

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AGENTS AS KNOWLEDGE INTEGRATOR AND UTILIZER IN MULTIMODAL RECOMMENDATION

Anonymous authors

Paper under double-blind review

ABSTRACT

The proliferation of online multimodal content has driven the adoption of multimodal data in recommendation systems. Current studies either enhance item features with multimodal data or construct additional homogenous graphs via multimodal data. However, a significant semantic gap exists between multimodal data and recommendation tasks. This gap introduces modality-specific noise irrelevant to recommendation tasks when enhancing item features and results in homogenous graphs built on multimodal data that fail to adequately consider users' historical behaviors. Fortunately, the multimodal information understanding and contextual processing capabilities of large language models (LLMs) have emerged as a promising approach to bridging this semantic gap.

To this end, we propose AgentMMRec, a novel agent-based framework that bridges the semantic gap via two cooperative agents: an Integrator Agent that uses LLMs to infer user preferences and item properties from multimodal data and users' historical behaviors, storing knowledge in a knowledge memory; and a Utilizer Agent that refines traditional homogenous item-item graphs using there knowledge, constructs behavior- and multimodal-aware homogenous graphs, and performs knowledge-enhanced reranking in recommendation stage. Integrator Agent updates the memory based on feedback from reranking performance. Extensive experiments on real-world datasets demonstrate that AgentMMRec outperforms existing multimodal recommendation models and exhibits superior performance across various data sparsity scenarios. Additionally, AgentMMRec can enhance the performance of existing multimodal recommendation models by leveraging the constructed knowledge memory. Code can be found in anonymous link¹.

1 INTRODUCTION

The exponential growth in the variety and volume of online information has made leveraging multimodal data to enhance recommender systems a mainstream paradigm (Xu et al., 2025d; Chen et al., 2025b; Zhou et al., 2023a). Current multimodal recommendation studies (Xu et al., 2025c; Zhou & Shen, 2023; Xu et al., 2025a; Zhang et al., 2022) primarily focus on two approaches: enhancing the explicit features of items using multimodal data and constructing additional homogeneous graph structures based on multimodal data to improve performance. However, a significant semantic gap exists between multimodal data and recommendation tasks (Xu et al., 2025f; Liu et al., 2024). This gap introduces modality-specific noise irrelevant to the recommendation task when enhancing item features and results in homogeneous graphs built on multimodal data that fail to adequately consider users' historical behaviors.

Recently, many studies (Wei et al., 2024; Ren et al., 2024; Fioretti et al., 2025; Xu et al., 2025b; Bao et al., 2023) in multimodal recommendation have attempted to leverage the multimodal understanding and contextual processing capabilities of large language models (LLMs). Current mainstream studies can be broadly categorized into three paradigms: a) LLM for data augmentation (Xu et al., 2025b; Wei et al., 2024), b) LLM as a backbone model with fine-tuning (Bao et al., 2023; Zhang et al., 2025a), and c) LLM as a reranker (Hou et al., 2023; 2024). However, these paradigms have notable limitations. Paradigm (a) leaves the multimodal data constrained to its inherent properties, lacking sufficient alignment with the recommendation task. Paradigm (b) is both cost-prohibitive and limited by the

¹<https://anonymous.4open.science/r/AgentMMRec-r/>

054 small amount of task-specific data available in recommendation scenarios, making it difficult for
 055 LLMs to effectively fit the task. Paradigm (c), while reranking items, solely depends on partial item
 056 information in final list and still fails to fully leverage users' historical behaviors. The multimodal
 057 understanding capabilities of LLMs enable them to fully comprehend and utilize multimodal data,
 058 while their contextual processing capabilities provide significant advantages in processing users'
 059 historical behaviors. Therefore, a comprehensive agents paradigm that fully leverages the multimodal
 060 understanding and contextual processing capabilities of LLMs to bridge the semantic gap between
 061 multimodal data and recommendation tasks has become a promising and urgently needed solution.

062 To this end, we propose a novel agent-based framework (AgentMMRec), which consists of two
 063 tailored agents with distinct roles. Specifically, Integrator Agent leverages the multimodal under-
 064 standing capabilities of LLMs as a knowledge integrator, while Utilizer Agent employs the contextual
 065 processing abilities of LLMs as a knowledge utilizer. Together, these agents bridge the semantic
 066 gap between multimodal data and recommendation tasks, thereby enhancing the performance of
 067 multimodal recommendations. More specifically, Integrator Agent uses multimodal data about items
 068 and the contextual reasoning capabilities of LLMs to infer user preferences and item properties based
 069 on users' historical behaviors and item information. These inferences are stored in the knowledge
 070 memory. Furthermore, Utilizer Agent refines traditional homogeneous item-item graphs using the
 071 knowledge in the knowledge memory. It also employs the multimodal understanding capabilities of
 072 LLMs and the knowledge from the constructed knowledge memory to build additional behavior- and
 073 multimodal-aware homogenous that fully consider users' historical behaviors and multimodal data.
 074 During the recommendation phase, Utilizer Agent reranks the final recommendation list based on the
 075 knowledge stored in the knowledge memory and provides performance feedback to Integrator Agent,
 076 which updates the constructed knowledge memory based on this feedback.

077 Extensive experiments on multiple real-world datasets demonstrate that AgentMMRec outperforms
 078 existing multimodal recommendation models and exhibits superior performance across various
 079 data sparsity scenarios. Additionally, the agents in AgentMMRec can enhance the performance of
 080 existing multimodal recommendation models by leveraging the constructed knowledge memory. It is
 081 worth noting that, due to the presence of the constructed knowledge memory, knowledge memory
 082 continuously improves through multiple rounds of updating with AgentMMRec or relay updating
 083 with multiple different models and demonstrates significant effectiveness in handling cold-start items.
 084 The main contributions of this work can be summarized as follows:

- 085 • We identify the semantic gap between multimodal data and recommendation in multimodal recom-
 086 mendations and further point out the limitations for existing LLM-based solutions.
- 087 • We propose AgentMMRec, a novel agent-based multimodal framework, which designs two special-
 088 ized agents to leverage the multimodal understanding and contextual processing capabilities of
 089 LLMs to bridge the semantic gap between multimodal data and recommendation tasks.
- 090 • We conducted extensive experiments to validate the effectiveness of our AgentMMRec. Moreover,
 091 we validated the integration capability of AgentMMRec with existing models, as well as its
 092 effectiveness in scenarios with varying data sparsity, cold-start setting.

093 2 RELATED WORK

094 2.1 MULTIMODAL RECOMMENDATION

095 Recent researches have integrated multimodal data to address data sparsity in recommendation sys-
 096 tems. A notable milestone was achieved by VBPR (He & McAuley, 2016), which incorporated visual
 097 content into matrix factorization (Rendle et al., 2009), using item images to enhance recommendations.
 098 Building on this, subsequent studies (Chen et al., 2019; Liu et al., 2019; Yu et al., 2023; Chen et al.,
 099 2025a) combined visual and textual modalities to enrich item representations and improve system
 100 effectiveness. More recently, MMGCN (Wei et al., 2019) pioneered the use of Graph Convolutional
 101 Networks (GCNs) to extract modality-specific features from user-item interactions. Models like
 102 DualGNN (Wang et al., 2021) and LATTICE (Zhang et al., 2021) introduced user-user and item-item
 103 graphs to capture shared preferences and relationships. Building upon LATTICE, FREEDOM (Zhou
 104 & Shen, 2023) improved representation stability by freezing item semantic graphs and reducing noise
 105 in user-item bipartite graphs. More recently, self-supervised learning and inter-modal relationships
 106 have gained traction. MMSSL (Wei et al., 2023) and MENTOR (Xu et al., 2025e) used contrastive
 107

108 self-supervised learning to align multimodal inputs with collaborative signals, achieving strong results
 109 without requiring extensive labeled data. BM3 (Zhou et al., 2023b) explored inter-modal relationships
 110 to improve both recommendation accuracy and modality fusion. Additionally, LGMRec (Guo
 111 et al., 2024) utilized hyper-graph structures to model complex global and local relationships, while
 112 COHESION (Xu et al., 2025c) introduced a dual-stage fusion mechanism to enhance multimodal
 113 recommendation performance.

114 Despite these advancements, recent surveys (Xu et al., 2025f; Liu et al., 2024) highlight that a
 115 significant challenge in multimodal recommendation systems is the semantic gap between multimodal
 116 data and recommendation tasks. While some studies (Xu et al., 2025e; Zhou et al., 2023b; Wei
 117 et al., 2023) have attempted to align features across modalities, the lack of contextual understanding
 118 and comprehensive multimodal processing has limited the effectiveness of rigid alignment methods,
 119 leaving room for further improvement.

120 2.2 LLM-BASED RECOMMENDATION

121 Recently, LLMs have gained significant attention for their exceptional multimodal understanding
 122 and contextual processing capabilities. Numerous studies (Wei et al., 2024; Tian et al., 2023; Bao
 123 et al., 2023; Hou et al., 2023; Lee et al., 2024; Zhang et al., 2025b; Wei et al., 2024) have explored
 124 leveraging LLMs to enhance recommendation performance. For instance, TALLRec (Bao et al.,
 125 2023) adopts an instruction fine-tuning framework using the LLaMA model (Touvron et al., 2023).
 126 LEARN (Zhang et al., 2025b) integrates key attributes like title, description, and brand into predefined
 127 prompts and utilizes the LLM’s last-layer features as item embeddings. LLMRank (Hou et al., 2023)
 128 formulates recommendation as a conditional ranking task, where sequential interaction history serves
 129 as the condition and retrieved items as candidates, which are then reranked by the LLM. Similarly,
 130 LLMRec (Wei et al., 2024) addresses sparse feedback and low-quality side information by analyzing
 131 user preferences and item attributes. Other works, such as (Zhang et al., 2025a), attempt to fine-tune
 132 LLMs for recommendation tasks to optimize performance.

133 However, most LLM-based recommender systems primarily focus on directly utilizing LLMs’ multi-
 134 modal understanding and contextual processing or treating them as backbones for recommendation
 135 models. While these approaches show promise, they fail to address the broader challenges of multi-
 136 modal recommender systems. Specifically, these studies overlook the potential of LLMs to bridge
 137 the semantic gap between multimodal data and recommendation tasks through deeper multimodal
 138 understanding and contextual reasoning.

139 To this end, our AgentMMRec leverages the seamless collaboration of two agents to liberate the
 140 multimodal understanding and contextual processing capabilities of LLMs, thereby bridging the gap
 141 between multimodal data and recommendation tasks.

142 3 METHODOLOGY

143 As illustrated in Figure 1 and Algorithm 1 in Appendix A.2, AgentMMRec consists of two tailored
 144 agents—Integrator Agent ($I\text{Agent}(\cdot)$) and Utilizer Agent ($U\text{Agent}(\cdot)$)—along with a knowledge
 145 memory for knowledge retention. Integrator Agent constructs novel behavior- and multimodal-
 146 aware homogeneous graphs based on users’ historical behaviors and multimodal data. It then
 147 extracts knowledge related to user preferences and item properties, storing these knowledge in the
 148 knowledge memory. Utilizer Agent then leverages the constructed knowledge memory to refine the
 149 traditional homogeneous item-item graphs built from multimodal data. During the recommendation
 150 stage, Utilizer Agent integrates the knowledge memory to re-rank the final recommendation list and
 151 provides performance feedback to the Integrator Agent. This feedback enables Integrator Agent to
 152 update the knowledge memory, ensuring continuous improvement in knowledge quality.

153 3.1 PROBLEM DEFINITION

154 Formally, let $\mathcal{U} = \{u_1, \dots, u_{|\mathcal{U}|}\}$ and $\mathcal{I} = \{i_1, \dots, i_{|\mathcal{I}|}\}$ be the set of users and items, respectively.
 155 Each item i includes textual data (Title: T_i^{title} , Brand: T_i^{brand} , Categories: $T_i^{\text{categories}}$, and Description:
 156 $T_i^{\text{description}}$) and visual data (Image: V_i). Most advanced existing multimodal recommendation
 157 models (Chen et al., 2025a; Zhou & Shen, 2023; Guo et al., 2024; Xu et al., 2025f) directly utilizing

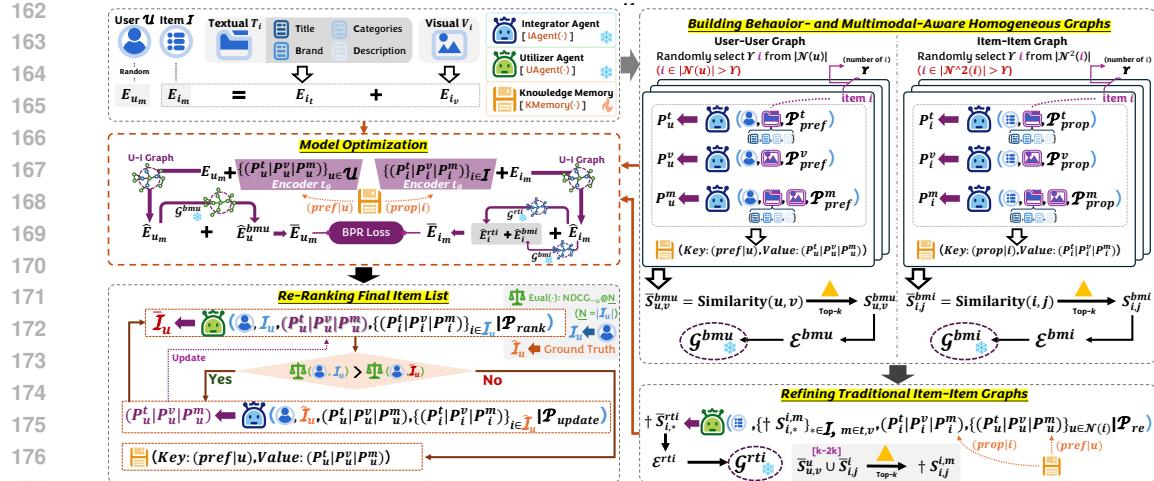


Figure 1: Overview of AgentMMRec. All modules correspond strictly to methodology.

MMRec² to encode textual and visual data using a pretrained sentence transformer, denoted as $t_\theta(\cdot)$, and a convolutional neural network (CNN), denoted as $v_\theta(\cdot)$. Formally, the textual representation of item i , \mathbf{e}_{i_t} , is computed as: $\mathbf{e}_{i_t} = t_\theta(T_i)$, where $T_i = (T_i^{\text{title}}|T_i^{\text{brand}}|T_i^{\text{categories}}|T_i^{\text{description}})$ represents the concatenation (denoted by $|$) of the item’s title, brand, categories, and description. Similarly, the visual representation of item i , \mathbf{e}_{i_v} , is computed as: $\mathbf{e}_{i_v} = v_\theta(V_i)$. The entire item representations for modality $m \in t, v$ can be denoted as $\mathbf{E}_{i_m} \in \mathbb{R}^{d_m \times |\mathcal{I}|}$, where d_m represents hidden dimensionality of modality m . Entire user representations for each modality m are randomly initialized as $\mathbf{E}_{u_m} \in \mathbb{R}^{d_m \times |\mathcal{U}|}$. To ensure the fairness of comparisons, we also utilize the encoders provided by MMRec in our AgentMMRec. The user-item interaction matrix is denoted as $\mathcal{R} \in \{0, 1\}^{|\mathcal{U}| \times |\mathcal{I}|}$. Specifically, each entry $\mathcal{R}_{u,i}$ indicates whether the user u is connected to item i , with a value of 1 representing a connection and 0 otherwise. This matrix naturally constructs the bipartite graph $\mathcal{G} = (\mathcal{U}, \mathcal{I}, \mathcal{E})$, where \mathcal{U}, \mathcal{I} serve as vertices, and \mathcal{E} denotes the edge set. For each user-item pair (u, i) that satisfies $\mathcal{R}_{u,i} = 1$, there exists bidirectional edges $(u, i) \in \mathcal{E}$ and $(i, u) \in \mathcal{E}$. Notably, unlike multimodal sequential recommendation, multimodal recommendation does not have access to the temporal order and dynamic evolution of user behaviors. As a result, multimodal recommendation scenarios place greater emphasis on accurately capturing user preferences and item properties.

