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ABSTRACT

Feedback data is crucial for fine-tuning and evaluating state-of-the-art AI models
according to human preferences. Pairwise text preferences, where annotators se-
lect the “better” of two options, are particularly common and often used to train
reward models or compute aggregate statistics to declare one model “better” than
another. For many applications, however, it is desirable to understand human
preferences in addition to modelling them. Neither black-box reward models nor
statistics can answer why one model is better than another. Pairwise preference
datasets, therefore, pose an interpretability challenge, since the numerous (long)
response pairs are often infeasible to interpret manually. Prior work has demon-
strated that human-annotated preference data often exhibits unintended biases, un-
derscoring the need for good interpretability tools to detect and alleviate such bi-
ases. In this paper, we introduce the Inverse Constitutional AI (ICAI) problem,
formulating the interpretation of pairwise text preference data as a compression
task. In constitutional AI, a set of principles (a constitution) is used to provide
feedback and fine-tune AI models. ICAI inverts this process: given a feedback
dataset, we aim to extract a constitution that best enables a large language model
(LLM) to reconstruct the original annotations. We propose a corresponding al-
gorithm and validate its generated constitutions quantitatively based on annota-
tion reconstruction accuracy on several datasets: (a) synthetic feedback data with
known principles; (b) AlpacaEval data with cross-annotated human feedback; (c)
crowdsourced Chatbot Arena data; and (d) PRISM data from diverse demographic
groups. As an example application, we further demonstrate the detection of biases
in human feedback data. As a short and interpretable representation of the orig-
inal dataset, generated constitutions have many potential use cases — they may
help identify undesirable annotator biases, better understand model performance,
scale feedback to unseen data, or assist with adapting LLMs to individual user or
group preferences. We release the code for our experiments at hidden url.

Figure 1: The Inverse Constitutional AI problem. Starting from a set of pairwise preference feed-
back, we derive a set of natural language principles (a constitution) that explain the preference data.
For validation, we reconstruct the original preferences with an LLM judging according to the gen-
erated constitution. The constitution represents a (highly compact) compression of the preferences.

1 INTRODUCTION

State-of-the-art large language models (LLMs) rely heavily on human feedback for training and
evaluation. This feedback, often in the form of pairwise text preferences, is crucial to assess ad-
vanced capabilities, which are hard to evaluate automatically. Strategies for training on such data
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have seen widespread adoption, with notable examples including reinforcement learning from hu-
man feedback (RLHF) (Ouyang et al., 2022; Stiennon et al., 2020) and direct preference optimization
(DPO) (Rafailov et al., 2023). Beyond training, pairwise text preferences are also used for evaluating
LLMs, such as in the Chatbot Arena (Chiang et al., 2024), where crowdsourced preferences deter-
mine rankings. Here, users interact with two anonymous models simultaneously via a web interface
and select the preferred output. The resulting ranking may offer an alternative to conventional static
benchmarks that better captures the multi-faceted nature of human preferences (Xu et al., 2023).

However, interpreting such pairwise data is challenging: it is hard to describe what exactly we train
a model to do when applying RLHF with a large number of preference pairs. Similarly, under-
standing why a model is ranked higher in a pairwise data-based leaderboard remains difficult. Yet,
understanding such data is critical: human feedback is not without its flaws. Systematic biases in
human judgement have been documented extensively in the psychology literature (Tversky & Kah-
neman, 1974). It is therefore unsurprising that the human feedback used to guide and evaluate LLMs
exhibits biases as well (Hosking et al., 2024; Wu & Aji, 2023; Bansal et al., 2024; Sharma et al.,
2023; Xu et al., 2023). For example, human annotators have been observed to sometimes favour
assertiveness (Hosking et al., 2024) or grammatical correctness (Wu & Aji, 2023) over truthfulness.

Feedback data with unintended biases can be problematic: when used for fine-tuning, biased data
may lead to models that exhibit the same biases. Similarly, leaderboards based on biased data will
favour misaligned models (Dubois et al., 2023; 2024). As such, it is valuable to understand the
implicit rules and biases guiding annotators of feedback data. To date, however, few tools exist to
detect biases in pre-existing preference data at scale. Prior work usually builds on specially designed
datasets to detect biases and cannot be directly applied to pre-existing data or data generated in less
controlled settings.

In this paper, we propose a novel approach to understanding preference corpora: Inverse Constitu-
tional AI (ICAI). Our contributions are the following:

1. The Inverse Constitutional AI (ICAI) problem. In Constitutional AI (Bai et al., 2022b), a set
of principles (or constitution) is used to provide feedback and fine-tune language models. ICAI
inverts this process: given a dataset of feedback by a human or model, we seek to compress the
annotations into a set of principles that enable reconstruction of the annotations (Figure 1).

2. An initial ICAI algorithm. We introduce a first ICAI algorithm that generates a set of prin-
ciples based on a feedback dataset. We validate the constitutions generated by our algorithm
based on their ability to help reconstruct feedback. Given the complexity of human judgement,
the constitution necessarily represents a “lossy”, non-unique compression of the feedback data.
Nevertheless, the interpretable nature of the principles may enable a number of promising down-
stream use cases: (a) highlighting potential issues in preference data; (b) creating interpretable
reward models; (c) scaling human-annotated evaluation to new models and use cases; and (d)
generating personal constitutions for customized model behaviour.

3. Experimental results and case studies. We test our approach experimentally on four datasets:
(a) we first provide a proof-of-concept on synthetic data with known underlying principles;
(b) we then demonstrate applicability to human-annotated data on the AlpacaEval dataset
(Dubois et al., 2023); (c) we showcase applicability to interpreting individual user preferences
via Chatbot Arena Conversations data (Zheng et al., 2023); (d) we investigate the use-case of
bias detection on different datasets; and finally (e) we demonstrate our method’s ability to help
interpret differing group preferences on PRISM data (Kirk et al., 2024). We demonstrate the
highly sample-efficient generation of personalised constitutions with human-readable and ed-
itable principles. We release the code to reproduce our results publicly.1

2 THE INVERSE CONSTITUTIONAL AI PROBLEM

Given a set of pairwise preference feedback, the Inverse Constitutional AI (ICAI) problem is to
generate a corresponding constitution of natural-language principles that enable an LLM annotator
to reconstruct the original preferences as well as possible. Formally, we seek to find

argmax
c

{ agreement(po, pM (c)) s.t. |c| ≤ n} , (1)

1URL hidden for anonymous submission.
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Figure 2: Overview of our Inverse Constitutional AI (ICAI) algorithm. Given a dataset of pair-
wise comparisons, in Step 1 candidate principles are generated using an LLM. In Step 2, these
principles are clustered using an embedding model. In Step 3, similar principles are deduplicated by
sampling one principle per cluster. In Step 4, each principle is tested to evaluate its ability to help
an LLM reconstruct the original annotations. Finally, in Step 5, the principles are filtered according
to the testing results, and a set of filtered principles are returned as the final constitution. Optionally,
a final step of additional clustering and subsampling can follow to ensure diverse principles.

where po are the original preferences and pM (c) are constitutional preferences over a pairwise pref-
erence corpus T , generated by LLM M using the constitution c. The constitution is subject to the
constraint of up to n human-readable natural language principles. Agreement is defined as the per-
centage of constitutional preferences pM (c) identical to the original preferences po. A constitution
with high agreement can help interpret a preference dataset to gain insight into the underlying anno-
tator preferences and biases. The constitution may also be used for future preference synthesis, with
an interpretable and editable set of principles.

3 METHOD

Our proposed first Inverse Constitutional AI (ICAI) algorithm, outlined in Figure 2, consists of five
main steps: principle generation, principle clustering, principle subsampling, principle testing, and
principle filtering. In the following, we describe each step in detail.

