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Abstract

Drug repurposing, which seeks novel drug–disease associations by integrating
biomedical knowledge, is hindered by modeling complex multi-hop relationships
in knowledge graphs. We propose DrugCORpath, which integrates biomedical
knowledge graphs with pretrained biomedical large language models (LLMs).
Unlike node-centric methods, it captures biological context by converting multi-
hop drug–disease paths into sentences reflecting plausible mechanisms of action
(MoAs) and embedding them. We then apply clustering–based selective filtering
with a distance metric to retain meaningful paths while removing redundancy
and noise. Experiments show DrugCORpath outperforms graph-based, LLM-
based, and path-based baselines in drug repurposing, achieving up to 4.9% higher
accuracy than the prior SOTA. Analyses confirm that filtering reduces noise and
enhances biological diversity, and case studies validate clinically relevant rationales,
improving interpretability. Collectively, these results underscore the method’s
potential for interpretable, biologically plausible drug repurposing.

1 Introduction

Drug repurposing, a central challenge in systems pharmacology and drug discovery, seeks new uses for
existing drugs [1]. A key is understanding biological mechanisms that bridge diseases to treatments:
many diseases involve dysregulated genes or dysfunctional signaling pathways, which drugs target
via mechanisms of action (MoA) [2]. Accurately capturing these intermediate processes is crucial
for plausible and interpretable predictions. Biomedical knowledge graphs (BKGs) integrate genes,
diseases, drugs, and relations (gene–gene, drug–gene, disease–gene), enabling multi-hop reasoning
that reflects how diseases influence genes and network modules, which are in turn modulated by
drugs [3, 4]. However, many KG-based approaches rely on general-purpose embeddings or path
counting that overlook gene-level MoA context and the meaning, directionality, and function of
intermediate relations [5, 6], limiting mechanistic interpretability and accuracy [7, 8]. BKGs are also
large and dense, yielding many redundant or irrelevant multi-hop paths [9]. When multiple genes in
the same pathway connect a drug–disease pair, the graph can produce biologically equivalent paths
[10]; prior work found only a small fraction of meta-paths uniquely predictive, underscoring the need
for filtering to enhance performance and interpretability [11].
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Figure 1: Overview of DrugCORpath. For a disease–drug pair, context paths from a biomedical
KG are converted to sentences and encoded by a biomedical LLM. K-means selects representative
paths; their embeddings are max-pooled, combined with Node2vec disease/drug embeddings, and
fed to an XGBoost classifier to predict the association.

To address these issues, we propose DrugCORpath (COntext-aware Reasoning path), which cou-
ples KG traversal with LLM-based semantic encoding and selective path filtering. We extract
disease–gene–drug paths likely to reflect plausible MoAs, convert them into natural-language sen-
tences, and embed them using biomedical LLM [12]. We then apply K-Means clustering to reduce
redundancy and retain diverse, biologically meaningful paths, improving both accuracy and inter-
pretability. Evaluations on MSI and PrimeKG with unseen diseases, and case analyses show that
incorporating LLM-derived context and clustering-based selection filters noise, reduces semantic
drift via a fixed meta-path pattern, and yields compact yet informative, pathway-based explanations.

In summary, 1) we introduce DrugCORpath, a KG–LLM integrative framework that outperforms
14 baselines across multiple KGs, achieving up to 4.9% accuracy improvement over prior SOTA;
2) we show that LLM-generated sentence-level path embeddings capture biologically plausible and
interpretable MoA contexts; 3) we propose clustering-based path selection that filters noise and
preserves concise, diverse, mechanism-specific path representations for interpretable repurposing;
and 4) through case studies (including FDA-approved treatments), we validate clinically meaningful
rationales beyond mere structural similarity.

2 Methodology

DrugCORpath predicts disease–drug associations by (i) extracting disease–gene–drug meta-paths
from a biomedical knowledge graph (BKG), (ii) converting paths to sentences and encoding them
with a biomedical LLM, (iii) selecting representative sentences via K-Means to capture diverse
mechanisms while reducing redundancy, (iv) aggregating their embeddings (max pooling), and (v)
combining this context with disease/drug network embeddings for classification (Figure 1).

Problem Formulation We consider a heterogeneous KG G = (V, E) with V = Vdrug∪Vdisease∪Vgene
(relations: gene–gene, drug–gene, disease–gene) and no direct disease–drug edges. Given disease s
and drug d, we learn a binary predictor of association.

Disease–Drug Context Generation via KG Exploration We extract mechanistic context as paths
in which a disease connects to a drug through a sequence of gene nodes under a fixed, MoA-consistent
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Table 1: Performance of DrugCORpath vs. 14 baselines across four model categories on MSI and
PrimeKG (mean±std over 5-fold CV).

