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Abstract

To answer complex queries on knowledge graphs, logical reasoning over incomplete1

knowledge is required due to the open-world assumption. Learning-based methods2

are essential because they are capable of generalizing over unobserved knowledge.3

Therefore, an appropriate dataset is fundamental to both obtaining and evaluating4

such methods under this paradigm. In this paper, we propose a comprehensive5

framework for data generation, model training, and method evaluation that covers6

the combinatorial space of Existential First-order Queries with multiple variables7

(EFOk). The combinatorial query space in our framework significantly extends8

those defined by set operations in the existing literature. Additionally, we construct9

a dataset, EFOk-CQA, with 741 query types for empirical evaluation, and our10

benchmark results provide new insights into how query hardness affects the results.11

Furthermore, we demonstrate that the existing dataset construction process is12

systematically biased that hinders the appropriate development of query-answering13

methods, highlighting the importance of our work. Our code and data are provided14

in https://anonymous.4open.science/r/EFOK-CQA/README.md.15

1 Introduction16

The Knowledge Graph (KG) is a powerful database that encodes relational knowledge into a graph17

representation [34, 31], supporting downstream tasks [41, 8] with essential factual knowledge. How-18

ever, KGs suffer from incompleteness during its construction [34, 7], which is formally acknowledged19

as Open World Assumption (OWA) [19]. The task of Complex Query Answering (CQA) proposed20

recently has attracted much research interest [13, 28]. This task ambitiously aims to answer database-21

level complex queries described by logical complex connectives (conjunction ^, disjunction _,22

and negation ␣) and quantifiers1 (existential D) [37, 27, 18]. However, CQA on KGs differs from23

query answering on databases in two aspects: (1) traditional query answering algorithms obtain24

incomplete answers because of the incomplete KG [13]; (2) the huge size of the knowledge graph25

limits the scalability of traditional algorithms [26]. Therefore, learning-based methods dominate26

the CQA tasks because they can empirically generalize to unseen knowledge as well as prevent the27

resource-demanding symbolic search.28

The thriving of learning-based methods also puts an urgent request on high-quality datasets and29

benchmarks. In the previous study, datasets are developed by progressively expanding the syntactical30

1The universal quantifier is usually not considered in query answering tasks, as a common practice from both
CQA on KG [37, 27] and database query answering [25]
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expressiveness, where conjunction [13], union [26], negation [28], and other operators [20] are taken31

into account sequentially. In particular, the dataset proposed in [28] contains all logical connectives32

and becomes the standard training set for model development. [36] proposed a large evaluation33

benchmark EFO-1-QA that systematically evaluates the combinatorial generalizability of CQA34

models on such queries. More related works are included in Appendix A.35

However, the queries in aforementioned datasets [28, 36] are recently justified as “Tree-Form”36

queries [39] as they rely on the tree combinations of set operations. Compared to the well-established37

TPC-H decision support benchmark [25] for database query processing, queries in existing CQA38

benchmarks [28, 36] have two common shortcomings: (1) lack of combinatorial answers: only39

one variable is queried, and (2) lack of structural hardness: all existing queries subject to the40

structure-based tractability [29, 39]. It is rather questionable whether existing CQA data under such41

limited scope can support the future development of methodologies for general decision support with42

open-world knowledge.43

The goal of this paper is to establish a new framework that addresses the aforementioned shortcomings44

to support further research in complex query answering on knowledge graphs. Our framework is45

formally motivated by the well-established investigation of constraint satisfaction problems, which46

all queries can be formulated as. In general, the contribution of our work is four folds.47

Complete coverage We capture the complete Existential First Order (EFO) queries from their48

rigorous definitions, underscoring both combinatorial hardness and structural hardness49

and extending the existing coverage [36] which covers only a subset of EFO1 query. The50

captured query family is denoted as EFOk where k stands for multiple variables.51

Curated datasets We derive EFOk-CQA dataset, a non-exclusive extension of the previous EFO-1-52

QA benchmark [36] and contains 741 types of query. We design several rules to guarantee53

that our dataset includes high-quality nontrivial queries, particularly those that contain54

multiple query variables and are not structure-based tractable.55

Convenient implementation We implement the entire pipeline for query generation, answer sam-56

pling, model training and inference, and evaluation for the undiscussed scenarios of combi-57

natorial answers. Our pipeline is backward compatible, which supports both set operation-58

based methods and more recent ones.59

Results and findings We evaluate six representative CQA methods on our benchmark. Our results60

refresh the previous empirical findings and further reveal the structural bias of previous data.61