3.2 BUILDING BEHAVIOR- AND MULTIMODAL-AWARE HOMOGENEOUS GRAPHS

Integrator Agent extracts users’ preferences and items’ properties by combining user-item historical interactions with multimodal data and storing these knowledge in the knowledge memory. Based on these knowledge, Integrator Agent then constructs a behavior- and multimodal-aware user-user Graph and a behavior- and multimodal-aware item-item Graph.

3.2.1 BEHAVIOR- AND MULTIMODAL-AWARE USER-USER GRAPH

Since users typically lack multimodal data, previous multimodal recommendation models (Zhou et al., 2023a; Xu et al., 2025f) mostly do not construct a user-user homogeneous graph or only build user-user graphs based on historical interactions (Wang et al., 2021; Xu et al., 2025c), failing to leverage multimodal data effectively. Benefiting from the multimodal understanding and contextual processing capabilities of LLMs, the Integrator Agent generates behavior- and multimodal-aware preferences P_u for each user $u \in \mathcal{U}$. This is achieved by feeding the multimodal data of items interacted with by user u , along with carefully designed prompt templates $\mathcal{P}_{\text{pref}}^t, \mathcal{P}_{\text{pref}}^v$, and $\mathcal{P}_{\text{pref}}^m$, into the Integrator Agent. Formally, this process can be expressed as:

$$P_u^t \leftarrow \text{IAgent}(u, \{T_i^{\text{title}}, T_i^{\text{brand}}, T_i^{\text{categories}}, T_i^{\text{description}}\}_{i \in \mathcal{N}(u)} | \mathcal{P}_{\text{pref}}^t), \quad (1)$$

$$P_u^v \leftarrow \text{IAgent}(u, \{V_i\}_{i \in \mathcal{N}(u)} | \mathcal{P}_{\text{pref}}^v), \quad (2)$$

²<https://github.com/enoche/MMRec>

$$P_u^m \leftarrow \text{IAgent}(u, \{T_i^{\text{title}}, T_i^{\text{brand}}, T_i^{\text{categories}}, T_i^{\text{description}}, V_i\}_{i \in \mathcal{N}(u)} | \mathcal{P}_{\text{pref}}^m), \quad (3)$$

where $\mathcal{N}(u)$ denotes the interacted item set for user u . To ensure efficiency and account for the context length limitations of LLMs, for users u who have interacted with more than a threshold number of items Υ ($|\mathcal{N}(u)| > \Upsilon$), we randomly select Υ items from interacted items. Users may exhibit specific preferences within individual modalities as well as preferences driven by cross-modal information. For instance, a user might simply prefer items of a certain color, favor items from a specific brand, or like items of a specific color from a particular brand. Therefore, we extract user preferences from three perspectives: textual, visual, and cross-modal with three different prompt templates (All templates are provided in Appendix D.1, Appendix D.2, and Appendix D.3 for details). All extracted user preferences are stored in the knowledge memory in a key-value format, allowing retrieval through the corresponding keys. Formally, memory format is expressed as:

$$\text{KMemory}(\text{Key} : (pref|u), \text{Value} : (P_u^t | P_u^v | P_u^m)). \quad (4)$$

Subsequently, we use pre-trained encoder $t_\theta(\cdot)$ to compute the representation of user preferences and construct a top- k behavior- and multimodal-aware user-user graph $\mathcal{G}^{bmu} = (\mathcal{U}, \mathcal{E}^{bmu})$ based on cosine similarity. Formally, this process can be expressed as:

$$\mathcal{S}_{u,v}^{bmu} = \begin{cases} 1 & \text{if } \bar{\mathcal{S}}_{u,v}^{bmu} \in \text{top-}k(\bar{\mathcal{S}}_{u,*}^{bmu}) \\ 0 & \text{otherwise} \end{cases}, \quad \bar{\mathcal{S}}_{u,v}^{bmu} = \frac{t_\theta(P_u^t | P_u^v | P_u^m)^T t_\theta(P_v^t | P_v^v | P_v^m)}{\|t_\theta(P_u^t | P_u^v | P_u^m)\| \|t_\theta(P_v^t | P_v^v | P_v^m)\|}. \quad (5)$$

Then, we build unidirectional edges $(u, v) \in \mathcal{E}^{bmu}$, where $\mathcal{S}_{u,v}^{bmu} = 1$.

3.2.2 BEHAVIOR- AND MULTIMODAL-AWARE ITEM-ITEM GRAPH

Many existing multimodal recommendation models construct item-item graphs based on multimodal data. Our AgentMMRec also incorporates a refined traditional item-item graph (refer to Section 3.3). However, directly constructing an item-item graph using item features focuses only on the multimodal data itself, without considering the specific requirements of the recommendation task.

In recommendation systems, it is generally assumed that users who interact with the same items share similar preferences, and that items purchased by users with similar preferences exhibit similar properties. Therefore, for item i , the Integrator Agent leverages the powerful multimodal understanding and contextual processing capabilities of LLMs to integrate the multimodal data of other items purchased by users who have interacted with item i . This process enables the Integrator Agent to effectively generates behavior- and multimodal-aware properties P_i for item i . In this process, tailored prompt templates $\mathcal{P}_{\text{prop}}^t$, $\mathcal{P}_{\text{prop}}^v$, and $\mathcal{P}_{\text{prop}}^m$ are fed into Integrator Agent for guidance. Formally, this process can be expressed as:

$$P_i^t \leftarrow \text{IAgent}(i, \{T_i^{\text{title}}, T_i^{\text{brand}}, T_i^{\text{categories}}, T_i^{\text{description}}\}_{i \in \mathcal{N}^2(i)} | \mathcal{P}_{\text{prop}}^t), \quad (6)$$

$$P_i^v \leftarrow \text{IAgent}(i, \{V_i\}_{i \in \mathcal{N}^2(i)} | \mathcal{P}_{\text{prop}}^v), \quad (7)$$

$$P_i^m \leftarrow \text{IAgent}(u, \{T_i^{\text{title}}, T_i^{\text{brand}}, T_i^{\text{categories}}, T_i^{\text{description}}, V_i\}_{i \in \mathcal{N}^2(i)} | \mathcal{P}_{\text{prop}}^m), \quad (8)$$

where $\mathcal{N}^2(i)$ denotes other items purchased by users who have interacted with item i . To ensure efficiency and account for the context length limitations of LLMs, for item set $\mathcal{N}^2(i)$ larger than a threshold number of items Υ ($|\mathcal{N}^2(i)| > \Upsilon$), we randomly select Υ items from $\mathcal{N}^2(i)$. For similar considerations as those in behavior- and multimodal-aware preferences, we extract item properties from three perspectives: textual, visual, and cross-modal, using three different prompt templates (All templates are provided in Appendix D.4, Appendix D.5, and Appendix D.6 for details). All extracted item properties are stored in the knowledge memory in a key-value format, enabling retrieval via the corresponding keys. Formally, the memory format is expressed as:

$$\text{KMemory}(\text{Key} : (prop|i), \text{Value} : (P_i^t | P_i^v | P_i^m)). \quad (9)$$

Subsequently, we use pre-trained encoder $t_\theta(\cdot)$ to compute the representation of item properties and construct a top- k behavior- and multimodal-aware item-item graph $\mathcal{G}^{bmi} = (\mathcal{I}, \mathcal{E}^{bmi})$ based on cosine similarity. Formally, this process can be expressed as:

$$\mathcal{S}_{i,j}^{bmi} = \begin{cases} 1 & \text{if } \bar{\mathcal{S}}_{i,j}^{bmi} \in \text{top-}k(\bar{\mathcal{S}}_{i,*}^{bmi}) \\ 0 & \text{otherwise} \end{cases}, \quad \bar{\mathcal{S}}_{i,j}^{bmi} = \frac{t_\theta(P_i^t | P_i^v | P_i^m)^T t_\theta(P_j^t | P_j^v | P_j^m)}{\|t_\theta(P_i^t | P_i^v | P_i^m)\| \|t_\theta(P_j^t | P_j^v | P_j^m)\|}. \quad (10)$$

270 Then, we build unidirectional edges $(i, j) \in \mathcal{E}^{bmi}$, where $\mathcal{S}_{i,j}^{bmi} = 1$.
 271

272 **Discussion.** The construction of behavior- and multimodal-aware homogeneous graphs is pre-
 273 built before training, eliminating any additional computational burden during the training process.
 274 Moreover, the stored knowledge can be continuously updated through feedback during training.
 275 Additionally, the threshold Υ further reduces computational overhead while considering the context
 276 length limitations of LLMs. A hyperparameter analysis of Υ is discussed in Appendix C.3.
 277

278 3.3 REFINING TRADITIONAL ITEM-ITEM GRAPHS

279 Traditional multimodal recommendation models (Zhang et al., 2022; Xu et al., 2025c; Zhou &
 280 Shen, 2023) construct modality-specific item-item graphs based on item representations to enhance
 281 modality representations. However, this process exacerbates the isolation between modalities (Xu
 282 et al., 2025d) and lacks consideration of user preferences. Utilizer Agent leverages the behavior- and
 283 multimodal-aware preferences and properties stored in the constructed knowledge memory to refine
 284 and merge modality-specific item-item graphs into a unified item-item graph. Specifically, original
 285 modality-specific item-item graphs are constructed as:
 286

$$\dagger\mathcal{S}_{i,j}^{i,m} = \begin{cases} 1 & \text{if } \dagger\bar{\mathcal{S}}_{i,j}^{i,m} \in \text{top-}k \left(\dagger\bar{\mathcal{S}}_{i,*}^{i,m} \right) \\ 0 & \text{otherwise} \end{cases}, \quad \dagger\bar{\mathcal{S}}_{i,j}^{i,m} = \frac{(\mathbf{e}_{i_m})^T \mathbf{e}_{j_m}}{\|\mathbf{e}_{i_m}\| \|\mathbf{e}_{j_m}\|}, \quad (11)$$

289 where $m \in t, v$. For each modality, we construct a top- k modality-specific item-item graph. Then,
 290 for each item i , Utilizer Agent combines the multimodal data of the top- k items associated with
 291 item i across all modalities to mitigate the isolation between modalities. Additionally, it extracts
 292 the behavior- and multimodal-aware properties of item i and the behavior- and multimodal-aware
 293 preferences of users who have purchased item i from the knowledge memory. Using a carefully
 294 designed prompt template \mathcal{P}_{re} (Template is provided in Appendix D.7 for details), Utilizer Agent
 295 reselects the top- k items for each item i , constructing a unified item-item graph $\mathcal{G}^{rti} = (\mathcal{I}, \mathcal{E}^{rti})$.
 296 Formally, this process can be expressed as:
 297

$$\{\dagger\mathcal{S}_{i,*}^{rti}\}_{* \in \mathcal{I}} \leftarrow \text{UAgent}(i, \{\dagger\mathcal{S}_{i,*}^{i,m}\}_{* \in \mathcal{I} \& m \in t, v}, (P_i^t | P_i^v | P_i^m), \{(P_u^t | P_u^v | P_u^m)\}_{u \in \mathcal{N}(i)} | \mathcal{P}_{re}), \quad (12)$$

300 where $\mathcal{N}(i)$ denotes the purchased user set for item i and number of selected items for each item i
 301 is k ($\sum_{i \in \mathcal{I}} \{\dagger\mathcal{S}_{i,*}^{rti}\}_{* \in \mathcal{I}} = k$). We also adopt Υ to constrain the size of the purchased user set $\mathcal{N}(i)$.
 302 Then, we build unidirectional edges $(i, j) \in \mathcal{E}^{rti}$, where $\dagger\mathcal{S}_{i,j}^{rti} = 1$.
 303

304 **Discussion.** The refinement of modality-specific item-item graphs is also pre-conducted, adding no
 305 extra computational burden during training. The threshold Υ is also adopted to reduce overhead while
 306 addressing LLM context length limits. A hyperparameter analysis of Υ is discussed in Appendix C.3.
 307

308 3.4 RERANKING FINAL ITEM LIST

309 We enhance user and item representations by leveraging encoded behavior- and multimodal-aware
 310 preferences and properties. Following the paradigm adopted by most previous studies (Xu et al.,
 311 2025f; Zhou et al., 2023a), we apply LightGCN (He et al., 2020) to propagate messages and perform
 312 readout over the user-item interaction graph \mathcal{G} . Subsequently, we enhance the user representations
 313 using the homogeneous graph \mathcal{G}^{bmu} , as in advanced multimodal recommendation models (Xu
 314 et al., 2025c; Wang et al., 2021), while item representations are enhanced using the homogeneous
 315 graphs \mathcal{G}^{bmi} and \mathcal{G}^{rti} (Xu et al., 2025c; Zhou & Shen, 2023). The model is optimized using BPR
 316 loss function (Rendle et al., 2009). Since graph-based multimodal recommendation paradigms are
 317 relatively mature, we provide a detailed introduction in Appendix A.1. Additionally, AgentMMRec
 318 can benefit from more sophisticated self-supervised tasks (Xu et al., 2025e; Zhou et al., 2023b; Wei
 319 et al., 2023). For efficiency considerations, we did not incorporate any self-supervised tasks but
 320 included related experiments in Appendix C.5.