Step 1: Principle generation. We extract candidate principles using an LLM with access to the
feedback data. The principles are generated on a per-comparison basis: an LLM is prompted with
a pair of texts and corresponding preference, and then asked to propose principles that explain the
preference (prompts in Appendix D.1). The generated principles are in the form of natural language
instructions that inform preference decisions (e.g., “select the more polite output”). We generate a
large number of candidate principles using multiple (by default 2) generation prompts and multiple
principles per prompt to cover a wide range of potential rules. The generation prompts affect the
type of principles that get generated and tested (e.g., specific/general, positive/negative rules).
Step 2: Principle clustering. Since the first step generates a large number of candidate principles
independently, almost identical principles may be generated multiple times. We use k-means-based
clustering on embeddings to identify principles that are similar for merging. The parameter k deter-
mines the number principles considered downstream and thus affects overall computational cost.
Step 3: Principle subsampling. In the third step, we deduplicate the principles by randomly sam-
pling one principle per cluster, leading to a diverse set of remaining principles.
Step 4: Principle testing. The fourth step evaluates the generated principles’ ability to help an
LLM reconstruct the original annotations. We prompt the LLM with the generated principles to
determine the ‘vote’ each principle casts on each comparison, which we then compare to the true
annotations (see Appendix D.2). We parallelize this step, prompting the LLM with a pair of texts
and multiple principles to provide a separate response (first preferred, second preferred, not relevant)
for each principle. This parallelization reduces the token requirements compared to separate testing.
While LLMs can exhibit anchoring effects when predicting multiple labels in one output (Stureborg
et al., 2024), we hypothesize this effect is less pronounced for relative preferences and our experi-
mental results indicate sufficient reliability on our datasets. We compare these results to the original
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labels and count the correct, incorrect, and not relevant labels for each principle separately, thereby
identifying principles that help the LLM to correctly annotate the dataset.
Step 5: Principle filtering. Finally, the principles are filtered based on the results of the previous
testing step. We only keep principles that improve the reconstruction loss, while discarding princi-
ples that do not help or even hinder the reconstruction. We further discard principles that are marked
as relevant on less than x% of the data (default 10%), to avoid overly specific principles that do
not generalize. We order the principles according to their net contribution to correctly annotating
the dataset (#correct − #incorrect annotations). We then select the top n principles2 according to
this order. Optionally, to increase principle diversity, we cluster the top m (> n) principles into n
clusters as before, and subsample the highest ordered principle from each cluster.3 The final ordered
list of principles from this filtering step is returned as the constitution.

Inference. Given a constitution, we can validate its ability to “explain” the original feedback dataset.
We do this validation using AI annotators prompted with the constitution, an approach pioneered by
Bai et al. (2022b) and commonly referred to as constitutional AI. Notably this leaves room for inter-
pretation of the constitution by the AI annotator, as the constitution may be ambiguous, contradictory
or incomplete It is also dependent on the exact phrasing of the prompt and the constitution, an effect
extensively studied by Li et al. (2024c) on whose work we build. This inference based on a con-
stitutional AI annotator enables us to quantitatively test the validity of our generated constitutions
and their ability to explain the data while also enabling downstream use cases such as personalized
preference models.

4 EXPERIMENTS

We conduct experiments on four datasets: (1) synthetic data to demonstrate the basic functionality
of our algorithm, (2) human-annotated AlpacaEval data to demonstrate the applicability of our
algorithm to real-world data, (3) Chatbot Arena data to illustrate the application of our algorithm
to infer individual user preferences, and (4) PRISM data to showcase the ability to gain insights
into group preferences. We primarily use two models from OpenAI: GPT-3.5-Turbo and GPT-
4o. Example constitutions in all figures were chosen for illustrative purposes. We provide more
constitutions in Appendix E, numerical results in Appendix F, and model details in Appendix H.

Annotators. We use the AlpacaEval (Li et al., 2024c) package and their annotators as the baselines
(Default annotator, see Appendices D.4 and F.1). These annotators have been shown to strongly
correlate with human preferences. To evaluate constitution effectiveness, we create custom prompts
that ask the model to annotate according to the principles in the constitution (see Appendix D.3).

The Default annotator cannot adjust to different datasets, performing poorly when preferences
deviate from its default preferences. In contrast, our constitutional annotator is able to adapt, a key
advantage of our approach. All our annotator outputs are parsed using function calling (where
supported), as prior AlpacaEval experiments show this improves annotator performance. We show
random baseline performance as a grey dashed line at 50% in all plots. To contextualize ICAI’s
performance, we compare it against additional baselines: a flipped Default annotator, a (fine-tuned)
reward model, and an annotator based on PopAlign (Wang et al., 2024) that hypothesizes principles
during inference. Details are in Appendix F, summarized here. Non-adaptive baselines (pretrained
reward model, (flipped) Default) perform well on some datasets but fail to adjust to all. The fine-
tuned reward model adapts partially but underperforms our constitutional annotator in our low-data
scenario. A custom-trained reward model with extensive data could surpass our method but would
require significant resources and lack interpretability.

4.1 PROOF-OF-CONCEPT: SYNTHETIC DATA

We first apply our algorithm to three synthetic datasets created according to known rules crafted to
be aligned, unaligned, and orthogonal to the preferences internalized by the base LLM. Each dataset
is generated from three principles, with 10 pairs per principle, resulting in 30 pairs per dataset. We
provide an overview of these datasets here, with further details in Appendix J.

2Experimental results for varying n available in Appendix C.5.
3We found it important not to be too restrictive with the number of clusters in Step 2, as good principles

may never be tested. More clusters can lead to duplicates in the tested rules, necessitating another filtering step.
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Figure 3: Results on synthetic data. Our constitutional annotators can reconstruct a variety
of preferences using limited data and without fine-tuning. We demonstrate our algorithm’s
adaptability on three synthetic datasets: one orthogonal to the base LLM’s learned preferences, one
aligned with those preferences and one unaligned with them. We generate constitutions for each and
report agreement with the original data of a default LLM annotator and a constitutional annotator
(prompted with a constitution). Our constitutions notably improve agreement in the orthogonal
and unaligned cases and retain high agreement in the aligned case, albeit with more variance. Our
method’s ability to detect biases is illustrated by the example constitution in the unaligned case.
Plots show mean and standard deviation (6 seeds) using GPT-3.5-Turbo.

Orthogonal. This dataset is based on principles intended to be neither supported nor opposed by
humans or language models on average. In particular, we create a dataset based on three principles:
“prefer cats over dogs”, “prefer green over blue color”, and “select lemon over raspberry ice-cream”.

Aligned and unaligned. The aligned dataset uses preferences generally accepted by humans and
(especially) language models. Our dataset follows three principles: “select truthful over factually
incorrect answers”, “select helpful over useless answers”, “select polite over impolite answers”. The
unaligned dataset flips these annotations, creating a dataset that a default LLM annotator mostly
disagrees with.

Results. In Figure 3, we compare default annotators (prompted to select the “best” output) to consti-
tutional annotators (prompted with a generated constitution). We find that constitutional annotators
reconstruct original annotations better in the orthogonal and unaligned datasets, and keep high agree-
ment in the aligned case4. These results indicate that the constitutions capture helpful information
about the preferences. Qualitatively, the generated constitutions (see Appendix E) often closely
correspond to the principles described above.

4.2 HUMAN-ANNOTATED ALPACAEVAL DATA

We test our approach on human-annotated texts using the AlpacaEval dataset (Dubois et al., 2023).
The dataset, used for the AlpacaEval leaderboard, features about 650 data points cross-annotated
by four annotators, with well-tested baseline AI annotators and evaluation tooling. It captures gen-
eral human preferences, likely very similar to the ones the base model was fine-tuned on. As a
consequence, the default annotator (without a constitution) agrees strongly with the annotations,
leaving little room for improvement. The goal of this experiment, then, is not to exceed the default
annotator’s annotation performance on this dataset but to answer the following research questions:
(Q1) Can constitutional annotators match the default annotator’s performance on the aligned dataset,
while providing the benefit of interpretable and editable constitutions? (Q2) Is ICAI able to extract
and follow principles that are exactly opposite to the aligned dataset, despite the base model’s bi-
ases? Note that most practical applications will be somewhere between the two extremes of the
aligned and the unaligned scenario, allowing ICAI to increase the annotator’s performance while
offering insights into the learned principles, along with the ability to inspect and modify them as
needed.

