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Abstract—This paper presents a robust method for real-
time recognition of Activities of Daily Living (ADLs) in smart
home environments using IoT data. Our approach improves
the segmentation of sensor data streams into distinct activities
by leveraging IoT sensor spatiotemporal features and applies
the Needleman-Wunsch method to align predicted and actual
activities. Testing on the Aruba dataset achieved 83.2% accuracy,
demonstrating superior performance in segmentation and activity
recognition compared to existing dynamic methods. Future work
will focus on developing a sensor installation simulator to enhance
accuracy and reliability.

Index Terms—Activity of Daily Living, ADLs, IoT Data,
Human Activity Recognition, Smart Home, Real-time Activity
Recognition, Spatiotemporal Segmentation, Dynamic Segmenta-
tion Algorithms.

I. INTRODUCTION

The rapid advancement of ambient computing has led to the
development of various sensors and devices within assistive
environments, particularly for elderly or disabled individuals.
These Ambient Assisted Living (AAL) systems integrate wire-
less networks, sensors, and software applications to provide
health monitoring, personal assistance, and telemedicine ser-
vices [1], enabling individuals to maintain their independence
at home.

A key component of these systems is the ability to monitor
and analyze daily activities using data from connected devices.
This data provides valuable insights into individuals’ behavior,
habits, and routines, helping to assess their health, detect early
signs of vulnerability, and prevent emergencies. However,
variability in how individuals perform daily activities can lead
to inconsistencies in the collected data, making it challenging
to segment sensor data into distinct activities and assign
accurate labels.

To address these challenges, we propose leveraging spa-
tiotemporal correlations between sensors to enhance seg-
mentation accuracy, particularly in real-time recognition of
Activities of Daily Living (ADLs) [2], [3]. In this context,
technologies such as artificial intelligence (AI), the Internet
of Things (IoT), and digital twins play a crucial role. These
technologies have significantly improved activity recognition

in smart homes by providing more reliable data processing and
simulation capabilities [4]. Digital twins, in particular, offer
virtual representations of smart home environments, simulating
system functionality and aiding in monitoring and predictive
analysis [5].

This study focuses on improving spatiotemporal correlation
parameters for more accurate real-time dynamic segmentation
of sensor data. Additionally, we propose methods to evaluate
recognition performance when predicted and actual activity
sequences do not perfectly align.

This paper is structured as follows: Section II presents
the background and challenges related to ADL recognition.
Section III details our methodology. The results of our ex-
periments are discussed in Section V, followed by concluding
remarks and future research directions in Section VI.

II. BACKGROUND

Activities of Daily Living (ADLs) encompass essential tasks
required for maintaining personal well-being, health, and so-
cial participation. These activities include, but are not limited
to, eating, personal hygiene (bathing), toileting, continence,
dressing, and mobility (transferring).

A. ADLs Analysis

Analyzing ADLs plays a crucial role in assessing an indi-
vidual’s physical vulnerability and functional autonomy. The
literature identifies several benefits of ADL analysis for both
individuals and healthcare providers:

• Assessing independence: Tools such as the Katz in-
dex [6] and the AGGIR scale [7] assess a person’s ability
to perform essential ADLs. Automatic human activity
recognition can objectively evaluate an individual’s in-
dependence, providing valuable insights for healthcare
professionals and caregivers to tailor care plans.

• Detecting frailty: Frailty, characterized by an increased
vulnerability to health problems, can be detected early
by monitoring changes in ADLs [8]. This early detection
enables proactive interventions to prevent further health
decline.



• Care planning: The level of care required at home is
often determined by an individual’s ability to perform
ADLs. Measuring ADLs assists in resource allocation
and care planning, ensuring that necessary support is
provided [9].

• Improving quality of life: By identifying difficulties
through ADL analysis, targeted interventions or auto-
mated services can be deployed to enhance an individual’s
quality of life [10].

B. ADLs Measurement

The advancement of AI technologies has enabled the auto-
matic recognition of ADLs using data collected from a variety
of connected devices in smart homes. Ambient Assisted Living
(AAL) environments employ a range of environmental sensors,
including acoustic, temperature, CO2, humidity, power con-
sumption, and passive infrared (PIR) sensors, as well as more
advanced technologies like radar, lidar, and cameras [11].