Methods MSI PrimeKG
AUROC AUPRC Accuracy AUROC AUPRC Accuracy

Graph-based
GCN 0.619±0.039 0.591±0.028 0.598±0.037 0.922±0.006 0.893±0.009 0.844±0.012

GraphSAGE 0.580±0.019 0.574±0.016 0.566±0.013 0.901±0.013 0.853±0.023 0.813±0.024
GIN 0.598±0.040 0.651±0.017 0.654±0.022 0.835±0.048 0.789±0.074 0.776±0.042

Transition-
based

TransR 0.571±0.017 0.579±0.019 0.547±0.015 0.616±0.026 0.547±0.047 0.591±0.034
RotatE 0.546±0.010 0.559±0.017 0.521±0.010 0.787±0.016 0.742±0.013 0.660±0.017

ComplEx 0.555±0.018 0.566±0.018 0.507±0.024 0.793±0.023 0.782±0.021 0.604±0.017
RESCAL 0.500±0.020 0.501±0.030 0.504±0.018 0.625±0.035 0.558±0.036 0.573±0.021

LLM-based

BioBERT 0.744±0.020 0.753±0.008 0.664±0.030 0.931±0.011 0.902±0.017 0.785±0.029
BioLinkBERT 0.696±0.018 0.705±0.009 0.630±0.024 0.921±0.007 0.888±0.018 0.764±0.022
PubMedBERT 0.818±0.016 0.823±0.011 0.720±0.026 0.939±0.008 0.915±0.015 0.802±0.020

SapBERT 0.798±0.019 0.812±0.014 0.711±0.029 0.926±0.010 0.902±0.019 0.774±0.019

Path-based
Node2vec 0.752±0.023 0.766±0.018 0.664±0.024 0.942±0.014 0.931±0.013 0.832±0.020

Drugrep-KG 0.733±0.027 0.740±0.013 0.643±0.029 0.682±0.036 0.778±0.020 0.563±0.049
DREAMwalk 0.763±0.008 0.769±0.007 0.663±0.112 0.941±0.011 0.929±0.014 0.838±0.024

DrugCORpath 0.842±0.005 0.845±0.009 0.755±0.007 0.957±0.005 0.946±0.007 0.867±0.016

meta-path schema (disease→gene→ · · · →gene→drug). The search is constrained to relations that
reflect plausible biology (e.g., disease–gene association, gene–gene interaction, drug–gene targeting),
respects directionality by normalizing edges to disease→drug flow, and disallows node repetitions
to avoid trivial cycles. We cap the number of intermediate genes at kmax to curb redundancy from
dense gene subgraphs and to reduce semantic drift. For each (s, d), the candidate paths are

Ps,d = { p | p = (s → g1 → · · · → gm → d), gi ∈ Vgene, 1 ≤ m ≤ kmax } .

When no such path exists, we apply a single ATC-based substitution: replace d with a pharmaco-
logically similar d′ from the ATC similarity network to form s→ g1 →· · ·→ gk → d′, and finally
link back to d (details in Appendix A.4). Each finalized path is verbalized with a relation-aware,
directional template (e.g., “Disease A associated-with Gene B; Gene B interacts-with Gene C; Drug D
targets Gene C”), yielding a sentence that preserves biological flow for identifying plausible MoAs.

Contextual Embedding and Selection of Disease–Drug Paths Each path sentence is encoded
with BioLinkBERT [12] using a frozen encoder; we take the [CLS] representation as its contextual
embedding, producing Hs,d = {hi}. To address oversampling and emphasize distinct mechanisms,
we cluster Hs,d with K-Means (Euclidean distance) and select representatives per cluster by proximity
to the centroid. Concretely, for cluster k with centroid ck, we keep embeddings within the top ρ%
closest to ck:

h
(rep)
k,j ∈ {hi ∈ clusterk | ∥hi − ck∥2 ≤ τk} ,

where τk is the ρ-th percentile of distances in cluster k. The resulting representatives form a compact,
diverse set of MoA-consistent contexts. We aggregate their embeddings via max pooling to obtain a
unified context vector, which is later fused with disease/drug topology for prediction. We set k = 4,
which yielded stable performance across evaluation metrics. K-Means was chosen for its simplicity,
interpretability, and efficiency in high-dimensional embedding space, allowing us to effectively filter
redundant paths and retain diverse mechanism-consistent contexts.

Disease–Drug Association Prediction To incorporate topology, we compute Node2vec [13] em-
beddings for disease and drug nodes and concatenate them with the unified context. A stacking
ensemble (three XGBoost base learners with a Logistic Regression meta-learner) outputs the asso-
ciation probability. We train with binary cross-entropy and mitigate class imbalance via negative
sampling of non-associated pairs.

3 Results and Conclusion

We evaluate DrugCORpath on two biomedical KGs: MSI [14] and PrimeKG [15]. To enforce a
zero-shot setting, all disease–drug edges are removed prior to training (Appendix A.3. The task is
binary classification with positives from known associations and negatives from randomly sampled
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unconnected pairs (MSI: 1:1; PrimeKG: 1.2:1). We adopt an unseen-disease split (no disease overlap
between train/test), perform 5-fold cross-validation, and report AUROC, AUPRC, and Accuracy.

For comparison, we benchmark against 14 baselines across four categories—GNN-based, KG-
embedding, pretrained biomedical LMs, and path-based—with details in Appendix A.2.