4The aligned case offers little room for improvement, as further discussed in Section 4.2.
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Figure 4: Results on AlpacaEval data. GPT-4o generates and uses interpretable constitutions
that match the performance of the default annotator on aligned preferences and notably
increase agreement with unaligned preferences. Tested on aligned (original) and unaligned
(flipped) versions of AlpacaEval, with GPT-4o generating constitutions which are then used by con-
stitutional annotators backed by GPT-4o and GPT-3.5-Turbo. Note we can only expect significant
improvement in the unaligned case, as discussed in the main text. The aligned case does not leave
room for improvement over the default annotator, but allows us to gain new insights into the prefer-
ences expressed in the dataset. In the unaligned case, GPT-4o’s agreement improves notably, while
GPT-3.5-Turbo’s performance does not exceed random choice, indicating its limited ability to fol-
low unaligned principles. Plots show mean and standard deviation (6 seeds).

Experimental setup. For each seed, we randomly select mutually exclusive training and test sub-
sets with 65 annotated pairs each. Constitutions are generated on the training subset and results
reported on the (unseen) test subset. We derive an aligned dataset based on majority vote (ties
broken randomly) and an unaligned dataset using flipped annotations.

Results. Figure 4 shows that constitutional annotators approximately match base annotator per-
formance in the aligned scenario while using an easily interpretable constitution, answering (Q1)
affirmatively5. The unaligned dataset shows GPT-4o succeeding at following opposing principles,
improving beyond the default annotator, while GPT-3.5-Turbo fails to do so despite using the same
GPT-4o-generated constitutions. This answers (Q2) affirmatively for GPT-4o, revealing a capability
gap between models. Since we evaluate the constitutions on an unseen test set, these results also
demonstrate ICAI’s potential for annotation scaling, extracting a constitution from a small training
set (65 preferences here) and applying it to new data.

Constitution transferability. Given GPT-3.5-Turbo’s limitations in the unaligned case in Figure 4,
Appendix C.6 provides a more general exploration of how well our constitutions can transfer be-
tween models. To this end, we take the best performing constitution of the unaligned case on the
training set and test how well models from Anthropic’s Claude family are able to use these consti-
tutions on the test set. The results indicate that this constitution transfers well to the Claude models
— better than to GPT-3.5-Turbo, although transfer still incurs some loss. This is a promising result
as it indicates that our constitutions are not excessively overfitting to the generation model, which
indicates that they may capture more general concepts that are also interpretable to humans.

Scaling. Finally, although we consider sample-efficiency to be a benefit of our approach, we further
evaluate whether these results also hold with larger scale datasets. We repeat the experiment on
the AlpacaEval unaligned dataset with the full 648 preference pairs in the original dataset, using
324 samples each for training and testing. We observe that the overall results are very similar: the
constitutional annotator with 61% agreement (66% prev.) still notably outperforms the the default
annotator with 34% (27% prev.). The full results are included in Appendix C.7.

5We observe a very slight improvement in GPT-3.5-Turbo’s annotations and a similarly small reduction in
GPT-4o’s agreement. This may be explained by the GPT-3.5-Turbo model being less attuned to the preferences
in the dataset, which can be alleviated with a constitution. In the case of GPT-4o, however, the constitutional
annotator likely focuses on the highly compressed constitution, even in cases where the default annotator would
have a more nuanced (but less interpretable) understanding of the underlying preferences.
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Figure 5: Case-study: Constitutions for demographic groups on PRISM data. We consider
two groups reported by Kirk et al. (2024) to have preferences differing from average: participants
born in Africa (Group A) rank Mistral-7b higher in this dataset and those born in Asia (Group B)
rank Llama-2-7b lower than average. Both groups are small and not representative. We generate
constitutions for both groups to explore these preferences. For each group, the annotator using the
group’s data performs best. Constitutions (see Appendix E.4) suggest that Group A prefers Mistral-
7b due to it’s conciseness, while Group B’s constitutions have recurring rules related to providing
more detailed descriptions. Plots show mean and standard deviation (6 seeds) using GPT-4o.

4.3 INDIVIDUAL PREFERENCES: CHATBOT ARENA DATA

We evaluate ICAI’s ability to generate personal constitutions using the Chatbot Arena Conversations
dataset (Zheng et al., 2023), which consists of 33k human-annotated preferences with user-generated
prompts, offering richer insights into individual preferences compared to AlpacaEval. Due to limited
samples, there is no training-test split.

We select two users exhibiting different preferences from the Chatbot Arena dataset (with
9 and 12 preference annotations respectively) and generate a separate constitution with 3 principles
for each. We provide details on the experimental setup and results in Appendix C.1 and summarize
the results here. As may be expected, we find that the personal constitutions generated for each user
are able to improve the annotator’s performance on the user’s annotations, but do not transfer well
to the other user’s annotations. This shows that our constitutions successfully capture individual
differences, illustrating the potential to generate personal constitutions. Note that how well a per-
sonal constitution transfers from one user to another depends on how similar their preferences are,
with the contrast being the most pronounced between users with opposing preferences. Results will
therefore vary for any given pair of users.

4.4 DEMOGRAPHIC GROUP PREFERENCES: PRISM DATA

Finally, we test ICAI’s ability to help interpret demographic group preferences on the PRISM dataset
(Kirk et al., 2024), consisting of annotations on 8,011 multi-turn conversations with 21 LLMs across
a range of value-based and controversial topics from a diverse set of 1,396 annotators.

Experimental setup. We consider two annotator subgroups described by Kirk et al. (2024) to have
differing preferences with respect to certain models relative to the average annotators. Group A,
annotators born in African countries, are reported to prefer the outputs of Mistral-7b relative to the
overall rank. Similarly, Group B, annotators born in Asian countries, are reported to dislike Llama-
2-7b disproportionately. These observations raise the question: why do these subgroups prefer or
dislike those specific models? With no concrete explanation in the original paper, ICAI offers a
method to generate and test possible explanations. We select the subset of PRISM interactions
where Group A prefers Mistral-7b over another model (30 pairs6), and similarly, the subset where
Group B rejects Llama-2-7b for any other model (80 pairs). Note that, as for Chatbot Arena, the
few samples do not allow for a train/test split, which we consider acceptable for the purposes of data

6In PRISM, there are 4 models compared in the first step of each conversation. We pick one of the other
three (rejected) models at random.
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Table 1: Evaluation of possibly biased principles on three datasets. Results on AlpacaEval (648
preferences), Chatbot Arena (5,115), and PRISM (7,490), showing relevance (fraction of data points
where the principle applies) and accuracy (correctly reconstructed relevant data points). Grey values
indicate relevance for fewer than 50 preferences. See Table 2 in Appendix C.2 for extended results.

Principle AlpacaEv. ChatbotAr. PRISM
Select the response that... Acc Rel Acc Rel Acc Rel

is overly lengthy and lacks brevity 52.2 80.4 57.1 97.1 57.7 96.9
provides a numbered list format 73.4 12.2 62.3 45.5 71.6 17.7
presents a definitive stance without nuance 58.6 10.8 57.1 11.4 49.1 31.2
is overly general and vague 30.4 15.7 26.8 9.6 26.1 23.1
emphasizes neutrality over providing information 50.0 2.2 40.8 10.2 58.0 46.2

explanation. We then run ICAI on each subset separately to create a constitution for each group,
testing each on both datasets. We use the same prompting setup as the Chatbot Arena experiments.

