarios.

In addition, some specialized techniques are used prior to
the retrieval method to improve the accuracy and efficiency
of the retrieval. To capture multifaceted aspects of the query,
GAR introduces diverse context generation, enriching the
initial query with additional contexts before applying BM25
retrieval. Enhancing this framework, EAR implements
a re-ranking process that selects the optimal candidate from
multiple expanded queries to improve the retrieval accuracy.
Furthermore, in tackling the computational challenges associ-
ated with exact retrieval methods like BM25, Doostmohammadi
et al. propose a hybrid approach to identify approximate
neighbors using sentence transformers for representation and
then apply BM25 for re-ranking, effectively balancing accuracy
with computational efficiency on large-scale retrieval tasks.

Retrieval model training is another crucial aspect, where
recent methodologies have explored the use of self-supervised
techniques. For instance, REPLUG demonstrates that
labels generated by a frozen language model can be leveraged
to directly supervise the training of retrieval models. This
approach enhances retrieval quality without requiring additional
manually annotated datasets. ATLAS fine-tunes both the
retriever and the LLMs in tandem. Furthermore, frameworks
like FLARE dynamically balance retrieval with generation

needs through an active RAG framework that intelligently de-
termines retrieval timings based on the generation progression.

Moreover, the use of external APIs helps to broaden the scope
of retrieval capabilities. By integrating external knowledge
sources like Wikipedia and Google Search APIs, RAG systems
can access expansive real-time databases, enriching their
generated content. For example, Toolformer taps into
Wikipedia to access extensive knowledge bases, while the work
by Lazaridou et al. utilizes Google Search to ensure the
most current and comprehensive information is incorporated,
granting RAG systems a dynamic edge in content generation.

Opverall, the knowledge retrieval process combines innovative
methodologies with diverse data sourcing strategies, under-
pinning the generation of informed and contextually relevant
outputs.

3) Knowledge Integration: The knowledge integration phase
in RAG frameworks is crucial for synthesizing coherent
and accurate responses based on both retrieved and inherent
knowledge. At this stage, researchers utilize LLM to generate
the output and employ several preprocessing and efficiency
strategies to improve its quality and efficiency.

The quality of retrieved content can drastically affect
generation, with irrelevant or misleading data potentially having
deleterious effects. LeanContext addresses this issue by
utilizing reinforcement learning to selectively choose sentences
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Fig. 4: The illustration of the comparison between traditional RAG and GraphRAG.

that are most pertinent to the query, effectively minimizing
the context size and reducing computational costs. Similarly,
SELF-RAG [17] introduces a self-reflection mechanism where
the language model assesses its own generated and retrieved
content, allowing for corrective measures to be implemented
during the generation process. SKR [98] proposes a dynamic
framework whereby LLMs can rely on their pre-trained
knowledge for recognized queries, resorting to retrieval only
when necessary. FILCO [99]] enhances this by training a
context filtering model that screens out irrelevant data, thereby
mitigating hallucination risks. Recent research by Lyu et
al. [100] introduces an evaluation method specifically designed
to assess the importance of the retrieved content. Their findings
suggest that by pruning or re-weighting parts of the retrieval
corpus, RAG systems can enhance their performance without
requiring additional training rounds. In scenarios where the
retrieval corpus is limited, approaches such as Selfmem [101]
construct a memory pool from LLM-generated results, using
an iterative selection framework to enhance generative quality.
SAIL [102] forms an instruction-tuning dataset based on
retrieval outcomes, fine-tuning LLMs to ground responses in
reliable content while excluding distracting elements.

Efficiency is another crucial concern, since encoding a large
volume of retrieved passages is resource-intensive, leading to
significant computation and memory overheads. To circumvent
this, [[103] adopts a pre-encoding strategy that stores dense
representations of the text corpus. LUMEN [[104]] takes it a
step further by conditioning the encoder on current inputs, and
fine-tuning it specifically for this task to ensure high-quality
pre-encoded memory representations. Innovative parallelism
solutions, like PipeRAG [105]], advance efficiency by enabling
concurrent retrieval and generation, thus introducing alignment
between retrieved content and real-time generation states.
RAGCache [106] further optimizes resource usage by caching

intermediate states within a GPU-resident knowledge tree,
employing a prefix-aware replacement policy to maintain the
most critical key-value tensors. To efficiently compress retrieval
contents, Xu et al. [16] introduce an extractive compressor
to identify useful sentences and an abstract compressor to
distill summaries; this dual compression system refines textual
summaries before they are integrated into the context. Similarly,
TCRA-LLM [107] utilizes a token compression strategy,
optimizing the semantic relevance of tokens to conserve
computational resources.

In conclusion, the generation stage within RAG focuses
on bolstering the quality and efficiency of LLM-driven con-
tent generation. These methodologies continually evolve to
maximize the potential of LLMs in generating context-aware,
accurate, and efficient responses for RAG.

B. Limitations of traditional RAG

Although researchers have extensively explored traditional
RAG, there are still some unresolved limitations due to the
constraints of the data structure itself.

1) Complex query understanding: Traditional RAG faces
significant challenges in precisely answering complex queries,
mainly due to the intrinsic limitation of its knowledge
organization (vector database). Given a query, these RAG
methods can only retrieve information from chunks containing
anchor entities and are incapable of multi-hop reasoning. This
limitation becomes more pronounced as granularity decreases,
making it challenging to handle domain knowledge, as domain
knowledge and complex logic often require multi-hop reasoning
for effective understanding. Some traditional RAG methods
have attempted to improve the complex query understanding,
such as enhancing queries before retrieval [91]], enhancing
multiple query candidates for re-ranking [92], and using
related metadata to provide richer information [85]]. However,



these methods are still limited by the chunking style of
knowledge organization and are challenging to capture multi-
hop information in complex queries effectively.

2) Distributed domain knowledge: Domain-specific queries
often involve jargon that requires contextual comprehension.
However, domain knowledge is typically sparsely distributed
across various documents and data sources. Although RAG
uses chunking to divide documents into smaller pieces to
manage this complexity and improve indexing efficiency, it
sacrifices critical contextual information, significantly reducing
retrieval accuracy and contextual understanding. Additionally,
vector databases store the text chunks without a hierarchical
organization of vague or abstract concepts, so it becomes
difficult to resolve such queries, reducing the efficiency of
utilizing expertise in specific domains. Some current traditional
RAG works continuously align retrieved content with real-time
generation states [[105]], and introduce external APIs to provide
dynamic and rich auxiliary information [96]. While these
approaches enhance RAG’s understanding of dispersed domain
knowledge, they still rely on the traditional chunking method for
knowledge organization, which cannot fully address distributed
domain knowledge. This limitation restricts their ability to
construct robust connections between pieces of knowledge.

3) Inherent constraints of LLMs: Traditional RAG often uses
the vector similarity-based retrieval module, which usually lacks
effective filtering of the retrieved contents from vast knowledge
bases, providing excessive but maybe unnecessary information.
Considering the inherent constraints of LLMs, such as the
fixed context window (typically 2K-32K tokens) [1]], [24] and
the challenge of fully capturing long-range dependencies in
complex documents, it is hard for LLMs in traditional RAG to
capture the necessary information from the excessive retrieved
contents. While scaling chunk granularity could alleviate these
challenges, this approach significantly increases computational
costs and response latency. Furthermore, indexing-based meth-
ods fail to effectively prune irrelevant information during
retrieval, leading to the target knowledge being overwhelmed.
These limitations present practical challenges for deploying
RAG in resource-constrained environments where LLMs with
smaller input context windows are preferred. Existing tra-
ditional RAG approaches have proposed methods such as
recursive splits, sliding windows, and Small-to-Big [85]], [88]
to optimize context length while preserving semantic integrity.
They also assess and filter retrieved information to extract key
insights [[17], [97], [99], [100], and fine-tune LL.Ms to enhance
their capability to capture crucial information from a vast
amount of retrieved data [[102]. These approaches effectively
reduce the volume of retrieved content, aiding the handling
of LLMs’ limited context windows, but they still fall short of
capturing long-distance dependencies. This shortcoming arises
because vector similarity-based retrieval makes it challenging
to establish sufficiently clear connections between different
pieces of retrieved content, limiting LLMs’ understanding of
long-distance dependencies.

4) Efficiency and scalability: Since large-scale knowledge
sources often contain a significant amount of non-domain-
specific information and domain-specific terms are usually
sparsely distributed across diverse knowledge carriers, the

retrieval module of RAG systems often needs to search
through a vast amount of unstructured text to find relevant
information, requiring considerable computational resources
and time [25[]. Although there are existing traditional RAG
methods that propose preprocessing before employing retrieval
methods to reduce costs [93]], [[103]], [104]], or using innovative
parallelism solutions to extract and maintain key information
in intermediate processes to optimize resource use [[16], [106],
[[LO7]], they inevitably need to retrieve information from a large
volume of unstructured text. This makes resource consumption
a persisting issue for traditional RAG, affecting its scalability.

C. GraphRAG

To address the limitations of traditional RAG, a novel
paradigm known as Graph Retrieval-Augmented Generation
(GraphRAG) has been introduced. Leveraging structured knowl-
edge, GraphRAG provides an efficient and accurate solution for
organizing and retrieving information with structural databases,
enhancing the performance and reliability of RAG systems.

1) Definition of GraphRAG: GraphRAG can be formally
defined as a subclass of RAG framework that leverage graph
structure to organize and retrieve knowledge. Unlike
traditional RAG methods, which rely on vector databases
for knowledge organization, GraphRAG employs structural
databases where graphs are used to model dependencies among
knowledge pieces. This approach enhances the accuracy and
efficiency of information retrieval, enabling more effective
augmented generation for LLMs.

Specifically, GraphRAG systems can utilize graphs as either
the carrier of knowledge or the indexing tools for efficient
retrieval from chunked textual data. By modeling dependencies
between nodes, GraphRAG enables the discovery of related
knowledge pieces centered around a topic or anchor entity,
ensuring comprehensive knowledge retrieval. Moreover, these
connections support efficient search by navigating through rel-
evant pathways and meanwhile pruning irrelevant information
during the retrieval process.

2) Workflow of GraphRAG: Like traditional RAG, the
workflow of GraphRAG can be divided into three key stages:
knowledge organization, knowledge retrieval, and knowledge in-
tegration. However, due to the structured nature of GraphRAG,
they have some special strategies compared to traditional RAG:

« Knowledge Organization The knowledge organization
stage structures external information using graph-based
methods, either through explicit knowledge representation
(graphs as knowledge carriers) or indexing mechanisms
(graphs for knowledge indexing). These approaches enable
efficient, context-aware information retrieval.