2 Problem definition62

2.1 Existential first order (EFO) queries on knowledge graphs63

Given a set E of entities and a set R of relations , a knowledge graph KG encodes knowledge as set64

of factual triple KG “ tph, r, tqu Ă E ˆRˆ E . According to the OWA, the knowledge graph that65

we have observed KGo is only part of the real knowledge graph, meaning that KGo Ă KG.66

The existing research only focuses on the logical formulas without universal quantifiers [27, 35]. We67

then offer the definition of it based on strict first order logic.68

Definition 1 (Term). A term is either a variable x or an entity a P E .69

Definition 2 (Atomic formula). ϕ is an atomic formula if ϕ “ rph, tq, where r P R is a relation, h70

and t are two terms.71

Definition 3 (Existential first order formula). The set of the existential formulas is the smallest set Φ72

that satisfies the following:73

(i) For atomic formula rph, tq, itself and its negation rph, tq,␣rph, tq P Φ74

(ii) If ϕ, ψ P Φ, then pϕ^ ψq, pϕ_ ψq P Φ75

(iii) If ϕ P Φ and xi is any variable, then Dxiϕ P Φ.76
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Figure 1: Operator Tree versus Query Graph. Left: An operator tree representing a given query “List
the presidents of European countries that have never held the Olympics” [28]; Right: A query graph
representing a given query “Find a pair of persons who are both colleagues and co-authors and were
born in the same country, with one having awarded the fields medal while the another not”, which is
both a multigraph and a cyclic graph, containing two free variables.

Definition 4 (Free variable). If a variable y is not associated with a quantifier, it is called a free77

variable, otherwise, it is called a bounded variable. We write ϕpy1, ¨ ¨ ¨ , ykq to indicate y1, ¨ ¨ ¨ , yk78

are the free variables of ϕ.79

Definition 5 (Sentence and query). A formula ϕ is a sentence if it contains no free variable, otherwise,80

it is called a query. In this paper, we always consider formula with free variable, thus, we use formula81

and query interchangeably.82

Definition 6 (Substitution). For a1, ¨ ¨ ¨ , ak, where ai P E , we write ϕpa1{y1, ¨ ¨ ¨ , ak{ykq or simply83

ϕpa1, ¨ ¨ ¨ , akq for the result of simultaneously replacing all free occurrence of yi in ϕ by ai, i “84

1, ¨ ¨ ¨ , k.85

Definition 7 (Answer of an EFO query). For a given existential query ϕpy1, ¨ ¨ ¨ , ykq, its answer is a86

set that defined by87

Arϕpy1, ¨ ¨ ¨ , ykqs “ tpa1, ¨ ¨ ¨ , akqq|ai P E , i “ 1, ¨ ¨ ¨ , k, ϕpa1, ¨ ¨ ¨ , akq is Trueu

Definition 8 (Disjunctive Normal Form (DNF)). For any existential formula ϕpy1, ¨ ¨ ¨ , ykq, it can88

be converted to the Disjunctive normal form as shown below:89

ϕpy1, ¨ ¨ ¨ , ykq “ γ1py1, ¨ ¨ ¨ , ykq _ ¨ ¨ ¨ _ γmpy1, ¨ ¨ ¨ , ykq (1)
γipy1, ¨ ¨ ¨ , ykq “ Dx1, ¨ ¨ ¨ , xn.ρi1 ^ ¨ ¨ ¨ ^ ρit (2)

where ρij is either an atomic formula or the negation of an atomic formula, xi is called an existential90

variable.91

DNF form has a strong property that Arϕpy1, ¨ ¨ ¨ , ykqs “ Ym
i“1Arγipy1, ¨ ¨ ¨ , ykqs, which allows92

us to only consider conjunctive formulas γi and then aggregate those answers to retrieve the final93

answers. This practical technique has been used in many previous research [22, 27]. Therefore, we94

only discuss conjunctive formulas in the rest of this paper.95

2.2 Constraint satisfaction problem for EFO queries96

Formally, a constraint satisfaction problem (CSP) P can be represented by a triple P “ pX,D,Cq97

whereX “ px1, ¨ ¨ ¨ , xnq is an n-tuple of variables, D “ pD1, ¨ ¨ ¨ , Dnq is the corresponding n-tuple98

of domains, C “ pC1, ¨ ¨ ¨ , Ct is t-tuple constraint, each constraint Ci is a pair of pSi, RSi
q where99