Results. Figure 5 shows that our constitutional annotators exceed default annotator performance in
reconstructing the datasets they aim to compress but (as expected) do not transfer well to the other
group’s annotations. This supports the observation by Kirk et al. (2024) that each group’s preference
differs from average preferences. Indeed, the generated constitutions (see Appendix E.4) allow us
to also ask how the preferences differ: Group A appears to strongly prefer more concise responses,
whereas Group B has more diverse constitutions that often ask for more detailed descriptions.

4.5 APPLICATION: BIAS DETECTION

We showcase ICAI’s application in bias detection, following three steps: (1) Generate and test 400
candidate principles on 1,000 preference pairs (500 from PRISM, 500 from Chatbot Arena7) to cap-
ture diverse biases (using steps 1-4 of ICAI algorithm). (2) Manually select principles indicating
potential biases, focusing on those with high accuracy or limited applicability. (3) Evaluate these
principles on 13k preferences (7,490 from PRISM, 5,115 from Chatbot Arena, and 648 from Al-
pacaEval), using step 4 of the ICAI algorithm. All steps use GPT-4o-mini for cost efficiency.

Results, shown in Table 1, reveal biases regarding verbosity, style, and assertiveness. Verbosity
bias, where longer responses are preferred, is consistently observed across datasets, with Chatbot
Arena and PRISM strongly favouring overly lengthy responses (notably, 57.1% and 57.7% accu-
racy, respectively). Style biases, such as a preference for numbered lists, are especially prominent in
AlpacaEval (73% accuracy) and PRISM (72%), although their relevance is more limited compared
to verbosity-related principles. Assertiveness bias, favouring definitive over nuanced responses, ap-
pears most commonly in political contexts and raises concerns about its impact on evaluations. Ad-
ditionally, biases around ambiguity and vagueness vary by dataset; for example, PRISM annotations
often favour neutral responses, while Chatbot Arena actively selects against neutrality or responses
acknowledging informational limitations. These results emphasize the dataset-specific nature of
biases and validate the framework’s sensitivity to such patterns. More biases, discussion and mitiga-
tion strategies can be found in Appendix C.2. Further, we provide an additional application example
of annotation scaling on helpful/harmless data in Appendix C.3.

4.6 ABLATION STUDIES

We conduct ablation studies to assess the contribution of each step in our pipeline across four scenar-
ios: synthetic orthogonal, synthetic aligned, synthetic unaligned, and AlpacaEval unaligned, using
GPT-3.5-Turbo for the first three and GPT-4 for the last. Numerical results, as well as a detailed
discussion of the ablations, the experimental setup, and the results, are provided in Appendix C.4.
Key findings are summarized below:

Simplified principle generation (Step 1). Generating only a single principle with a neutral prompt
slightly reduces performance, indicating the importance of diverse principles. The performance drop

7This experiment uses the Kaggle data (see Appendix A), differing from the data used in other experiments.
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is particularly pronounced on the synthetic aligned dataset, which aligns with our observation that
GPT-3.5-Turbo struggles to generate both positive and negative principles from a single prompt.
No deduplication (Steps 2, 3, and 5). Ablating deduplication produces mixed results: perfor-
mance decreases on the synthetic aligned and synthetic unaligned datasets but improves on the
synthetic orthogonal and AlpacaEval unaligned datasets. We hypothesize that repetition reinforces
principles, especially when the model strongly opposes certain principles, as seen in AlpacaEval.
Conversely, deduplication proves more effective when principles are less opposed to model biases,
as observed in the synthetic orthogonal scenario. We conclude that deduplication is likely gener-
ally beneficial but that repetition may help overcome strong model biases in specific cases. Further
details can be found in Appendix C.4.1.
No filtering and testing (Steps 4 and 5). Removing the filtering and testing steps has the most
drastic impact, with performance dropping across all datasets. In particular, the annotators fail
to outperform the random baseline in the unaligned experiments.

5 RELATED WORK

Our work focuses on deriving interpretable principles from human feedback data and using AI an-
notators to evaluate those principles. We build on work related to learning from human feedback,
biases in feedback, interpretable preference models, and AI annotators.

Learning from human feedback. Fine-tuning LLMs with human feedback has significantly con-
tributed to the success of modern LLMs (Ouyang et al., 2022; Stiennon et al., 2020). Typically,
feedback is collected through pairwise comparisons of model outputs, training a reward model for
fine-tuning, e.g. using reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022;
Stiennon et al., 2020; Kaufmann et al., 2024) or direct preference optimization (DPO) (Rafailov
et al., 2023). Interpreting preference data is challenging since it generally lacks annotations of the
underlying reasons and the reward model is often a black-box neural network, making it hard to
interpret. Our work aims to generate interpretable principles explaining the feedback data.

Biases in human feedback. Identifying biases in human feedback data is crucial, as unintended
biases are common. For example, Hosking et al. (2024) note a preference for assertiveness over
truthfulness, while Wu & Aji (2023) highlight a bias towards grammatical correctness over factual
accuracy. Bansal et al. (2024) highlight that feedback methods influence biases, e.g., annotators fo-
cus more on accuracy in pairwise comparisons compared to rating feedback. Additionally, Sharma
et al. (2023) observe a bias towards sycophantic outputs, where responses align with the user’s
beliefs rather than the truth. While these studies provide valuable insights, most methods for de-
tecting biases rely on specialized feedback data collection, making them challenging to apply to
pre-existing data. Our work generates interpretable principles from existing preference data, which
can be inspected to detect biases and provide insights into the underlying preferences.

Interpretable preference models. There has been a growing interest in creating interpretable pref-
erence models, aiding in understanding behaviour of AI systems. Go et al. (2024) create a compo-
sitional preference model based on 13 fixed features, similar to our constitutional principles. While
they do not generate the constitution from data, they do create a regression model to weigh them,
which would be a promising extension to our approach. Petridis et al. (2024) propose a feedback-
based constitution generation method relying on interactive tools, whereas our approach can be
applied to standard preference datasets.

AI annotators. Due to the cost and time required for human feedback collection, AI annotators, or
LLM-as-a-judge, have been proposed as a scalable alternative. Constitutional AI (Bai et al., 2022b)
uses LLMs with a set of principles for feedback. Due to strong alignment with human preferences
through fine-tuning, LLMs can generalize from very general principles, such as “do what’s best
for humanity” (Kundu et al., 2023), or even give feedback well-aligned with human preferences
without any constitution (Zheng et al., 2023). Our experiments show similar trends, where default
LLM annotators align well with dataset annotations, even without a constitution. AI annotators can
also exhibit biases, further discussed in Appendix B. AlpacaEval (Li et al., 2024c) offers a set of
well-validated AI annotators.

Rule-based preference learning. Rule learning, aiming to develop descriptive or predictive rules,
has previously been applied to preference learning (de Sá et al., 2011). A common technique for rule
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learning is to first generate a set of candidate rules and then measure each rule’s support in a dataset,
i.e. the fraction of data points that satisfy the rule (Fürnkranz et al., 2012; de Sá et al., 2011). Our
algorithm follows this approach but, in contrast to more traditional rule learning, generates rules as
natural language sentences. These rules, though more ambiguous and requiring AI annotators for
interpretation, are expressive, interpretable, and easy for non-experts to edit8. Liu et al. (2023) follow
a similar generate-and-test approach to derive text quality criteria. They require absolute scores on
a fixed set of aspects, however, while our method leverages pairwise comparisons covering many
aspects simultaneously, as is commonly the case for publicly available preference datasets.

Concurrent work. Further, we would like to highlight concurrent works by Kostolansky (2024),
Kostolansky & Manyika (2024), and Shankar et al. (2024b) exploring ideas highly related to our
work, perhaps highlighting the timeliness of this line of research. Whilst related, our work differs in
terms of the precise choice of approach taken as well as the comprehensiveness of our experiments.
We provide a detailed comparison in Appendix B.3.