+ Knowledge Retrieval. GraphRAG models employ graph-
based planners (either learnable planners or graph
algorithm-based planners) to retrieve relevant information
based on the input query. These retrieval techniques
not only consider the semantic similarity between the
query and each text chunk, but also the logical coherence
between the query type and the retrieved subgraph.

o Knowledge Integration. Once the relevant knowledge
is retrieved, the GraphRAG model integrates it with



the input query to generate the final output. The goal
of the integration process is to seamlessly incorporate
the retrieved knowledge into the generated text, thereby
enhancing its quality and informativeness. A key design
consideration is how to preserve the richness of the
retrieved subgraph information in the final text-based
prompt without introducing redundancy or misplacing
emphasis on less critical aspects of the textual descriptions.

D. Traditional RAG vs GraphRAG

GraphRAG provides several key advantages over traditional
RAG systems, enhancing the capabilities of Al-driven informa-
tion retrieval and generation. Below, we discuss these benefits
and illustrate the comparison between traditional RAG and
GraphRAG in Figure ]

1) Enhanced Knowledge Representation: GraphRAG utilizes
graph structures to represent knowledge, capturing complex
relationships between entities and concepts. This approach
allows for a more nuanced and contextual understanding
of information compared to the flat document-based rep-
resentation used in traditional RAG. The graph structure
in GraphRAG can represent hierarchies, associations, and
multi-hop relationships, providing a richer semantic context
for queries and revealing non-obvious connections between
different pieces of information. This capability can lead to
new insights and discoveries, making GraphRAG particularly
valuable in research and analysis applications. By representing
multiple possible interpretations or relationships in the graph,
GraphRAG can better handle ambiguous queries. It can explore
different semantic paths and provide responses that account for
various possibilities, offering a more nuanced understanding
of complex topics.

2) Flexibility in Knowledge Sources: GraphRAG systems
can adapt to and integrate various knowledge sources, including
structured databases, semi-structured data (like JSON or XML),
and unstructured text. This versatility allows organizations
to leverage their existing data infrastructure while benefiting
from the advanced capabilities of GraphRAG. The system can
connect data types, providing a unified view of an organization’s
knowledge. GraphRAG can incorporate different types of data
(text, images, numerical data) into a single graph structure.
This capability allows for more comprehensive knowledge
representation and the ability to answer queries that span
multiple data modalities.

3) Efficiency and Scalability: GraphRAG systems built on
fast graph databases can handle large-scale datasets efficiently.
Graph databases are optimized for relationship-based queries,
allowing for quick traversal of complex data structures. This
efficiency translates to faster response times, especially for
queries that require exploring multiple relationships. Research
has shown that GraphRAG systems can generate LLM re-
sponses using 26% to 97% fewer tokens compared to traditional
methods, indicating significant improvements in both speed
and resource utilization. GraphRAG systems can more easily
accommodate updates to the knowledge base. New information
can be added as nodes or edges in the graph without requiring a
complete reindexing of the entire knowledge base. This feature

allows for real-time updates and ensures that the system always
has access to the most current information. The graph structure
allows GraphRAG to consider the context of a query more
effectively. Instead of relying solely on keyword matching or
vector similarity, it can leverage the semantic relationships in
the graph to retrieve more relevant information. This context
awareness leads to more accurate and pertinent responses to
user queries.

4) Interpretability: The graph structure in GraphRAG allows
for better visualization and understanding of how the system
arrives at its responses. Users can trace the path of reasoning
through the knowledge graph, seeing which entities and
relationships were considered in formulating the answer. This
transparency is crucial for building trust in Al systems and
is especially valuable in fields like healthcare, finance, or
legal applications where decision-making processes need to be
auditable. By integrating LLMs with graph-based knowledge
representation, GraphRAG can perform more sophisticated
reasoning tasks. It can follow chains of logic across multiple
nodes in the graph, combining information from various sources
to answer complex queries. This capability allows for multi-
hop question answering and the ability to draw insights that
may not be explicitly stated in any single document.

In conclusion, GraphRAG represents a significant advance-
ment over traditional RAG systems, offering improved knowl-
edge representation, reasoning capabilities, and efficiency. Its
ability to capture and utilize complex relationships in data
makes it a powerful tool for next-generation Al applications
that require deep understanding and contextual awareness.

IV. KNOWLEDGE ORGANIZATION

A major distinction of GraphRAG techniques compared
to traditional RAG methods lies in their ability to leverage
graph structures for efficient knowledge organization, enhancing
the effectiveness of query responses. In this setup, the LLM
functions as an intelligent agent, while the graph structures
support its ability to organize and integrate information more
comprehensively and precisely. In real-world applications,
external knowledge sources may include extensive text corpora,
document collections, search results, historical user data, or
interaction logs. Properly organizing these sources is essential,
as direct retrieval can be prone to irrelevant results and missing
contexts, leading to information overload, knowledge conflicts,
and compromised comprehension.

To address this, GraphRAG methods employ a two-step
process: first constructing a graph structure to organize knowl-
edge, then retrieving and integrating information relevant to
the query. The organization of knowledge varies by task and
source type, with three primary paradigms: (1) Graphs for
Knowledge Indexing for index-based graphRAG: Text chunks
are organized by symbolizing each chunk as a node within
a graph, within which edges between nodes signify query-
oriented relationships, making it easier to localize relevant
knowledge. Considering knowledge hierarchy, further work
builds multi-level index graphs, involving bottom-up knowledge
summarization and top-down knowledge localization to enable
coarse-to-fine knowledge indexing. (2) Graphs as Knowledge



TABLE I: Comparison of three knowledge organization paradigms: (i) vector databases in traditional RAG systems (“vector
database™), (i) graphs for knowledge indexing (“index graphs”), and (ii7) graphs as knowledge carriers (“knowledge graphs”).

RAG Technique

Traditional RAG

GraphRAG

Knowledge Organization Paradigm

Vector Database

Index Graphs Knowledge Graphs

Explicit Reasoning on Graphs
Index Original Content
Logic-guided Retrieval

X X v

v v X

X X v

Advantages Community Detection X v v
Prune Query-irrelevant Facts X X v

Missing Fact Completion X X v

Multi-hop Knowledge Edit X X 4

Disadvantages Sensitive to Chunk Granularity ; ; ‘)/(

Information Loss

Carrier for knowledge-based graphRAG: Here, summarized
knowledge (e.g. atomic facts, community summarizations)
is extracted from text chunks and integrated into a unified
knowledge base, serving as a carrier of essential knowledge
condensed from the raw corpora. (3) Hybrid GraphRAG: This
approach combines both index graph and knowledge carrier
functions, benefiting from the logical reasoning of knowledge
graphs while preserving the detailed information in raw text
chunks through indexing. The following sections detail each of
these paradigms, explaining how each type of graph structure
facilitates efficient and effective retrieval in diverse scenarios.

A. Graphs for Knowledge Indexing

Index-based GraphRAG methods utilize graph structures
to index and retrieve relevant raw text chunks, which are
then fed into LLMs for knowledge injection and contextual
comprehension. These index graphs apply principles such as
semantic similarities or domain-specific relations to effectively
bridge connections among separate text passages. Compared
to using graphs solely as knowledge carriers, this technique
provides more informative answers by directly summarizing
information from query-related raw text chunks.

The inherent challenges associated with the construction and
maintenance of these graphs raises several research questions,
giving rise to several research questions that shape current
research directions: (1) Conciseness and Relevance: Ensuring
the constructed graph captures only relevant relationships
without overloading it with unnecessary connections is a
significant challenge, thus facilitating effective recalling of
relevant text chunks without redundancies, (2) Consistency
and Conflict Resolution: Different data chunks may introduce
conflicting information. It is crucial to resolve these conflicts
and ensure that the graph remains consistent, reliable, and well-
structured. Researchers are actively exploring tailored index
graph structures to address these challenges effectively.

For general-purpose passages indexing, GNN-ret [31] creates
a passage-level graph, connecting passages through structural
and keyword similarities. PG-RAG [32] treats LLMs as
learners, forming a pseudo-graph by linking concise reading
material summaries through common topics or complementary
facts, generating an interconnected pseudo-graph database.
KGP [33]] examines the logical associations of three major
types of questions and develops three methods for constructing

similarity-based index graphs. The first method uses TF-IDF
to create lexical-similarity-based indexing graphs. The second
employs KNN-ST/MDR [37] to build semantic-similarity-based
indexing graphs. The third utilizes TAGME [38]] to construct
indexing graphs based on shared entities.

A number of methods focus on domain-specific index graph
construction. In the code completion task, GraphCoder [34]]
utilizes a code context graph (CCG) that captures control flow
and data dependencies between code statements, aiding in
retrieving related code snippets for completion. AVIS [35]
generates a transition graph based on user decisions, mapping
states, and permissible actions. For robot task planning,
SayPlan [36] employs 3D scene graph representations, enabling
LLMs to perform semantic searches for planning purposes.
These specialized methods tailor index graphs to meet the
unique demands of various domain-specific tasks.

In summary, index graph-based methods have evolved
from general-purpose passage and entity retrieval strategies to
sophisticated pseudo-graphs for coherent information organi-
zation and, finally, to highly specialized graphs for domain-
specific applications. Each development has addressed unique
challenges, from organizing large text corpora and contextual
summaries to leveraging inductive bias for enhanced domain-
specific tasks like code completion, decision-making, and
robotic planning. This evolution underscores the adaptability
of graph-based structures in meeting the diverse and growing
demands of LLM-driven applications across multiple domains.

B. Graphs as Knowledge Carriers

The paradigm of representing knowledge explicitly through
graph structures is increasingly recognized for its effectiveness,
offering several notable advantages: 1) Efficient retrieval
of query-related knowledge facts. The explicit structure
of knowledge graphs facilitates logic-guided chain retrieval,
efficiently identifying missing facts while pruning the search
space through reasoning paths; 2) Coherent multi-step
reasoning over long spans. Previous studies have revealed
the importance of the reasoning steps, i.e., lengthening the
reasoning steps in prompts brought significant reasoning
performance enhancement [108]. Knowledge graphs excel in
maintaining logical coherence for multi-step reasoning, where
natural language often struggles. By leveraging planning algo-
rithms, they identify optimal reasoning paths, enhancing both



interpretability and clarity in handling complex information; 3)
Effective handling of linguistic diversity. Natural language
often presents challenges with varying terminologies for the
same entities or relationships. Knowledge graphs address this
by enabling efficient entity and relation resolution through
off-the-shelf graph algorithms, streamlining the integration of
diverse data sources.

Research in this area can be categorized into two main
directions based on the source of the knowledge graphs:
GraphRAG with KGs constructed from corpus, which trans-
forms unstructured text into structured graph representations,
and GraphRAG with existing KGs, which focus on how to
effectively leverage well-established KGs. Below we present
the details of each direction and discuss the limitations of them.

1) Knowledge Graph Construction from Corpus: This
research direction aims to transform unstructured text corpora
into structured KGs, enabling efficient and precise information
retrieval. It heavily relies on Open Information Extraction
techniques, which automate the domain-independent extraction
of relational facts from large corpora. These techniques include
both traditional OIE approaches [[109]-{112] and advanced OIE
methods based on LLMs [113[]-[116]. However, constructing ef-
fective KGs from domain-specific corpora remains challenging
due to variations in ontology across domains. A key objective
in this area is to incorporate inductive biases to design graph
structures that capture essential domain-specific information
while minimizing unnecessary complexity.