Si is a set of variables Si “ txiju and RSi is the constraint over those variables [29].100

Historically, there are strong parallels between CSP and conjunctive queries in knowledge bases [10,101

17]. The terms correspond to the variable set X . The domain Di of a constant entity contains only102

itself, while it is the whole entity set E for other variables. Each constraint Ci is binary that is induced103

by an atomic formula or its negation, for example, for an atomic formula rph, tq, we have Si “ th, tu,104

RSi “ tph, tq|h, t P E , ph, r, tq P KGu. Finally, by the definition of existential quantifier, we only105

consider the answer of free variable, rather than tracking all terms within the existential formulas.106
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Figure 2: Left: Example of trivial abstract query graph, in the upper left graph, the x1 is redundant
violating Assumption 13, in the bottom left graph, answers for the whole query can be decomposed
to answer two free variables y1 and y2 alone, violating Assumption 14. Right: Example of new
query graph that is not included in previous benchmark [36] even though it can be represented by
operator-tree. The representation of query graph follows Figure 1.

Definition 9 (CSP answer of conjunctive formula). For a conjunctive formula γ in Equation 2 with k107

free variables and n existential variables, the answer set of it formulated as CSP instance is:108

Arγpy1, ¨ ¨ ¨ , ykqs “ Arγ‹py1, ¨ ¨ ¨ , yn`kqs, where γ‹ “ ρi1 ^ ¨ ¨ ¨ ^ ρit

This shows that the inference of existential formulas is easier than solving CSP instances since the109

existential variables do not need to be kept track of.110

2.3 The representation of query111

To give an explicit representation of existential formula, [13] firstly proposes to represent a formula112

by operator tree, where each node represents the answer set for a sub-query, and the logic operators in113

it naturally represent set operations. This method allows for the recursive computation from constant114

entity to the final answer set in a bottom-up manner [28]. However, this representation method is115

inherently directed, acyclic, and simple, therefore more recent research breaks these constraints by116

being bidirectional [21, 37] or being cyclic or multi [39]. To meet these new requirements, they117

propose to represent the formula by the query graph [39], which inherits the convention of constraint118

network in representing CSP instance. We utilize this design and further extend it to represent EFOk119

formula that contains multiple free variables. We provide the illustration and comparison of the120

operator tree and the query graph in Figure 1, where we show the strong expressiveness of the query121

graph. We also provide the formal definition of query graph as follows:122

Definition 10 (Query graph). Let γ be a conjunctive formula in equation 2, its query graph is defined123

by Gpγq “ tph, r, t, tT, Fuqu, where an atomic formula ρ “ rph, tq in γ corresponds to ph, r, t, Tq124

and ρ “ ␣rph, tq corresponds to ph, r, t,Fq.125

Therefore, any conjunctive formulas can be represented by a query graph, in the rest of the paper, we126

use query graphs and conjunctive formulas interchangeably.127

3 The combinatorial space of EFOk queries128

Although previous research has given a systematic investigation in the combinatorial space of operator129

trees [36], the combinatorial space of the query graph is much more challenging due to the extremely130

large search space and the lack of explicit recursive formulation. To tackle this issue on a strong131

theoretical background, we put forward additional assumptions to exclude trivial query graphs. Such132

assumptions or restrictions also exist in the previous dataset and benchmark [28, 36]. Specifically,133

we propose to split the task of generating data into two levels, the abstract level, and the grounded134

level. At the abstract level, we create abstract query graph, at the grounded level, we provide the135

abstract query graph with the relation and constant and instantiate it as a query graph. In this section,136

we elaborate on how we investigate the scope of the nontrivial EFOk query of interest step by step.137