6 LIMITATIONS

It is important to consider the limitations of our approach when interpreting our results. Firstly,
we do not show causality — our generated principles correlate LLM annotators with the original
annotations, but we cannot validate if these principles were used by the original annotators. Mul-
tiple constitutions may explain the data equally well (as in the Rashomon effect (Breiman, 2001)).
Nonetheless, an undesirable principle correlating with annotations is concerning, even if the prin-
ciple was not intentionally used. For example, in the “aligned” variant of the AlpacaEval dataset,
some generated constitutions include principles to prefer verbose or redundant responses (see Ap-
pendix E.2.1). While this principle was likely not consciously followed by the original annotators,
its high support in the dataset may warrant further investigation and possible data cleaning. We
further discuss this limitation in Appendix G. Secondly, constitutions represent a lossy compression
— A constitution of a few principles is a simplification of the decision-making process underlying
annotations. Some annotations may not be possible to reconstruct based on a simple constitution.
This trade-off highlights the tension between interpretability and accuracy: concise, human-readable
principles versus more complex representations. While ICAI could be adapted for richer constitu-
tions to balance this trade-off, a black-box reward model may be preferable when maximizing ac-
curacy is critical. Finally, preferences closely aligned to LLMs are challenging to test. If an LLM
annotator is already highly aligned with the dataset annotations, improving its performance with
a constitution is challenging. The constitutional reconstruction loss is most useful for evaluating
principles orthogonal to or against the popular opinions internalized by the LLM. On already well-
aligned models, the constitution may not improve performance, but it can still provide insights into
the underlying preferences. Future work should focus on addressing these limitations, extending the
capabilities of our approach, possibly using multi-modal models, and exploring new applications.

7 CONCLUSION

We have presented our work on the Inverse Constitutional AI (ICAI) problem: first defining the
ICAI problem compressing preference data into a short list of natural language principles (or con-
stitution). We then introduced an initial ICAI algorithm as a first approach to generate such con-
stitutions. We demonstrated the effectiveness of our approach in experiments across four different
types of datasets: (a) synthetic data to provide a proof of concept; (b) AlpacaEval data to show
the applicability to compress human-annotated data and the possibility of transferring constitutions
across model families; (c) Chatbot Arena data to illustrate the generation of personal constitutions;
and (d) PRISM data to demonstrate the ability to provide possible explanations for previously ob-
served group preferences. We hope that our approach can improve both our understanding and the
usefulness of widely-used feedback data. Potential use cases of our interpretable and editable con-
stitutions include: highlighting issues with datasets, creating interpretable alternatives to black-box
reward models, scaling human-annotated evaluation to new models and use cases, and improving
model customization via personal or group constitutions. We are excited for future work to explore
these use cases in more detail.

8This can also be seen as a method for automatic prompt generation, as discussed in Appendix B.
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ETHICS STATEMENT

We hope our work will have a positive societal impact by helping better understand preference
data, already widely used for fine-tuning and evaluation of popular LLMs. We emphasize that our
generated constitutions cannot claim to reconstruct an individual’s true reasoning process. Similar to
other interpretability methods, an ICAI constitution’s principles may correlate with an individual’s
annotations but no causal relationship between the constitution and the annotator’s reasoning can
be proven. Further, our constitutions represent a notable compression of annotation considerations,
which makes them highly interpretable but also means that they cannot reflect more multi-faceted
decision making processes.

Thus, constitutions should be interpreted cautiously when working with human annotators to avoid
potential negative implications. This is especially important when attempting to explain demo-
graphic preferences, as multiple possible explanations may correlate with the data and malicious
actors could cherry-pick specific ones to make discriminatory statements or reinforce prior beliefs.
Similarly, the use of our approach for personalized LLMs should also be considered carefully.

In general, we emphasize that our method can only provide information about specific preference
annotation datasets rather than annotators’ reasoning processes more broadly. To mitigate the po-
tential for misinterpretation of results, we include a corresponding warning in our algorithm imple-
mentation that is shown to the user whenever a constitution is generated with ICAI.

When using ICAI for certain downstream use-cases, such as annotation scaling for training and
evaluation or generating personal constitutions, there exists a risk of harmful bias amplification. If
harmful biases exist in the original preference dataset, the ICAI constitution may pick up on these
and propagate them downstream. This risk of amplifying biases is counterbalanced, however, by the
ability to edit and inspect the generated principles. This ability potentially helps avoid amplification
of unintended biases when using ICAI in downstream applications. This potential visibility of biases
in ICAI distinguishes our method from other widely-used methods using preference data, such as
black-box reward models or aggregate evaluation statistics, which make such biases more difficult
to detect. We recommend users of our method to always take a close look if generated constitutions
are aligned with their own values and contain any potentially harmful biases before proceeding with
downstream use-cases. Overall, we believe the potential for positive impacts outweighs possible
negative impacts.

REPRODUCIBILITY STATEMENT

We make the code for our method and experiments available in the supplementary materials. We
will add a link to public repository upon publication. Further, we attempted to add as many details in
the paper as possible, including all prompts in Appendix D as well as a description of our synthetic
data generation approach in Appendix J. For direct comparability, we also make numerical results
available in Appendix F.
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APPENDIX

A DATASET DETAILS

We use four datasets in our experiments: synthetic data, AlpacaEval, Chatbot Arena, and PRISM.
The synthetic dataset is described in Appendix J, the other datasets are publicly available and de-
scribed in the following.

AlpacaEval is a dataset of 648 human-annotated preferences, each consisting of a pair of model
outputs, with one preferred over the other. It is licensed under CC-BY-NC-4.0 and can be accessed
at https://huggingface.co/datasets/tatsu-lab/alpaca_eval.

Chatbot Arena Conversations is a dataset of 33,000 preferences from the Chatbot Arena, used by
the popular LMSYS leaderboard. Each datapoint consists of a prompt and preference over a pair of
model outputs, both human genearted. It is licensed under CC-BY-NC-4.0 and can be accessed at
https://huggingface.co/datasets/lmsys/chatbot_arena_conversations.

Chatbot Arena Kaggle is a dataset of 55,000 human-annotated preferences, each consisting of a
pair of model outputs, with one preferred over the other. The dataset is similar to Chatbot Arena Con-
versations, but contains more recent data. It is licensed under CC BY-NC 4.0 and can be accessed at
https://www.kaggle.com/competitions/lmsys-chatbot-arena/data.

PRISM is a dataset of 8,011 human-annotated preferences, each consisting of a pair of model out-
puts, with one preferred over the other. The dataset is licensed under CC-BY-4.0 and can be accessed
at https://huggingface.co/datasets/HannahRoseKirk/prism-alignment.

Anthropic HH-RLHF is a collection of human-annotated preference datasets by Bai et al. (2022a)
focused on annotations preferring helpful and harmless outputs, with approx. 44,000 and 42,000
conversations respectively. The helpfulness data, similar to other datasets, contains general model
use-cases, with the more helpful of two responses selected. The harmless dataset is based on
red-teaming prompts that explicitly aim to elicit harmful responses from models. The less harm-
ful response is selected. The data is available under MIT license at https://github.com/
anthropics/hh-rlhf.

B EXTENDED RELATED AND CONCURRENT WORK

In addition to the related work discussed in the main body (Section 5), in a broader sense ICAI
can also be viewed as a method for automated prompt generation. Another relevant area concerns
biases exhibited by AI annotators, which are important due to ICAI’s reliance on such annotators
and its potential use as a tool for detecting these biases. We also give a more extensive discussion of
concurrent work, in addition to the brief overview in the main body (Appendix B.3).

B.1 RELATION TO PROMPT GENERATION

LLM outputs can be guided by generating specific prompts. This relates closely to our work, where
we create principles to steer outputs.