Given the variability in ADL recognition algorithms due to
differing sensor data sources, we propose an adaptive method
capable of processing Boolean data from any sensor type.
This approach includes a transformation layer that standardizes
sensor readings into Boolean values by applying predefined
thresholds, ensuring consistent input for ADL recognition al-
gorithms and maintaining robust performance across different
environments.

C. Dataset

We utilized the Aruba dataset from the CASAS smart home
project [12], a widely-used resource known for its extensive
sensor coverage and detailed event logs. This dataset was col-
lected over a period of seven months, from November 4, 2010,
to June 30, 2011, capturing the daily activities of an elderly
woman living alone with periodic family visits. The smart
home was equipped with 31 wireless binary motion sensors, 5
temperature sensors, and 3 door sensors, strategically placed to
monitor the resident’s movements and interactions (Figure 1).

Each data entry includes a timestamp, sensor identifier,
sensor status, and activity annotations, providing a rich data
stream for robust activity recognition. With 1,719,557 recorded
events, this dataset is one of the most comprehensive resources
available for human activity recognition and has been widely
used as a benchmark in the field. Its broad usage makes it
ideal for comparing various algorithms and methodologies for
activity recognition.

To enhance real-time processing while maintaining high
recognition accuracy, we selected a subset of 11 sensors
(motion and door sensors) specifically associated with the fol-
lowing activities: ”Bed to toilet”, ”Eating”, ”Entering home”,
”Housework”, ”Leaving home”, ”Preparing meals”, ”Relax-
ing”, ”Sleeping”, ”Washing dishes”, and ”Working”. This
optimization aims to reduce processing overhead while still
capturing key activity patterns. Figure 2 shows an example
sequence of ’Sleeping’ and ’Bed to Toilet’ events recorded
during the night of May 15, 2011, which reflects typical
nighttime behavior in the dataset.

Fig. 1. Layout of the Aruba smart home.

Fig. 2. Sample of sensor data recorded in the Aruba Dataset.

D. Literature review

We conducted a thorough literature review to analyze pre-
vious research in human activity recognition (HAR), focusing
specifically on real-time recognition of Activities of Daily
Living (ADLs). This review aims to present key methodologies
and highlight both resolved challenges and areas requiring fur-
ther investigation. The criteria for selecting relevant scientific
articles included:

• Real-time analysis: Critical for detecting ADLs, real-
time analysis enables immediate identification and mon-
itoring, facilitating rapid responses in emergencies and
continuous tracking of daily routines [13].

• Ambient sensors: These sensors, embedded in a person’s
environment (motion detectors, temperature sensors, door
sensors, etc.), unobtrusively collect data on daily activi-
ties, playing a pivotal role in ADL recognition [14].

• Spatiotemporal aspects: HAR systems must account for
both the location (’where’) and timing (’when’) of activi-



ties. Spatiotemporal modeling enhances activity detection
by providing a contextual framework for interpreting
sensor data [15].

• Deep learning classifiers: Unlike traditional methods,
deep learning models such as CNNs and LSTMs can
automatically extract relevant features from data, elimi-
nating the need for manual feature design. These models
are highly effective at capturing complex patterns and
non-linear relationships, making them well-suited for
ADLs, which vary greatly between individuals [16].

Table I summarizes the key methodologies from six ap-
proaches identified in our review, each chosen from a total of
3,222 relevant publications. These papers were selected based
on the presence of real-time analysis, use of ambient sensors,
spatiotemporal modeling, and classifier performance.
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C. Chen et al.
[17]

Yes No No NB, MP,
SMO, LB

- CASAS

D. Liciotti et al.
[18]

Yes No No LSTM 0.89 CASAS

J. Wan et al. [19] Yes No Yes NB, BN,
DT, NBT,
HMM

0.91 CASAS

D. Bouchabou et
al. [20]

Yes No No LSTM 0.84 CASAS

H. Najeh et al.
[2]

Yes Yes Yes CNN2D 0.81 CASAS

Z. Xu et al. [3] Yes Yes Yes CNN-
LSTM

0.78 CASAS

TABLE I
COMPARATIVE ANALYSIS OF DIFFERENT APPROACHES IN ADL

RECOGNITION

As seen in Table I, several approaches leverage deep learn-
ing and ambient sensors for ADL recognition, with varying
degrees of success. Two specific approaches [2] and [3] were
selected for further in-depth analysis and experimentation in
our study due to their use of dynamic segmentation and
spatiotemporal modeling.