321 For the recommendation stage, Utilizer Agent reranks the final item list for each user u by combining
 322 the behavior- and multimodal-aware preferences and properties of user u and the items in the list.
 323 This process, under the guidance of a tailored prompt template \mathcal{P}_{rank} , can be expressed as:
 324

$$\bar{\mathcal{I}}_u \leftarrow \text{UAgent}(u, \mathcal{I}_u, (P_u^t | P_u^v | P_u^m), \{(P_i^t | P_i^v | P_i^m)\}_{i \in \mathcal{I}_u} | \mathcal{P}_{rank}), \quad (13)$$

324 where \mathcal{I}_u denotes final item list for user u . We use single-item NDCG@ N as the evaluation metric
 325 to determine whether rerankings produce a positive effect, where $N = |\mathcal{I}_u|$. We define $\text{Eval}(u, \mathcal{I}_u)$
 326 as NDCG@ N performance of user u 's final item list \mathcal{I}_u . If $\text{Eval}(u, \mathcal{I}_u) > \text{Eval}(u, \hat{\mathcal{I}}_u)$, it indicates
 327 that the reranking has produced a negative effect. In cases where rerankings produce a negative
 328 effect, Integrator Agent leverages the multimodal data from the ground-truth item list $\hat{\mathcal{I}}_u$ and user u 's
 329 existing behavior- and multimodal-aware preferences to update the knowledge store to refine user
 330 u 's preferences under the guidance of a tailored prompt template $\mathcal{P}_{\text{update}}$. Formally:

$$(P_u^t | P_u^v | P_u^m) \leftarrow \text{IAgent}(u, \hat{\mathcal{I}}_u, (P_u^t | P_u^v | P_u^m), \{(P_i^t | P_i^v | P_i^m)\}_{i \in \hat{\mathcal{I}}_u} | \mathcal{P}_{\text{update}}). \quad (14)$$

333 After updating u 's behavior- and multimodal-aware preferences, the process iteratively reranks and
 334 evaluates u 's final item list until the reranking produces a positive effect. Once a positive effect
 335 is achieved, the loop stops, and the knowledge memory is updated accordingly. For efficiency
 336 considerations, we perform knowledge updates every E epochs. Templates $\mathcal{P}_{\text{rank}}$ and $\mathcal{P}_{\text{update}}$ are
 337 provided in Appendix D.8 and Appendix D.9 for details.

339 4 EXPERIMENT

341 4.1 EXPERIMENT SETUP

343 **Datasets.** The experiments are conducted on three real-world datasets containing two modalities:
 344 Baby, Sports, and Clothing from the Amazon dataset (McAuley et al., 2015). These datasets include
 345 textual and visual features, derived from item descriptions and corresponding images. The data
 346 preprocessing for these datasets follows the methodology outlined in MMRec (Zhou, 2023). Table 3
 347 in Appendix B.1 shows the statistics of these datasets.

348 **Metrics.** For a fair comparison, we follow the settings of previous works (Xu et al., 2025f; Zhou et al.,
 349 2023b; Zhou & Shen, 2023) to adopt two widely-used evaluation metrics for top- N recommendation:
 350 Recall@ N and NDCG@ N . We report the average scores for all users in the test dataset under both
 351 $N = 10$ and $N = 20$, respectively.

352 **Baselines.** To evaluate the effectiveness of AgentMMRec, we compare it with the following
 353 baselines, including **MMGCN** (Wei et al., 2019), **DualGNN** (Wang et al., 2021), **LATTICE** (Zhang
 354 et al., 2022), **SLMRec** (Tao et al., 2022), **FREEDOM** (Zhou & Shen, 2023), **BM3** (Zhou et al.,
 355 2023b), **MMSSL** (Wei et al., 2023), **LLMRec** (Wei et al., 2024), **LGMRec** (Guo et al., 2024),
 356 **DiffMM** (Jiang et al., 2024), **SMORE** (Ong & Khong, 2025), **BeFA** (Fan et al., 2025), **MENTOR**
 357 (Xu et al., 2025e), **COHESION** (Xu et al., 2025c), **HPMRec** (Chen et al., 2025b), **EVEN** (Qi et al.,
 358 2025) and **FreRec** (Peng et al., 2025). Details can be found in Appendix B.2.

359 **Implementation Details.** We retain the standard settings for all baselines and fix batch size as
 360 2048. For each of the selected baselines, the hyperparameters were tuned in line with the optimal
 361 configurations reported in the respective published papers. All baselines are implemented in PyTorch,
 362 using the Adam optimizer (Kingma & Ba, 2014) and Xavier initialization (Glorot & Bengio, 2010)
 363 with default parameters. To ensure fairness, we use the pre-trained text and vision encoders $t_\theta(\cdot)$ and
 364 $v_\theta(\cdot)$ provided by MMRec Framework (Xu et al., 2025f). For Integrator Agent and Utilizer Agent
 365 in AgentMMRec, we choose Qwen2.5-VL-7B. In Appendix C.4, we further explore whether larger
 366 parameter version (Qwen2.5-VL-32B) or powerful LLM (GPT-4o) provide additional advantages.
 367 For efficiency considerations, we set $E = 10$ for knowledge update.

368 4.2 OVERALL PERFORMANCE

370 We evaluate the effectiveness of AgentMMRec on multiple real-world datasets in multimodal recom-
 371 mendation scenarios. From Table 1, we find the following observations:

373 • 1. AgentMMRec achieves significant performance improvements over all baselines across datasets,
 374 demonstrating its effectiveness in bridging the semantic gap between multimodal data and rec-
 375 ommendation tasks. This success stems from the synergistic roles of the Integrator Agent and
 376 Utilizer Agent. Integrator Agent harnesses the multimodal understanding and contextual processing
 377 capabilities of LLMs to infer behavior- and multimodal-aware user preferences and item properties
 from historical interactions and multimodal item information, constructing effective homogeneous

378 Table 1: Performance comparison of baselines and AgentMMRec in terms of Recall and NDCG. *
 379 indicates that the t-tests validate the significance of performance improvements with p -value < 0.05 .

380	Datasets	Baby				Sports				Clothing			
		381 Metrics	R@10	R@20	N@10	N@20	R@10	R@20	N@10	N@20	R@10	R@20	N@10
382	MMGCN (MM'19)	0.0378	0.0615	0.0200	0.0261	0.0370	0.0605	0.0193	0.0254	0.0218	0.0345	0.0110	0.0142
383	DualGNN (TMM'21)	0.0448	0.0716	0.0240	0.0309	0.0568	0.0859	0.0310	0.0385	0.0454	0.0683	0.0241	0.0299
384	LATTICE (MM'21)	0.0547	0.0850	0.0292	0.0370	0.0620	0.0953	0.0335	0.0421	0.0492	0.0733	0.0268	0.0330
385	SLMRec (TMM'22)	0.0529	0.0775	0.0290	0.0353	0.0663	0.0990	0.0365	0.0450	0.0452	0.0675	0.0247	0.0303
386	FREEDOM (MM'23)	0.0627	0.0992	0.0330	0.0424	0.0717	0.1089	0.0385	0.0481	0.0629	0.0941	0.0341	0.0420
387	BM3 (WWW'23)	0.0564	0.0883	0.0301	0.0383	0.0656	0.0980	0.0355	0.0438	0.0422	0.0621	0.0231	0.0281
388	MMSSL (WWW'23)	0.0613	0.0971	0.0326	0.0420	0.0693	0.1013	0.0369	0.0474	0.0531	0.0797	0.0291	0.0359
389	LLMRec (WSDM'24)	0.0621	0.0983	0.0324	0.0422	0.0682	0.1000	0.0363	0.0459	0.0540	0.0808	0.0294	0.0365
390	LGMRec (AAAI'24)	0.0639	0.0989	0.0337	0.0430	0.0719	0.1068	0.0387	0.0477	0.0555	0.0828	0.0302	0.0371
391	DiffMM (MM'24)	0.0623	0.0975	0.0328	0.0411	0.0671	0.1017	0.0377	0.0458	0.0531	0.0797	0.0291	0.0359
392	SMORE (WSDM'25)	0.0680	0.1035	0.0365	0.0457	0.0762	0.1142	0.0408	0.0506	0.0659	0.0987	0.0360	0.0443
393	FrRec (MM'25)	0.0662	0.1011	0.0348	0.0437	0.0754	0.1147	0.0410	0.0508	0.0674	0.0977	0.0363	0.0447
394	EVEN (AAAI'25)	0.0667	0.1031	0.0355	0.0448	0.0759	0.1143	0.0411	0.0510	0.0662	0.0978	0.0356	0.0436
395	BeFA (AAAI'25)	0.0555	0.0884	0.0299	0.0383	0.0649	0.0985	0.0346	0.0432	0.0568	0.0857	0.0307	0.0381
396	MENTOR (AAAI'25)	0.0678	0.1048	0.0362	0.0450	0.0763	0.1139	0.0409	0.0511	0.0668	0.0989	0.0360	0.0441
397	COHESION (SIGIR'25)	0.0680	0.1052	0.0354	0.0454	0.0752	0.1137	0.0409	0.0503	0.0665	0.0983	0.0358	0.0438
398	HPMRec (CIKM'25)	0.0667	0.1033	0.0357	0.0451	0.0751	0.1129	0.0410	0.0507	0.0658	0.0963	0.0351	0.0429
399	AgentMMRec (Qwen)	0.0705*	0.1079*	0.0380*	0.0475*	0.0838*	0.1231*	0.0454*	0.0557*	0.0740*	0.1071*	0.0404*	0.0490*

393 graphs. Utilizer Agent then refines traditional item-item graphs and reranks the final item list
 394 using these enriched user preferences and item properties. Additionally, Integrator Agent updates
 395 behavior- and multimodal-aware user preferences based on the evaluation of the reranked results.
 396 In Section 4.3, we validate the effectiveness of each component through detailed ablation studies.
 397

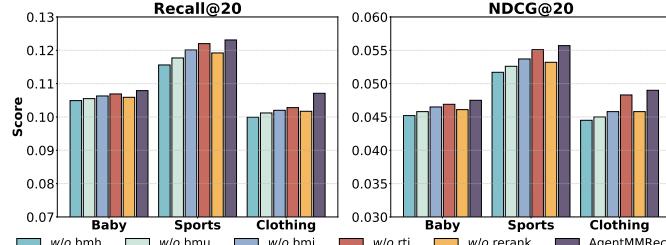
- 398 2. Suboptimal baselines (SMORE, MENTOR, COHESION, and HPMRec) exhibit similar performance
 399 despite their differing designs. For example, SMORE employs spectral fusion, MENTOR
 400 utilizes tailored modality alignment, COHESION constructs composite graphs, and HPMRec applies
 401 hypercomplex operators. However, all encounter a consistent performance bottleneck, which
 402 we attribute to the inherent semantic gaps between multimodal data and recommendation tasks, as
 403 well as knowledge limitations. To test this hypothesis, in Section 4.4, we transfer the behavior- and
 404 multimodal-aware homogeneous graphs constructed by AgentMMRec to these baselines or allow
 405 Utilizer Agent to leverage AgentMMRec’s optimized knowledge memory to rerank their outputs,
 406 aiming to overcome their bottlenecks.

4.3 ABLATION STUDY

407 To validate the effectiveness of
 408 AgentMMRec, we conduct ex-
 409 periments to justify the impor-
 410 tance of key components. We
 411 design following variants: (1)
 412 *w/o bmh*, which removes both
 413 behavior- and multimodal-aware
 414 user-user and item-item graphs.
 415 (2) *w/o bmu*, which removes
 416 behavior- and multimodal-aware
 417 user-user graph. (3) *w/o bmi*,
 418 which removes behavior- and
 419 multimodal-aware item-item graph.
 420 (4) *w/o rti*, which directly uses traditional item-item graphs to re-
 421 place unified item-item graph. (5) *w/o rerank*, which removes rerank and feedback process. Notably,
 422 for variants (1)-(3), Integrator Agent still extracts and stores behavior- and multimodal-aware user
 423 preferences and item properties. Figure 2 shows that each component contributes to the performance
 424 improvement of AgentMMRec. In Section 4.4, we further explore whether the key components of
 425 AgentMMRec can be transferred to existing models to break through their performance bottlenecks.
 426

4.4 COMPATIBILITY ANALYSIS

427 We conducted two distinct compatibility experiments: (1) transferring the behavior- and multimodal-
 428 aware homogeneous graphs constructed by AgentMMRec to the suboptimal baselines and (2) allowing
 429 the Utilizer Agent to leverage the knowledge memory optimized by AgentMMRec to rerank the
 430 suboptimal baselines. We select suboptimal baselines (SMORE, MENTOR, COHESION, and HPM-
 431 Rec) in Table 1. Two variants represented as (1) +*Graph* and (2) +*Rerank*. For +*Graph* variant,



428 Figure 2: Ablation study for AgentMMRec across all datasets.
 429

432 Table 2: Compatibility analysis of AgentMMRec with suboptimal baselines.
433

434 Models	435 Metrics	436 Datasets Baby				437 Sports				438 Clothing			
		439 R@10	440 R@20	441 N@10	442 N@20	443 R@10	444 R@20	445 N@10	446 N@20	447 R@10	448 R@20	449 N@10	450 N@20
SMORE	Original	0.0680	0.1035	0.0365	0.0457	0.0762	0.1142	0.0408	0.0506	0.0659	0.0987	0.0360	0.0443
	+Graph	0.0691	0.1055	0.0371	0.0466	0.0799	0.1190	0.0437	0.0532	0.0709	0.1041	0.0388	0.0473
	+Rerank	0.0686	0.1047	0.0369	0.0463	0.0785	0.1170	0.0431	0.0527	0.0688	0.1021	0.0377	0.0462
MENTOR	Original	0.0678	0.1048	0.0362	0.0450	0.0763	0.1139	0.0409	0.0511	0.0668	0.0989	0.0360	0.0441
	+Graph	0.0693	0.1061	0.0370	0.0461	0.0792	0.1180	0.0434	0.0532	0.0707	0.1035	0.0383	0.0466
	+Rerank	0.0685	0.1053	0.0366	0.0453	0.0778	0.1164	0.0427	0.0528	0.0689	0.1024	0.0370	0.0455
COHESION	Original	0.0680	0.1052	0.0354	0.0454	0.0752	0.1137	0.0409	0.0503	0.0665	0.0983	0.0358	0.0438
	+Graph	0.0695	0.1066	0.0365	0.0460	0.0780	0.1174	0.0430	0.0525	0.0697	0.1033	0.0380	0.0462
	+Rerank	0.0688	0.1059	0.0358	0.0458	0.0773	0.1159	0.0423	0.0519	0.0681	0.1015	0.0370	0.0453
HPMRec	Original	0.0667	0.1033	0.0357	0.0451	0.0751	0.1129	0.0410	0.0507	0.0658	0.0963	0.0351	0.0429
	+Graph	0.0682	0.1054	0.0366	0.0459	0.0785	0.1174	0.0432	0.0530	0.0698	0.1025	0.0375	0.0449
	+Rerank	0.0677	0.1042	0.0360	0.0454	0.0776	0.1162	0.0427	0.0525	0.0684	0.1004	0.0362	0.0440

444 we follow previous studies (Zhou & Shen, 2023; Xu et al., 2025c) to conduct graph convolution
445 operation. Results in Table 2 verifies that the performance bottlenecks of suboptimal baselines are
446 constrained by the semantic gap between multimodal information and recommendation tasks and
447 knowledge limitations. Additionally, it also demonstrates that AgentMMRec can effectively bridge
448 the semantic gap and provide enriched knowledge.

450 4.5 SPARSITY ANALYSIS

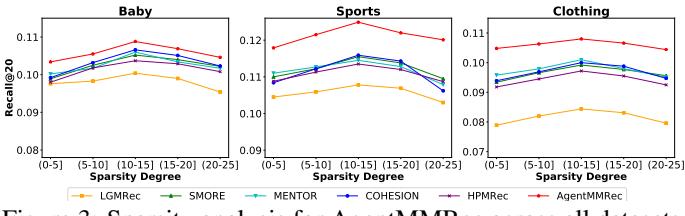
452 We evaluate the effectiveness
453 of AgentMMRec across varying
454 levels of data sparsity. To as-
455 sess its performance, we con-
456 duct experiments on sub-datasets
457 derived from all datasets, each
458 exhibiting different degrees of
459 sparsity. AgentMMRec is com-
460 pared against five competitive
461 baselines: LGMRec, SMORE,
462 MENTOR, COHESION, and
463 HPMRec. Users are categorized
464 into groups based on the number of interactions in the training set, such as those with 0 – 5 interacted
465 items in the first group. As shown in Figure 3, AgentMMRec consistently outperforms all baselines
466 across datasets, demonstrating its robustness under varying levels of sparsity.