3.1 Nontrivial abstract query graph of EFOk138

The abstract query graph is the ungrounded query graph without information of certain knowledge139

graphs, and we give an example in Figure 3.140
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Definition 11 (Abstract query graph). The abstract query graph G “ pV,E, f, gq is a directed141

graph with three node types,tConstant Entity, Existential Variable, Free variableu, and two edge142

types,tpositive, negativeu. The V is the set of nodes, E is the set of directed edges, f is the function143

maps node to node type, g is the function maps edge to edge type.144

Definition 12 (Grounding). For an abstract query graph G, a grounding is a function I that maps it145

into a query graph IpGq.146

We propose two assumptions of the abstract query graph as follows:147

Assumption 13 (No redundancy). For a abstract query graph G, there is not a subgraph Gs Ĺ G148

such that for every grounding I , ArIpGqs “ ArIpGsqs.149

Assumption 14 (No decomposition). For an abstract query graph G, there are no such two150

subgraphs G1, G2, satisfying that G1,G2 Ĺ G, such that for every instantiation I , ArIpGqs “151

ArIpG1qs
Ś

ArIpG2qs, where the
Ś

represents the Cartesian product.152

We note that the assumption 14 inherits the idea of the structural decomposition technique in153

CSP [11], which allows for solving a CSP instance by solving several sub-problems and combining154

the answer together based on topology property. Additionally, meeting these two assumptions in the155

grounded query graph is extremely computationally costly which we aim to avoid in practice.156

We provide some easy examples to be excluded for violating the assumptions above in Figure 2.157

3.2 Nontrivial query graph of EFOk158

Similarly, we propose two assumptions on the query graph.159

Assumption 15 (Meaningful negation). For any negative edge e in query graph G, we require160

removing it results in different CSP answers: ArG´ es ‰ ArGs.2161

Assumption 15 treats negation separately because of the fact that for any KG, any relation r P R,162

there is |tph, tq|h, t P E , ph, r, tq P KGu| ! E2, which means that the constraint induced by the163

negation of an atomic formula is much less “strict” than the one induced by a positive atomic formula.164

Assumption 16 (Appropriate answer size). There is a constant M ! E to bound the candidate set165

for each free variable fi in G, such that for any i, |tpai P E |pa1, ¨ ¨ ¨ , ai, ¨ ¨ ¨ , akq P ArGsu| ďM .166

We note the Assumption 16 extends the “bounded negation” assumption in the previous dataset [28,167

36]. We give an example “Find a city that is located in Europe and is the capital of a country that has168

not held the Olympics” in Figure 2, where the candidate set of x1 is in fact bounded by its relation169

with the y1 variable but not from the bottom “Olympics” constant, hence, this query is excluded in170

their dataset due to the directionality of operator tree.171

Overall, the scope of the formula investigated in this paper surpasses the previous EFO-1-QA172

benchmark because of: (1). We include the EFOk formula with multiple free variables for the first173

time; (2). We include the whole family of EFO1 query, many of them can not be represented by174

operator tree; (3) Our assumption is more systematic than previous ones as shown by the example in175

Figure 2. More details are offered in Appendix D.3.176

4 Framework177

We develop a versatile framework that supports five key functionalities fundamental to the whole178

CQA task: (1) Enumeration of nontrivial abstract query graphs as discussed in Section 3; (2) Sample179

grounding for the abstract query graph; (3) Compute answer for any query graph efficiently; (4)180

Support implementation of existing CQA models; (5) Conduct evaluation including newly introduced181

EFOk queries with multiple free variables. We explain each functionality in the following. An182

illustration of the first three functionalities is given in Figure 3.183

2Ideally, we should expect them to have different answers as the existential formulas, however, this is
computation costly and difficult to sample in practice, which is further discussed in Appendix D.
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Figure 3: Illustration of the functionality of our framework. Left: abstract query graph, Middle: query
graph, Right: answer of query.

4.1 Enumerate abstract query graph184

As discussed in Section 3, we are able to abide by those assumptions as well as enumerate all185

possible query graphs within a given search space where certain parameters, including the number of186

constants, free variables, existential variables, and the number of edges are all given. Additionally,187

we apply the graph isomorphism algorithm to avoid duplicated query graphs being generated. More188

details for our generation method are provided in Appendix D.1.189

4.2 Ground abstract query graph190

To ground an abstract query graph G and comply with the assumption 15, we split the abstract query191

graph into two parts, the positive part and the negative part, G “ Gp Y Gn. Then the grounding192

process is also split into two steps: 1. Sample grounding for the positive subgraph Gp and compute193

its answer 2. Ground the Gn to decrease the answer got in the first step. Details in Appendix D.2.194