In scenarios where the query prompt consists of short
passages and no external corpus is provided, Structure-guided
Prompts [41] generate logically coherent responses by cat-
egorizing reasoning tasks into six types based on logical
dependencies and organizing the passage’s information using
tailored graph structures specific to each type. Other studies
have focused on scaling language models to handle multi-
document inputs through dynamically constructed knowledge
graphs. For instance, [117] transformed sentences into relational
triples via Coreference Resolution and Open Information
Extraction, subsequently reducing graph redundancy by merg-
ing nodes and edges based on TF-IDF overlap. Similarly,
AutoKG [118] constructs a weighted knowledge graph where
nodes represent keywords extracted from the original text, and
edges, evaluated through graph Laplacian learning, represent
relationships with assigned weights. To offer more informative
knowledge augmentation, QUEST [39]], GraphRAG [25]], and
GraphReader [40]] construct attributed KGs where nodes
are enriched with side information. Specifically, QUEST
emphasizes integrating entities, relations, types, and semantic
alignments, while GraphRAG leverages an LLM to generate
community summaries as enriched knowledge for related
entities, subsequently using these summaries to produce partial
answers for the entities. Similarly, GraphReader employs
an LLM to summarize text chunks into atomic facts and
extract key elements (nouns, verbs, and adjectives). Each key
element, combined with its relevant atomic facts, forms a
node, with links established between nodes sharing elements in
the same atom facts. To leverage LLMs for customer service,
[119] propose using RAG to retrieve and integrate historical
issues. They create an attributed knowledge graph where nodes

represent past issues and edges denote their connections. Each
node includes a tree structure of the issue’s information,
capturing both inter-issue and intra-issue relationships to
improve question answering. Recent studies have extended
graph structures to more sophisticated forms. For example,
StructRAG [14] considers five candidate structure types tailored
to different knowledge-intensive tasks: tables for statistical
tasks, graphs for long-chain tasks, algorithms for planning
tasks, catalogs for summarizing tasks, and chunks for simple
single-hop tasks. A DPO-based router is trained to determine
the optimal structure for representing knowledge in each case.

2) GraphRAG with existing KGs: This line of research
focuses on utilizing well-established knowledge graphs, which
can be either domain-specific—such as Lynx [120] for multilin-
gual compliance services in the legal domain, AceKG [121]] for
academic applications, SPOKE [122] for biomedical applica-
tions, STRING [123]] for protein-protein interaction prediction,
— or general-purpose, like DBpedia [124] and YAGO [125]].
The central challenge is to develop planning algorithms that
dynamically retrieve reasoning paths or subgraphs from these
KGs, tailored to the specific characteristics of the queries and
the underlying graph structures. Researchers are investigating
techniques to efficiently navigate these large-scale graphs,
aiming to extract meaningful insights while ensuring the
retrieved information is both relevant and concise.

The retrieval of reasoning paths typically involves generating
relation paths grounded in KGs as plans, which are then
used to extract factual knowledge from the KGs in the form
of reasoning chains (relation paths with anchored entities).
ProLLM [45] applies graph-based RAG to predict protein-
protein interactions, modeling signaling pathways as reasoning
processes where biological signals pass from upstream proteins
through intermediates to downstream proteins via the shortest
path. Approaches such as RoG [42] and KGR [43] directly
utilize LLMs as planning agents to identify optimal plans.
To address the low recall of reasoning paths caused by the
incompleteness of KGs, ToG [22] employs a beam search
algorithm to dynamically explore the most probable relational
triples, forming coherent reasoning chains. Its successor, ToG-
2 [23]], enables joint retrieval from a KG and textual documents,
through alternating between logic chain extensions on KGs that
explore neighboring entities of current ones, and contextual
knowledge expansion from retrieved relevant documents. In
the biomedical domain, KG-RAG [126] focuses on retrieving
accurate and trustworthy biomedical contexts. It optimizes the
retrieval process by using techniques such as disease entity
recognition, context pruning, and leveraging a biomedical
KG [122]. To optimize the planning process, KnowGPT [7]]
formulates the exploration of plans as a planning problem
and solves it using deep reinforcement learning. Meanwhile,
KELP [44]] adopts a simpler semantic-matching strategy,
encoding both the question and candidate knowledge paths
in an encoder fine-tuned on a latent semantic space, and
selecting the knowledge paths with the smallest semantic
distance. To balance precision and recall in reasoning chain
retrieval, subgraphRAG [46] introduces a lightweight multilayer
perceptron to extract subgraphs, discovering key facts within
the KGs. This method allows the subgraph size to be adjusted,



achieving an efficiency-effectiveness trade-off. More details
about the retrieval techniques are presented in Section

3) Limitations: Although using graphs as knowledge carriers
is efficient and effective, these methods are limited in several
aspects: (7) Lack of high-quality KGs. For directly using KGs
as external knowledge bases, this line of research is constrained
by the availability of high-quality KGs. Constructing KGs
is resource-intensive, and although powerful KG refinement
techniques [127]—[132] have been developed to improve KG
completeness, most publicly available KGs remain far from
comprehensive. Furthermore, the absence of a unified ontology
poses challenges to designing transferable planning algorithms.
These limitations have motivated recent research to focus
on constructing KGs from corpora. However, this line of
work introduces additional challenges: (i) Trade-off between
efficiency and effectiveness. When constructing KGs from
text corpora, the granularity of the extracted knowledge
plays a crucial role in balancing efficiency and effectiveness.
Preserving fine-grained information results in larger, more
detailed KGs, which can hinder computational efficiency.
Conversely, compact KGs may sacrifice important details,
leading to potential information loss. This trade-off complicates
the knowledge summarization process. Moreover, approaches
like GraphRAG [25] and GraphReader [40], which leverage
LLMs for knowledge summarization, face additional challenges
due to the high computational costs associated with LLMs.

C. Hybrid GraphRAG

This paradigm utilizes graph structures both as carriers of
knowledge and as indexing tools. A common approach involves
constructing a graph that encapsulates key information from
the original text, with each node linked to corresponding text
chunks. These text chunks act as a complementary knowledge
source, providing detailed contextual information.

To enhance long-context summarization, GoR [47] constructs
a graph by creating nodes for text chunks and their LLM-
generated responses to simulated queries, with edges linking
the queries, the retrieved text chunks, and the responses. This
structure captures complex correlations among the elements
through query-specified indexing, offering a comprehensive
representation for effective long-context global summarization.
In the medical domain, MedGraphRAG [48]] introduces a
unique triple graph construction. This approach creates a
triple-linked structure that connects user documents to cred-
ible medical sources and controlled vocabularies, utilizing
medical domain relations. This facilitates evidence-based
medical responses with enhanced safety and reliability when
handling private medical data. To enhance repo-level code
tasks, CodexGraph [49]] uses static analysis to construct a
code graph that links source code symbols (e.g., MODULE,
CLASS, FUNCTION) through edges denoting relationships
(e.g., CONTAINS, INHERITS, USES). This graph acts as a
knowledge carrier by implying the workflow or data flow of
the code and serves as an index for the metadata (source code
pieces) associated with each node.

V. KNOWLEDGE RETRIEVAL

Based on the well-built knowledge base with graph-based
organization strategies, we need to conduct retrieval from
the knowledge base. Specifically, given a user query and
a graph knowledge base with dense information, retrieving
factual information relevant to the given query from the
knowledge base is very important in developing effective
and efficient GraphRAG systems. This retrieval process forms
the cornerstone of a robust GraphRAG architecture, directly
impacting its overall performance and utility. In this section,
we will introduce current knowledge retrieval methods for
graph-based retrieval-augmented generation in detail.

A. Overall Pipeline of Knowledge Retriever

The knowledge retrieval process in GraphRAG focuses
on extracting relevant background knowledge from a graph
database in response to a given query. This process follows
three distinct and sequential steps that transform raw graph
data into usable, contextual knowledge. The overall process of
knowledge retrieval is shown in Figure [5]

1) Query/Graph Preprocessing: The preprocessing stage
operates simultaneously on both the query and graph databases
to prepare them for efficient retrieval. For query preprocessing,
the system transforms the input question into a structured
representation through vectorization or key term extraction [34]],
[50], [51f]. These representations serve as search indices for
subsequent retrieval operations. On the graph side, the graph
database undergoes more comprehensive processing where pre-
trained language models transform graph elements (entities,
relations, and triples) into dense vector representations that
serve as retrieval anchors [23]], [33], [52], [60]]. Additionally,
some advanced retrieval models apply graph neural networks
(GNNs) on the graph database to extract high-level structural
features, while a few methods even adopt rule mining algo-
rithms to generate rule banks as rich, searchable indexes of
the graph knowledge [22], [31], [54], [57].

2) Matching: The matching stage establishes connections
between the preprocessed query and the indexed graph database.
This process compares the query representations against
the graph indices to identify relevant knowledge fragments.
The matching algorithm considers both semantic similarity
and structural relationships within the graph. Based on the
matching score, the system retrieves connected components
and subgraphs that demonstrate high relevance to the query,
creating an initial set of candidate knowledge.

3) Knowledge Pruning: The pruning stage refines the ini-
tially retrieved knowledge to improve its quality and relevance.
This refinement process addresses the common challenge of
retrieving excessive or irrelevant information, particularly when
dealing with complex queries or large graph databases. The
pruning algorithm applies a series of refinement operations to
consolidate and summarize the retrieved knowledge [7]], [32],
[52]. Specifically, the system first removes clearly irrelevant
or noisy information. It then consolidates related knowledge
fragments and generates concise summaries of complex graph
knowledge. The purpose of knowledge summarization is to
facilitate comprehensive knowledge synthesis, which is vital
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Fig. 5: Illustration of the overall pipeline of knowledge retrieval.

for the generation process of LLMs. By providing a distilled
and focused summary, we enable LLMs to better understand
the context and nuances of the information, leading to more
accurate and meaningful responses.