III. METHODOLOGY

Although the two selected methods focus on human activ-
ity recognition in smart home environments using dynamic
segmentation and emergent modeling techniques, they present
different methodological innovations and specific approaches.
In [3], The authors present a model that uses spatio-temporal
correlations to manage the segmentation of streaming data.
This approach ensures that data segmentation is sensitive
to both the location of sensor activations and the timing
between these events, which helps accurately define each
segment’s context. This method uses stigmergy to build ac-
tivity features explicitly represented as a network, aiding in

the contextual interpretation of sensor data without needing
deep domain knowledge. In [2], the authors, inspired by the
above work, emphasize a convolutional neural network (CNN)
that is bootstrapped to dynamic segmentation combined with
stigmergy-based encoding. Stigmergy is used here to cre-
ate a feedback loop within the environment, enhancing the
learning process by encoding and classifying segments of
activities more efficiently. The approach strongly relies on the
capabilities of CNNs to process and analyze the segmented
data. The main difference between the two approaches is
that Xu et al. employ stigmergy to construct activity features
represented in a network model directly, whereas Najeh et al.
use stigmergy to enhance the encoding process within a neural
network framework. There is a difference in how stigmergy is
applied—one is for building a self-updating model that adapts
based on the activity context, and the other is for improving
neural network training.

Both methods are based on the same principle but operate
differently. They consist of two main phases: an offline phase
for calculating and optimizing the parameters used to segment
the real-time data stream, and an online phase for segmenting
the real-time data stream, and then encoding and classifying
the data segments to identify the specific activity being per-
formed. The procedural steps for both phases are illustrated in
Figure 3.

Fig. 3. ADL recognition methodology.

A. Dataset overview

The dataset is structured to allow precise tracking and
analysis of activities, providing detailed insights into the
sequence and nature of captured events. It consists of three
sets:

• Events (E): A set of individual events, each characterized
by attributes such as date, time, sensor ID, and sensor
value. Each event Ei is a quadruplet of the form (date,
time, sensorID, sensorValue).

• Activity Segments (W): This set consists of activity
segments, where each segment Wi is a sequence of events
Ei. For example, in Figure 3, the ”Bed to Toilet” segment
captures the sequence of activities between the ”Begin”
and ”End” states.



• Sensor Identifiers (S): A set of identifiers representing
the various sensors deployed in the environment, ranging
from S0 to S33, used to monitor and record activity data.

B. Offline Phase

In the offline phase, we calculate spatial and temporal corre-
lation coefficients to accurately segment sensor-derived events
in real-time. These coefficients consider both the geographical
context of sensor locations and the time intervals between
events.

1) Spatial Correlation: Spatial correlation measures the
relationships between sensor activations based on their spatial
proximity. This is crucial for understanding how sensor events
are interrelated within a given environment. We apply three
distinct methods to calculate spatial correlation:

• Pearson Product-Moment Correlation (PMC): This
method calculates the linear correlation between sensor
events using covariance and standard deviations [2], as
shown in Equation 1. It provides a straightforward mea-
sure of how sensor events vary together linearly.

• Mutual Information (MI): Mutual Information evalu-
ates the dependency between sensors by assessing the
probability distributions of their events [3]. It captures
non-linear relationships between sensors by construct-
ing a Sensor Correlation Matrix (SCM), as outlined in
Equation 2. Significant correlations are identified using
thresholds, with geographic proximity between sensors
being a key factor.

• Sequential Correlation Evaluation (SCE): SCE en-
hances the SCM by considering the temporal sequence
of sensor activations [19]. It evaluates correlations based
on the order of sensor events, capturing both spatial and
temporal dependencies (Equation 4).

ρXY =
cov(X,Y)

σX σY
(1)

SCM(si, sj) =
1

|W|

|W|∑
k=1

θ(si, sj) (2)

θ(si, sj) =

{
1, if (si, sj) ∈ Wk

0, else
(3)

SCM(si, sj) =
1

|W|

|W|∑
p=1

|Wp|−1∑
k=1

γ(sk, si)γ(sk+1, sj) (4)

γ(si, sj) =

{
1, if sp = si

0, if sp ̸= si
(5)

We have developed a modified approach to further enhance
spatial correlation measurements. This modification accounts
for the spatial separation of activity segments, improving the
segmentation process. In Equation 6, the Sensor Correlation
Matrix (SCM) values are adjusted based on sensor pairs from

the first and last sensors of each activity, considering their
relationships across all activities.