467 4.6 IN-DEPTH ANALYSIS

468 Due to space limitations, we provide an in-depth analysis in the appendix. Specifically, we explore
469 AgentMMRec’s performance in cold-start scenario in Appendix C.1. The analysis and discussion
470 of hyperparameters can be found in Appendix C.3, while the discussion on replacing the LLM
471 backbone for agents included in Appendix C.4. Furthermore, the potential benefits of popular
472 modality-alignment self-supervised tasks to AgentMMRec are discussed in Appendix C.5. Moreover,
473 we further explore whether the knowledge memory can benefit from multiple rounds of updating with
474 AgentMMRec or relay updating with multiple different models, which is detailed in Appendix C.2.

475 5 CONCLUSION

478 In this paper, we identify that current multimodal recommendations are hindered by the semantic
479 gap between multimodal data and recommendation tasks. Leveraging the multimodal understanding
480 and contextual processing capabilities of LLMs, we propose AgentMMRec, a novel agent-based
481 framework that effectively bridges this semantic gap through two cooperative agents. These agents
482 achieve this by constructing behavior- and multimodal-aware homogeneous graphs, refining tradi-
483 tional item-item graphs, reranking the final item list, and updating the knowledge memory. Extensive
484 experiments demonstrate that AgentMMRec achieves significant performance improvements and
485 excels under various data sparsity scenarios. Furthermore, AgentMMRec has the ability to integrate
486 with existing models to overcome their performance bottlenecks.



477 Figure 3: Sparsity analysis for AgentMMRec across all datasets.

486 This paper also offers a promising future direction: shifting the focus from solely model design to
 487 exploring the fundamental relationship between data and tasks.
 488

489 **6 ETHICS STATEMENT**
 490

491 Our work adheres to the ethical guidelines outlined in the ICLR Code of Ethics.
 492

493 **7 REPRODUCIBILITY STATEMENT**
 494

495 The code is available at the anonymous repository link listed at the end of the abstract. The detailed
 496 experimental setup, in-depth experiments, and all prompt templates are thoroughly described in the
 497 appendix.
 498

500 **REFERENCES**
 501

502 Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
 503 effective and efficient tuning framework to align large language model with recommendation. In
 504 *Proceedings of the 17th ACM conference on recommender systems*, pp. 1007–1014, 2023.

505 Xu Chen, Hanxiong Chen, Hongteng Xu, Yongfeng Zhang, Yixin Cao, Zheng Qin, and Hongyuan
 506 Zha. Personalized fashion recommendation with visual explanations based on multimodal attention
 507 network: Towards visually explainable recommendation. In *Proceedings of the 42nd International*
 508 *ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 765–774,
 509 2019.

510 Zheyu Chen, Jinfeng Xu, and Haibo Hu. Don’t lose yourself: Boosting multimodal recommendation
 511 via reducing node-neighbor discrepancy in graph convolutional network. In *ICASSP 2025-2025*
 512 *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5.
 513 IEEE, 2025a.

514 Zheyu Chen, Jinfeng Xu, Hewei Wang, Shuo Yang, Zitong Wan, and Haibo Hu. Hypercomplex
 515 prompt-aware multimodal recommendation. *arXiv preprint arXiv:2508.10753*, 2025b.

517 Qile Fan, Penghang Yu, Zhiyi Tan, Bing-Kun Bao, and Guanming Lu. Befa: A general behavior-
 518 driven feature adapter for multimedia recommendation. In *Proceedings of the AAAI Conference on*
 519 *Artificial Intelligence*, volume 39, pp. 11634–11644, 2025.

520 Maria Lucia Fioretti, Nicola Laterza, Alessia Preziosa, Daniele Malitesta, Claudio Pomo, Fedelucio
 521 Narducci, and Tommaso Di Noia. How powerful are llms to support multimodal recommenda-
 522 tion? a reproducibility study of llmrec. In *Proceedings of the Nineteenth ACM Conference on*
 523 *Recommender Systems*, pp. 774–782, 2025.

524 Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
 525 networks. In *Proceedings of the thirteenth international conference on artificial intelligence and*
 526 *statistics*, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

528 Zhiqiang Guo, Jianjun Li, Guohui Li, Chaoyang Wang, Si Shi, and Bin Ruan. Lgmrec: Local and
 529 global graph learning for multimodal recommendation. In *Proceedings of the AAAI Conference on*
 530 *Artificial Intelligence*, volume 38, pp. 8454–8462, 2024.

531 Ruining He and Julian McAuley. Vbpr: visual bayesian personalized ranking from implicit feedback.
 532 In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.

533 Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
 534 Simplifying and powering graph convolution network for recommendation. In *Proceedings of the*
 535 *43rd International ACM SIGIR conference on research and development in Information Retrieval*,
 536 pp. 639–648, 2020.

538 Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin
 539 Zhao. Large language models are zero-shot rankers for recommender systems. *arXiv preprint*
arXiv:2305.08845, 2023.

540 Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin
 541 Zhao. Large language models are zero-shot rankers for recommender systems. In *European*
 542 *Conference on Information Retrieval*, pp. 364–381. Springer, 2024.

543 Yangqin Jiang, Lianghao Xia, Wei Wei, Da Luo, Kangyi Lin, and Chao Huang. Diffmm: Multi-modal
 544 diffusion model for recommendation. 2024.

545 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 546 *arXiv:1412.6980*, 2014.

547 Dong-Ho Lee, Adam Kraft, Long Jin, Nikhil Mehta, Taibai Xu, Lichan Hong, Ed H Chi, and Xinyang
 548 Yi. Star: A simple training-free approach for recommendations using large language models. *arXiv*
 549 *preprint arXiv:2410.16458*, 2024.

550 Qidong Liu, Jiaxi Hu, Yutian Xiao, Xiangyu Zhao, Jingtong Gao, Wanyu Wang, Qing Li, and Jiliang
 551 Tang. Multimodal recommender systems: A survey. *ACM Computing Surveys*, 57(2):1–17, 2024.

552 Shang Liu, Zhenzhong Chen, Hongyi Liu, and Xinghai Hu. User-video co-attention network for
 553 personalized micro-video recommendation. In *The world wide web conference*, pp. 3020–3026,
 554 2019.

555 Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
 556 recommendations on styles and substitutes. In *Proceedings of the 38th international ACM SIGIR*
 557 *conference on research and development in information retrieval*, pp. 43–52, 2015.

558 Rongqing Kenneth Ong and Andy WH Khong. Spectrum-based modality representation fusion graph
 559 convolutional network for multimodal recommendation. In *Proceedings of the Eighteenth ACM*
 560 *International Conference on Web Search and Data Mining*, pp. 773–781, 2025.

561 Feiyu Peng, Chaobo He, Junwei Cheng, Huijuan Hu, Wenkai Zhang, and Youda Mo. Frequency-
 562 refined graph convolution network with cross-modal wavelet denoising for recommendation. In
 563 *Proceedings of the 33rd ACM International Conference on Multimedia*, pp. 1559–1568, 2025.

564 Yuxin Qi, Quan Zhang, Xi Lin, Xiu Su, Jiani Zhu, Jingyu Wang, and Jianhua Li. Seeing beyond noise:
 565 Joint graph structure evaluation and denoising for multimodal recommendation. In *Proceedings of*
 566 *the AAAI Conference on Artificial Intelligence*, volume 39, pp. 12461–12469, 2025.

567 Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and Chao
 568 Huang. Representation learning with large language models for recommendation. In *Proceedings*
 569 *of the ACM web conference 2024*, pp. 3464–3475, 2024.

570 Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
 571 personalized ranking from implicit feedback. In *Proceedings of the Twenty-Fifth Conference on*
 572 *Uncertainty in Artificial Intelligence*, pp. 452–461, 2009.

573 Zhulin Tao, Xiaohao Liu, Yewei Xia, Xiang Wang, Lifang Yang, Xianglin Huang, and Tat-Seng Chua.
 574 Self-supervised learning for multimedia recommendation. *IEEE Transactions on Multimedia*,
 575 2022.

576 Yijun Tian, Huan Song, Zichen Wang, Haozhu Wang, Ziqing Hu, Fang Wang, Nitesh V Chawla, and
 577 Panpan Xu. Graph neural prompting with large language models. *arXiv preprint arXiv:2309.15427*,
 578 2023.

579 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 580 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 581 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

582 Qifan Wang, Yinwei Wei, Jianhua Yin, Jianlong Wu, Xuemeng Song, and Liqiang Nie. Dualgnn:
 583 Dual graph neural network for multimedia recommendation. *IEEE Transactions on Multimedia*,
 584 2021.

585 Wei Wei, Chao Huang, Lianghao Xia, and Chuxu Zhang. Multi-modal self-supervised learning for
 586 recommendation. In *Proceedings of the ACM Web Conference 2023*, pp. 790–800, 2023.

594 Wei Wei, Xubin Ren, Jabin Tang, Qinyong Wang, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin,
 595 and Chao Huang. Llmrec: Large language models with graph augmentation for recommendation.
 596 In *Proceedings of the 17th ACM International Conference on Web Search and Data Mining*, pp.
 597 806–815, 2024.

598 Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He, Richang Hong, and Tat-Seng Chua. Mmgcn:
 599 Multi-modal graph convolution network for personalized recommendation of micro-video. In
 600 *Proceedings of the 27th ACM international conference on multimedia*, pp. 1437–1445, 2019.

602 Jinfeng Xu, Zheyu Chen, Jinze Li, Shuo Yang, Hewei Wang, Yijie Li, Mengran Li, Puzhen Wu, and
 603 Edith CH Ngai. Mdvt: Enhancing multimodal recommendation with model-agnostic multimodal-
 604 driven virtual triplets. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge
 605 Discovery and Data Mining V. 2*, pp. 3378–3389, 2025a.

606 Jinfeng Xu, Zheyu Chen, Jinze Li, Shuo Yang, Wei Wang, Xiping Hu, Raymond Chi-Wing Wong,
 607 and Edith CH Ngai. Enhancing robustness and generalization capability for multimodal recom-
 608 mender systems via sharpness-aware minimization. *IEEE Transactions on Knowledge and Data
 609 Engineering*, 2025b.

611 Jinfeng Xu, Zheyu Chen, Wei Wang, Xiping Hu, Sang-Wook Kim, and Edith CH Ngai. Cohesion:
 612 Composite graph convolutional network with dual-stage fusion for multimodal recommendation.
 613 In *Proceedings of the 48th International ACM SIGIR Conference on Research and Development in
 614 Information Retrieval*, pp. 1830–1839, 2025c.

615 Jinfeng Xu, Zheyu Chen, Shuo Yang, Jinze Li, and Edith CH Ngai. The best is yet to come: Graph
 616 convolution in the testing phase for multimodal recommendation. *arXiv preprint arXiv:2507.18489*,
 617 2025d.

619 Jinfeng Xu, Zheyu Chen, Shuo Yang, Jinze Li, Hewei Wang, and Edith CH Ngai. Mentor: multi-level
 620 self-supervised learning for multimodal recommendation. In *Proceedings of the AAAI Conference
 621 on Artificial Intelligence*, volume 39, pp. 12908–12917, 2025e.

622 Jinfeng Xu, Zheyu Chen, Shuo Yang, Jinze Li, Wei Wang, Xiping Hu, Steven Hoi, and Edith Ngai.
 623 A survey on multimodal recommender systems: Recent advances and future directions. *arXiv
 624 preprint arXiv:2502.15711*, 2025f.

626 Penghang Yu, Zhiyi Tan, Guanming Lu, and Bing-Kun Bao. Multi-view graph convolutional network
 627 for multimedia recommendation. In *Proceedings of the 31st ACM International Conference on
 628 Multimedia*, pp. 6576–6585, 2023.

629 Jinghao Zhang, Yanqiao Zhu, Qiang Liu, Shu Wu, Shuhui Wang, and Liang Wang. Mining la-
 630 tent structures for multimedia recommendation. In *Proceedings of the 29th ACM International
 631 Conference on Multimedia*, pp. 3872–3880, 2021.

633 Jinghao Zhang, Yanqiao Zhu, Qiang Liu, Mengqi Zhang, Shu Wu, and Liang Wang. Latent structure
 634 mining with contrastive modality fusion for multimedia recommendation. *IEEE Transactions on
 635 Knowledge and Data Engineering*, 35(9):9154–9167, 2022.

636 Yang Zhang, Fuli Feng, Jizhi Zhang, Keqin Bao, Qifan Wang, and Xiangnan He. Collm: Integrating
 637 collaborative embeddings into large language models for recommendation. *IEEE Transactions on
 638 Knowledge and Data Engineering*, 2025a.

640 Zijian Zhang, Shuchang Liu, Ziru Liu, Rui Zhong, Qingpeng Cai, Xiangyu Zhao, Chunxu Zhang,
 641 Qidong Liu, and Peng Jiang. Llm-powered user simulator for recommender system. In *Proceedings
 642 of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 13339–13347, 2025b.

643 Hongyu Zhou, Xin Zhou, Zhiwei Zeng, Lingzi Zhang, and Zhiqi Shen. A comprehensive survey on
 644 multimodal recommender systems: Taxonomy, evaluation, and future directions. *arXiv preprint
 645 arXiv:2302.04473*, 2023a.

647 Xin Zhou. Mmrec: Simplifying multimodal recommendation. *arXiv preprint arXiv:2302.03497*,
 2023.

648 Xin Zhou and Zhiqi Shen. A tale of two graphs: Freezing and denoising graph structures for
649 multimodal recommendation. In *Proceedings of the 31st ACM International Conference on*
650 *Multimedia*, pp. 935–943, 2023.

651

652 Xin Zhou, Hongyu Zhou, Yong Liu, Zhiwei Zeng, Chunyan Miao, Pengwei Wang, Yuan You, and
653 Feijun Jiang. Bootstrap latent representations for multi-modal recommendation. In *Proceedings of*
654 *the ACM Web Conference 2023*, pp. 845–854, 2023b.