B. Retrieval Techniques

In this subsection, we provide a comprehensive overview of
the various retrieval techniques employed in the GraphRAG
knowledge base. These techniques can be broadly categorized
into six main classes, including string matching, semantic
similarity, logical reasoning, LLM-based approaches, RL-based
methods, and GNN-based models, as shown in Table

1) Semantics Similarity-based Retriever: The semantic
similarity-based retriever primarily conducts appropriate answer
retrieval by measuring the similarity between queries in discrete
linguistic space or continuous vector space and the knowledge
base [32], [34), [50]-[52].
Discrete space modeling methods primarily leverage linguistic
discrete statistical knowledge to directly model text strings,
which is a kind of simple and straightforward retrieval technique
that relies on the exact matching of query terms with entities
and relations in the graph base. It employs algorithms like
substring matching, regular expressions, and exact phrase
matching to identify relevant nodes and edges [23], [51], [60],
[84]], [133]]. Although straightforward to implement, string
matching is limited by its inability to handle variations in
terminology, synonyms, and contextual nuances. Despite these
limitations, it serves as a foundational approach, especially
useful in domains with well-defined vocabularies and minimal
ambiguity. (ii)) Embedding space modeling. Embedding space
modeling techniques are employed to evaluate the contextual
and conceptual connections between queries and the elements of
a graph base to transcend the constraints of string matching [32],
[34], [50], [52]. Utilizing approaches like pre-train language
models and word embeddings, such as TF-IDF, Word2Vec,
and GloVe [134], [135]], these methods capture the semantic
ties that bind different components. By mapping both queries
and graph entities into a continuous vector space, these
sophisticated techniques enable the retrieval of semantically
pertinent information, bridging gaps even in the absence of
precise term matches. However, the limitation of semantics
similarity-based models is that they neglect the full exploitation
of graph structures resulting in a significant underutilization
of the inherent advantages of graph bases.

(i) Discrete space modeling.

2) Logical Reasoning-based Retriever: Logical rule-based
retrieval employs symbolic reasoning to deduce and extract
pertinent information from graph knowledge bases. This
methodology encompasses the creation of logical rules and
constraints that articulate the relationships and hierarchies
intrinsic to the knowledge bases. Utilizing techniques such
as rule mining [54f], inductive logic programming [136], and
constraint satisfaction [42]], this approach uncovers insights
that may not be explicitly present in the data. By harnessing
these logical inferences, GraphRAG systems are capable of
retrieving information that is congruent with the underlying
structure and semantics of the graph bases.

3) GNN-based Retriever: Graph neural networks (GNN5s)
have become a mainstream tool for graph modeling and
mining, achieving significant results in tasks such as node
classification [[137]]-[140] and link prediction [[141]-[|143]]. The
message-passing mechanism in GNNs operates by iteratively
aggregating information from a node’s neighbors to update its
own representation, enabling the network to learn from the
structure and features of the graph [137], [[144]. GNN-based
knowledge retriever primarily utilizes graph neural networks
to encode nodes within the constructed graph bases [31],
[571, [57], [58], [62] . The localizing and positioning of
knowledge mainly rely on the encoding similarity of the
node representations that contain both sentiment meanings and
structural relationship understandings. GNN-based retrievers
require the training of a GNN encoder. Additionally, due to
the lack of explicitly labeled data, the focus of training is on
designing an appropriate loss function that enables the GNN
to learn to accurately locate the target knowledge through
representation encoding.

4) LLM-based Retriever: With the advent of powerful LLMs,
retrieval techniques have increasingly incorporated these models
to enhance the semantic understanding and contextual relevance
of the retrieved information. LLM-based retrieval leverages
the deep contextual embeddings and generative capabilities of
LLMs to interpret queries, generate relevant queries for the KG,
and even synthesize information from multiple sources within
the knowledge bases [22], [23]], [26]. These models can perform
tasks such as query expansion, contextual disambiguation, and
the generation of tailored retrieval paths, thereby improving
the overall effectiveness of the retrieval process. Regarding the
constructed graph base, the LLM-based knowledge retriever
primarily focuses on leveraging the LLM to comprehend the
graph and identify key subgraphs. Compared to methods



TABLE II: Representative knowledge retrieval techniques and strategies used in different GraphRAG Systems.

Catagory GraphRAG Model Input Implementation Details Output
Query Side Graph Side Query/Graph Preprocess Matching Pruning method
StruGraphRAG [50 query embedding entity embedding BERT/BERT similarity calculation X literal context
CancerKG [51 keywords entity NA/NA TF-IDF X tabluar results
Similarity-based G-Retriever |52} query embedding  entity/relation embedding SentenceBert/SentenceBert k-nearest neighbors PCST subgraph
i PG-RAG [32] query embedding Pseudo-Graph SentenceBert/SentenceBert depth-first search PGR literal context, path

CCG node
entity description

GraphCoder ]34
MedGraphRAG 48

query slice
query

CodeBERT/CodeBERT
SentenceBert/SentenceBert

Jaccard index
top-down search

subgraph edit distance
bottom-up refine

code snippet
triple

RoG [42 query embedding relation path Llama2/path generation breadth-first search LLM agent reasoning path
§ RD-P |53 query embedding topic entity RoBERTa/RoBERTa path expansion path discriminator reasoning path
& Logical-based RuleRAG 54] query embedding rule bank Llama2/rule mining similarity calculation literal context, path
;_:i KGL [55 query embedding clarification path Roberta/path generation similarity calculation X literal context
& RiTeK [56] query embedding triple graph SentenceBERT/SentenceBERT MCTS/R-MCTS LLM agent reasoning path
E GNN-Ret [31 subquestions graph feature SentenceBERT/RGNN DPR X subgraph
'E GNN-based SURGE [57] query embedding triple embedding T5-small/GNN similarity calculation DHT triple
& GNN-RAG [58] query embedding graph feature NA/GNN similarity calculation X literal context
KGP [33] query embedding  passage (node description) T5/T5 TF-IDF LLM agent literal context
Graph RAG [25] query community summary X/community detection LLM agent X literal context
LLM-based ToG [22] query embedding relation path Llama2/relation exploration beam search LLM agent reasoning path
LightRAG 26 keywords entity, global keys GPT-40/GPT-40 keyword-search global keyword match literal context
MEG [59] query embedding graph feature SapBERT/SapBERT token generation disambiguation literal context
TQA-KG 60 keyword triple entity extract/X keyword-search LLM agent subgraph
RL-based KnowGPT [7 query embedding  entity/relation embedding BERT similarity calculation RL agent reasoning path
) Spider |61 query embedding entity embedding NA similarity calculation RL agent subgraph
. DialogGSR [62] query embedding linearized graph T5/TS subgraph generation X linearized subgraph
é" Multi-round Graph-CoT [63] query embedding entity embedding Llama2/Llama2 similarity calculation LLM agent subgraph
g GoR [47 query embedding entity embedding Mixtral-7B/GAT similarity calculation X literal context
7]
= Post-retrieval CoK [64 pseudo evidence triple NA/NA F2-Verification X final answer
E KGR [43 claim entity, triple claim extraction/NA claim verification X final answer
=
& Hybrid Retrieval StructRAG |14 query embedding entity embedding Qwen2/Qwen2 similarity calculation LLM agent literal context
Y ToG 2.0 [23] keyword entity, relation keyword extract/NA similarity calculation entity/relation prune literal context, path

based on semantic similarity, it provides more powerful
text representations. Specifically, the LLM-based knowledge
retriever capitalizes on the formidable comprehension and
generation prowess of LLMs to interpret the query and extract
or synthesize pertinent candidate instances. Utilizing similarity-
based retrieval strategies, it calculates the affinity between these
candidates and the nodes within the graph, thereby identifying
the most pivotal subgraph segments. For instance, PG-RAG [32]]
initially employs LLMs to generate key points corresponding
to the query. Subsequently, it identifies seed nodes within the
graph by computing a similarity matrix. Starting from these
seed nodes, it searches for candidate nodes and ascertains
their contribution to the seed nodes through a contribution
matrix. Ultimately, the path (fact trajectory) with the highest
cumulative contribution is selected as the retrieved collection of
node information. On the constructed hierarchical tree, Thought
Graph [145] employs LLMs to recursively expand and vote
on the generated biological process terms with the prompt,
selecting the term set that most accurately describes the gene
set. HOLMES [146] begins the process by leveraging the
named entities extracted from the question as the foundation
for a breadth-first traversal of the entity-document graph. By
harnessing the capabilities of an LLM, it extracts KG triples
from the document nodes and elevates them to a hyper-relations
KG. Subsequently, the hyper-relations KG undergoes pruning
through the computation of cosine similarity between relational
embeddings, thereby ensuring that only the information most
pertinent to the question is preserved. In general, the LLM-
based retriever can guide the model through the use of prompts
without model training. The need for retriever training arises
when there is a requirement to utilize the retrieval results
to guide the LLM in reflecting on or fine-tuning its existing
knowledge to enhance its capability [42]. Recent studies also
reveal the capability of LLMs to achieve few-shot or zero-shot
transferable performance in graph-related tasks [[147]-[149],

showcasing their potential for resource-constrained scenarios
involving large-scale and diverse graphs.

5) Reinforcement Learning-based Retriever: Reinforcement
learning (RL) provides an adaptive and dynamic strategy for
retrieval within GraphRAG systems. By framing the retrieval
process as a sequential decision-making challenge, RL-based
methods enable an agent to learn and traverse the graph
base in search of the most pertinent information, guided by
environmental feedback. Advanced techniques like Deep Q-
Networks [[150]], Policy Gradients [151]], and Actor-Critic [|152]]
methods are deployed to refine retrieval strategies progressively.
This methodology endows the system with the capacity to
enhance its retrieval performance continuously through active
interaction and accrued experience. This process can be
described as follows: The relevant reasoning background lies
in a question-specific subgraph G,y that contains all the source
entities Qg, rarget entities Q;, and their neighbors. An ideal
subgraph Gy, is expected to have the following properties:
(i) Gsup encompasses as many source and target entities as
possible; (ii) The entities, and relations within Gg,, exhibit a
strong relevance to question context; (iii) Gy is concise with
little redundant information such that it can be fed into LLMs
with limited lengths. However, it is challenging to find such a
Gsup since extracting a subgraph is NP-hard. To effectively and
efficiently find a satisfactory G, some researchers develop
tailored knowledge extraction methods that employ deep RL to
sample reasoning chains in a trial-and-error fashion [/7]], [61].

C. Retrieval Enhancement Strategies

Based on the retrieval technologies, some strategies are
designed to enhance the retrieved resources, aiming to improve
the relevance of target queries. We will introduce insights of
these strategies in this subsection.

1) Multi-round Retrieval: Beyond static retrieval techniques,
some GraphRAG systems incorporate contextual information



TABLE III: Representative fine-tuning knowledge integration techniques used in GraphRAG systems.

Category Model Input Format Preprocess Applied (L)LMs
Node-level SKETCH [65] Node attribute Concatenate Node Attribute LLAMA3-8B
GraphGPT [66] Node attribute & Graph Embeddings Learning Node Embeddings Baichuan-7B
GLRec [67]] User-item description Path Weight Calculation LLAMA-7B
Path-level KGTransformer [[68]  Sampled Knowledge Graph Sequence None Transformers
MuseGraph [69] Node Path & Node attribute COoT LLAMA-7B
RoG [42] Knowledge Graph Path Instruction Generation LLaMA2-Chat-7B
RHO [70] KG Embeddings & KG SubGraph None BART
Subgraph-level GNP [[71] Graph & Query Embeddings None FLAN-T5-xlarge
InstructGLM [72] Node attribute & Graph Embeddings  Flatten subgraph to sequence LLAMA-7B
LLAGA [73] Node attribute & Graph Embeddings  Flatten subgraph to sequence Vicuna-7B

and user feedback to refine and adapt the retrieval process
dynamically, which we call multi-round retrieval. These ap-
proaches aim to gradually align the retrieval mechanism more
closely with specific use cases and evolving user intents [47],
[62]], [63]l.