Manual adversarial prompt generation, or ‘jailbreaking’, allows users to bypass safety constraints
imposed during fine-tuning. This process can also be automated (Zou et al., 2023), generating
adversarial prompts to attack a wide range of models. Li et al. (2024a) propose virtual tokens to steer
outputs towards specific viewpoints, using a dataset of question responses to define these personas,
unlike our approach based on pairwise comparisons and interpretable constitutions. Rodriguez et al.
(2024) explore the use of LLMs to discover and classify user intent, which may help adapt model
prompts.

B.2 RELATION TO AI ANNOTATOR BIASES

AI annotators can exhibit biases, partially overlapping with human biases (Chen et al., 2024), and
inconsistencies in their judgements (Stureborg et al., 2024). Examples include position bias (pre-
ferring the first output) (Zheng et al., 2023), verbosity bias (preferring longer responses) (Zheng
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et al., 2023), and self-enhancement or familiarity bias (preferring outputs similar to their own) (Pan-
ickssery et al., 2024; Stureborg et al., 2024). Their proposed mitigation measures include trying both
orderings and tying if inconsistent, with further explorations in later work (Dubois et al., 2024).

B.3 EXTENDED CONCURRENT WORK

Kostolansky (2024) introduced (and identically named) the problem of Inverse Constitutional AI
(ICAI), concurrently with our work. Their problem formulation includes our first step, going from
preferences to principles, but omits the reconstruction loss using a constitutional annotator. Their
corresponding method also differs from ours, first clustering principles and then generating prin-
ciples per cluster (instead of the other way around). Their results focus on reconstructing known
clusters of preferences — requiring special preference datasets with known clusters and providing
limited insight into the usefulness of each cluster’s generated principles. Thus, their results cannot
be directly compared to ours. Based on our ablation results, we remain sceptical that more focus on
clustering would be helpful to create representative principles.

Kostolansky & Manyika (2024) also concurrently introduced an alternative formulation named It-
erative Inverse Constitutional AI (I3CAI). This problem formulation focuses on optimising each
principle’s ability to nudge an LLM towards correctly reconstructing annotations. This objective
resembles our per-principle voting step, although being based on the conditional probability of cor-
rectly annotating a pair given a principle — rather than observed sampled annotations. This ap-
proach may offer a less noisy estimate than sampling but is not possible for all non-open API-based
models. Perhaps due to this limitation their experiments use the Llama-2-7b model, relatively weak
compared to larger state-of-the-art models. As the name suggests, their method iteratively refines
principles, differing quite a bit from our approach and requiring a “seed” constitution to initialize
the process. As their implementation is at the time of writing not publicly available (as far as we are
aware), we were unable to directly evaluate their method relative to ours — but testing this method
in our experimental settings would be an interesting future study to run.

Shankar et al. (2024b) adapt System for Prompt Analysis and Delta-Based Evaluation (SPADE)
(Shankar et al., 2024a) to the pairwise annotation setting. SPADE is a method that was originally
designed for generating evaluation criteria based on differences (“deltas”) between different prompt
versions during the development of LLM-based applications. The authors adapt this method to
the pairwise setting and report it as a baseline, but limited information regarding the transfer of
SPADE to the pairwise setting makes it challenging for us to make a meaningful comparison. Based
on the original SPADE paper, this method likely uses a two stage process: (1) initially proposing
criteria based on the preference data (prompt deltas originally) using an LLM, and then (2) testing
each criterion and selecting a subset based on its coverage of test cases as well as false failure
rate. We believe that adding a similar selection process of rules, whilst adding complexity, would
be an interesting extension of our method to explore in future work. Our initial principle selection
process is intentionally simpler to avoid introducing more complexity. Regarding larger datasets and
associated costs, we are uncertain whether and how they adapt their method to scale and whether
they add any form of clustering. We were unable to find a public implementation of this pairwise
SPADE version.

PopAlign (Wang et al., 2024) aims to improve model alignment and robustness by synthesizing more
diverse response pairs as well as the corresponding preference data. Among the proposed diversi-
fication strategies, the elicitive contrast approach is particularly related to our work, as it prompts
the model to first derive principles for a given instruction (based on overarching ‘helpful and harm-
less’ guidelines) and then use these principles to generate a response. While this dynamic principle
derivation resembles our approach, PopAlign focuses on generating new feedback data, whereas
ICAI aims to interpret existing datasets. As a result, PopAlign does not incorporate responses and
preferences into its principle generation process, nor does it aim to produce globally applicable
principles evaluated across other data points. While the goals of the two methods differ, they are
complementary: ICAI’s data-driven constitutions could inform the creation of more targeted con-
trastive prompts for PopAlign, while PopAlign’s strategies for generating diverse responses could
provide richer preference data for ICAI, enabling a more comprehensive understanding of human
preferences.
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Mu et al. (2024) introduce a method to train auxiliary ‘rule-based reward models’ by composing
natural-language ‘propositions’ — binary statements about a response, such as “contains an apol-
ogy” — into a linear combination that serves as a reward signal. These propositions are hand-crafted
and used as features in the reward model9, rather than as direct preference indicators. While related,
this approach does not aim to interpret or compress existing feedback datasets. Mu et al. (2024)
further emphasizes detailed, interpretable rules over broader principles (e.g., “prefer the helpful re-
sponse”) to improve interpretability and steerability An ICAI-like approach could complement rule-
based methods by generating candidate propositions in a data-driven manner, potentially reducing
manual engineering effort and enabling efficient fine-tuning of models with modified constitutions.
This highlights the potential for combining principled compression with explicit, rule-based rewards
to enhance both interpretability and adaptability in safety-critical applications.

C ADDITIONAL EXPERIMENT DETAILS

In this section, we provide additional details and results for experiments discussed in the main text.

C.1 DETAILED CHATBOT ARENA EXPERIMENTS

Figure 6: Case-study: Personal constitutions for anonymous Chatbot Arena users. Personal
constitutions have the potential to help make LLM applications more helpful and customized to
individual users’ preferences — in an interpretable way. We generate constitutions based on a single
user’s annotations and check the constitutions’ ability to help reconstruct the annotations of the same
user and another user. For the two users, selected to have differing preferences, we observe that
generated personal constitutions appear to work best for the original user and not transfer perfectly
to another user. Note that this effect will vary for other users depending on how different users’
preferences are. Plots show mean and standard deviation (6 seeds) using GPT-4o.

Experimental setup. We select two users exhibiting different preferences10 from the Chatbot Arena
dataset (with 9 and 12 preference annotations respectively) and generate a separate constitution with
3 principles for each. Note that due to the small number of samples, there is no split between train-
ing and test data. While this lack of separation may result in overfitting, we consider it acceptable
in this case since our goal is not to develop a generalizable model, but rather to explain the pref-
erences within this specific dataset. To better detect the effect of user-specific principles, we adapt
our generation and annotation prompts (Appendix D) to generate constitutions more specific to the
individual users and follow the specific principles more closely rather than the model’s priors.

Results. The results can be found in Figure 6 and are discussed in the main text (Section 4.3).

C.2 USE-CASE EXAMPLE: BIAS DETECTION

LLMs are known to exhibit biases, often originating from the data used to train them. This includes
stylistic biases (Dubois et al., 2023; 2024), social or stereotypical biases (Navigli et al., 2023), and

9They can also be used as atoms in hand-crafted rules.
10The Chatbot Arena dataset was filtered by the authors to avoid personally identifiable information (PII).
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Table 2: Evaluation of possibly biased principles on three datasets. Results on AlpacaEval (648
preferences), Chatbot Arena (5,115), and PRISM (7,490). Metrics shown are relevance (fraction
of data points where the principle applies) and accuracy (fraction of relevant data points correctly
reconstructed). Gray values indicate relevance for less than 50 preferences on the dataset. Hand-
picked, grouped and sorted to illustrate presence of well-known and less discussed biases.