Finally, to fulfill the assumption 16, we follow the previous practice of manually filtering out queries195

that have more than 100 answers [28, 36], as we have introduced the EFOk queries, we slightly196

soften this constraint to be no more than 100ˆ k answers.197

4.3 Answer for existential formula198

As illustrated in Section 2.2, the answer to an existential formula can be solved by a CSP solver,199

however, we also show in Definition 9 that CSP requires keeping track of the existential variables and200

it leads to huge computation costs. Thus, we develop our own algorithm following the standard solving201

technique of CSP, which ensures consistency conditions in the first step, and do the backtracking to get202

the final answers in the second step. Finally, we select part of our sampled queries and double-check203

it with the CSP solver https://github.com/python-constraint/python-constraint.204

4.4 Learning-based methods205

As the query graph is an extension to the operator tree regarding the express ability to existential206

formulas, we are able to reproduce CQA models that are initially implemented by the operator tree207

in our new framework. Specifically, since the operator tree is directed and acyclic, we compute its208

topology ordering that allows for step-by-step computation in the query graph. This algorithm is209

illustrated in detail in the Appendix F. We note our implementation coincides with the original one.210

Conversely, for the newly proposed models that are based on query graphs, the original operator211

tree framework is not able to implement them, while our framework is powerful enough. We have212

therefore clearly shown that the query graph representation is more powerful than the previous213

operator tree and is able to support arbitrary existential formulas as explained in Section 2.3.214

4.5 Evaluation protocol215

As we have mentioned in Section 2.1, there is an observed knowledge graph KGo and a full knowledge216

graph KG. Thus, there is a set of observed answers Ao and a set of full answers A correspondingly.217

Since the goal of CQA is to tackle the challenge of OWA, it has been a common practice to evaluate218

CQA models by the “hard” answers Ah “ A´Ao [26, 27]. However, to the best of our knowledge,219
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there has not been a systematic evaluation protocol for EFOk queries, thus we leverage this idea and220

propose three types of different metrics to fill the research gap in the area of evaluation of queries221

with multiple free variables, and thus have combinatorial answers.222

Marginal. For any free variable fi, its full answer is Afi “ tai P E |pa1, ¨ ¨ ¨ , ai, ¨ ¨ ¨ , akq P Au, the223

observed answer of it Afi
o is defined similarly. This is termed “solution projection” in CSP theory [12]224

to evaluate whether the locally retrieved answer can be extended to an answer for the whole problem.225

Then, we rank the hard answer Afi
h “ Afi ´Afi

o
3, against those non-answers E ´Afi ´Afi

o and226

use the ranking to compute standard metrics like MRR, HIT@K for every free variable. Finally, the227

metric on the whole query graph is taken as the average of the metric on all free variables. We note228

that this metric is an extension of the previous design proposed by [20]. However, this metric has the229

inherent drawback that it fails to evaluate the combinatorial answer by the k-length tuple and thus230

fails to find the correspondence among free variables.231

Multiply. Because of the limitation of the marginal metric discussed above, we propose to evaluate232

the combinatorial answer by each k-length tuple pa1, ¨ ¨ ¨ , akq in the hard answer set Ah. Specifically,233

we rank each ai in the corresponding node fi the same as the marginal metric. Then, we propose the234

HIT@nk metric, it is 1 if all ai is ranked in the top n in the corresponding node fi, and 0 otherwise.235

Joint. Finally, we note these metrics above are not the standard way of evaluation, which is based on236

a joint ranking for all the Ek combinations of the entire search space. We propose to estimate the237

joint ranking in a closed form given certain assumptions, see Appendix E for the proof and details.238

5 The EFOk-CQA dataset and benchmark results239

5.1 The EFOk-CQA dataset240

With the help of our framework developed in Section 4, we are able to develop a new dataset called241

EFOk-CQA, whose combinatorial space is parameterized by the number of constants, existential and242

free variables, and the number of edges. EFOk-CQA dataset includes 741 different abstract query243

graphs in total. The parameters and the generation process, as well as its statistics, are detailed in244

Appendix D.4.245

Then, we conduct experiments on our new EFOk-CQA dataset with six representative CQA models246

including BetaE [28], LogicE [24], and ConE [40], which are built on the operator tree, CQD [2],247

LMPNN [35], and FIT [39] which are built on query graph. The experiments are conducted in two248

parts, (1). the queries with one free variable, specifically, including those that can not be represented249

by operator tree; (2). the queries that contain multiple free variables.250

We have made some adaptations to the implementation of CQA models, allowing them to infer EFOk251

queries, full detail is offered in Appendix F. The experiment is conducted on a standard knowledge252

graph FB15k-237 [32] and additional experiments on other standard knowledge graphs FB15k and253