2) Post-retrieval: Traditionally, GraphRAG mainly adopted
prior retrieval, which means the retrieval process is conducted
before generation. Recently, a new type of post-retrieval strategy
has received more and more attention [43]], [64]. This kind of
method conducts retrieval after the generation process. In this
way, the retrieved results can be adopted to evaluate whether
the generated answers are faithful and accurate. The evaluation
can be used as the guidance for LLM rethinking and correcting.

3) Hybrid Retrieval: Combining different forms of data for
retrieval can integrate their strengths and complement their
weaknesses. In GraphRAG systems, there are also some recent
works that adopt both graphs and other data architectures
to collaboratively finish the RAG process. Specifically in
recent years, to enhance the scope of the retrieval candidates,
Graph+Vector RAG [119], [[153] combine the knowledge graph
and the vector database as the retrieval sources and integrate
the retrieved results for the answer generation. For example,
ToG-2 [23]] performs joint retrieval on a knowledge graph and
text documents. It begins with entities identified from the query
and iteratively retrieves relevant knowledge. Due to the static
nature of knowledge graphs, to further ensure the timeliness
and accuracy of the retrieved information, some efforts have
begun to combine knowledge graphs with online web resources
for joint retrieval, which can be summarized as Graph+Online
Web Resource RAG [154]-[159]. Further, K2 [160] explores
the LLM tuning with multiple retrieval sources, such as the
textual corpus, self-instructed LLM knowledge, and online
web resources. In future works, hybrid RAG with multiple
retrieval resources simultaneously can be a potential research
direction for complex LLM system building under a wide range
of knowledge.

D. Discussions

The true magic of graph-based knowledge resources lies in
their supernatural ability to connect data while being flexible
and scalable during retrieval. Graphs can seamlessly integrate
various data sources, including structured and unstructured
data. This fusion creates a unified view of information, often
revealing hidden connections and patterns. Advanced graph
knowledge bases incorporate ontologies and semantic schemas,

providing formal definitions for concepts and their interrela-
tionships within a domain. While traditional retrieval methods
are like tourists asking random pedestrians for directions,
GraphRAG is the mayor who knows every nook and cranny of
the city. It doesn’t just look at individual buildings (or pieces
of information); it sees the entire cityscape, considering the
intricate network of streets, neighborhoods, and communities.
This bird’s-eye view allows GraphRAG to navigate these streets
with the efficiency of a seasoned cab driver who knows all the
shortcuts. Here is a vivid example: Let’s consider GraphRAG
to be a sophisticated urban planning and information retrieval
system for the knowledge base aka city. This system operates
in two main phases: planning and retrieval.

In the planning phase, the city planners (LLMs) first divide
the urban landscape (source documents) into manageable
districts (concepts). They then survey each district, identifying
key landmarks and connections (element instances) - think
of this as mapping out important buildings, parks, and the
roads connecting them. These individual elements are then
summarized into concise descriptions (element summaries), like
creating brief profiles of each neighborhood landmark. Next,
using advanced urban analysis tools (community detection
algorithms like Leiden), the planners group these elements
into natural communities, much like identifying distinct neigh-
borhoods or boroughs within the city. Finally, they craft
detailed “neighborhood reports” (community summaries) for
each of these communities, providing a rich, multi-layered
guidebook to the entire city. This indexing phase creates
a comprehensive, hierarchical understanding of the urban
landscape, from individual buildings to entire districts.

After the planning, we obtain a high-quality graph knowl-
edge base. Then, when it comes to retrieval, GraphRAG
shines in handling citywide inquiries. Instead of dispatching
surveyors to random locations, it consults the pre-prepared
neighborhood reports. Each community contributes its local
perspective to the broader question, like local town halls holding
simultaneous meetings (community summaries to community
answers). These local insights are then synthesized into a
comprehensive city report (global answer), much like an
urban planner combining feedback from various boroughs to
understand citywide trends. This approach proved particularly
effective for ”global” questions about the entire urban landscape,
outperforming traditional methods in both the breadth and
diversity of insights offered.



VI. KNOWLEDGE INTEGRATION

The knowledge retrieval phase is crafted to gather pertinent
documents from various external sources in alignment with a
specified query. Following this, the integration phase focuses
on seamlessly synthesizing documents obtained from knowl-
edge retrieval into a cohesive prompt, simultaneously setting
appropriate training goals for the purpose of optimization. Rec-
ognizing that LLMs form a sturdy and foundational framework,
the exploration during the integration phase predominantly
steers clear of modifying the internal structure of individual
layers or necessitating a complete reinitialization of LLMs
for training. In this section, we delve into the comprehensive
pipeline, relevant technologies, and strategies for enhancing
knowledge integration.

A. Overall Pipeline of Knowledge Integration

Integrating graph-retrieved knowledge into LLMs mainly
includes two main ways: fine-tuning and in-context learning.
The overall pipeline of these integration methods can be
summarized as follows.

Fine-tuning. To directly leverage information retrieved from
graph searches to enhance open-source LLMs, fine-tuning
offers a straightforward solution for the integration, such as
LoRA-based tuning [8], [161] and other data-efficient fine-
tuning strategies [[162], [163]]. It injects the retrieved knowledge
directly into the LLMs, focusing on graph-retrieved information
at three knowledge levels: node-level knowledge, path-level
knowledge, and subgraph-level knowledge for model tuning.
In this way, graph information from different levels enhances
the different capabilities of LLMs.

In-context Learning. While numerous open-source LLMs
have been released to date, many state-of-the-art LLMs remain
closed-source in practice. The integration of closed-source
LLMs is constrained since it is not feasible to jointly train
or fine-tune closed-source LLMs in an end-to-end manner.
Thus, in-context learning provides an indirect strategy for
knowledge integration, which can be roughly decomposed
into two steps: prompt format choice and LLM response
optimization. (i) Prompt format choice: The choice of prompt
format is crucial for knowledge integration. This is because
LLMs are highly sensitive to the prompt format. For example,
the order of examples in in-context learning can lead to different
responses [164], [165]. (ii) LLM response optimization: Then
the appropriate prompt format joins the retrieved content and
the questions as input to prompt the LLMs for response
generation or further optimization.

B. Integration Techniques

1) Fine-tuning Techniques: The fine-tuning process, lever-
aging various graph information, can be delineated into three
distinct categories based on the granularity of the input target:
(i) Node-level Knowledge: Focusing on individual nodes within
the graph. (ii) Path-level Knowledge: Concentrating on the
connections and sequences between nodes. (iii) Subgraph-
level Knowledge: Considering larger structures composed of
multiple nodes and their interconnections. We will explore
each of these aspects in detail.

Fine-tuning with Node-level Knowledge. In many graph-
based RAG systems, each node is linked to a document, such
as an abstract in a citation network [168]. Since domain-
specific data is seldom present in pre-training corpora [[160],
some studies employ instruction tuning to bolster domain-
specific knowledge comprehension before proceeding with
downstream task fine-tuning [[169], [170]. A straightforward
fine-tuning approach involves feeding node and neighboring
text as contextual information into LLMs to aid in predictions
[65], [157]], [171]. Given that retrieved documents can be
extensive, researchers can leverage LLMs to distill these texts
into a single embedding [12]. Despite the absence of pre-
training data for out-of-vocabulary tokens, LLMs are capable of
discerning the information within these embeddings in practice
[172]. To augment the information within these embeddings,
alignment techniques are integrated to fuse multi-modal data,
such as images [|66].

Fine-tuning with Path-level Knowledge. Linguistic tasks
often involve intricate reasoning and require a clear understand-
ing of factual relationships [[173]]. Utilizing knowledge graph
paths, LLMs are guided through the transitory relationships
and entities, thereby enhancing their reasoning capabilities with
evidence-based support [174]. These paths can either be the
most direct routes from question entities to answer entities
or be mined using graph retrieval models [[167] or heuristic
methods [[69]. They can function as both input and output, but
when multiple paths exist between two nodes, it is crucial to
filter out noisy paths while preserving the relationships within
the knowledge graph [67]]. To maintain the integrity of entity
representations and their relationships along the paths, certain
approaches focus on using these paths as training objectives,
predicting nodes and relations along a path between two nodes
[68] or even across multiple paths [42]. This enables LLMs to
engage in edge-level reasoning and produce reliable outputs.

Fine-tuning with Subgraph-level Knowledge. A subgraph
represents a segment of a graph, encompassing a subset of
nodes and edges from the original structure. Unlike the linear
topology of path data, subgraph data exhibits a more complex,
irregular topology [66]. This complexity arises because sub-
graphs can contain a multitude of connections beyond those
found in paths, allowing them to capture intricate relationships
between nodes and posing a greater challenge for LLMs to
learn [[73]], [175]]. One straightforward approach is to employ
a graph encoder to condense subgraph-level information into a
readout embedding [52], [[71]]. Alternatively, some researchers
transform graph data into sequences, leveraging LLMs’ inherent
strength in processing sequential data, such as executable
graph database queries [[176]. However, these methods often
overlook the rich textual content within subgraphs and fail to
make LLMs cognizant of the underlying graph structure. To
address this, efforts are divided: some focus on adapting the
transformer architecture to better handle structured data [70],
[L177], [178]], while others incorporate descriptions of nodes and
edges directly into the prompt [72], [179]]. However, there still
remain challenges for existing methods. The former risks losing
knowledge acquired during pre-training due to architectural
alterations, while the latter may struggle with dense graphs
featuring a large number of nodes and edges.
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TABLE IV: Representative in-context learning knowledge integration techniques used in GraphRAG systems.

Methods Applied LLMs Zero-shot Few-shot CoT  Graph Query Release Time
LARK [74] LLaMA-2 X X v v May-2023
Chain-of-Knowledge [75] GPT-3.5 X v v X May-2023
Think-on-Graph [22] GPT-4, GPT-3.5, LLaMA-2 X v v X Jul-2023
MindMap [76] GPT-3.5 v v v X Aug-2023
KnowledGPT [77] GPT-4 v X v v Aug-2023
Align-NL2GQL [166] Qwen, Baichuan2, ChatGLM X X X v Feb-2024
Graph-CoT [63] LLaMA-2, Mixtral, GPT-3.5 X v v X Apr-2024
GNN-RAG [167] LLaMA-2, GPT-3.5 v X X X May-2024
FMEA-KG [78] GPT-4 X X X v Jun-2024
KELP [44] GPT-3.5 X v X X Jun-2024
CogMG [80] Qwen X v X X Jun-2024
EtD [79] LLaMA-2 v X X X Jun-2024

2) In-context Learning Techniques: Recent research on
knowledge integration through in-context learning (ICL) has in-
troduced sophisticated frameworks that can be broadly divided
into two stages: (i) Graph-enhanced Chain-of-Thought: This
approach leverages graph structures to enhance the reasoning
process within LLMs. (ii) Collaborative Knowledge Graph
Refinement: This method highlights the distinct techniques
used in optimizing LLM responses through collaborative
refinement of well-built knowledge graphs.