Table 1 summarizes results on MSI and PrimeKG. DrugCORpath attains the best AUROC, AUPRC,
and Accuracy on both datasets with low variance.

On MSI, it improves over the strongest LLM baseline (PubMedBERT) by +2.9% AUROC,
+2.7% AUPRC, and +4.9% Accuracy. On PrimeKG, it surpasses path-based models (Node2vec,
DREAMwalk) by up to +1.7% AUROC, +1.8% AUPRC, and +4.2% Accuracy. These gains show
that KG-derived context with LLM path semantics outperforms structural-only or text-only baselines.
The consistently low standard deviations suggest the clustering-based selection effectively filters
noisy/redundant paths, stabilizing performance while preserving mechanistic relevance.

Figure 2: AUROC of meta-path ablation strategies
on MSI. Each group compares DrugCORpath with a
single-component ablation;

Ablation Study To demonstrate the effective-
ness of DrugCORpath’s path selection, we con-
duct ablation studies on: (1) meta-path pattern
used for KG exploration and (2) clustering-based
sentence filtering mechanism.

We probe the meta-path design with three changes:
(i) raising kmax to 3 extends paths, adding redun-
dant or weakly relevant genes that dilute MoA
specificity; (ii) an extra ATC teleportation broad-
ens exposure to similar drugs but weakens causal
grounding; (iii) random gene sampling ignores KG topology, breaking MoA consistency. As shown
in Figure 2, AUROC drops by 2.7%, 3.2%, and 31.1% for (i)–(iii), confirming that concise, topology-
respecting paths are more effective for capturing MoA-relevant relationships.

Table 2: Model performance across sentence filtering
thresholds (ρ). At 0%, no filtering is applied. Best
results are bolded.

ρ AUROC AUPRC Accuracy

80% 0.839±0.002 0.842±0.008 0.750±0.004
50% 0.842±0.005 0.845±0.009 0.755±0.007
20% 0.841±0.009 0.844±0.014 0.751±0.009
0% 0.838±0.010 0.840±0.011 0.749±0.010

For clustering-based selection, path embeddings
are clustered (K-Means, Euclidean), and the top
ρ% near each centroid are kept to form a com-
pact, diverse set. As shown in Table 2, Sweeping
ρ ∈ 20, 50, 80, 100 shows ρ = 50 yields the best
AUROC/AUPRC/Accuracy; ρ = 80 is similar but
noisier, while ρ = 20 discards signal and ρ = 100
admits redundancy.

Biological Case Study To assess the biologi-
cal interpretability of DrugCORpath, we analyzed
both systematic evaluations and case studies. First,
representative GO terms from clustered paths were examined to determine whether the model captures
mechanistically distinct processes.

Figure 3: Distribution of similarity scores
between GO terms assigned to different clus-
ters within each disease–drug pair.

As shown in Figure 3, most disease–drug pairs were di-
vided into clusters with low GO term similarity, suggesting
that clustering-based path filtering captures diverse mech-
anisms of action (MoAs). Figure 4 illustrates that, in
the B-cell lymphomas–Fostamatinib case, clusters aligned
with GO terms such as protein modification, intracellular
signaling regulation, and canonical NF-κB signaling, with
one representative path (B-cell lymphomas → BCL10 →
IKBKB → Fostamatinib) tracing upstream interference in
NF-κB activation. We also examined the effect of redun-
dant path filtering using GO-term overlap, and observed
that filtering consistently improved performance, with the
gap widening as redundancy increased (Appendix A.6).
Beyond systematic evaluation, DrugCORpath uncovered
novel hypotheses and validated therapies. For blood coagulation disorders, it recommended Benzbro-
marone via NRAS/KRAS and ABCC1, supported by literature linking these genes to thrombotic
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Figure 4: Case study illustrating path clusters identified by DrugCORpath for the B-cell lym-
phomas–Fostamatinib pair, with each cluster annotated by its most frequently observed GO term
representing a mechanism of action (MoA). Shown clusters are enriched for distinct biological
processes.

Table 3: Predicted probabilities of drug–disease associations for newly approved indications
(2024–2025) using DrugCORpath, BioLinkBERT, and Node2vec. Highest values for each case
are marked in bold.

New Approved Indication Drug DrugCORpath BioLinkBERT Node2vec

Pediatric Hemophilia B Coagulation Factor IX 0.903 0.411 0.799
Diabetic Retinopathy Ranibizumab 0.903 0.246 0.178
Urothelial Carcinoma Nivolumab 0.894 0.705 0.506

Plaque Psoriasis Apremilast 0.860 0.649 0.762
Bipolar I Disorder Iloperidone 0.820 0.715 0.885

Pediatric HeFH Alirocumab 0.812 0.712 0.772
Food Allergy Omalizumab 0.750 0.769 0.742

Psoriasis Usteknumab 0.690 0.692 0.739
Ph+ ALL Ponatinib 0.622 0.199 0.423

Tonic-Clonic Seizures Lacosamide 0.236 0.684 0.749
Atopic Dermatitis Roflumilast 0.194 0.657 0.259

Severe Asthma Benralizumab 0.159 0.556 0.768

signaling and metabolite transport. For atopic dermatitis, it correctly identified the established
treatment Prednisolone through IL6-driven activation of NR3C1 (Appendix A.7). The Benzbro-
marone–coagulation link, though not FDA-approved, represents a biologically grounded repurposing
case highlighting unexplored therapeutic opportunities. Collectively, these results demonstrate that
DrugCORpath not only captures compact and diverse mechanistic insights but also provides clinically
relevant predictions aligned with both known and emerging treatments.