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706 Appendix

707

708

709

706	A Technique Details	15
707	A.1 Technique Details before Reranking	15
708	A.2 Algorithm	15
709		
710	B Experimental Settings	15
711	B.1 Datasets	15
712	B.2 Baselines	17
713		
714		
715	C In-depth Analysis	18
716	C.1 Cold-Start Analysis	18
717	C.2 Knowledge Memory Continuous Updating	18
718	C.3 Hyperparameter Analysis	19
719	C.4 LLM Backbone Analysis	19
720	C.5 Compatibility with Extra Modality-alignment SSL Tasks	20
721	C.6 Efficiency Study	20
722	C.7 Template Dependency Analysis	21
723		
724		
725		
726		
727		
728	D Prompt Templates	21
729	D.1 \mathcal{P}_{pref}^t	21
730	D.2 \mathcal{P}_{pref}^v	22
731	D.3 \mathcal{P}_{pref}^m	23
732	D.4 \mathcal{P}_{prop}^t	24
733	D.5 \mathcal{P}_{prop}^v	25
734	D.6 \mathcal{P}_{prop}^m	26
735	D.7 \mathcal{P}_{re}	27
736	D.8 \mathcal{P}_{rank}	29
737	D.9 \mathcal{P}_{update}	30
738		
739		
740		
741		
742		
743	E The Use of Large Language Models (LLMs)	31
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

756 **A TECHNIQUE DETAILS**
757758 **A.1 TECHNIQUE DETAILS BEFORE RERANKING**
759760 We provide technique details prior to reranking. First, we utilize LightGCN (He et al., 2020) to
761 extract high-order user-item collaborative signals, formally the embeddings for user u and item i in
762 the l -th layer are:

763
$$\hat{\mathbf{e}}_u^{(l)} = \frac{1}{\mathcal{N}(u)} \sum_{j|(u,j) \in \mathcal{E}} \frac{1}{\mathcal{N}(j)} \hat{\mathbf{e}}_j^{(l-1)}, \quad \hat{\mathbf{e}}_i^{(l)} = \frac{1}{\mathcal{N}(i)} \sum_{v|(i,v) \in \mathcal{E}} \frac{1}{\mathcal{N}(v)} \hat{\mathbf{e}}_v^{(l-1)}, \quad (15)$$

764
765

766 where $\hat{\mathbf{e}}_u = (\mathbf{e}_{u_t} | \mathbf{e}_{u_v} | t_\theta((P_u^t | P_u^v | P_u^m)))$ and $\hat{\mathbf{e}}_i = (\mathbf{e}_{i_t} | \mathbf{e}_{i_v} | t_\theta((P_i^t | P_i^v | P_i^m)))$ are user and item
767 representations enhanced by extracted behavior- and multimodal-aware user preferences and item
768 properties. Here $|$ denote concatenation operation. After L layers of graph convolution operation, the
769 final representations of user u and item i are calculated as:

770
$$\hat{\mathbf{e}}_u = \sum_{l=0}^L \hat{\mathbf{e}}_u^l, \quad \hat{\mathbf{e}}_i = \sum_{l=0}^L \hat{\mathbf{e}}_i^l. \quad (16)$$

771
772

773 Here, we fix $L = 3$ for all experiments, which is the best setting in most multimodal recommendation
774 models (Xu et al., 2025f). Entire user and item representations can be formulated as $\hat{\mathbf{E}}_u$ and $\hat{\mathbf{E}}_i$,
775 respectively. Furthermore, we adopts constructed behavior- and multimodal-aware homogeneous
776 graphs and refined unified item-item graph to enhance user and item representations.
777778 For user side, we only have constructed behavior- and multimodal-aware user-user graph \mathcal{E}^{bmu} with
779 similarity matrix \mathcal{S}^{bmu} . Therefore, user side representation enhancement can be expressed as:

780
$$\bar{\mathbf{E}}_u = \hat{\mathbf{E}}_u + \hat{\mathbf{E}}_u ((\mathcal{D}^{bmu})^{-\frac{1}{2}} \mathcal{S}^{bmu} (\mathcal{D}^{bmu})^{-\frac{1}{2}}), \quad (17)$$

781

782 where \mathcal{D}^{bmu} is the diagonal degree matrix of \mathcal{S}^{bmu} . This normalization aim to mitigate the issues of
783 gradient explosion or vanishing.784 For item side, we have constructed behavior- and multimodal-aware item-item graph \mathcal{E}^{bmi} with simi-
785 larity matrix \mathcal{S}^{bmi} and refined unified item-item graph \mathcal{E}^{rti} with similarity matrix \mathcal{S}^{rti} . Therefore,
786 item side representation enhancement can be expressed as:

787
$$\bar{\mathbf{E}}_i = \hat{\mathbf{E}}_i + \hat{\mathbf{E}}_i ((\mathcal{D}^{bmi})^{-\frac{1}{2}} \mathcal{S}^{bmi} (\mathcal{D}^{bmi})^{-\frac{1}{2}}) + \hat{\mathbf{E}}_i ((\mathcal{D}^{rti})^{-\frac{1}{2}} \mathcal{S}^{rti} (\mathcal{D}^{rti})^{-\frac{1}{2}}), \quad (18)$$

788

789 where \mathcal{D}^{bmi} and \mathcal{D}^{rti} are the diagonal degree matrices of \mathcal{S}^{bmi} and \mathcal{S}^{rti} , respectively. These
790 normalizations also aim to mitigate the issues of gradient explosion or vanishing.

791 Notably, for efficiency consideration, all homogeneous graph only adopt single-layer convolution.

792 Consistent with almost all existing multimodal recommendation studies (Xu et al., 2025f; Liu et al.,
793 2024; Zhou et al., 2023a), we use BPR for model optimization. Specifically, we compute the inner
794 product of user and item representations to calculate predicted scores and adopt the BPR loss function:

795
$$\mathcal{L}_{bpr} = \sum_{(u,p,n) \in \mathcal{D}} -\log (\sigma (\bar{\mathbf{e}}_u^\top \bar{\mathbf{e}}_p - \bar{\mathbf{e}}_u^\top \bar{\mathbf{e}}_n)), \quad (19)$$

796
797

798 where $\sigma(\cdot)$ is the Sigmoid function. p and n denote positive and negative items for user u , respectively.
799800 **A.2 ALGORITHM**
801802 We provide algorithmic pseudocode in Algorithm 1 to provide overview of our AgentMMRec.
803804 **B EXPERIMENTAL SETTINGS**
805806 **B.1 DATASETS**
807808 Each dataset was preprocessed using a 5-core filtering setting to eliminate infrequent users and items.
809 The statistical characteristics of the filtered datasets are summarized in Table 3. The processed data
810 were then split into training, validation, and test sets in an 8:1:1 ratio.

810

811

Algorithm 1 Process of AgentMMRec

812 1: **Input:** User set \mathcal{U} , item set \mathcal{I} , item textual data (Title: T_i^{title} , Brand: T_i^{brand} , Categories:
813 $T_i^{categories}$, and Description: $T_i^{description}$), item visual data (Image: V_i), pretrained textual en-
814 coder $t_\theta(\cdot)$, pretrained visual encoder $v_\theta(\cdot)$, user-item graph \mathcal{G} , Integrator Agent $IAgent(\cdot)$, Util-
815 izer Agent $UAgent(\cdot)$, knowledge memory $KMemory(\cdot)$, prompt templates ($\{\mathcal{P}_{pref}^*\}_{* \in t, v, m}$,
816 $\{\mathcal{P}_{prop}^*\}_{* \in t, v, m}$, \mathcal{P}_{re} , \mathcal{P}_{rank} , and \mathcal{P}_{update}), and knowledge useful flag f ;
817 2: Extract item representations \mathbf{E}_{i_t} , \mathbf{E}_{i_v} textual and visual modalities via encoder $t_\theta(\cdot)$ and $v_\theta(\cdot)$;
818 3: Randomly initialize user representations \mathbf{E}_{u_t} , \mathbf{E}_{u_v} ;
819 4: Generate behavior- and multimodal-aware user preferences (P_u^t, P_u^v, P_u^m) for each user u
820 via Integrator Agent $IAgent(\cdot)$, item textual data (Title: T_i^{title} , Brand: T_i^{brand} , Categories:
821 $T_i^{categories}$, and Description: $T_i^{description}$), item visual data (Image: V_i), and prompt templates
822 $\{\mathcal{P}_{pref}^*\}_{* \in t, v, m}$;
823 5: Memory user preferences (P_u^t, P_u^v, P_u^m) into knowledge memory $KMemory(\cdot)$ for each user u ;
824 6: Construct behavior- and multimodal-aware user-user graph \mathcal{G}^{bmu} via behavior- and multimodal-
825 aware user preferences (P_u^t, P_u^v, P_u^m) for each user u and pretrained textual encoder $t_\theta(\cdot)$.
826 7: Generate behavior- and multimodal-aware item properties (P_i^t, P_i^v, P_i^m) for each item i via
827 Integrator Agent $IAgent(\cdot)$, item textual data (Title: T_i^{title} , Brand: T_i^{brand} , Categories:
828 $T_i^{categories}$, and Description: $T_i^{description}$), item visual data (Image: V_i), and prompt templates
829 $\{\mathcal{P}_{prop}^*\}_{* \in t, v, m}$;
830 8: Memory item properties (P_i^t, P_i^v, P_i^m) into knowledge memory $KMemory(\cdot)$ for each item i ;
831 9: Construct behavior- and multimodal-aware item-item graph \mathcal{G}^{bmi} via behavior- and multimodal-
832 aware item properties (P_i^t, P_i^v, P_i^m) for each item i and pretrained textual encoder $t_\theta(\cdot)$.
833 10: Build traditional modality-specific item-item graph \mathcal{G}^{rti} for each modality m via \mathbf{E}_{i_t} and \mathbf{E}_{i_v} ;
834 11: Refine and construct unified item-item graph \mathcal{G}^{rti} via traditional modality-specific item-
835 item graph $\{\mathcal{G}^{rti}\}_{m \in t, v}$, user preferences (P_u^t, P_u^v, P_u^m) for each user u , item properties
836 (P_i^t, P_i^v, P_i^m) for each item i , and prompt template \mathcal{P}_{re} ;
837 12: **while** not converged **do**
838 13: Enhance user representations $\hat{\mathbf{E}}_u$ via entire user representations $(\mathbf{E}_{u_t}, \mathbf{E}_{u_v})$, user preferences
839 (P_u^t, P_u^v, P_u^m) for each user u , and textual encoder $t_\theta(\cdot)$;
840 14: Enhance item representations $\hat{\mathbf{E}}_i$ via entire item representations $(\mathbf{E}_{i_t}, \mathbf{E}_{i_v})$, item preferences
841 (P_i^t, P_i^v, P_i^m) for each item i , and textual encoder $t_\theta(\cdot)$;
842 15: Extract high-order user-item collaborative signals via user-item graph \mathcal{G} , user representations
843 $\hat{\mathbf{E}}_u$, and item representations $\hat{\mathbf{E}}_i$;
844 16: Get enhanced user representations $\bar{\mathbf{E}}_u$ via user representations $\hat{\mathbf{E}}_u$ and behavior- and
845 multimodal-aware user-user graph \mathcal{G}^{bmu} ;
846 17: Get enhanced user representations $\bar{\mathbf{E}}_i$ via user representations $\hat{\mathbf{E}}_i$, behavior- and multimodal-
847 aware item-item graph \mathcal{G}^{bmi} , and unified item-item graph \mathcal{G}^{rti} ;
848 18: Optimize model via BPR loss function and get final item list $\bar{\mathcal{I}}_u$ for each user u ;
849 19: Set knowledge useful flag $f = \text{False}$;
850 20: **while** $f = \text{False}$ **do**
851 21: Rerank final item list $\bar{\mathcal{I}}_u$ for each user u via Utilizer Agent $UAgent$, user preferences
852 (P_u^t, P_u^v, P_u^m) for each user u , item preferences (P_i^t, P_i^v, P_i^m) for each item i , and prompt
853 template \mathcal{P}_{rank} ;
854 22: Evaluate final item list $\bar{\mathcal{I}}_u$ for each user u ($\text{Eval}(u, \bar{\mathcal{I}}_u)$), and reranked final item list $\bar{\mathcal{I}}_u$ for
855 each user u ($\text{Eval}(u, \bar{\mathcal{I}}_u)$);
856 23: **if** $\text{Eval}(u, \bar{\mathcal{I}}_u) < \text{Eval}(u, \bar{\mathcal{I}}_u)$ **then**
857 24: Set knowledge useful flag $f = \text{TRUE}$;
858 25: **else**
859 26: Update user preferences (P_u^t, P_u^v, P_u^m) for each user u via Integrator Agent $IAgent(\cdot)$,
860 user preferences (P_i^t, P_i^v, P_i^m) for each user u , item preferences (P_i^t, P_i^v, P_i^m) for each
861 item i , ground-truth item list $\bar{\mathcal{I}}_u$ for each user u , and prompt template \mathcal{P}_{update} ;
862 27: **end if**
863 28: **end while**
29: **end while**

864

865

866

867

868

869

870

871

872

B.2 BASELINES

873

To evaluate the effectiveness of AgentMMRec, we compare it with the following baselines, including **MMGCN** (Wei et al., 2019), **DualGNN** (Wang et al., 2021), **LATTICE** (Zhang et al., 2022), **SLMRec** (Tao et al., 2022), **FREEDOM** (Zhou & Shen, 2023), **BM3** (Zhou et al., 2023b), **MMSSL** (Wei et al., 2023), **LLMRec** (Wei et al., 2024), **LGMRec** (Guo et al., 2024), **DiffMM** (Jiang et al., 2024), **SMORE** (Ong & Khong, 2025), **BeFA** (Fan et al., 2025), **MENTOR** (Xu et al., 2025e), **COHESION** (Xu et al., 2025c), and **HPMRec** (Chen et al., 2025b). Specifically:

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Table 3: Statistics of all evaluation datasets.

Datasets	#Users	#Items	#Interactions	Sparsity
Baby	19,445	7,050	160,792	99.88%
Sports	35,598	18,357	296,337	99.95%
Clothing	39,387	23,033	278,677	99.97%

918

C IN-DEPTH ANALYSIS

919

C.1 COLD-START ANALYSIS

920 We present results on the item cold-start scenario across all datasets (following widely used settings
 921 (Zhang et al., 2022), (Xu et al., 2025f)). The experimental results in Table 4 show that AgentMMRec
 922 significantly outperforms all baselines in the cold-start scenario. We attribute this to AgentMMRec’s
 923 ability to fully leverage multimodal information, enabling accurate identification of properties for
 924 new items, thereby enhancing the alignment between multimodal data and recommendation tasks.
 925 Moreover, based on the experimental results and model design, we provide some insights into item
 926 cold-start. We observe that models such as FREEDOM, LLMRec, LGMRec, SMORE, MENTOR,
 927 COHESION, HPMRec, and AgentMMRec, which construct an item-item graph, have a significant
 928 impact on improving item cold-start. This indicates that multimodal data can effectively capture and
 929 reflect item properties. The advantage of AgentMMRec lies partly in the multimodal data provided
 930 by LLMs, which incorporates user behavior and aligns more closely with the recommendation task.
 931 Notably, in multimodal recommendation scenarios, new items come with multimodal data, allowing
 932 the model to effectively extract the properties of cold-start items. However, since new users lack
 933 interaction records and personal profiles, cold-start users are difficult to explore.
 934

935

Table 4: Item cold-start analysis across all datasets.