Graph-enhanced Chain-of-Thought. Since Chain-of-
Thought (CoT) has demonstrated effective performance im-
provement and scalability [[180], CoT-based prompting tech-
niques on knowledge integration also elicit strong potential
in complex multi-hop reasoning. The Graph-enhanced CoT,
such as Reasoning on Graphs [42], emphasizes chain reasoning
based on the interaction between graphs and LLMs. Think-on-
Graph [22], [23]] proposes a reasoning framework based on
the KG-LLMs interaction; LLMs are required to retrieve the
relevant sub-graph of the proposed keyword first, then deduce
the final result through chain reasoning. Similarly, in Graph
CoT [63]], given a question, LLM reasons the key component
in the external graph that is required for the final answer, then
uses a multi-round graph execution and interaction to finish
the chain reasoning that concludes the final answer. Chain-
of-Knowledge [73]], firstly constructs exemplars that answer
the given question based on evidence triples retrieved from
the knowledge base, then utilizes faithfulness and factuality
verification to check the reliability of the chain prediction.
Program-of-Thought (PoT) [[181], [182] is also a well-designed
prompting technique that extends CoT prompting into coding
scenarios. Following this, the KnowledGPT [77] framework
uses PoT to generate the research language of knowledge
bases to retrieve the answer step by step. The CoT-based
methods achieve promising progress in knowledge integration
for GraphRAG, significantly improving the reasoning capability
of complex questions for LLMs. However, error accumulation
is still a severe problem in this ICL paradigm [183]], [[184].
To address this, research is being conducted to diversify
the reasoning paths that LLMs can take to reach the same
conclusion [185], [[186], which can help mitigate the effects
of error propagation. Additionally, the integration of visual
in-context learning for Large Vision-Language Models is being
explored to enhance cross-modal interactions and representation
alignment [[187], [[188]], which may provide further insights

into managing error accumulation in reasoning tasks.

Collaborative Knowledge Graph Refinement. Instead of
a well-designed prompting technique utilized to generate a
better prompt or elicit LLMs for better reasoning, refining the
LLM’s original response based on the factual knowledge in
knowledge graphs is also an effective method to prevent LLMs
from hallucination scenarios. The timeliness and accuracy of
knowledge graphs are crucial, as they greatly influence the
quality of augmented generation [63], [189], [190]. Maintaining
and refining the content in knowledge graphs through feedback
in LLM generation is an important strategy in GraphRAG.
Representatively, KG-based Retrofitting [43] is a framework
that combines LLMs with KGs to mitigate hallucination during
the reasoning process. It retrofits the initial draft responses
of LLMs based on the factual knowledge stored in KGs with
an autonomous knowledge verifying and refining procedure.
Similarly, KELP [44] refines a trainable encoder for path
selection based on the LLM’s response. The Explore-then-
Determine framework [79]] uses the integration of LLMs and
KGs to determine the final answer. CogMG [80] has designed
a framework for collaborative augmentation between LLMs
and KGs, leveraging KGs to augment LLMs in generations,
explicitly targeting incomplete knowledge. LLMs are then
required to identify and decompose required knowledge triples
that are not present in the KG, enriching them and aligning
updates with real-world demands. The collaboration between
KGs and LLMs aligns factual knowledge to ensure the
accuracy of generation and the up-to-date quality of KGs.
However, ensuring the correctness of the intermediate process
is challenging, and the accuracy of the refining process should
also be evaluated with tailored metrics [[191]-[193].

C. Integration Enhancement Strategies.

1) Training with other domain-specific models: Training
with domain-specific models is a critical approach to enhance
the capabilities of LLMs in handling multi-modal information
representations and to improve their performance on specific
tasks. (i) Enhancing Multi-modal Information Processing: Inte-
grating multi-modal information representations, such as image
representations learned by vision-language models [[194]], into
LLMs, is a significant advancement. These representations not
only reduce input lengths but also encapsulate rich information
from specific inputs. However, they also pose challenges for
LLMs, as they may be treated as out-of-vocabulary tokens,



hindering the full exploitation of the original multi-modal
information. Furthermore, recent efforts demonstrate the large
number of additional tokens especially in the extremely sparse
case where each additional token is only paired with a few
training samples can cause LLMs to perform even worse over
the small LMs [195]. To address this, recent efforts have
focused on fine-tuning LLMs with domain-specific models
to increase their generalization capabilities across different
domains [196]. (ii) Fine-tuning LLM with Domain-specific
Task: Fine-tuning an LLM involves using a pre-trained model
and refining its weights by training it on a small set of
annotated data with a slow learning rate. This principle allows
the language model to adopt new knowledge from the data
while retaining its initial learnings [197]]. Transfer learning,
a technique that allows a pre-trained model to apply its
knowledge to a new task, is particularly useful when sufficient
datasets for fine-tuning are not available [198]]. For instance,
MedPalLM [199] is a domain-specific model built upon PalLM,
which demonstrated exceptional performance in complex tasks
by using prompting strategies with annotated medical questions
and answers.

2) Multi-round Integration: The knowledge integration
of LLMs through a single round of interaction often falls
short of providing satisfactory answers. To address this is-
sue, researchers have been exploring multi-round integration
techniques that enhance the quality of responses from LLMs
for the following reasons: (i) Enhancing Retrieved Content
Quality: One of the primary reasons LLMs may fail to answer
questions effectively in a single round is the inconsistency
in the quality of retrieved content. To mitigate this, multi-
round integration allows for iterative refinement of the retrieved
information. For instance, the IM-RAG approach [200] inte-
grates retrieval systems with LLMs to support multi-round
RAG through learning Inner Monologues, which are akin
to the human inner voice that narrates one’s thoughts. (ii)
Handling Multi-hop Complex Reasoning: Complex questions
often require multi-hop reasoning, which can be challenging
for LLMs due to the complexity involved. To address this,
multi-round integration enables the generation of intermediate
reasoning steps, leading to more accurate reasoning results.
The study [201]] comprehensively analyzed the latent multi-
hop reasoning capabilities of LLMs. They found that while
LLMs can exhibit multi-hop reasoning, their performance is
significantly influenced by the structure of the prompt and
the relational information within. (iii) Aligning Output with
Target Labels: LLMs’ output may not always meet specific
requirements, such as aligning with target labels. To overcome
this, multi-round integration can help in aligning the model’s
output with the desired outcomes. The X-InSTA method [202]
proposes a cross-lingual in-context source-target alignment
strategy that aligns prompt examples in a cross-lingual scenario.
(iv) Multi-round Interaction for Quality Assurance: Multi-round
integration can better ensure the stability and quality of the
answers. For example, AgentPS [203] is another framework
that integrates agentic process supervision into LLMs via multi-
round question answering during fine-tuning, highlighting the
effectiveness of integrating process supervision and structured
sequential reasoning for multimodal content quality assurance.

D. Discussion.

The knowledge integration allows the users to inject domain-
specific knowledge into LLMs. When integrating, the following
aspects need to be considered for the design:

1) Computational Overhead: Incorporating retrieved text
into the input consumes a portion of the available input length.
The computational overhead may increase further due to the
complexity of handling graph-structured data from graph-
retrieved information. GraphRAG combines well-built graphs
with LLMs, which requires additional processing to retrieve
and manage graph elements such as nodes, triples, and paths.
This added complexity can lead to much higher costs. Given
that prompt processing time scales quadratically with the length
of the prompt, large retrieved texts can significantly amplify the
computational overhead for LLMs, especially in downstream
applications like billion-scale recommender systems [204],
[205]. To mitigate this, domain-specific knowledge should
be permanently integrated into LLMs through fine-tuning,
enhancing their responses, and tailoring them to specific
applications. This approach could lead to specialized LLMs
that reduce reliance on extensive text retrieval from external
sources, thereby improving response speed and reducing both
time and financial costs [206], [207]. For instance, deploying
GPT-4 for pilot-scale customer service could incur costs in the
thousands of dollars, while fine-tuning a large language model
might require hundreds of gigabytes of memory. The practical
deployment of LLMs in real-world scenarios is thus heavily
influenced by these cost considerations.

2) Graph-structured Input: LLMs are not inherently
equipped to process graph-structured data. The common prac-
tice is to convert graph data into natural language descriptions,
such as explaining the connections between nodes [208], [209]].
However, these descriptions alone are insufficient for LLMs
to grasp the complex geometric properties of graphs. Graph-
structured data is a fundamental input format for numerous
tasks, including node classification and link prediction in text-
attributed networks. The success of LLMs in graph-related tasks
depends on their capacity to understand and process graph-
structured inputs. As graph reasoning tasks grow in complexity,
such as calculating the minimum cut problem for a randomly
generated graph, the importance of accurate input modeling
becomes even more critical.

3) Large-scale Graph: The scalability of models is crucial
for dealing with real-world graphs [210], [211]. Handling graph-
structured input becomes particularly challenging with large
graphs, where the number of edges and nodes may surpass
the input length limitations of LLMs. Therefore, efficiently
managing large-scale graph problems within the constraints of
LLMs is a significant area of research [212]. Advances in this
field could enable LLMs to handle more complex and larger
graphs, which is essential for real-world applications in fields
such as social network analysis, bioinformatics, and knowledge
graph construction.

VII. LIMITATIONS AND FUTURE OPPORTUNITIES

In this section, we systematically analyze several critical
limitations of existing GraphRAG systems regarding knowl-
edge quality, knowledge conflict, data privacy, and efficiency



TABLE V: Open-source Projects and Applications.