The following equation expresses the modified SCM calcu-
lation:

SCM(si, sj) =
1

N

m∑
k=1

1

Lk

∑
(s,t)∈Wk

(
δs,iδt,j + δs,jδt,i

)
− 1

F

m∑
k=1

∑
(s,t)∈Wk

(
1

Lk

∑
u∈S\Wk

(
δs,iδt,u

+ δs,jδt,u + δu,iδt,s + δu,jδt,s
))

(6)

where:

• SCM(si, sj) represents the value of the SCM matrix for
the pair (si, sj)

• N is the total number of activity segments
• m is the number of distinct activities
• Lk is the number of sensor pairs in the activity segment

Wk

• F is a normalization factor, for example F = 4 × m ×
(n− Lk)

• δx,y is the Kronecker delta function, defined as:

δx,y =

{
1 if x = y

0 otherwise

• S is the set of sensor identifiers.

This enhanced SCM calculation provides a more accurate
representation of sensor relationships across activity segments.
The results of the Sensor Correlation Matrix are displayed in
Figure 4.

Fig. 4. Sensor Correlation Values in the SCM Matrix.



2) Time Correlation: Time correlation ensures that events
are grouped based on both spatial and temporal proximity. We
use two thresholds to determine whether an event belongs to
a segment:

• MTI (Equation 7) measures the maximum time between
consecutive sensor events within an activity.

• MTS (Equation 8) represents the total time span from the
start to the end of an activity segment.

MTI(si, sj) =
|ωk|−1
max
p=1

(Tp+1 − Tp) δp,iδp+1,j (7)

MTS(si, sj) =
|ω|
max
k=1

(Tlast,j − Tfirst,i) (8)

C. Online Phase

In the online phase, the algorithm processes incoming sensor
data to dynamically segment events based on spatial and
temporal correlation conditions. After segmentation, the next
step involves encoding and classifying the data to recognize
specific activities.

1) Segmentation: The dynamic segmentation process
groups sensor events based on four key parameters: the Sen-
sor Correlation Matrix (SCM), Sensor Correlation Threshold
(SCT), Maximum Time Interval (MTI), and Maximum Time
Span (MTS). Algorithm 1 outlines the steps of this process.

Algorithm 1 provides the detailed steps involved in this
dynamic segmentation process.

Algorithm 1 Dynamic Sensor Data Segmentation Algorithm.
Require:Streaming sensor data: E = (E1, E2, . . . , En)
Require:Initial segmentation window: W1 = {}
Ensure:Segments: W1 = {E1, E2, . . . , Ek}
Conditions: SCM/SCT, MTI and MTS
While incoming sensor event do

add = False
if Wi is empty or add = False then

W1 = {Ei}
Efirst = Ei

Elast = Ei

else
Tcor last = (Ti − Tlast) > MTI(Si, Slast)
Tcor first = (Ti − Tfirst) > MTS(Si, Slast)
Scor = SCM(Si, Sj) ≥ SCT
if Scor and Tcor first and Tcor last then

W1 = Wi + {Ei}
else

add = True

This algorithm continuously processes sensor events to
determine whether they should be added to the current segment
based on spatial and temporal correlations. If the conditions
(SCM, SCT, MTI, MTS) are satisfied, the event is included in
the ongoing segment; otherwise, a new segment is initiated.
This approach ensures that events with strong spatial and
temporal relationships are grouped, which is essential for
accurate activity recognition.

2) Encoding: The encoding process transforms the input
segment into a latent space representation using an adjacency
matrix. This matrix captures the relationships between sensors
during each segment. The transformation is achieved by first
constructing a directed network of sensor events, followed by
calculating the weight of each sensor state change using the
Directed Weight Network (DWN) approach [3].

Each weight reflects the duration of a sensor’s activation
and is stored in a matrix for further processing, as shown in
Figure 5. The encoding process consists of the following steps:

• Step 1: Segment representation. Part (a) in Figure 5
illustrates the events forming a segment. The first sensor
in the DWN corresponds to the last sensor activated in
the previous segment. This ensures continuity between
consecutive segments.

• Step 2: Directed weight calculation. The active sensors
in the current segment (those with SensorValue = ON)
are used to compute the weights. The weight for each
sensor state change is calculated based on the sensor’s
activation duration, following the formula in Equation 9.