938 Datasets	939 Baby				940 Sports				941 Clothing				
	942 Metrics	943 R@10	944 R@20	945 N@10	946 N@20	947 R@10	948 R@20	949 N@10	950 N@20	951 R@10	952 R@20	953 N@10	954 N@20
955 MMGCN	956 0.0103	957 0.0186	958 0.0062	959 0.0098	960 0.0106	961 0.0178	962 0.0060	963 0.0094	964 0.0069	965 0.0101	966 0.0039	967 0.0050	968
969 DualGNN	970 0.0132	971 0.0200	972 0.0077	973 0.0110	974 0.0166	975 0.0242	976 0.0096	977 0.0132	978 0.0134	979 0.0198	980 0.0082	981 0.0113	982
983 LATTICE	984 0.0175	985 0.0256	986 0.0099	987 0.0138	988 0.0266	989 0.0340	990 0.0139	991 0.0189	992 0.0168	993 0.0249	994 0.0095	995 0.0135	996
997 SLMRec	998 0.0172	999 0.0259	1000 0.0101	1001 0.0140	1002 0.0281	1003 0.0354	1004 0.0142	1005 0.0194	1006 0.0141	1007 0.0208	1008 0.0084	1009 0.0118	1010
1011 FREEDOM	1012 0.0348	1013 0.0588	1014 0.0195	1015 0.0257	1016 0.0389	1017 0.0640	1018 0.0231	1019 0.0289	1020 0.0339	1021 0.0585	1022 0.0190	1023 0.0252	1024
1025 BM3	1026 0.0180	1027 0.0262	1028 0.0100	1029 0.0133	1030 0.0210	1031 0.0294	1032 0.0128	1033 0.0180	1034 0.0125	1035 0.0189	1036 0.0077	1037 0.0104	1038
1040 MMSSL	1041 0.0280	1042 0.0351	1043 0.0144	1044 0.0192	1045 0.0299	1046 0.0370	1047 0.0152	1048 0.0203	1049 0.0200	1050 0.0294	1051 0.0108	1052 0.0157	1053
1055 LLMRec	1056 0.0380	1057 0.0605	1058 0.0203	1059 0.0255	1060 0.0361	1061 0.0600	1062 0.0208	1063 0.0261	1064 0.0298	1065 0.0539	1066 0.0169	1067 0.0226	1068
1070 LGMRec	1071 0.0371	1072 0.0592	1073 0.0208	1074 0.0261	1075 0.0380	1076 0.0629	1077 0.0226	1078 0.0281	1079 0.0303	1080 0.0551	1081 0.0173	1082 0.0235	1083
1085 DiffMM	1086 0.0336	1087 0.0552	1088 0.0193	1089 0.0238	1090 0.0355	1091 0.0589	1092 0.0202	1093 0.0254	1094 0.0266	1095 0.0510	1096 0.0150	1097 0.0221	1098
1100 SMORE	1101 0.0370	1102 0.0595	1103 0.0202	1104 0.0251	1105 0.0404	1106 0.0661	1107 0.0245	1108 0.0302	1109 0.0360	1110 0.0602	1111 0.0195	1112 0.0259	1113
1115 BeFA	1116 0.0188	1117 0.0262	1118 0.0104	1119 0.0149	1120 0.0220	1121 0.0303	1122 0.0134	1123 0.0182	1124 0.0232	1125 0.0367	1126 0.0131	1127 0.0200	1128
1130 MENTOR	1131 0.0395	1132 0.0628	1133 0.0212	1134 0.0268	1135 0.0402	1136 0.0661	1137 0.0249	1138 0.0297	1139 0.0369	1140 0.0610	1141 0.0201	1142 0.0264	1143
1145 COHESION	1146 0.0399	1147 0.0631	1148 0.0211	1149 0.0263	1150 0.0410	1151 0.0665	1152 0.0246	1153 0.0300	1154 0.0369	1155 0.0611	1156 0.0199	1157 0.0256	1158
1160 HPMRec	1161 0.0378	1162 0.0603	1163 0.0204	1164 0.0256	1165 0.0398	1166 0.0653	1167 0.0241	1168 0.0292	1169 0.0360	1170 0.0600	1171 0.0192	1172 0.0255	1173
1175 AgentMMRec	1176 0.0458	1177 0.0733	1178 0.0248	1179 0.0317	1180 0.0454	1181 0.0711	1182 0.0272	1183 0.0324	1184 0.0406	1185 0.0662	1186 0.0228	1187 0.0282	1188

952

C.2 KNOWLEDGE MEMORY CONTINUOUS UPDATING

953 The knowledge memory is decoupled from the model, allowing it to be transferred and continuously
 954 updated. Therefore, we further explore whether the knowledge memory can benefit from multiple
 955 rounds of updating with AgentMMRec or relay updating with multiple different models. In Table 5,
 956 we present the experimental results of knowledge memory after multiple rounds of updating with
 957 AgentMMRec and relay updating with other models before being re-integrated into AgentMMRec.
 958

959 For multiple rounds of updating with AgentMMRec, the knowledge memory strengthens with
 960 successive updates but eventually reaches a plateau, where no further updates are made. Specifically,
 961 the performances of ‘2 Extra AgentMMRec’ and ‘3 Extra AgentMMRec’ are identical across all
 962 datasets and metrics. Upon further examination of the logs from the third extra AgentMMRec update,
 963 we found that reranking consistently produced positive results. Therefore, no actual updates were
 964 performed. For relay updating with different models, models with poor performance fail to complete
 965 updates. During the early stages of model training, the final item lists provided by such models
 966 are of such low quality that the accurate knowledge cannot effectively optimize them, resulting
 967 in a deadlock where no effective updates can be made. For models with moderate performance,
 968 such as FREEDOM, LGMRec, and LLMRec, the impact of relay updating on the knowledge
 969 memory—whether it strengthens or weakens—is inconsistent across different datasets. However, for
 970 models that fully leverage multimodal data, such as SMORE, MENTOR, and COHESION, relay
 971 updating demonstrates a stable and more significant enhancement to Knowledge Memory compared
 972 to ‘1 Extra AgentMMRec’.

Table 5: Knowledge memory continuous updating analysis across all datasets.

Datasets		Baby				Sports				Clothing			
Metrics	R@10	R@20	N@10	N@20	R@10	R@20	N@10	N@20	R@10	R@20	N@10	N@20	
AgentMMRec	0.0705	-	0.1079	0.0380	0.0475	0.0838	0.1231	0.0454	0.0557	0.0740	0.1071	0.0404	0.0490
1 Extra AgentMMRec	0.0710 \uparrow	-	0.1086 \uparrow	0.0384 \uparrow	0.0481 \uparrow	0.0844 \uparrow	0.1239 \uparrow	0.0458 \uparrow	0.0564 \uparrow	0.0744 \uparrow	0.1078 \uparrow	0.0409 \uparrow	0.0497 \uparrow
2 Extra AgentMMRec	0.0712 \uparrow	-	0.1089 \uparrow	0.0387 \uparrow	0.0486 \uparrow	0.0847 \uparrow	0.1244 \uparrow	0.0461 \uparrow	0.0568 \uparrow	0.0747 \uparrow	0.1081 \uparrow	0.0408 \uparrow	0.0500 \uparrow
3 Extra AgentMMRec	0.0712 \uparrow	-	0.1089 \uparrow	0.0387 \uparrow	0.0486 \uparrow	0.0847 \uparrow	0.1244 \uparrow	0.0461 \uparrow	0.0568 \uparrow	0.0747 \uparrow	0.1081 \uparrow	0.0408 \uparrow	0.0500 \uparrow
AgentMMRec + MMGCN	-	-	-	-	-	-	-	-	-	-	-	-	-
AgentMMRec + DualGNN	-	-	-	-	-	-	-	-	-	-	-	-	-
AgentMMRec + LATTICE	-	-	-	-	-	-	-	-	-	-	-	-	-
AgentMMRec + SLRRec	-	-	-	-	-	-	-	-	-	-	-	-	-
AgentMMRec + FREEDOM	0.0705 \downarrow	-	0.1081 \uparrow	0.0378 \downarrow	0.0478 \uparrow	0.0838 \downarrow	0.1233 \uparrow	0.0452 \downarrow	0.0558 \uparrow	0.0741 \uparrow	0.1066 \downarrow	0.0405 \uparrow	0.0491 \uparrow
AgentMMRec + BM3	-	-	-	-	-	-	-	-	-	-	-	-	-
AgentMMRec + MMLSS	0.0703 \downarrow	-	0.1075 \downarrow	0.0380 \downarrow	0.0472 \downarrow	0.0835 \downarrow	0.1226 \downarrow	0.0452 \downarrow	0.0553 \downarrow	0.0740 \downarrow	0.1070 \downarrow	0.0405 \uparrow	0.0486 \downarrow
AgentMMRec + LLMRec	0.0706 \uparrow	-	0.1080 \uparrow	0.0378 \uparrow	0.0475 \uparrow	0.0836 \uparrow	0.1232 \uparrow	0.0455 \uparrow	0.0552 \uparrow	0.0740 \uparrow	0.1071 \uparrow	0.0404 \uparrow	0.0490 \uparrow
AgentMMRec + LGMRec	0.0705 \downarrow	-	0.1079 \downarrow	0.0380 \downarrow	0.0475 \downarrow	0.0836 \downarrow	0.1233 \downarrow	0.0455 \downarrow	0.0560 \downarrow	0.0741 \uparrow	0.1068 \downarrow	0.0407 \uparrow	0.0489 \downarrow
AgentMMRec + DiffMM	0.0703 \downarrow	-	0.1071 \downarrow	0.0380 \downarrow	0.0472 \downarrow	0.0835 \downarrow	0.1229 \downarrow	0.0454 \downarrow	0.0554 \downarrow	0.0740 \downarrow	0.1068 \downarrow	0.0402 \downarrow	0.0487 \downarrow
AgentMMRec + SMORE	0.0711 \uparrow	-	0.1084 \uparrow	0.0385 \uparrow	0.0483 \uparrow	0.0846 \uparrow	0.1237 \uparrow	0.0460 \uparrow	0.0563 \uparrow	0.0745 \uparrow	0.1076 \uparrow	0.0406 \uparrow	0.0497 \uparrow
AgentMMRec + BeFA	-	-	-	-	-	-	-	-	-	-	-	-	-
AgentMMRec + MENTOR	0.0710 \uparrow	-	0.1085 \uparrow	0.0385 \uparrow	0.0480 \uparrow	0.0844 \uparrow	0.1241 \uparrow	0.0459 \uparrow	0.0566 \uparrow	0.0742 \uparrow	0.1075 \uparrow	0.0406 \uparrow	0.0494 \uparrow
AgentMMRec + COHESION	0.0711 \uparrow	-	0.1088 \uparrow	0.0385 \uparrow	0.0483 \uparrow	0.0844 \uparrow	0.1236 \uparrow	0.0458 \uparrow	0.0565 \uparrow	0.0745 \uparrow	0.1080 \uparrow	0.0410 \uparrow	0.0498 \uparrow
AgentMMRec + HPMRec	0.0707 \uparrow	-	0.1082 \uparrow	0.0382 \uparrow	0.0476 \uparrow	0.0838 \uparrow	0.1231 \uparrow	0.0454 \uparrow	0.0557 \uparrow	0.0742 \uparrow	0.1071 \uparrow	0.0406 \uparrow	0.0494 \uparrow

C.3 HYPERPARAMETER ANALYSIS

To evaluate the hyperparameter sensitivity of AgentMMRec, we conduct comprehensive experiments on three datasets under varying hyperparameters settings: **Threshold** Υ and **Knowledge Update Interval** E . The best result of each line is marked in Figure 4.

For the threshold Υ , a lower Υ can reduce costs but may randomly select extreme samples, whereas increasing Υ can mitigate this risk by dilution but comes at a higher cost and is constrained by the context length limitation of the LLM backbone. For the knowledge update interval E , lower intervals enable more frequent updates to the knowledge memory, but excessively low intervals introduce fluctuations, noise, and higher costs. Notably, increasing the interval does not result in significant performance degradation, indicating that infrequent updates are still sufficiently effective. This characteristic is advantageous for real-world deployment scenarios. From the perspective of balancing efficiency and performance, we report results in all experiments of the paper fixing a threshold $\Upsilon = 5$ and a knowledge update interval $E = 10$, rather than the optimal results.

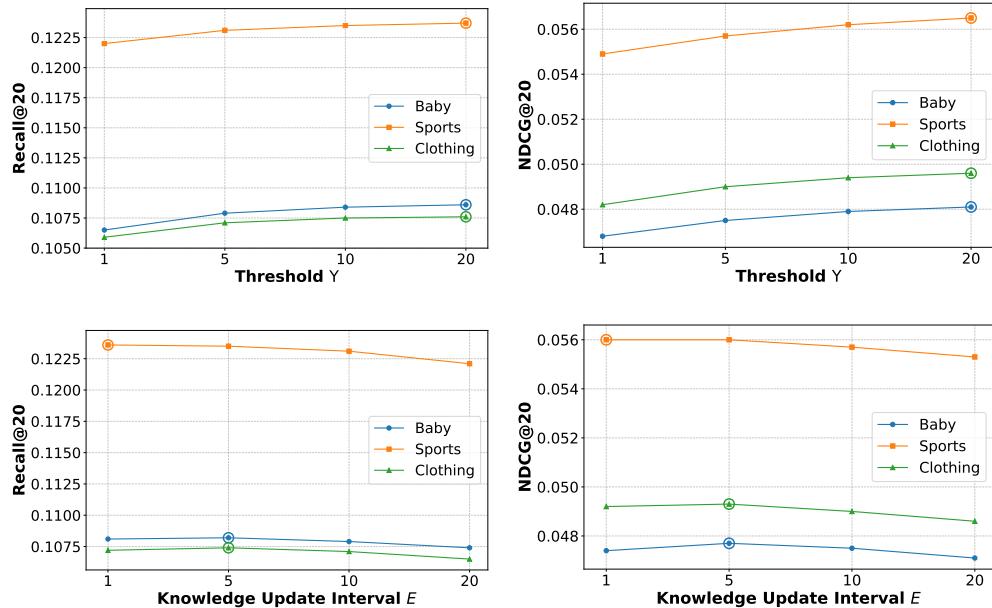


Figure 4: Effect of Threshold Υ and Knowledge Update Interval E .

C.4 LLM BACKBONE ANALYSIS

We explore whether replacing the LLM backbone of agents in AgentMMRec can further improve its performance. In all experiments, we default to using the open-source model Qwen2.5-VL-7B as the

1026
1027 Table 6: Performance comparison of AgentMMRec with different LLMs as backbone across all
1028 datasets.

Datasets	Baby				Sports				Clothing			
	Metrics	R@10	R@20	N@10	N@20	R@10	R@20	N@10	N@20	R@10	R@20	N@10
AgentMMRec (Qwen2.5-VL-7B)	0.0705	0.1079	0.0380	0.0475	0.0838	0.1231	0.0454	0.0557	0.0740	0.1071	0.0404	0.0490
AgentMMRec (Qwen2.5-VL-32B)	0.0712↑	0.1086↑	0.0385↑	0.0482↑	0.0845↑	0.1238↑	0.0458↑	0.0565↑	0.0745↑	0.1079↑	0.0408↑	0.0498↑
AgentMMRec (GPT-4o)	0.0716↑	0.1088↑	0.0388↑	0.0488↑	0.0848↑	0.1244↑	0.0461↑	0.0570↑	0.0748↑	0.1084↑	0.0411↑	0.0503↑

1032
1033 Table 7: Performance comparison of AgentMMRec with advanced modality alignment SSL tasks
1034 across all datasets.