NELL are presented in Appendix H.254

5.2 Benchmark results for k “ 1255

Because of the great number of abstract query graphs, we follow [36] to group query graphs by three256

factors: (1). the number of constant entities; (2). the number of existential variables, and (3). the257

topology of the query graph4. The result is shown in Table 1.258

Structure analysis. Firstly, we find a clear monotonic trend that adding constant entities makes a259

query easier while adding existing variables makes a query harder, which the previous research [36]260

fails to uncover. Besides, we are the first to consider the topology of query graphs: when the number261

3We note Afi
h can be empty for some free variable or even for all free variables, making these marginal

metrics not reliable, details in Appendix E.
4We make a further constraint in our EFOk-CQA dataset that the total edge is at most as many as the number

of nodes, thus, a graph can not be both a multigraph and a cyclic graph.
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Table 1: HIT@10 scores(%) for inferring queries with one free variable on FB15k-237. We denote e
as the number of existential variables and c as the number of constant entities. SDAG represents the
Simple Directed Acyclic Graph, Multi for multigraph, and Cyclic for the cyclic graph. AVG.(c) and
AVG.(e) is the average score of queries with the number of constant entities / existential variables
fixed.

Model
c

e 0 1 2 AVG.(c) AVG.

SDAG SDAG Multi SDAG Multi Cyclic

BetaE

1 31.4 33.0 22.3 21.1 17.7 30.7 22.1

36.42 57.2 36.2 35.5 29.3 29.4 45.3 32.5
3 80.0 53.1 53.6 38.2 37.8 58.2 42.1

AVG.(e) 59.3 43.8 40.6 33.8 32.7 49.3

LogicE

1 34.4 34.9 23.0 21.4 17.4 30.3 22.4

36.72 60.0 38.4 36.8 29.8 29.3 45.3 33.0
3 83.0 55.5 55.5 38.5 37.8 57.8 42.4

AVG.(e) 62.2 46.0 42.0 34.2 32.6 49.1

ConE

1 34.9 35.4 23.6 21.8 18.4 34.2 23.5

39.02 61.0 39.1 38.4 32.0 31.5 50.2 35.2
3 84.8 56.7 57.1 41.1 40.0 63.4 44.9

AVG.(e) 63.4 47.0 43.5 36.5 34.7 54.1

CQD

1 39.0 34.2 17.6 17.4 12.7 28.7 18.7

35.92 50.7 33.8 33.6 28.4 28.4 45.7 31.4
3 58.4 49.6 52.4 39.3 39.1 60.4 42.6

AVG.(e) 50.7 41.4 38.4 33.8 32.4 50.2

LMPNN

1 38.6 37.8 21.8 22.9 17.8 31.7 23.2

35.82 62.2 40.2 35.0 30.8 28.1 44.4 32.5
3 86.6 56.9 51.9 38.3 35.3 55.8 40.8

AVG.(e) 65.4 47.8 39.6 34.5 30.8 48.0

FIT

1 38.7 42.7 32.5 26.1 22.5 41.5 28.8

47.02 65.5 47.7 48.2 39.7 40.1 56.5 43.4
3 84.2 63.9 63.5 50.5 50.4 63.5 53.6

AVG.(e) 65.8 54.7 51.5 44.9 43.7 57.5

of constants and existential variables is fixed, we have found the originally investigated queries that262

correspond to Simple Directed Acyclic Graphs (SDAG) are generally easier than the multigraphs263

ones but harder than the cyclic graph ones. This is an intriguing result that greatly deviates from264

traditional CSP theory in close world which finds that the cyclic graph is NP-complete, while the265

acyclic graph is tractable [6]. Our conjecture for this intriguing result in the open world is that the266

cyclic graph contains one more constraint than SDAG that serves as a source of information for CQA267

models, while the multigraph tightens an existing constraint and thus makes the query harder.268