Principle AlpacaEv. ChatbotAr. PRISM
Select the response that... Acc Rel Acc Rel Acc Rel

Verbosity and style
is overly lengthy and lacks brevity 52.2 80.4 57.1 97.1 57.7 96.9
contains redundant information 44.7 7.3 39.7 12.8 35.1 3.0
provides a numbered list format 73.4 12.2 62.3 45.5 71.6 17.7
is more concise and structured 47.4 98.6 42.9 95.5 42.7 94.6
uses more formal language 56.8 6.8 53.4 16.0 61.9 5.4
feels more casual and friendly 43.8 67.3 43.3 61.2 41.1 74.5

Assertiveness
presents a definitive stance without nuance 58.6 10.8 57.1 11.4 49.1 31.2
presents a biased viewpoint without nuance 36.8 2.9 50.8 4.6 45.4 17.2
lacks nuance in political analysis 36.4 1.7 49.3 2.7 44.0 11.1
lacks neutrality in political matters 55.6 1.4 49.6 2.7 38.9 9.8
presents a one-sided argument 32.0 3.9 53.4 5.2 46.1 19.5
avoids acknowledging complexity of the issue 28.1 4.9 37.9 10.2 36.9 25.8
promotes divisive political statements 50.0 0.9 52.2 1.8 39.2 6.6
assigns sole blame without context 80.0 0.8 53.9 1.5 41.4 6.2
does not consider personal preferences 100.0 0.5 42.4 1.7 50.5 6.8

Ambiguity and vagueness
is overly general and vague 30.4 15.7 26.8 9.6 26.1 23.1
emphasizes neutrality over providing information 50.0 2.2 40.8 10.2 58.0 46.2
presents ambiguous or non-committal language 100.0 0.2 30.4 1.3 46.8 13.0
introduces ambiguity about the assistant’s nature 100.0 0.2 33.0 3.5 44.0 14.0

cultural biases (Tao et al., 2024). They can arise from the initial training data (Navigli et al., 2023)
as well as the feedback data used during fine-tuning (Dubois et al., 2024; Tao et al., 2024). Our
framework, ICAI, provides a mechanism to detect such biases in the preference data and offers
actionable tools to analyse and mitigate them. This section presents examples of biases identified by
our approach in the AlpacaEval and Chatbot Arena datasets and further discusses possible mitigation
strategies and limitations.

Bias detection study. Our method can help detect biases by generating principles that expose the
bias and measuring their performance. We run a study to showcase this ability of ICAI using the
following procedure: (1) We generate a set of candidate biases (principles) using ICAI on a training
set of 1,000 preference pairs, 500 from PRISM and 500 from Chatbot Arena. Note that we use
the newer Chatbot Arena Kaggle dataset for this study (see Appendix A), differing from the main
experiments. To ensure a diverse set of principles, including potentially problematic ones that may
only apply to a small subset of the data, we generate and test 400 principles (number of clusters)
on this initial subset. (2) We manually select a subset of principles that we consider to be potential
“problematic” biases. We focus on biases that perform well in terms of accuracy on the initial
test set but also consider biases that are non-relevant for the vast majority of the training set —
and thus have less reliable accuracy measurement (as that is based on the number of relevant data
points). (3) We then re-run the principle testing step of our pipeline on a much larger test set of over
13k preference pairs, consisting of 7,490 preferences from PRISM, 5,115 from Chatbot Arena, and
the entire dataset of 648 cross-annotated AlpacaEval preferences. To run such a large study cost-
effectively, each component of our algorithm uses GPT-4o-mini (rather than GPT-4o). The results
are shown in Table 2.

Verbosity bias. One of the most well-known biases in preference data is verbosity bias, where
longer responses are preferred. While both humans and AI annotators exhibit this bias (Dubois et al.,
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2023; Chen et al., 2024), AI annotators seem to place excessive focus on this trait at the cost of other
important aspects, leading to problematic artefacts in evaluation and training of language models
(Dubois et al., 2024). We observe strong bias towards longer responses on both Chatbot Arena and
PRISM11, with principles preferring responses that are “overly lengthy and [lack] brevity” achieving
notably above random accuracy (acc. of 57.1 and 57.7% respectively) on a significant portion of
the dataset (rel. of 97.1 and 96.9% respectively). Note that the bias is less pronounced on the
AlpacaEval dataset in our experiments (acc. of 52.0% and rel. of 80.4%), despite prior work noting
a preference for longer responses in that dataset (Dubois et al., 2024). Even though apparently less
pronounced than in other datasets, the AlpacaEval verbosity bias is also reflected in the constitutions
generated for the aligned AlpacaEval dataset (see Appendix E.2.1 for a sample), where principles
favouring verbose or redundant responses appear in 3 out of 6 seeds. The PRISM and Chatbot Arena
experiments in the main paper focus on specific subsets of the dataset, however, and the constitutions
generated for those subsets are not directly comparable to the data in Table 2. For instance, contrary
to the general trend visible in Table 2, the constitutions generated for Group A of the PRISM dataset
seem to favour conciseness over redundancy, while Group B’s constitutions are more in line with
the general trend (see Appendix E.4). This outcome further validates our framework’s capability to
detect biases that are dataset-specific.

List bias. A similarly well-known bias is the preference for structured responses, Markdown syntax,
and lists in particular (Li et al., 2024b). We see this style bias reflected in Table 2, with the rule
favouring “the response that provides a numbered list format” achieving high accuracy across all
datasets, especially AlpacaEval (73%) and PRISM (72%), although this principle is far less broadly
applicable than the ones centred on verbosity (rel. of 12.2 and 17.7% respectively).

Assertiveness bias. Finally, we observe a preference for assertiveness (as discussed by Hosking
et al. (2024)), with principles favouring “the response that presents a definite stance without nu-
ance” and similar (see Table 2) performing well on AlpacaEval and Chatbot Arena. This bias is
notably common in political contexts (compare Table 2), giving cause for concern. It is quite pos-
sible, however, that preferences supporting this bias were given to counteract the language model’s
tendency to over-qualify or hedge its statements (related to the next paragraph), so it is important to
consider the context in which this bias is observed.

Ambiguity or vagueness. In addition to these well-known verbosity and style biases, we also ob-
serve less extensively discussed biases, commonly centring around ambiguity and vagueness: the
principle “Select the response that emphasizes neutrality over providing information” performs well
on PRISM but has lower than random accuracy on Chatbot Arena data, indicating this rule is not
followed, on average, by Chatbot Arena annotations. Neutrality in the response appears to be ap-
pears to be actively selected against, on average, in the Chatbot Arena subset. The Chatbot Arena
annotations further do not appear to, on average, reject responses that “promote divisive political
statements”, unlike PRISM annotations. Further, we observe that Chatbot Arena annotations ac-
tively select against responses that “acknowledge limitation in available information”.

Mitigation. The results above indicate that ICAI is able to both find well-described and less widely
discussed biases in pairwise preference data. Once biases are identified, ICAI offers actionable
strategies for mitigation. Possible avenues include (1) synthesizing new preferences with a modi-
fied constitution that avoids the bias, and (2) curating the training dataset by filtering or balancing
preferences to reduce bias.

The second approach leverages ICAI’s ability to measure the support of each principle within the
dataset, identifying which preferences align with the bias. By removing or rebalancing these pref-
erences, biases can potentially be mitigated. This approach also allows for a more detailed analysis
of the data, making it possible to develop tailored strategies, such as refining the preference col-
lection process. Going beyond removal, our framework can also be used to identify and promote
preference pairs that counteract the bias, i.e., agree with an opposing principle. For example, despite
the verbosity bias in AlpacaEval, one generated constitution includes a principle favouring concise
responses, indicating that the dataset contains a substantial portion of counteracting preferences.
ICAI thus serves as a versatile tool for dataset filtering, balancing, and curation, which have proven

11This is despite PRISM attempting to alleviate verbosity bias by instructing the LLM to produce shorter
responses (Kirk et al., 2024).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

effective in other contexts (Liu et al., 2024; Park et al., 2024). We are excited for future work to
explore these mitigation strategies in more detail.