I =
(1− ρ)(Te−te) − (1− ρ)(Te−ts)

ρ
(9)

where:
– Te is the time of the last event in the segment,
– te and ts are the activation and deactivation times of

the sensors,
– ρ is a decay factor set to 0.2 as per [2].

• Step 3: Adjacency matrix construction. The weights
calculated in Step 2 are stored in an adjacency matrix.
This matrix has dimensions corresponding to the number
of sensors in the environment, and it encodes the rela-
tionships between sensors within the segment. Part (d)
in Figure 5 demonstrates how the directed weights are
integrated into the matrix.

This encoding process efficiently captures both the temporal
and spatial dependencies of sensor events, enabling accurate
activity recognition in subsequent stages.

3) Classification: Activity recognition classification assigns
labels to temporal sequences based on observed behaviors.
This is primarily achieved using deep learning models that
analyze patterns from sensor data. By training on annotated
datasets, the model predicts activities in real time by map-
ping data sequences to specific labels. Our classifier, which
processes input as two-dimensional matrices, leverages Con-
volutional Neural Networks (CNNs) designed for 2D data
(CNN2D). These networks are well-suited for this task due to
their ability to capture spatial relationships, efficiently share
weights across layers, and prioritize key features [21].

The CNN architecture used incorporates several special-
ized layers to optimize performance. Batch Normalization is
applied to accelerate convergence during training, stabilize
gradients, and reduce the risk of overfitting. A Flatten layer
converts the 2D matrix data into a one-dimensional vector,
preparing it for input into the fully connected Dense layer,



Fig. 5. Segment encoding using the Directed Weight Network (DWN).

Fig. 6. CNN Architecture for Activity Recognition.

which computes predictions based on a linear combination
of inputs with an activation function. To further enhance
generalization, regularization techniques such as Dropout and
MaxPooling2D are employed. Dropout randomly excludes
subsets of features during training to prevent overfitting, while
MaxPooling2D reduces the spatial dimensions, allowing the
model to retain the most important features from the input
data.

Figure 6 illustrates the architecture and configuration of the
layers used in our CNN model.

IV. PERFORMANCE EVALUATION

We evaluate the model’s classification performance using
key metrics: accuracy, precision, recall, and the F1-score.
These metrics provide a comprehensive understanding of the
model’s effectiveness, especially in situations where class
imbalance is present.

• Accuracy quantifies the proportion of correct predictions,
both positive and negative:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Although accuracy is a useful general indicator, it can be
misleading in cases of imbalanced data distributions.

• Precision (P) measures the proportion of correctly pre-
dicted positives out of all positive predictions:

P =
TP

TP + FP
(11)

• Recall (R), or sensitivity, evaluates the model’s ability to
correctly identify all actual positives:

R =
TP

TP + FN
(12)

• F1-score provides a balanced measure between precision
and recall:

F1 = 2×
(

Precision × Recall
Precision + Recall

)
(13)

In the online dynamic segmentation task, a key challenge
is the potential discrepancy between the number of predicted
segments and the actual segments. To address this issue, we
propose using sequence alignment techniques to assess the
similarity between the predicted and actual event sequences.
Specifically, we employ the Needleman-Wunsch algorithm for
global alignment, which accounts for matches, substitutions,
and insertions/deletions (indels) between sequences.

The Needleman-Wunsch algorithm initializes a score matrix
S with dimensions (n + 1) × (m + 1), where n and m rep-
resent the lengths of the actual and predicted label sequences,
respectively. The alignment process is guided by maximizing
match scores or applying penalties for gaps and mismatches:

S[i][j] = max


S[i− 1][j − 1] +M(P [i], R[j])

S[i− 1][j]− d

S[i][j − 1]− d

(14)

Here, M(P [i], R[j]) assigns a score of +1 for a match and −d
for a mismatch.

Once the score matrix is computed, backtracking is per-
formed to find the optimal alignment, considering matches,
insertions, and deletions. The alignment accuracy is then
computed as the percentage of exact matches:

Accuracy =
C

n
× 100 (15)

where C represents the number of exact matches.



V. EXPERIMENTS AND RESULTS

To evaluate the accuracy of the recognition algorithm in
isolation, the system was first tested without the segmentation
step. The model was trained on 80% of the Aruba dataset
and tested on the remaining 20% annotated segments. The
results demonstrated a high accuracy of 98.3% and an F1-
score of 0.982, indicating that the classification model is highly
effective in terms of both precision and recall.