FDA Drug Repurposing Prediction To further demonstrate the applicability of our framework
to real-world drug repurposing, we evaluated recently approved drug–disease pairs from the FDA
in 2024–20252, focusing on new indications assigned to existing drugs. In a prospective evaluation
using these recent FDA-approved indications, DrugCORpath consistently assigned high probabilities
to newly validated drug–disease associations and ranked first in most cases (Table 3). Notably, it
correctly predicted the approval of Ranibizumab for diabetic retinopathy, distinct from its original
indication in age-related macular degeneration, whereas baseline models assigned substantially lower
scores.

Conclusion : We presented DrugCORpath, a KG-based drug repurposing framework that combines
meta-path exploration with LLM-derived biological context. Using clustering-based path selection,
it captures diverse MoA semantics while preserving biologically meaningful paths. On MSI and
PrimeKG under unseen-disease splits, DrugCORpath achieves state-of-the-art performance, suggest-
ing that prioritizing informative KG paths is a promising direction for improving drug repurposing.
2Retrieved from https://www.drugs.com/new-indications.html.
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A APPENDIX

A.1 Related Work

Knowledge Graph-based Drug Repurposing As BKG have become foundational in drug re-
purposing systems, traditional graph learning methods such as GNNs [16, 17, 18] or triplet-based
methods [19, 20] are widely used for learning a structured representation of biomedical entities and
their interactions. However, these methods predominantly rely on structural proximity and ignore
characteristics of different biomedical entities and relations [21].

Path-based Reasoning Path-based models enhance explainability in KG reasoning by modeling
chains of biomedical relations. DrugRep-KG [22] improves performance under label imbalance by
using informative negative links. DREAMwalk [7] generates drug–gene–disease paths via semantic
random walks. Select and Augment [23] boosts semantic path relevance by aligning KG embeddings
with external textual descriptions. However, many methods still rely on shallow or random path
sampling, which often yields noisy or redundant paths. Without adequate filtering, such noise can
obscure mechanisms and hurt generalization to unseen diseases [24].

LLM-based Biomedical Reasoning LLMs pretrained on biomedical corpora, such as BioBERT
[25], PubMedBERT [26], and SapBERT [27], have recently shown promise in clinical and molecular
reasoning tasks. These models capture semantic dependencies beyond graph structure and support
natural language inference [28]. While these approaches enable flexible reasoning across biomedical
contexts, the lack of structured knowledge-based constraints can lead to hallucinated associations
[29], resulting in predictions often lacking interpretability [30].

A.2 Baselines

We evaluated our approach against a diverse set of baseline models to benchmark its performance.
These models are categorized into four groups based on their underlying principles.

• GNN-based models: These models learn node representations by aggregating information
from a node’s local neighborhood.

– GCN (Graph Convolutional Networks): A foundational GNN model that learns node
embeddings by iteratively averaging feature vectors of a node and its neighbors. This
convolution operation on the graph smooths features across the network [16].

– GraphSAGE (Graph SAmple and aggreGatE): An inductive GNN model designed
to scale to large graphs. Instead of using all neighbors, it samples a fixed number of
neighbors and aggregates their features using functions like mean or max-pooling. This
allows it to generalize to unseen nodes [31].

– GIN (Graph Isomorphism Network): A powerful GNN architecture that is theoret-
ically as expressive as the Weisfeiler-Lehman graph isomorphism test. GIN focuses
on learning a strong aggregation function that can distinguish between different graph
structures, making it highly effective for graph classification tasks [17].

– GAT (Graph Attention Networks): This model introduces an attention mechanism
into the GNN framework. Instead of treating all neighbors equally, GAT learns a weight
for each neighbor’s contribution to the central node’s representation. This allows the
model to selectively focus on the most relevant neighbors, which is particularly useful
for heterogeneous graphs [18].

• Triplet-based models: These models, also known as Knowledge Graph Embedding (KGE)
models, learn to represent entities (like drugs and diseases) and relations as vectors in a
continuous vector space.

– TransE (Translating Embeddings): A simple but influential model that represents re-
lations as a translation vector. It assumes that for a valid triplet (h, r, t), the embedding
of the head entity h plus the relation vector r should be close to the tail entity t (i.e.,
h+ r ≈ t) [19].

– TransR (Translating on Hyperplanes): An extension of TransE that addresses its
limitations by projecting entities into a relation-specific vector space before performing
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the translation. This allows the model to better handle complex and varied relations
[32].