Model Domain Task Dataset Background Knowledge
Graph RAG |[25] General Domain Graph Construction, QA - Podcast Transcripts, News Articles
ToG [22] General Domain QA WebQSP, CWQ Freebase

ToG 2.0 [23] General Domain QA WebQSP, CWQ Freebase

RoG [42] General Domain QA WebQSP, CWQ Freebase
KnowGPT |[7] General Domain QA CommenconseQA, OpenbookQA ConceptNet
SubgraphRAG [46] General Domain QA WebQSP, CWQ Freebase
NQ-RAG [58] General Domain Graph Construction, QA NQ Wikipedia
LBR-GNN [213] General Domain QA CommonsenseQA,OpenbookQA Wikipedia, ConceptNet
SG-RAG |[214] General Domain QA MetaQA, LC-QuAD, ComplexWebQuestions Freebase
StructRAG [14] General Domain QA Loong, Podcast Transcripts -

R-DP [53] General Domain QA WebQSP, CWQ Freebase

GAIL [215 General Domain QA WebQSP, CWQ, GrailQA Freebase
KG-RAG 126] Biomedical QA MCQ SPOKE

MEG [59] Medicial QA MedQA, PubMedQA, MedMCQA UMLS
DialogGSR [62] Medical Dialog Generation OpenDialKG,KOMODIS Freebase, IMDb
ReTek [56 Medical Graph Construction, QA ReTek PharmKG, ADInt
KG4Diagnosis [216 Medical Graph Construction, Dialog Generation - SNOMED-CT, UMLS
CancerKG [51 Medical QA CancerKG PrimeKG, PubMed
MedGraphRAG [48 Healthcare, Medical QA MultiMedQA, DiverseHealth MedC-K, UMLS

AGENTiGraph [217] Legislation, Healthcare Graph Construction, QA

KGL [55] Water Conservancy Graph Construction, QA
SURGE [57] Movie Dialog Generation
TQA-KG [60] Education Graph Construction, QA

GraphFusion [218]
StructuGraphRAG [50]
Soccer-GraphRAG [219]

Scientific Research
Scientific Research
Soccer

Graph Construction, QA
Graph Construction, QA
Graph Construction, QA

LightRAG [26] Cross Domain Graph Construction, QA
PG-RAG |32 Cross Domain Graph Construction, QA
DiaKoP [136] Cross Domain Dialog Generation

Graph-CoT [63]
G-Retriever |52

Cross Domain QA
Mutiple Domain Graph Construction, QA

KGQS

UK Legislation, MMedC

Special Report
OpendialKG, KOMODIS Freebase, IMDb
TQA-KG CKI12-QA, AI2D
TutorQA NLP KG, TutorialBank, NLP-Papers
NSDUH Codebook
Soccer KG SoccerNet-Echoes
- UltraDomain
Mindmap CRUD
ConvQuestions Wikidata

GraphQA

ExplaGraphs, SceneGraphs, WebQSP

issues, and propose targeted research directions for practical
advancements.

1) Knowledge Quality: The effectiveness of GraphRAG
models fundamentally depends on the quality of the external
knowledge, necessitating the development of sophisticated
mechanisms for knowledge engineering. This encompasses
advanced techniques for (i) systematic knowledge organization,
(i) automated quality refinement, and (iii) intelligent knowledge
base expansion. First, knowledge organization demands more
expressive graph structures that capture complex semantic
relationships, temporal dynamics, and hierarchical dependen-
cies through hybrid neuro-symbolic approaches and advanced
embedding techniques. Second, knowledge refinement requires
automated quality assurance frameworks that leverage cross-
validation, statistical analysis, and machine learning to identify
inconsistencies, remove redundancies, and validate factual
accuracy. Third, knowledge expansion is critical in enhancing
GraphRAG systems’ practical effectiveness through continuous
knowledge enrichment and adaptation. The practical implemen-
tation of knowledge expansion typically combines multiple
approaches: automated web crawling for public information
updates, API integrations with authoritative databases, expert
feedback loops for validation, and machine learning models
for relationship inference. This multi-faceted approach ensures
robust and reliable knowledge growth while maintaining data
quality and relevance. The seamless integration of these
components, supported by a scalable infrastructure for dynamic
updates and version control, will be crucial for developing
robust GraphRAG systems across various applications.

Beyond traditional text-based knowledge, integrating multi-
modal information, including images and videos, offers promis-
ing opportunities to enrich the external knowledge databases
with more comprehensive domain expertise and conceptual
understanding. Equally crucial is developing robust knowledge

validation frameworks to ensure reliability and maintain data
integrity across different modalities. These frameworks should
incorporate advanced techniques from anomaly detection,
knowledge base completion, and alignment to systematically
identify and correct errors, address information gaps, and main-
tain consistency across the integrated knowledge base. Such
comprehensive approaches to knowledge quality assurance will
be fundamental in enhancing the reliability and effectiveness
of GraphRAG systems across diverse applications.

2) Knowledge Conflict: Integrating multiple knowledge
sources in GraphRAG models introduces significant chal-
lenges in managing conflicting information and maintaining
knowledge consistency. As such, another critical research
priority is developing sophisticated techniques for knowledge
reconciliation, conflict resolution, and truth discovery. These
approaches should incorporate advanced algorithms capable of
identifying contradictory statements, evaluating source reliabil-
ity, and determining the most probable accurate information
based on available evidence and contextual facts. Beyond
conflict resolution, ensuring seamless alignment between ex-
ternal knowledge and LLLM-generated outputs presents another
fundamental challenge. This alignment requires innovative
methods for knowledge distillation, fine-tuning, and cross-
modal integration to harmonize structured knowledge with
the LLM’s learned representations. Incorporating uncertainty
modeling and probabilistic reasoning frameworks offers a
promising direction for handling ambiguous or conflicting
information more effectively. By associating knowledge with
confidence scores and probability distributions, GraphRAG
systems can make more nuanced decisions and generate outputs
that accurately reflect the inherent uncertainty in the integrated
knowledge. This comprehensive approach to knowledge consis-
tency, combining conflict resolution, alignment techniques, and
uncertainty modeling, will be essential for developing more



robust and reliable GraphRAG systems capable of handling
real-world information complexity.

3) Data Privacy: The integration of external knowledge in
GraphRAG systems raises critical privacy concerns that demand
sophisticated technical solutions and robust governance frame-
works. Privacy-preserving knowledge integration and retrieval
represent critical challenges requiring advanced cryptographic
approaches, including secure multi-party computation, homo-
morphic encryption, and differential privacy mechanisms. These
techniques enable GraphRAG systems to leverage sensitive
information from knowledge graphs while maintaining strict
privacy guarantees for individuals and organizations. Beyond
technical solutions, developing comprehensive data governance
frameworks becomes essential for responsible deployment.
Such frameworks should establish clear standards for access
control, data handling protocols, and ethical guidelines that
align with evolving privacy regulations while maintaining
system utility. This dual focus on technical privacy preservation
and governance frameworks will be crucial in building trustwor-
thy GraphRAG systems that balance the competing demands
of knowledge accessibility and privacy protection, ultimately
enabling broader adoption across sensitive domains such as
healthcare, finance, and personal information management.

4) Efficiency: The practical deployment of GraphRAG
systems in real-world applications hinges critically on model
efficiency. Future work should investigate techniques for
optimizing the knowledge retrieval and integration processes
to reduce computational overhead and memory requirements.
This may involve exploring knowledge distillation, pruning,
and compression methods to create more compact and efficient
representations of domain knowledge. Developing scalable and
efficient algorithms for subgraph matching, graph traversal,
and reasoning is another important direction for future work.
By leveraging techniques from graph theory, database systems,
and parallel computing, researchers can enable faster inference
times and real-time generation of responses in GraphRAG
models. Furthermore, investigating hardware acceleration tech-
niques, such as utilizing GPUs and TPUs, can significantly
boost the performance of GraphRAG models. Exploiting the
parallelism and computational power of specialized hardware
can enable the efficient processing of large-scale knowledge
graphs and support the integration of extensive knowledge into
language models. Through advancements in these research di-
rections, future research can significantly improve the practical
applicability of GraphRAG systems by reducing computational
overhead, memory requirements, and response latency while
maintaining or enhancing system performance.

VIII. OPEN-SOURCE PROJECTS AND APPLICATIONS

The advent of GraphRAG has opened new avenues for
enhancing information retrieval and generation processes
through the integration of graph-based methodologies. As
researchers and developers explore the potential of GraphRAG,
a variety of open-source projects and applications have emerged,
demonstrating its versatility across different domains. This
section delves into the real-world implementation of GraphRAG
systems, including benchmark datasets, that serve as evaluation

standards and downstream tasks that gauge their effectiveness
in real-world scenarios. Additionally, it highlights notable
open-source projects that exemplify the implementation of
GraphRAG principles, paving the way for innovative applica-
tions in areas such as chatbots, knowledge management, and
research development.

A. Benchmark Datasets

We categorize representative datasets based on their com-
plexity and specific characteristics:
1) Simple Question Answering:

o SimpleQuestion [220] consists of 100k questions con-
structed from the Freebase knowledge graph. The dataset
emphasizes basic evidence retrieval without requiring
complex reasoning chains. Its straightforward nature
makes it ideal for evaluating baseline performance and
validating fundamental retrieval mechanisms in KGQA
systems. The questions are designed to test direct fact
extraction, making it a valuable resource for assessing
retrieval accuracy.

o WebQ [221]] comprises 4,737 questions, split into 3,098
training and 1,639 testing examples. The questions were
collected through Google Suggest API, capturing natural
user queries. Each question is annotated with SPARQL
queries, enabling systematic evaluation of semantic parsing
capabilities. The dataset leverages the Freebase knowledge
graph, providing a realistic test bed for question-answering
systems dealing with real-world information needs.

2) Multi-hop Reasoning:

o CWQ [222] extends WebQSP to 34,689 questions re-
quiring sophisticated reasoning patterns. The dataset is
carefully balanced across four question types: composition
(45%) involving multiple-step reasoning chains, conjunc-
tion (45%) combining multiple constraints, comparative
(5%) handling numerical or temporal comparisons, and
superlative (5%) dealing with maximum or minimum
value queries. Questions require up to 4-hop reasoning
paths, making it a comprehensive benchmark for evalu-
ating complex reasoning capabilities over the Freebase
knowledge graph.

o MetaQA [223] specializes in movie domain knowledge,
containing over 400k questions structured around a knowl-
edge graph with 135k triples, 43k entities, and 9 relations.
The dataset is organized into progressive difficulty levels
based on reasoning hop requirements. Each question
includes detailed annotations of head entities, answers,
and the entities involved in the reasoning path, providing a
controlled environment for evaluating multi-hop reasoning
capabilities.

o MetaQA-3 [223]] focuses specifically on 3-hop questions,
containing over 100k examples built on the WikiMovies
dataset. The knowledge graph encompasses 43k entities
and 135k triples. The training set typically uses 1,000
questions (1% of the total), making it particularly suitable
for evaluating models’ ability to generalize from limited
training data in complex reasoning scenarios.



3) Large-scale Complex QA:

LC-QuAD [224] contains 5,000 question-SPARQL pairs
based on DBpedia 2016. The dataset supports both public
endpoint access and local query execution, making it
versatile for different evaluation setups. It focuses on
testing systems’ ability to generate and execute complex
SPARQL queries accurately.

LC-QuAD v2 [225] expands to 30,000 question-query
pairs, supporting both Wikidata and DBpedia 2018. The
dataset provides 22,792 entity QIDs and 3,627 predicates,
offering broader coverage and increased complexity com-
pared to its predecessor. Its dual compatibility enables
comprehensive evaluation across different knowledge
graphs.

KQAPro [226] represents the largest KGQA dataset
with 94,376 training and 11,797 validation/test examples.
Built on a dense subset of Wikidata, it features multiple
inference types and logical operations including unions
and intersections. Each example provides both SPARQL
queries and KoPL logical forms, with entities and predi-
cates represented in their natural form rather than ID-based
notation.