Figure 7 presents the classification results, including the
confusion matrix and accuracy percentages for all activities.

Fig. 7. Confusion Matrix and Accuracy for All Activities.

While the overall classification performance is strong,
the system encounters difficulties in distinguishing between
similar activities such as ’Enter Home’ and ’Leave Home’
or ’Meal Preparation’ and ’Wash Dishes’. These challenges
arise due to similarities in the sensor activations triggered
by these activities, which results in overlapping features and
sensor patterns.

In evaluating the complete system, which includes dynamic
segmentation and activity recognition, the model was again
trained on 80% of the Aruba dataset and tested on the
remaining 20%. The segmentation process generated 1629
segments, slightly more than the actual 1611 segments, due to
variability in task execution. Dynamic segmentation may pro-
duce segments that do not perfectly align with actual activity
boundaries, leading to discrepancies in the predicted number
of activities. Consequently, confusion matrices are not always
suitable for evaluating model performance. To address this,
we employed the Needleman-Wunsch algorithm for global
alignment between predicted and actual activity sequences,
accounting for matches, substitutions, and insertions/deletions
(indels) between sequences.

Figure 8 illustrates the output of this method, offering a
more consistent evaluation of the activity recognition process.

Of the 1629 predicted activities, 1340 corresponded to
actual activities, resulting in an overall accuracy rate of 83.2%.
This accuracy demonstrates the model’s capacity to handle the

Fig. 8. Global Alignment of Actual and Predicted Activities via the
Needleman-Wunsch Method.

complexity of dynamic segmentation and online recognition in
smart home environments.

Table II presents a comparative analysis of our method’s
accuracy relative to similar approaches that leverage spa-
tiotemporal data and real-time segmentation. Our method
demonstrates a significant improvement, particularly in its
ability to segment real-time data and recognize activities
accurately.
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D
ataset

Z. Xu et al. [3] Yes Yes Yes CNN-
LSTM

0.78 CASAS

H. Najeh et al.
[2]

Yes Yes Yes CNN2D 0.81 CASAS

Our method Yes Yes Yes CNN2D 0.83 CASAS
TABLE II

COMPARATIVE ANALYSIS OF DIFFERENT APPROACHES IN ADL
RECOGNITION.

VI. CONCLUSION

This research presents a robust method for real-time ADL
recognition using IoT data. The results confirm the effec-
tiveness and reliability of our approach, particularly when
compared to state-of-the-art dynamic segmentation methods
leveraging spatiotemporal data from IoT sensors. An essential
contribution of our work is the improved segmentation process,
which enhances the system’s ability to detect activities by
globally aligning sequences of events accurately.

In addition to improving segmentation, computational ef-
ficiency is critical for real-time human activity recognition
(HAR), especially on embedded devices. Building on the work
of Najeh et al. [24], who optimized HAR algorithms for
resource-constrained hardware, we anticipate that our system
can maintain high accuracy on low-power, low-cost devices.
However, our approach differentiates itself by incorporating an
additional layer dedicated to analyzing ADL sequences using



the Needleman-Wunsch algorithm. This layer is optimized
to ensure compatibility with embedded systems that have
limited resources. Further testing across various hardware and
software configurations will allow us to validate our approach
fully.

During our experiments, we encountered occasional diffi-
culties in distinguishing between very similar activities. The
literature addresses this challenge through advanced feature
extraction (e.g., temporal, frequency-based, and spatiotempo-
ral features), deep learning approaches (e.g., CNNs, RNNs,
and transformers), and multi-modal sensor fusion. Combining
these techniques improves the system’s ability to differentiate
similar activities. Our hybrid approach integrates spatiotem-
poral features, deep learning models, multi-modal sensor data
fusion, and contextual segmentation, all tailored to individ-
ual user behavior. Looking ahead, we plan to explore the
incorporation of additional sensors (e.g., entry/exit points)
and more contextual information, such as activity duration
and sensor-activity signatures. However, these additions will
involve additional data collection and integration costs, which
must be carefully evaluated.

Finally, it is essential to emphasize that the spatial ar-
rangement of sensors during installation significantly impacts
performance. In the future, we plan to develop a sensor
installation simulator to optimize sensor placement, improving
the accuracy and reliability of ADL detection across various
smart home configurations.
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iso-ressources (GIR): une tentative en France avec la grille aggir.
Gérontologie et société, 2499(4), 111-129.
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