Datasets	Baby				Sports				Clothing			
	Metrics	R@10	R@20	N@10	N@20	R@10	R@20	N@10	N@20	R@10	R@20	N@10
AgentMMRec	0.0705	0.1079	0.0380	0.0475	0.0838	0.1231	0.0454	0.0557	0.0740	0.1071	0.0404	0.0490
AgentMMRec + InfoNCE	0.0707↑	0.1082↑	0.0383↑	0.0480↑	0.0841↑	0.1235↑	0.0456↑	0.0560↑	0.0744↑	0.1074↑	0.0406↑	0.0494↑
AgentMMRec + DisAlign	0.0708↑	0.1081↑	0.0384↑	0.0478↑	0.0842↑	0.1235↑	0.0458↑	0.0560↑	0.0742↑	0.1077↑	0.0407↑	0.0496↑

1039 Table 8: Efficiency analysis across all datasets.

Dataset	Metrics	LGMRec	SMORE	MENTOR	COHESION	HPMRec	AgentMMRec
Baby	Time (s/epoch)	5.93	6.55	7.03	4.47	21.03	6.04
	Memory (GB)	2.41	3.31	7.12	2.89	8.58	3.07
Sports	Time (s/epoch)	8.98	9.29	9.62	7.91	30.85	9.13
	Memory (GB)	3.67	5.02	8.44	4.20	10.19	4.48
Clothing	Time (s/epoch)	10.02	11.05	11.90	9.05	40.23	10.65
	Memory (GB)	4.81	6.89	12.99	5.73	14.95	5.72

1048 Table 9: LLM costs for all datasets.

Datasets	Baby	Sports	Clothing
Building Graphs	79,485	161,865	187,260
Refining Graphs	7,050	18,357	23,033
Total	86,535	180,222	210,293

1055 LLM backbone. Here, we use the open-source model Qwen2.5-VL-32B as the LLM backbone to
1056 verify whether a more parameterized version can benefit AgentMMRec. Furthermore, we use the
1057 closed-source model GPT-4o-2024-08-06 as the LLM backbone to evaluate whether a more powerful
1058 LLM backbone can further enhance model performance.

1060 Table 6 shows that AgentMMRec’s performance benefits from both larger parameter versions and
1061 more powerful LLMs. This is because AgentMMRec, which bridges multimodal data and recommen-
1062 dation tasks, inherently leverages the multimodal understanding and contextual processing capabilities
1063 of LLMs. This also suggests that as LLMs continue to evolve, the performance of AgentMMRec has
1064 the potential to improve further in the future.

1065 C.5 COMPATIBILITY WITH EXTRA MODALITY-ALIGNMENT SSL TASKS

1067 We explored whether AgentMMRec benefits from the recent research trend in multimodal
1068 recommendation—modality-alignment self-supervised tasks. Specifically, we analyzed the per-
1069 formance improvements when incorporating a simple InfoNCE and a distribution alignment-based
1070 strategy (referred to as DisAlign). Table 7 shows that AgentMMRec can benefit from both strategies,
1071 with each demonstrating strengths and weaknesses across different datasets. However, since Agent-
1072 MMRec already effectively explores the relationships between modalities, the performance gains
1073 from hard alignment based on representations are relatively limited. Considering efficiency and cost,
1074 we did not include modality-alignment SSL tasks in AgentMMRec.

1075 C.6 EFFICIENCY STUDY

1076 We present the training time and memory usage for AgentMMRec and the baseline methods in Table 8.
1077 The results show that AgentMMRec delivers significant performance improvements over strong
1078 baselines such as LGMRec, SMORE, MENTOR, COHESION, and HPMRec, while maintaining

1080
1081 Table 10: Performance comparison of AgentMMRec using different templates regenerated five times
1082 by various LLMs, evaluated in terms of Recall@20.
1083

Datasets	Baby		Sports		Clothing	
	Metrics	Mean	Var	Mean	Var	Mean
Origin	0.1079	-	0.1231	-	0.1071	-
GPT-5	0.1082	0.0012	0.1228	0.0015	0.1070	0.0010
Claude-Sonnet-4.5	0.1077	0.0008	0.1230	0.0008	0.1074	0.0012
Gemini-2.5-Pro	0.1080	0.0013	0.1228	0.0011	0.1068	0.0006

1090 comparable computational resource usage and training time. This highlights the efficiency of
1091 AgentMMRec, demonstrating its ability to achieve superior recommendation accuracy without
1092 incurring additional computational costs or prolonged training durations, making it highly practical
1093 for real-world multimodal recommendation applications. Our efficiency advantage partially stems
1094 from the higher quality of the homogeneous graph, enabling AgentMMRec to outperform other
1095 baselines with 2-3 layers of aggregation while requiring only a single layer for the homogeneous
1096 graph.

1097 We further discuss the cost of using LLM during the pre-training graph construction phase. When
1098 extracting knowledge for users and items, we make $3(|\mathcal{U}| + |\mathcal{I}|)$ calls to the LLM. Additionally, for
1099 the refinement of the item-item graph, we require another $|\mathcal{I}|$ calls. For the specific number of LLM
1100 requests for each dataset, please refer to Table 9.

1102 C.7 TEMPLATE DEPENDENCY ANALYSIS

1104 We further validate whether AgentMMRec is highly dependent on specific templates or simply on the
1105 plan embedded within the templates. To test this, we reconstructed the template five times using three
1106 different LLMs (GPT-5, Claude-Sonnet-4.5, and Gemini-2.5-Pro) as replacements for the templates.
1107 Table 10 reports the mean and variance of the experimental results after using these reconstructed
1108 templates, compared to our original results.

1109 We observed that the mean performance is close to that of our original templates, with very small
1110 variance. This indicates that AgentMMRec is not highly sensitive to the specific templates and
1111 maintains stable performance as long as the plan design remains consistent.

1113 D PROMPT TEMPLATES

1115 D.1 \mathcal{P}_{pref}^t

1117 User Textual Preference Extraction Task

1119 You are an expert user behavior analyst specializing in extracting user preferences from textual
1120 product data. Your task is to analyze a user’s interaction history to derive their behavior- and
1121 textual-aware preferences based on the textual characteristics of the items they have engaged
1122 with.

1124 TARGET USER INFORMATION:

- 1125 • User ID:

1126 **USER INTERACTION HISTORY (TEXTUAL DATA):** Below are the textual details of
1127 items that the user has interacted with:

- 1128 • Titles:
- 1129 • Brands:
- 1130 • Categories:
- 1131 • Descriptions:

1133 ANALYSIS INSTRUCTIONS:

1134
 1135 1. *TEXTUAL PATTERN IDENTIFICATION*: Analyze the user's textual interaction patterns
 1136 based on:
 1137 • Semantic patterns across titles, brands, and categories of interacted items
 1138 • Keyword frequency and distribution in preferred items
 1139 • Consistent descriptive language and terminology preferences
 1140 • Brand affinity and category preferences
 1141 • Textual attribute prioritization in selection behavior
 1142
 1143 2. *TEXTUAL PREFERENCE EXTRACTION*: Extract the user's textual preferences by identi-
 1144 fying:
 1145 • Preferred product attributes and features from descriptions
 1146 • Brand preferences and loyalties
 1147 • Category-specific interests and preferences
 1148 • Descriptive language that resonates with the user
 1149 • Semantic themes consistently present in preferred items
 1150
 1151 3. *BEHAVIOR-TEXT ALIGNMENT*: Correlate interaction patterns with textual characteristics:
 1152 • Items with similar textual properties that receive similar engagement
 1153 • Textual elements that correlate with higher interaction intensity
 1154 • Patterns in textual attributes of frequently re-engaged items
 1155 • Textual differentiation between highly and minimally engaged items
 1156
 1157 4. *PREFERENCE INTENSITY ASSESSMENT*:
 1158 • Strength of preference for different textual attributes
 1159 • Consistency of preferences across interaction history
 1160 • Evolution of textual preferences over time
 1161 • Confidence level for each identified preference
 1162
 1163 **RESPONSE REQUIREMENTS:**
 1164 • Focus specifically on textual preferences derived from interaction patterns
 1165 • Provide evidence from item textual data to support preference conclusions
 1166 • Connect textual patterns to specific user preferences
 1167 • Structure response with clear preference categories and intensity levels
 1168 • Use bullet points for key preferences with specific textual examples
 1169 • Differentiate between strong preferences and mild tendencies
 1170 • Consider both explicit and implied textual preferences

D.2 \mathcal{P}_{pref}^v

User Visual Preference Extraction Task

1171
 1172 You are an expert user behavior analyst specializing in extracting user preferences from visual
 1173 product data. Your task is to analyze a user's interaction history to derive their behavior- and
 1174 visual-aware preferences based on the visual characteristics of the items they have engaged
 1175 with.

TARGET USER INFORMATION:

- User ID:

1176
 1177 **USER INTERACTION HISTORY (VISUAL DATA):** Below are the visual representations
 1178 of items that the user has interacted with:

- Product Images:
- Visual Features:
- Design Elements:

ANALYSIS INSTRUCTIONS:

1179
 1180 1. *VISUAL PATTERN IDENTIFICATION*: Analyze the user's visual interaction patterns based
 1181 on:

1188

- Color preferences and palette consistency across preferred items
- Design style and aesthetic preferences evident in selections
- Composition and presentation styles that resonate with the user
- Visual texture and material preferences
- Brand identity elements and logo styles preferred
- Shape, form, and design element preferences

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

2. *VISUAL PREFERENCE EXTRACTION*: Extract the user's visual preferences by identifying:

- Consistent color schemes and palettes in engaged items
- Preferred design aesthetics and visual styles
- Visual elements that correlate with higher engagement
- Brand visual identity preferences
- Composition and framing preferences in product presentation

3. *BEHAVIOR-VISUAL ALIGNMENT*: Correlate interaction patterns with visual characteristics:

- Items with similar visual properties that receive similar engagement levels
- Visual elements that correlate with repeated interactions
- Patterns in visual attributes of frequently engaged items
- Visual differentiation between highly and minimally engaged items

4. *VISUAL PREFERENCE INTENSITY ASSESSMENT*:

- Strength of preference for different visual attributes
- Consistency of visual preferences across interaction history
- Evolution of visual preferences over time
- Confidence level for each identified visual preference

RESPONSE REQUIREMENTS:

- Focus specifically on visual preferences derived from interaction patterns
- Provide evidence from item visual data to support preference conclusions
- Connect visual patterns to specific user preferences
- Structure response with clear visual preference categories and intensity levels
- Use bullet points for key preferences with specific visual examples
- Differentiate between strong visual preferences and mild tendencies
- Consider both explicit and implied visual preferences from engagement patterns

D.3 \mathcal{P}_{pref}^m

User Multimodal Preference Extraction Task

You are an expert user behavior analyst specializing in extracting user preferences from multimodal product data. Your task is to analyze a user's interaction history to derive their behavior- and multimodal-aware preferences by integrating both textual and visual characteristics of the items they have engaged with.

TARGET USER INFORMATION:

- User ID:

USER INTERACTION HISTORY (MULTIMODAL DATA): Below are the multimodal details of items that the user has interacted with:

- Textual Data: Titles, Brands, Categories, Descriptions
- Visual Data: Product Images, Visual Features, Design Elements
- Cross-modal Relationships: Text-visual alignments and interactions

ANALYSIS INSTRUCTIONS:

1. *MULTIMODAL PATTERN IDENTIFICATION*: Analyze the user's multimodal interaction patterns based on:

1242 • Consistency between textual and visual preferences
 1243 • Cross-modal complementarity in preferred items
 1244 • Semantic-visual alignment patterns in engagement behavior
 1245 • Emotional responses elicited by multimodal combinations
 1246 • Brand identity expression through integrated modalities
 1247

1248 2. *MULTIMODAL PREFERENCE EXTRACTION*: Extract the user's cross-modal preferences
 1249 by identifying:
 1250 • Preferences for specific text-visual combinations
 1251 • Cross-modal patterns that correlate with higher engagement
 1252 • Multimodal brand perception preferences
 1253 • Preferred consistency levels between textual claims and visual evidence
 1254 • Emotional impact of multimodal presentations on user behavior
 1255

1256 3. *BEHAVIOR-MULTIMODAL ALIGNMENT*: Correlate interaction patterns with multimodal
 1257 characteristics:
 1258 • Items with strong multimodal coherence that receive higher engagement
 1259 • Patterns in multimodal attributes of frequently re-engaged items
 1260 • Cross-modal differentiation between highly and minimally engaged items
 1261 • Multimodal elements that drive repeated interactions
 1262

1263 4. *MULTIMODAL PREFERENCE INTENSITY ASSESSMENT*:
 1264 • Strength of preference for different multimodal combinations
 1265 • Consistency of multimodal preferences across interaction history
 1266 • Evolution of cross-modal preferences over time
 1267 • Confidence level for each identified multimodal preference
 1268 • Relative importance of textual vs. visual modalities in preference formation
 1269

1270 **RESPONSE REQUIREMENTS:**
 1271 • Focus specifically on multimodal preferences derived from interaction patterns
 1272 • Provide evidence from both textual and visual data to support preference conclusions
 1273 • Analyze synergies and interactions between modalities in preference formation
 1274 • Structure response with clear multimodal preference categories and intensity levels
 1275 • Use bullet points for key preferences with specific multimodal examples
 1276 • Differentiate between cross-modal preferences and modality-specific preferences
 1277 • Consider how textual and visual elements work together to influence user behavior
 1278

D.4 \mathcal{P}_{prop}^t

Textual Product Properties Analysis Task

You are an expert product analyst specializing in extracting and analyzing textual properties from product descriptions. Your task is to analyze a target product's textual characteristics to identify and categorize its key attributes, features, and semantic properties.