– RotatE (Rotation-based Embeddings): This model represents relations as a rotation
from the head entity to the tail entity in a complex vector space. This rotational mech-
anism is highly effective at capturing various relation patterns, including symmetry,
anti-symmetry, and composition [33].

– ComplEx (Complex Embeddings): An embedding model that represents entities and
relations using complex-valued vectors. It uses a bilinear scoring function to capture
asymmetric relationships, which are common in knowledge graphs [34].

– RESCAL (Relation Factorization): This is a tensor factorization-based model that
represents each relation as a full matrix. It learns a bilinear interaction between entity
embeddings to predict the plausibility of a triplet, allowing it to model rich, complex
relationships but with higher computational cost [20].

• Pretrained biomedical language models: These models are a different class of baselines
that leverage the vast amount of biomedical text data available to learn rich, contextualized
representations of biomedical entities.

– BioBERT, PubMedBERT, BioLinkBERT: These are BERT-based models that have
been pre-trained on large-scale biomedical corpora, such as PubMed abstracts and
full-text articles. By training on this domain-specific text, they learn to understand the
unique vocabulary and semantic relationships of biomedical concepts, which allows
them to produce highly effective embeddings for tasks like entity recognition and
relation extraction [25, 26, 12].

– SapBERT (Self-Alignment Pretraining for Biomedical Entity Representations):
This model builds upon a biomedical language model (like PubMedBERT) but is
further fine-tuned using a metric learning framework on massive biomedical ontologies
(e.g., UMLS). Its primary goal is to align the representation space of synonymous or
related entities, making it particularly powerful for entity linking tasks [27].

• Path-based models: These models capture information by exploring multi-hop paths and
relational contexts within the knowledge graph, often through random walks.

– Node2vec: A seminal model for learning node embeddings from random walks. It
generates a series of random walks from each node and then uses an algorithm similar
to Word2Vec to learn embeddings that capture both local neighborhood structure and
global network position [13].

– DrugRep-KG: A framework that constructs a drug-disease knowledge graph and uses
a Word2Vec-like approach on the paths to create numerical vectors for entities and
relationships. It specifically focuses on simplifying the relationships between drugs
and diseases to better capture potential associations for repurposing [22].

– DREAMwalk (Drug Repurposing through Exploring Associations using Multi-
layer random walk): This model extends the concept of random walks by incorporat-
ing semantic information, like ATC codes, to guide the walk. When a walker lands on
a drug or disease node, it can teleport to other semantically similar nodes. This process
generates paths that are both biologically and semantically meaningful, leading to more
informative embeddings [7].

A.3 Statistics of the Knowledge Graphs

We evaluate DrugCORpath using two biomedical knowledge graphs: MSI and PrimeKG. To ensure
that our evaluation focuses on mechanistically meaningful disease–drug reasoning, we curated
subgraphs from both datasets.

The MSI knowledge graph was constructed from various supplementary biomedical datasets. For our
experiments, we retained only nodes and edges related to drugs, proteins, diseases, and biological
functions by incorporating the following types of relationships: drug–protein, disease–protein,
protein–protein, protein–biological function, and biological function–biological function interactions.
All drug–disease edges were removed prior to training, resulting in a filtered graph with 29,959 nodes
and 478,728 edges.
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PrimeKG provides a holistic and multimodal view of diseases by integrating 20 high-quality biomed-
ical sources, encompassing 17,080 diseases and over four million relationships across ten biological
levels. For our study, we excluded the drug effect relation, which connects drugs to their indications,
to avoid data leakage. Among the wide array of relation types available in PrimeKG, we selected
those most relevant to drug mechanisms: off-label use, drug–protein interactions, protein–protein in-
teractions, disease–protein associations, and links between pathways or between biological processes
and proteins. This filtering yielded a subgraph comprising 57,557 nodes and 670,013 edges.

For both KGs, we treated known drug–disease pairs as positive samples. Specifically, MSI included
5,926 such associations, while PrimeKG had 7,461. To generate negative samples, we randomly
sampled drug–disease pairs that exist as nodes in the graph but are not connected by any edge. We
adopted a 1:1 positive-to-negative ratio for MSI (5,926 positive and 5,926 negative samples), and a
1:1.2 ratio for PrimeKG (7,461 positive and 10,000 negative samples), reflecting the broader disease
coverage in the latter.

A.4 Computation of ATC similarities for Drug Teleport

To determine the teleport probability between drug-drug nodes, we use a semantic similarity measure
based on the Anatomical Therapeutic Chemical (ATC) codes, a drug classification system defined by
the WHO. We adapted an information content-based semantic similarity measure for drug-drug pairs
by viewing the ATC hierarchy as a directed acyclic graph.

A.4.1 Information content

In an ontology hierarchy, the information content (IC) of a term reflects its specificity. A term that
appears less frequently or has fewer child terms is considered more specific and thus has a higher IC
[35]. We compute the IC for a term c directly from the hierarchy using this formula:

IC(c) = 1− log

(
Nchild(c) + 1

Nchild(root) + 1

)
Here, Nchild(c) represents the number of direct child nodes of c. The denominator normalizes the IC
values to be within the range of [0, 1], with the root node having an IC of 0.