Model analysis. For models that are built on operator tree, including BetaE, LogicE, and ConE, their269

relative performance is steady among all breakdowns and is consistent with their reported score in the270

original dataset [28], showing similar generalizability. However, for models that are built on query271

graphs, including CQD, LMPNN, and FIT, we have found that LMPNN performs generally better272

than CQD in SDAG, but falls behind CQD in multigraphs and cyclic graphs. We assume the reason273

behind this is that LMPNN requires training while CQD does not, however, the original dataset are274

biased which only considers SDAG, leading to the result that LMPNN doesn’t generalize well to the275

unseen tasks with different topology property. We expect future CQA models may use our framework276

to address this issue of biased data and generalize better to more complex queries.277

We note FIT is designed to infer all EFO1 queries and is indeed able to outperform other models in278

almost all breakdowns, however, its performance comes with the price of computational cost, and279
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Table 2: HIT@10 scores(%) of three different types for answering queries with two free variables on
FB15k-237. The constant number is fixed to be two. e is the number of existential variables. The
SDAG, Multi, and Cyclic are the same as Table 1.

Model HIT@10
Type

e “ 0 e “ 1 e “ 2 AVG.
SDAG Multi SDAG Multi Cyclic SDAG Multi Cyclic

BetaE
Marginal 54.5 50.2 49.5 46.0 58.8 37.2 35.5 58.3 43.8
Multiply 27.3 22.4 22.3 16.9 26.2 16.9 13.9 25.7 18.3

Joint 6.3 5.4 5.2 4.2 10.8 2.2 2.3 9.5 4.5

LogicE
Marginal 58.2 50.9 52.2 47.4 60.4 37.7 35.8 59.2 44.6
Multiply 32.1 23.1 24.9 18.1 28.3 18.1 14.8 26.6 19.5

Joint 6.8 6.0 6.1 4.5 12.3 2.5 2.7 10.3 5.1

ConE
Marginal 60.3 53.8 54.2 50.3 66.2 40.1 38.5 63.7 47.7
Multiply 33.7 25.2 26.1 19.8 32.1 19.5 16.3 30.3 21.5

Joint 6.7 6.4 6.2 4.8 12.6 2.6 2.7 10.9 5.3

CQD
Marginal 50.4 46.5 49.1 45.6 59.7 33.5 33.1 61.5 42.8
Multiply 28.9 23.4 25.4 19.5 31.3 17.8 16.0 30.5 21.0

Joint 8.0 8.0 7.4 6.0 13.9 3.6 3.9 12.0 6.4

LMPNN
Marginal 58.4 51.1 54.9 49.2 64.7 39.6 36.1 58.7 45.4
Multiply 35.0 26.7 29.2 21.7 33.4 21.4 17.0 28.4 22.2

Joint 7.6 7.5 7.1 5.3 12.9 2.8 2.9 9.5 5.2

FIT
Marginal 64.3 61.0 63.1 60.7 58.5 49.0 49.1 60.2 54.3
Multiply 39.7 32.2 35.9 27.8 27.4 29.5 26.8 32.4 29.2

Joint 7.4 9.0 7.8 6.5 10.1 3.7 4.6 10.6 6.4

face challenges in cyclic graph where it degenerates to enumeration: which we further explain in280

Appendix F.281

5.3 Benchmark results for k “ 2282

As we have explained in Section 4.5, we propose three kinds of metrics, marginal ones, multiply283

ones, and joint ones, from easy to hard, to evaluate the performance of a model in the scenario of284

multiple variables. The evaluation result is shown in Table 2. As the effect of the number of constant285

variables is quite clear, we remove it and add the metrics based on HIT@10 as the new factor.286

For the impact regarding the number of existential variables and the topology property of the query287

graph, we find the result is similar to Table 1, which may be explained by the fact that those models288

are all initially designed to infer queries with one free variable. For the three metrics we have289

proposed, we have identified a clear difficulty difference among them though they generally show290

similar trends. The scores of joint HIT@10 are pretty low, indicating the great hardness of answering291

queries with multiple variables. Moreover, we have found that FIT falls behind other models in some292

breakdowns which are mostly cyclic graphs, corroborating our discussion in Section 5.2.293

6 Conclusion294

In this paper, we make a thorough investigation of the family of EFOk formulas based on strong295

theoretical background. We then present a new powerful framework that supports several functionali-296

ties essential to CQA task, with this help, we build the EFOk-CQA dataset that greatly extends the297

previous dataset and benchmark. Our evaluation result brings new empirical findings and reflects the298

biased selection in the previous dataset impairs the performance of CQA models, emphasizing the299

contribution of our work.300
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