TARGET PRODUCT INFORMATION:

- Item ID:
- Title:
- Brand:
- Categories:
- Description:

CO-PURCHASED PRODUCTS: Below is a random sample of products that customers who purchased the target item also frequently bought:

ANALYSIS INSTRUCTIONS:

1296
 1297 1. **CORE ATTRIBUTE EXTRACTION:** Identify and categorize the fundamental properties of
 1298 the product:
 1299 • Material composition and physical characteristics
 1300 • Functional capabilities and technical specifications
 1301 • Dimensions, size, and quantitative measurements
 1302 • Key components and structural elements
 1303 • Quality indicators and durability markers
 1304
 1305 2. **DESCRIPTIVE FEATURE ANALYSIS:** Analyze the descriptive language used to present
 1306 the product:
 1307 • Adjective usage and intensity modifiers
 1308 • Feature prioritization and emphasis patterns
 1309 • Benefit-oriented language and value propositions
 1310 • Technical terminology and domain-specific vocabulary
 1311 • Comparative and superlative expressions
 1312
 1313 3. **CATEGORICAL AND TAXONOMIC PROPERTIES:** Examine how the product is classified
 1314 and positioned:
 1315 • Hierarchical category relationships
 1316 • Brand positioning and lineage indicators
 1317 • Style classifications and design aesthetics
 1318 • Usage context and application scenarios
 1319 • Target audience indicators
 1320
 1321 4. **PROPERTY CONSISTENCY ANALYSIS:**
 1322 • Consistency of attributes across title, brand, categories, and description
 1323 • Alignment between stated properties and implied capabilities
 1324 • Completeness of property description across textual elements
 1325 • Potential contradictions or ambiguities in attribute descriptions
 1326
 1327 **RESPONSE REQUIREMENTS:**
 1328 • Focus specifically on objective product properties and attributes
 1329 • Extract and categorize properties systematically
 1330 • Provide direct textual evidence for each identified property
 1331 • Structure your response with clear taxonomies of product attributes
 1332 • Use bullet points for property categories with specific textual examples
 1333 • Differentiate between stated properties and inferred characteristics

D.5 \mathcal{P}_{prop}^v

Visual Product Properties Analysis Task

1334
 1335 You are an expert visual analyst specializing in extracting and analyzing visual properties from
 1336 product imagery. Your task is to analyze a target product's visual characteristics to identify
 1337 and categorize its key visual attributes, features, and design properties.
 1338

TARGET PRODUCT VISUAL INFORMATION:

- Item ID:
- Image:

1343
 1344 **VISUALLY CO-PURCHASED PRODUCTS:** Below is a selection of products that cus-
 1345 tomers who purchased the target item also frequently bought:

ANALYSIS INSTRUCTIONS:

1346
 1347 1. **VISUAL ATTRIBUTE EXTRACTION:** Identify and categorize the fundamental visual
 1348 properties of the product:
 1349 • Color properties: dominant colors, color combinations, saturation levels

1350

- Shape characteristics: geometric forms, contours, silhouettes
- Material appearance: surface textures, reflectivity, transparency
- Size and proportion relationships: scale indicators, dimensional ratios
- Structural elements: components, assembly patterns, construction features

1355

2. *DESIGN FEATURE ANALYSIS*: Analyze the design elements and presentation style:

- Composition and framing: product placement, negative space usage
- Stylistic elements: design era influences, aesthetic movements
- Functional indicators: visible controls, interfaces, operational elements
- Brand identity markers: logo placement, typography, visual branding
- Quality indicators: finish quality, craftsmanship details, precision

1361

3. *VISUAL CATEGORIZATION PROPERTIES*: Examine how the product is visually classified and positioned:

- Visual style classifications: minimalism, ornamentation, etc.
- Design aesthetic categories: modern, vintage, luxury, etc.
- Functional visual cues: ergonomic indicators, usability features
- Contextual visual markers: environment, setting, usage scenarios
- Target audience visual signals: demographic targeting cues

1368

4. *VISUAL PROPERTY CONSISTENCY ANALYSIS*:

- Consistency of visual properties across different viewing angles
- Alignment between visual presentation and functional capabilities
- Completeness of visual information: coverage of all product aspects
- Potential visual ambiguities or misleading representations

1373

RESPONSE REQUIREMENTS:

- Focus specifically on objective visual properties and attributes
- Extract and categorize visual properties systematically
- Provide detailed visual evidence for each identified property
- Structure your response with clear taxonomies of visual attributes
- Use bullet points for property categories with specific visual examples
- Differentiate between observable properties and inferred characteristics
- Reference specific visual elements (colors, shapes, textures, etc.)
- Consider both the target product and co-purchased products for comparative analysis

1383

1384 **D.6 \mathcal{P}_{prop}^m**

1385

1386 **Multimodal Product Properties Analysis Task**

1387

1388 You are an expert multimodal analyst specializing in extracting and analyzing product properties by integrating textual and visual information. Your task is to analyze a target product by 1389 synthesizing its textual descriptions and visual representations to identify and categorize its 1390 comprehensive multimodal attributes and features.

1391

1392 **TARGET PRODUCT INFORMATION:**

- Item ID:
- Title:
- Brand:
- Categories:
- Description:
- Image:

1399 **MULTIMODALLY CO-PURCHASED PRODUCTS:** Below is a selection of products that 1400 customers who purchased the target item also frequently bought, including both their textual 1401 and visual information:

1402

1403 **ANALYSIS INSTRUCTIONS:**

1404
 1405 1. **MULTIMODAL ATTRIBUTE EXTRACTION:** Identify and categorize product properties by
 1406 integrating textual and visual information:
 1407 • Physical characteristics derived from both text descriptions and visual appearance
 1408 • Functional capabilities indicated through combined textual and visual cues
 1409 • Material properties described in text and evidenced in visuals
 1410 • Dimensional attributes specified in text and visually demonstrated
 1411 • Structural components detailed across both modalities
 1412
 1413 2. **MULTIMODAL FEATURE ANALYSIS:** Analyze how textual and visual elements comple-
 1414 ment each other in presenting product features:
 1415 • Textual descriptions that clarify or elaborate on visual elements
 1416 • Visual representations that demonstrate or exemplify textual claims
 1417 • Feature emphasis patterns across modalities
 1418 • Technical specifications supported by visual evidence
 1419 • Design elements described in text and visible in images
 1420
 1421 3. **MULTIMODAL PROPERTY CATEGORIZATION:** Examine how the product is classified
 1422 and positioned through integrated modalities:
 1423 • Category indicators present in both text and visuals
 1424 • Style classifications supported by multimodal evidence
 1425 • Functional categorizations with cross-modal validation
 1426 • Usage context indicators across textual and visual elements
 1427 • Quality tier positioning through multimodal signals
 1428
 1429 4. **MULTIMODAL PROPERTY CONSISTENCY ANALYSIS:**
 1430 • Consistency between textual claims and visual evidence
 1431 • Complementary information that enhances property understanding
 1432 • Contradictions or discrepancies between modalities
 1433 • Completeness of property representation across modalities
 1434 • Alignment between implied and explicitly stated properties
 1435
 1436 **RESPONSE REQUIREMENTS:**
 1437 • Focus on objective product properties derived from multimodal integration
 1438 • Systematically extract and categorize properties using both text and visuals
 1439 • Provide specific evidence from both modalities for each identified property
 1440 • Structure response with clear taxonomies of multimodal attributes
 1441 • Use bullet points for property categories with specific multimodal examples
 1442 • Analyze how modalities complement or contradict each other
 1443 • Consider both the target product and co-purchased products for comparative analysis
 1444 • Differentiate between properties explicitly stated and those inferred from multimodal
 1445 integration

D.7 \mathcal{P}_{re}

Item-Item Graph Refinement Task

1446
 1447 You are an expert recommendation system analyst specializing in refining item-item rela-
 1448 tionships based on multimodal data and user behavior patterns. Your task is to analyze a
 1449 target item and its modality-specific relationships to construct a unified item-item graph that
 1450 integrates multimodal properties and user preferences.

TARGET ITEM INFORMATION:

- Item ID:
- Title:
- Brand:
- Categories:
- Description:

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

- Image:

MODALITY-SPECIFIC TOP- k ITEMS:

- Textual Similarity Top- k Items:
- Visual Similarity Top- k Items:

BEHAVIOR- AND MULTIMODAL-AWARE PROPERTIES:

- Textual Properties (P_i^t):
- Visual Properties (P_i^v):
- Multimodal Properties (P_i^m):

USER PREFERENCES FROM PURCHASE HISTORY: Behavior- and multimodal-aware preferences of users who purchased the target item:

- Textual Preferences:
- Visual Preferences:
- Multimodal Preferences:

ANALYSIS INSTRUCTIONS:

1. MODALITY INTEGRATION ANALYSIS: Analyze how to integrate textual and visual modalities to mitigate modality isolation:

- Identify complementary information across modalities
- Resolve contradictions or inconsistencies between modalities
- Determine which modality provides more relevant information for specific attributes
- Assess the relative importance of each modality for different item aspects

2. USER PREFERENCE INCORPORATION: Incorporate user preferences to refine item relationships:

- Identify patterns in user preferences that indicate meaningful item relationships
- Determine which user preferences should influence item similarity
- Assess the consistency of preferences across different user groups
- Identify preference-based connections not captured by modality similarity

3. ITEM RELATIONSHIP REFINEMENT: Refine the top- k item relationships by integrating multimodal and preference data:

- Evaluate current modality-specific similarities
- Identify items that should be added based on multimodal integration
- Identify items that should be removed due to preference inconsistencies
- Reprioritize items based on integrated multimodal and preference evidence
- Ensure the final selection represents the most relevant k items

4. UNIFIED GRAPH CONSTRUCTION:

- Provide clear justification for each included/excluded item
- Ensure the refined graph captures both content similarity and behavioral patterns
- Balance modality-specific evidence with user preference data
- Maintain computational efficiency while improving relevance

RESPONSE REQUIREMENTS:

- Focus on integrating multimodal data and user preferences
- Provide specific justifications for each refinement decision
- Reference both modality-specific evidence and user preference patterns
- Structure response with clear reasoning for item inclusion/exclusion
- Use bullet points for key decisions with specific examples
- Ensure the final selection contains exactly k items
- Consider both content similarity and behavioral relevance

1512 D.8 \mathcal{P}_{rank}
15131514 **Recommendation List Re-ranking Task**
15151516 You are an expert recommendation system analyst specializing in re-ranking item lists based
1517 on multimodal user preferences and item properties. Your task is to analyze a user's behavior-
1518 and multimodal-aware preferences along with candidate items' properties to optimize the final
1519 recommendation ranking.1520 **TARGET USER INFORMATION:**
15211522 • User ID:1523 **INITIAL RECOMMENDATION LIST:**
15241525 • Candidate Items:1526 **USER MULTIMODAL PREFERENCES:**
15271528 • Textual Preferences (P_u^t):
1529 • Visual Preferences (P_u^v):
1530 • Multimodal Preferences (P_u^m):1531 **CANDIDATE ITEMS MULTIMODAL PROPERTIES:** For each candidate item in the list,
1532 the following properties are available:1533 • Textual Properties (P_i^t):
1534 • Visual Properties (P_i^v):
1535 • Multimodal Properties (P_i^m):1536 **RE-RANKING INSTRUCTIONS:**
15371538 1. **PREFERENCE-PROPERTY ALIGNMENT ANALYSIS:** Analyze the alignment between
1539 user preferences and item properties:1540 • Identify items with properties that best match user's textual preferences
1541 • Evaluate visual compatibility between user's aesthetic preferences and item visuals
1542 • Assess multimodal coherence between user's integrated preferences and item properties
1543 • Quantify the degree of match for each preference-property pair1544 2. **CROSS-MODAL CONSISTENCY EVALUATION:** Evaluate consistency across different
1545 modalities for each candidate item:1546 • Identify items with strong consistency between textual and visual properties
1547 • Detect potential contradictions between modalities that may affect user satisfaction
1548 • Assess how well each item's multimodal presentation aligns with user expectations
1549 • Evaluate the complementary strength of multimodal information for each item1550 3. **PERSONALIZATION POTENTIAL ASSESSMENT:** Assess the personalization potential of
1551 each candidate item:1552 • Identify items that address specific user preferences identified in preference profiles
1553 • Evaluate novelty-introductory potential while maintaining relevance
1554 • Assess diversity contribution to the overall recommendation list
1555 • Determine items that may address latent or unexpressed user needs1556 4. **FINAL RANKING OPTIMIZATION:**1557 • Integrate preference-property alignment scores with initial ranking signals
1558 • Balance relevance with diversity in the final ranking
1559 • Ensure the top positions contain items with strongest multimodal alignment
1560 • Provide clear justification for significant ranking changes1561 **RESPONSE REQUIREMENTS:**
15621563 • Provide a complete re-ranked item list in order of recommendation priority
1564 • For each item, include a brief justification for its position
1565 • Reference specific preference-property alignments in your justifications
1566 • Consider both individual item relevance and overall list quality

1566
 1567 • Highlight items with exceptional multimodal alignment with user preferences
 1568 • Note any items that were significantly repositioned and explain why
 1569 • Ensure the final ranking balances accuracy with user experience factors

1570
 1571 **D.9 \mathcal{P}_{update}**
 1572

1573 **User Preference Update Task**
 1574

1575 You are an expert recommendation system analyst specializing in refining user preferences
 1576 based on multimodal feedback and ground-truth item interactions. Your task is to update
 1577 a user's behavior- and multimodal-aware preferences when the current recommendations
 1578 produce suboptimal results.

1579
 1580 **TARGET USER INFORMATION:**
 1581 • User ID:

1582
 1583 **GROUND-TRUTH ITEM LIST:**
 1584 • Items actually interacted with by the user:

1585
 1586 **CURRENT USER MULTIMODAL PREFERENCES:**
 1587 • Current Textual Preferences (P_u^t):

1588 • Current Visual Preferences (P_u^v):
 1589 • Current Multimodal Preferences (P_u^m):

1590 **GROUND-TRUTH ITEMS MULTIMODAL PROPERTIES:** For each item in the ground-
 1591 truth list, the following properties are available:

1592 • Textual Properties (P_i^t):
 1593 • Visual Properties (P_i^v):
 1594 • Multimodal Properties (P_i^m):

1595
 1596 **PERFORMANCE FEEDBACK:**
 1597 • Current NDCG@N performance:
 1598 • Required performance improvement:

1599
 1600 **UPDATE INSTRUCTIONS:**

1601 **1. PREFERENCE-DISCREPANCY ANALYSIS:** Analyze the discrepancies between current
 1602 preferences and ground-truth interactions:

1603 • Identify patterns in ground-truth items not captured by current preferences
 1604 • Detect overemphasized preferences not reflected in actual user behavior
 1605 • Find underemphasized aspects that are actually important to the user
 1606 • Analyze consistency between different modality preferences and actual behavior

1607 **2. PREFERENCE REFINEMENT STRATEGY:** Develop a strategy to refine preferences based
 1608 on ground-truth evidence:

1609 • Determine which preferences need strengthening based on ground-truth patterns
 1610 • Identify preferences that need de-emphasis due to lack of supporting evidence
 1611 • Discover new preference dimensions revealed by ground-truth interactions
 1612 • Balance consistency with adaptability in preference updates

1613 **3. MULTIMODAL PREFERENCE INTEGRATION:** Integrate insights across modalities to
 1614 create coherent updated preferences:

1615 • Ensure consistency between textual, visual, and multimodal preference updates
 1616 • Resolve conflicts between different modality preferences
 1617 • Identify cross-modal patterns that better explain user behavior
 1618 • Maintain the relative importance of different modalities based on evidence

1619 **4. ITERATIVE IMPROVEMENT PLAN:**

1620
1621
1622
1623
1624

- Prioritize updates that address the most significant performance gaps
- Ensure updates are substantial enough to improve recommendations but not overly disruptive
- Consider the evolutionary nature of user preferences
- Balance short-term performance improvements with long-term preference accuracy

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634**RESPONSE REQUIREMENTS:**

- Provide complete updated multimodal preferences (textual, visual, and multimodal)
- For each preference update, include specific justification based on ground-truth evidence
- Clearly indicate changed elements and the reasoning behind changes
- Reference specific patterns in ground-truth items that motivated updates
- Ensure updated preferences are coherent across modalities
- Consider the impact of updates on future recommendation quality
- Structure the response with clear sections for each modality's updated preferences

1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673**E THE USE OF LARGE LANGUAGE MODELS (LLMs)**

We made limited use of large language models (LLMs) for writing assistance only, including grammar correction, style polishing, and table layout/formatting. All proposed changes were manually reviewed and selectively adopted by the authors. All scientific content, ideas, analysis, and conclusions remain entirely our own. The authors take full responsibility for the entire content of this paper, including any errors or inaccuracies that may remain.