A.4.2 Semantic similarity

We then compute the semantic similarity between two drugs, c1 and c2, based on their IC values. We
adopt the distance measure from (author?) [36], which is defined as:

dist(c1, c2) = IC(c1) + IC(c2)− 2× IC (MICA(c1, c2))

The term MICA(c1, c2) refers to the Most Informative Common Ancestor (MICA), which is the
most specific common parent of c1 and c2. To convert this distance measure into a similarity score
that falls between [0, 1), we use the following equation:

Ac1,c2 = sim(c1, c2) = 1−
(
dist(c1, c2)

2

)
This process is performed for all possible drug pairs within the knowledge graphs, resulting in a
dense similarity matrix, A ∈ Rn×n, where n is the total number of drugs.

A.5 Ablation Study Performance

A.5.1 Meta-path ablation

To investigate the impact of meta-path design choices on DrugCORpath’s effectiveness, we conducted
ablation studies by altering key aspects of the path generation process. Table 4 summarizes the
performance changes on the MSI dataset when the following modifications were applied:
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Table 4: Performances of ablation models of DrugCORpath on MSI.
AUROC AUPRC Accuracy

Increased Intermediate Gene 0.815 (0.017) 0.827 (0.012) 0.735 (0.016)
Increased Teleporatation Frequency 0.810 (0.017) 0.862 (0.009) 0.735 (0.020)
Random Gene Sampling 0.531 (0.080) 0.588 (0.097) 0.471 (0.077)

DrugCORpath 0.842 (0.005) 0.845 (0.009) 0.775 (0.007)

• Increased Intermediate Gene: We increased the maximum number of intermediate gene
nodes (kmax) from 2 to 3. While this allowed longer paths, it resulted in a 2.7% drop in
AUROC (0.842 → 0.815), likely due to the inclusion of redundant or irrelevant genes that
dilute the core mechanism of action (MoA).

• Increased Teleportation Frequency: We performed one additional round of ATC-guided
teleportation, which slightly improved AUPRC but caused a 3.2% drop in AUROC (0.842
→ 0.810). This suggests that while pharmacologically similar drugs may be included, the
resulting paths become less biologically specific and introduce noise.

• Random Gene Sampling: Instead of following KG topology, we randomly selected in-
termediate genes. This led to a substantial drop in all metrics, with AUROC decreasing to
0.531 and accuracy falling to 0.471. These results highlight the importance of topologically
and biologically meaningful path construction.

A.5.2 Effect of Clustering Percentile Thresholds

To evaluate the impact of clustering-based sentence filtering, we varied the proportion of path
sentences (ρ) retained within each cluster (Table 2). At ρ = 0%, no filtering was applied, while
larger values retained sentences closest to cluster centroids. The results show that ρ = 50% achieves
the best overall performance (AUROC=0.842, AUPRC=0.845, Accuracy=0.755), striking a balance
between removing redundancy and preserving informative content. Retaining too many sentences
(ρ = 80%, 100%) introduces noise, whereas overly aggressive filtering (ρ = 20%) discards useful
information. These findings confirm that clustering-based selection at moderate thresholds improves
robustness and accuracy by denoising redundant paths while maintaining mechanistic diversity.

A.6 Detailed Results for MoA-Representative Path Clusters

To investigate how diverse biological mechanisms are captured by clustering in DrugCORpath, we
analyze representative Gene Ontology (GO) terms of each cluster. As shown in Figure 5, filtering
redundant paths consistently improves performance across varying levels of GO term redundancy.
Specifically, when evaluating the top 50%, 30%, and 10% of disease–drug pairs with the highest
redundancy, the filtered setting (yellow) outperforms the unfiltered setting (gray) in AUPRC by
margins of 1.2%, 2.0%, and 2.4%, respectively. These results highlight that redundancy-aware filtering
is especially beneficial under conditions of high functional overlap, as it helps retain biologically
meaningful and mechanism-specific paths while reducing noise.

A.6.1 Case 1: B-Cell lymphomas–Fostamatinib

For each path in a cluster, its constituent genes were tested against GO biological process terms,
using all 17,660 genes in the KG as the background set. GO terms were considered significantly
enriched if the adjusted p-value was below 0.05 and all genes in the path were included in the GO
term. After identifying enriched GO terms at the path level, we summarized these terms at the cluster
level by selecting terms that most frequently appeared across multiple paths within the cluster.

This case study demonstrates the diverse mechanisms of action (MoA) predicted for the association
between Fostamatinib and B-cell lymphomas. Fostamatinib was selected for analysis due to its
established therapeutic potential in targeting B-cell receptor (BCR) signaling, a crucial driver of B-cell
malignancies, including lymphomas [37]. As illustrated in Figure 4, Each identified cluster represents
distinct representative GO terms: Protein Modification Process (GO:0036211), Positive Regulation of
Intracellular Signal Transduction (GO:1902533), Intracellular Signaling Cassette (GO:0141124), and

13



Figure 5: AUPRC comparison across GO term redundancy levels using the top disease–drug pairs.
Standard deviations are shown.