4) Domain-specific QA:

Mintaka [227] contains 20k questions across 8 different
languages, focusing on logical refinement and answer
revision capabilities. The dataset emphasizes cross-lingual
reasoning and the ability to systematically improve an-
swers based on available evidence.

FACTKG [228]] encompasses 108,000 claims requiring
validation against DBpedia. The binary classification
task tests systems’ ability to verify factual accuracy
using knowledge graph information, providing a unique
perspective on knowledge validation capabilities.
WebQSP [229] features 4,737 natural language questions
operating over a vast knowledge graph containing 164.6M
facts and 24.9M entities. The questions are distributed
across different reasoning types: 30% require two-hop
aggregation, 7% involve constraint reasoning, and 63%
need single-fact retrieval.

GrailQA [230] focuses on complex question answering
over knowledge bases, incorporating advanced reasoning
patterns. The dataset challenges systems to demonstrate so-
phisticated query understanding and execution capabilities,
pushing the boundaries of KGQA system development.
TutorQA [218]] is a dataset specifically designed for
research in educational question answering and tutoring
systems. It consists of questions and answers extracted
from real-world tutoring interactions.

CRUD [231]] is constructed by collecting recent high-
quality news articles from major Chinese news websites,
which provides a fresh and challenging benchmark for
RAG systems.

UltraDomain [232] is a benchmark for evaluating RAG
systems on complex queries. It includes 428 college
textbooks across 18 domains, such as agriculture, human-
ities, and computer science, covering topics like machine
learning, and big data.
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B. GraphRAG Applications

GraphRAG systems have emerged as a powerful frame-
work for real-world applications, offering robust solutions to
challenges across diverse domains by leveraging graph-based
representations of knowledge. These systems excel in tasks like
QA, dialog generation and other natural language processing
tasks, where they integrate structured and unstructured data to
enable advanced reasoning and contextual understanding. Their
versatility stems from their ability to utilize a wide range of
datasets and background knowledge, adapting to the specific
needs of various fields.

In the general domain, GraphRAG models such as Graph
RAG [25]], SubgraphRAG [46], and StructRAG [14] are
designed to handle tasks that require broad contextual un-
derstanding. These models utilize extensive knowledge sources,
including Freebase, Wikipedia, ConceptNet, and even unstruc-
tured data such as podcast transcripts and news articles. By
constructing graphs that represent relationships between entities,
these systems are capable of answering complex queries that
go beyond simple fact retrieval. For example, GraphRAG
models can synthesize information from different domains to
address multifaceted questions, making them highly effective
for general-purpose knowledge exploration and reasoning.

In the biomedical and medical domains, GraphRAG
systems have proven particularly impactful. Models like KG-
RAG [126], MEG [59]], and MedGraphRAG [48§]] are tailored
to handle the intricate and high-stakes nature of medical data.
They rely on specialized datasets such as PubMedQA, MedQA,
and UMLS, which provide rich sources of structured medical
knowledge. By constructing graphs that capture relationships
between medical concepts, these models can assist in a
range of tasks, including medical QA, diagnostic support,
and the integration of healthcare data. For instance, KG-
RAG leverages knowledge graphs to link symptoms, diseases,
and treatments, enabling healthcare professionals to access
accurate and interpretable insights. Similarly, MedGraphRAG
addresses the need for personalized healthcare solutions by
integrating multimodal data from sources like MultiMedQA
and DiverseHealth.

In legislation area, GraphRAG systems like AGENTi-
Graph [217]] bridge the gap between regulatory requirements
and practical applications. AGENTiGraph focuses on integrat-
ing legislative and healthcare-related knowledge graphs to
address domain-specific QA tasks. By utilizing datasets such
as UK legislation and MMedC (medical corpora), this model
enables the navigation of complex regulatory environments,
such as understanding compliance requirements in healthcare
or analyzing the implications of new policies. This integration
of structured legislative data and healthcare knowledge allows
AGENTiGraph to support decision-making processes in areas
where legal and medical considerations intersect.

In the realm of education and scientific research,
GraphRAG systems like TQA-KG [60] and GraphFusion [218]]
play a critical role in facilitating knowledge dissemination
and academic inquiry. These models are designed to process
datasets such as CK12-QA, AI2D, and TutorQA, which provide
educational content in structured formats. By constructing



knowledge graphs that represent interconnected concepts,
these systems enable students, educators, and researchers to
access relevant information efficiently. For example, TQA-
KG can assist in answering educational queries by linking
concepts across subjects, while GraphFusion integrates scien-
tific literature and tutorial resources to support researchers in
navigating complex academic topics. For scientific research,
StructGraphRAG [50]] organizes and processes research papers,
integrating data from scientific corpora to create graphs that
highlight relationships between key findings, methodologies,
and datasets. This capability aids researchers in identifying
trends and synthesizing new insights.

Beyond these domains, GraphRAG systems demonstrate their
adaptability to specialized fields. In water conservancy, models
like KGL [55]] utilize datasets such as KGQS to create domain-
specific knowledge graphs that facilitate the management and
analysis of water resources. These graphs enable stakeholders to
identify relationships between hydrological data, infrastructure,
and policies, improving decision-making processes. In the
domain of sports analytics, Soccer-GraphRAG [219] applies
graph-based reasoning to soccer data, utilizing datasets like
SoccerNet-Echoes to analyze player performance, match statis-
tics, and team dynamics. This capability supports applications
such as player scouting and strategy development. In the
entertainment industry, systems like SURGE [57] are used
to construct knowledge graphs centered on movie-related
data. These graphs enhance applications such as content
recommendation, audience analysis, and storytelling, enabling
deeper engagement with viewers.

Overall, GraphRAG systems demonstrate unparalleled ver-
satility by adapting their graph-based frameworks to meet the
unique demands of various real-world domains. Their ability
to integrate structured and unstructured data into cohesive
knowledge representations enables them to address complex
problems across general and highly specialized fields. By
constructing graph bases tailored to specific applications, these
systems contribute to advancements in healthcare, education,
legislation, scientific research, sports analytics, and other
specific domains. Their impact lies in their ability to provide
interpretable, context-aware insights that empower decision-
making and drive innovation.

C. Open-source Project

GraphRAG has inspired a range of open-source projects
that explore its principles and adapt its framework to various
use cases. These implementations highlight the versatility and
growing interest in combining knowledge graphs with RAG
techniques to enhance LLM:s.

Microsoft GraphRAG [[] serves as the foundational frame-
work that combines knowledge graphs with RAG to enhance
the performance of LLMs. It constructs a knowledge graph
from private datasets, leveraging graph machine learning
to enrich the query process through prompt augmentation
at runtime. By doing so, Microsoft GraphRAG achieves
remarkable improvements in answering complex queries that
require detailed reasoning or domain-specific mastery. Its ability

Uhttps://github.com/microsoft/graphrag.git
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to outperform traditional methods demonstrates its effectiveness
in handling private datasets where accuracy and contextual
understanding are critical.

Building upon this foundation, a variety of open-source
projects have emerged to explore and adapt GraphRAG’s princi-
ples for diverse needs. One such project is Nano-GraphRAG
a lightweight and highly customizable implementation designed
with simplicity in mind. Featuring a concise codebase of
approximately 1,100 lines, Nano-GraphRAG is accessible to
developers aiming to prototype or deploy graph-enhanced LLM
systems without the overhead of a full-scale solution. It supports
multiple graph storage systems, such as Neo4j, and integrates
seamlessly with vector databases like Milvus and Faiss, offering
flexibility for a range of applications.

Azure GraphRAG E] extends the concept by offering a
solution accelerator built on the graphrag Python package. This
project provides API endpoints hosted on Azure, allowing
users to trigger indexing pipelines and query knowledge graphs
seamlessly. Azure GraphRAG focuses on demonstrating how
knowledge graph memory structures can enhance LLM outputs
in a hosted service environment. While not an official Microsoft
product, it serves as a practical toolkit for developers and
researchers to experiment with and deploy GraphRAG-based
solutions, bridging the gap between research concepts and
real-world applications.

Fast GraphRAG E] takes a performance-oriented approach to
the GraphRAG concept. By leveraging asynchronous operations
and parallelized graph querying, it prioritizes speed and
efficiency, making it well-suited for real-time applications that
demand rapid data retrieval and reasoning. This implementation
highlights the importance of optimization for time-sensitive
domains, where traditional graph traversal methods might fall
short.

In contrast, LightRAG E] focuses on reducing computational
complexity and resource requirements, providing a streamlined
solution for environments with limited infrastructure. Its
lightweight architecture makes it ideal for deployment on edge
devices or within constrained systems, such as [oT networks
or small-scale reasoning platforms.

Another notable adaptation is Medical GraphRAG El, a
domain-specific variant tailored to the healthcare industry. This
implementation integrates medical knowledge graphs, such
as SNOMED and ICD, to provide contextually accurate and
clinically relevant outputs. By bridging the gap between medical
terminology and generative Al capabilities, Medical Graph
RAG facilitates applications like clinical decision support and
patient education, where precision and reliability are paramount.

These open-source projects, along with the original Microsoft
GraphRAG, collectively demonstrate the adaptability and
growing importance of integrating structured knowledge graphs
with LLMs. They highlight the potential of this approach to
create intelligent, context-aware systems that address complex
challenges across a wide array of industries and domains.

Zhttps://github.com/gusye1234/nano- graphrag. git
3https://github.com/Azure-Samples/graphrag-accelerator. git
4https://github.com/circlemind- ai/fast- graphrag.git
Shttps://github.com/HKUDS/LightRAG.git
Shttps://github.com/SuperMedIntel/Medical- Graph-RAG.git
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IX. CONCLUSION

LLMs have demonstrated impressive capabilities in natural
language processing, achieving remarkable performance across
a wide range of tasks. However, their effectiveness diminishes
significantly in specialized domains, especially when faced
with knowledge-intensive tasks requiring domain expertise that
have almost never appeared in the pre-training corpus. RAG
has emerged as a promising solution that enhances LLMs with
external knowledge bases to improve their domain-specific
capabilities. However, traditional RAG systems encounter
several critical challenges in customizing LLMs for specific do-
mains, including (i) efficient processing of extensive document
collections, (ii) effective integration of knowledge dispersed
across multiple sources, and (iii) maintenance of contextual
coherence during information retrieval and generation. These
limitations become particularly critical in applications requiring
complex reasoning, where successful inference depends on
both comprehensive knowledge integration and deep contex-
tual understanding. To address these challenges, GraphRAG
emerges as a pioneering approach that enriches LLMs with well-
organized background knowledge and clear reasoning chains.
This survey provides a comprehensive analysis of GraphRAG,
detailing its taxonomy, mechanisms, challenges, and future
research directions. We also provide guidelines for building
domain-specific GraphRAG systems, assisting in framework
selection for various use cases in practical scenarios.
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