Regulation of Canonical NF-kappaB Signal Transduction (GO:0043122). These clusters collectively
illustrate how fostamatinib modulates disease pathways through distinct yet complementary biological
mechanisms. For instance, some clusters highlight fostamatinib’s involvement in regulating protein
phosphorylation and modification, crucial for fine-tuning intracellular signaling dynamics [37].
Others emphasize its role in orchestrating complex intracellular signaling cascades that influence
cellular proliferation and survival [38]. Additionally, fostamatinib distinctly modulates canonical
NF-κB signaling, a central pathway implicated in inflammation and cancer progression [39]. This
diverse mechanistic landscape underscores the comprehensive biological relevance of fostamatinib’s
therapeutic action in B-cell malignancies.

Importantly, one representative and biologically well-supported path involves B-Cell Lymphomas
→ BCL10 → IKBKB → Fostamatinib. Here, BCL10 participates in the CARD11–BCL10–MALT1
(CBM) complex downstream of BCR signaling to activate IKKβ (encoded by IKBKB), thereby
triggering NF-κB transcriptional activity [40]. Fostamatinib, a SYK inhibitor, blocks BCR signaling
upstream, disrupting CBM-mediated NF-κB activation and showing clinical activity in diffuse large B-
cell lymphoma [37, 41]. Additionally, other identified MoA clusters highlight mechanisms involving
protein modification via key signaling proteins such as PTPN1 [42] and FGFR1 [43], intracellular
signaling pathways via NRAS and EGFR [44], and further modulation of NF-κB signaling through
molecule like BIRC3 [45].

These findings demonstrate DrugCORpath’s strength in producing interpretable and biologically
grounded predictions by capturing a compact, diverse, and clinically relevant set of MoAs for a given
disease–drug pair.

A.6.2 Case 2: Breast Carcinoma–Regorafenib

To further demonstrate the interpretability of our method, we provide an additional case study
in which clustered paths between Regorafenib and Breast Carcinoma exhibit distinct modes of
action (MoA). As shown in Figure 6, enriched GO clusters such as Regulation of Phosphatidylinosi-
tol 3-Kinase/Protein Kinase B Signal Transduction (GO:0051897), negative regulation of apop-
tosis (GO:0043066), cell population proliferation (GO:0042127), and protein phosphorylation
(GO:0006468) highlight different biological processes relevant to Regorafenib’s mechanism.

Notably, each cluster emphasizes distinct gene sets and pathways.

For instance, PIK3CA, KIT, and PDGFRA/B in the Regulation of Phosphatidylinositol 3-
Kinase/Protein Kinase B Signal Transduction (GO:0051897) cluster activate a central pro-survival
axis in breast cancer, frequently deregulated by mutations and upstream receptor hyperactivation.
Regorafenib inhibits these receptor tyrosine kinases (RTKs), suppressing AKT phosphorylation and
thereby reactivating apoptotic regulators such as FOXO3a and Bim [46].

In the apoptosis regulation cluster, genes like CTNNB1, AKT1, and KDR act as negative regulators
of cell death, maintaining survival through Wnt, PI3K, and VEGF signaling pathways. Regorafenib’s
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Figure 6: Case study on Breast Carcinoma–Regorafenib

Figure 7: Case study of an interpretable drug–disease path. Edges show biological relations; the yellow dashed
line marks the predicted association.

inhibition of VEGFR2 (KDR) and AKT1 leads to increased apoptotic priming via mitochondrial
depolarization and impaired endothelial support [47].

The cell population proliferation cluster features growth-promoting RTKs including FGFR1/2 and
PDGFRA/B, which drive mitogenic signaling via MAPK and PI3K pathways. Regorafenib directly
inhibits FGFR1 and PDGFRs, blocking mitogenic input and reducing tumor cell division and stromal
interaction [48].

Lastly, the protein phosphorylation cluster, anchored by kinases like BRAF, STK11, and AKT1,
encompasses core signaling nodes involved in oncogenic cascades. Regorafenib’s potent inhibition
of BRAF and multiple upstream RTKs disables phosphorylation-dependent signal propagation (e.g.,
MAPK and PI3K axes), disrupting cancer cell growth and survival [49].

These heterogeneous but biologically plausible MoAs demonstrate how our clustered embedding
framework successfully captures diverse mechanistic perspectives within a single drug–disease
pair, enhancing explainability at the subpathway level. This type of multi-view representation is
particularly valuable for multi-kinase drugs like Regorafenib, which exert effects via multiple parallel
mechanisms, each corresponding to distinct biological processes enriched in our subgraph clusters.

A.7 Detailed Results For MoA Interpretability Cases

We further conducted case studies to evaluate the mechanistic validity of the generated paths. Specifi-
cally, our model was applied for recommending approved drugs for Blood Coagulation and Atopic
Dermatitis.

A.7.1 Case 1: [Blood Coagulation Disorders → NRAS/KRAS → ABCC1 → Benzbromarone]

When predicting treatments for blood coagulation disorders, DrugCORpath recommended Benzbro-
marone, identifying a mechanistic path involving NRAS/KRAS and ABCC1, as shown in Figure 7.
Although primarily used for gout and not FDA-approved for coagulation disorders, we explored
the biological plausibility of this prediction.Mutations in NRAS/KRAS [50], key components of
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the RAS/MAPK pathway, have been linked to endothelial dysfunction and pro-thrombotic states,
and are known to upregulate ABCC1 [51], a membrane transporter regulating drug and metabo-
lite efflux. Overexpression of ABCC1 can disturb intracellular balance by excessively exporting
endogenous bioactive molecules, thereby impacting inflammation and coagulation regulation [52].
Recent studies suggest that Benzbromarone inhibits ABCC1 [53], implying that it could counteract
coagulation abnormalities arising from NRAS/KRAS-driven dysregulation. All intermediate steps in
the predicted path were supported by existing biomedical evidence, highlighting DrugCORpath’s
ability to uncover clinically meaningful, biologically grounded associations, even beyond current
FDA-approved indications.

A.7.2 Case 2: [Dermatitis, Atopic → IL6 → NR3C1 → Prednisolone]

The prediction of Prednisolone for atopic dermatitis reflects a well-established anti-inflammatory
mechanism, demonstrating DrugCORpath’s ability to recover clinically validated treatments. Pred-
nisolone is a widely used therapy for atopic dermatitis, a chronic inflammatory condition characterized
by excessive secretion of pro-inflammatory cytokines, such as IL6, in immune cells. IL6 is frequently
observed in lesional skin of atopic patients and is known to modulate the activity of NR3C1, the gluco-
corticoid receptor. Prednisolone binds to NR3C1 and suppresses the expression of pro-inflammatory
cytokines, including IL6, thereby reducing inflammation. This example illustrates how DrugCORpath
captures biologically grounded MoAs by identifying meaningful molecular relationships among
entities.

A.8 FDA Drug Repurposing Prediction

Table 3 reports predicted probabilities of drug–disease associations for FDA-approved new indications
from 2024–2025, comparing DrugCORpath with BioLinkBERT and Node2vec. DrugCORpath
assigns consistently higher probabilities for most cases, ranking first in 7 out of 11 new indications.
For example, Ranibizumab–Diabetic Retinopathy and Nivolumab–Urothelial Carcinoma are strongly
predicted by DrugCORpath with probabilities of 0.903 and 0.894, respectively, whereas baseline
models assign much lower scores. Although BioLinkBERT and Node2vec occasionally achieve
higher probabilities (e.g., Iloperidone–Bipolar I Disorder, Bernalizumab–Severe Asthma), these
results demonstrate that DrugCORpath can effectively anticipate drug–disease associations later
validated as new FDA indications, highlighting its potential utility in real-world drug repurposing
scenarios.

A.9 Details Regarding Reproducibility

A.9.1 Data Availability

All datasets used in this study, namely MSI (Multi-Scale Interactome)3 and PrimeKG4, were retrieved
directly from their original public repositories. Both MSI and PrimeKG are comprehensive biomedical
knowledge graphs that integrate information from numerous databases, offering extensive annotations,
including Anatomical Therapeutic Chemical (ATC) codes.

A.9.2 Hyperparameter Search Space

To optimize the hyperparameters of our stacking ensemble, we employed Optuna [54], a state-of-
the-art Bayesian optimization framework. We first split the dataset into training, validation, and test
sets, where the validation set was used solely for model selection and not exposed during final testing.
During each trial, three base XGBoost models were trained with different sampled configurations,
and their outputs were combined using logistic regression as a meta-classifier. The best configuration
was selected by maximizing AUROC on the validation set.

The hyperparameter search space explored for our models is detailed in Table 5.

3https://github.com/snap-stanford/multiscale-interactome
4https://github.com/mims-harvard/PrimeKG
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Table 5: Hyperparameter Search Space
Hyperparameter Search Space/Values Selected Value
Learning Rate [0.01 - 0.2] 0.151 (XGB1), 0.142 (XGB2), 0.089 (XGB3)
Number of Estimators [500 - 800] 689 (XGB1), 800 (XGB2), 763 (XGB3)
Max Depth [3 - 9] 5 (XGB1/2), 9 (XGB3)
Subsample [0.7 - 1.0] 0.995, 0.812, 0.992
Colsample by Tree [0.6 - 1.0] 0.707, 0.999, 0.858
Min Child Weight [1, 3, 6, 10] 6 (XGB3 only)
Final Estimator {Logistic Regression, XGB, MLP} Logistic Regression
Hidden Dimensions [128, 256, 512] 128 (Node2Vec)
CV for Stacking [3, 5, 10] 5

A.9.3 Other Experimental Details

All experiments were conducted on a single NVIDIA RTX 3090 GPU with 24GB of memory, running
on an Ubuntu 18.04 Linux operating system. Benchmark experiments were performed using 5-fold
cross-validation. For each reported result, the mean and standard deviation are provided, as presented
in the respective tables throughout the main body of our paper.
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