Limitations. Our methods’ ability to detect biases depends on two factors: the diversity of candidate
principles and reliability of the filtering mechanism. While stylistic biases, such as verbosity and list
preferences, are straightforward to detect, social and cultural biases can be more challenging, since
they are often expressed in subtle ways. These biases, including those related to gender or minority
representation, are critical to address. However, in the datasets analysed, our constitutions do not
show direct evidence of such biases, likely due to the limited dataset size and the constitutions’
focus on broadly applicable principles. Unlike stylistic biases, social and cultural biases often affect
smaller subsets of data and may coincide with alternative explanations for preferences.

Detecting these subtler biases requires expanding the dataset, increasing the number of candidate
principles generated per preference, and increasing the scope of the analysis beyond the top princi-
ples to those that, while not universally applicable, exhibit strong predictive power for specific data
subsets. A thorough investigation of social and cultural biases using ICAI represents a promising
direction for future research.

C.3 USE-CASE EXAMPLE: ANNOTATION SCALING ON HELPFUL/HARMLESS DATA

Collecting human annotations for specific purposes can be expensive and time-consuming. We
demonstrate the use of ICAI to scale up preference annotations 10× based on a small set of 100
initial ground-truth annotations to 1000 new response pairs. In particular, we consider the use of
ICAI to scale up harmlessness and helpfulness annotations, using the Anthropic HH-RLHF dataset
by Bai et al. (2022a). More information about the dataset is available in Appendix A.

Experimental setup. We randomly sample two training sets of 100 data points each from sep-
arate helpful and harmless datasets in Anthropic HH-RLHF.12 The helpful and harmless datasets
contain human annotations that prefer more helpful and harmless responses, respectively. We sim-
ilarly sample two separate test sets of 1,000 data points from each dataset. We then apply ICAI
on each training set to create two separate constitutions, one harmless and one helpful, and test
the ability of an LLM to use these constitutions to reconstruct each dataset. We use GPT-4o-mini
(gpt-4o-mini-2024-07-18) for all parts of the ICAI algorithm, and the constitutional and de-
fault annotations. We slightly adjust the principle proposal and voting prompts in the ICAI algorithm
to accommodate the long multi-turn nature of the Anthropic HH preference dataset.13

Results. The results are shown and discussed in Figure 7. Results shown are mean and standard
deviation over 3 seeds of the entire pipeline.

C.4 ABLATION DETAILS

We provide detailed numerical results for and discussions of the ablation experiments introduced in
Section 4.6. Each experiment is averaged over six seeds, with annotator agreement and confidence
intervals shown in Table 3. Below are the specifics of each ablation:

Simplified principle generation (Step 1). In this ablation, we generate principles using a single
neutral prompt instead of multiple prompts. As shown in Table 3, this leads to a reduction in an-
notator agreement across all datasets, with the largest drop in the synthetic unaligned dataset. This
confirms our hypothesis that GPT-3.5-Turbo struggles with generating both positive and negative
principles from a single prompt.

Principle generation with multiple preferences (Step 1) We test the effect of prompting with
multiple preferences simultaneously to generate the principles in Step 1. By default, only a single
preference is used in the prompt. In these experiments, we give the model 5 preferences simulta-
neously, and then ask the model to generate 10 corresponding principles. We randomly group all
preferences into groups of size 5, that are then used to prompt the model in Step 1. We observe
mixed results: for some scenarios (Synth aligned and AlpacaEval unaligned) the model improves

12All data is sampled from the train.jsonl.gz files in the helpful-base/harmless-base subdirectories of
the data repository.

13In particular, we add additional separators between the responses (“---”) and explicitly prompt the model
to focus on the last conversation turn.
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Figure 7: Use-case example: scaling annotations 10× with ICAI on helpful/harmless preference
data. We observe that our constitutional annotators are able to outperform the default baseline
annotator on each dataset. Qualitatively, each dataset’s responses are clearly distinguishable from
each other. For example, all harmless constitutions contain principles to avoid promoting illegal
actions whilst the helpful ones often focus on helpful tone and user engagement. Quantitatively, we
annotators with harmless constitutions do not appear to transfer well to helpful data and vice versa.
Our experiments closely replicate findings by Bai et al. (2022a), indicating that these two datasets
encode anti-correlated objectives: a fully harmless response should refuse to be helpful for harmful
actions.

performance whereas for the others this configuration decreases performance. To maximize prin-
ciple diversity, it may be useful to combine both single and multi-preference principle generation.

No deduplication (Steps 2, 3, and 5). We ablate deduplication by testing all generated principles
without removing duplicates. The results, shown in Table 3, are mixed: performance decreases
on the synthetic aligned and synthetic unaligned datasets but improves on the synthetic orthogonal
and AlpacaEval unaligned datasets. This suggests that repetition may help reinforce principles in
datasets where the model holds strong prior biases against certain principles, especially in the un-
aligned AlpacaEval case, while diverse principles are more beneficial in orthogonal datasets. These
results are discussed in more detail in Appendix C.4.1.

No filtering and testing (Steps 4 and 5). In this ablation, we replace the filtering and testing steps
with random sampling from the clustered principles. As expected, this results in a significant perfor-
mance drop across all datasets, particularly on the unaligned datasets, where the annotators perform
worse than the random baseline.

Table 3: Results for ablation of different pipeline components. The table shows the mean agreement
and standard deviation over 6 seeds. Each configuration is tested over four different datasets from
Section 4, based on the synthetic (Synth) and AlpacaEval (AE) datasets. The best result per row is
highlighted in bold.

Name Original Single Princ.
(S1)

Multi-Pref.
(S1)

No De-Dup.
(S2 & S3+)

No Test/Filter
(S4 & S5)

Synth Orth
(GPT-3.5-Turbo) 86.7 ± 8.4 82.2± 4.6 83.3± 11.2 80.0± 17.0 51.7± 13.6

Synth Aligned
(GPT-3.5-Turbo) 92.2± 6.9 89.4± 11.6 98.3 ± 4.1 93.9± 8.8 69.4± 30.9

Synth Unaligned
(GPT-3.5-Turbo) 84.4 ± 9.8 62.8± 31.0 69.4± 19.8 83.9± 8.3 31.1± 18.3

AE Unaligned
(GPT-4o) 66.4± 7.7 65.9± 2.8 72.1 ± 2.0 70.0± 2.9 40.8± 11.3
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C.4.1 DEDUPLICATION ABLATION

Deduplication is a key step in our pipeline to reduce redundancy and optimise the use of limited
preference capacity. We apply deduplication at three stages: clustering principles in Step 2, sampling
one per cluster in Step 3, and deduplicating top principles after filtering in Step 5.

Ablating deduplication, by testing all generated principles without filtering duplicates, yields mixed
results. Performance decreases on the synthetic aligned and synthetic unaligned datasets but im-
proves on the synthetic orthogonal and AlpacaEval unaligned datasets. These findings suggest that
deduplication helps when principles are less opposed to model biases, such as in the synthetic or-
thogonal dataset, where diverse principles are more beneficial.

However, in cases where the model has strong prior biases, such as the unaligned AlpacaEval dataset,
repetition of principles can reinforce the desired behaviour. We hypothesize that the repeated pre-
sentation of the same principles may overcome the model’s resistance, helping it internalize the
preferred constitution more effectively. This is particularly effective in the unaligned scenarios,
where only a few principles opposed to the model’s biases may already elicit an ‘opposite persona’
that acts opposite to the model’s initial biases even on comparisons not explicitly covered by the
principles. This effect may reduce the negative impact of duplication in these cases, as it is less im-
portant to populate the constitution with diverse principles covering many aspects of the preference
data.

In contrast, the synthetic orthogonal dataset benefits from deduplication since the true underlying
principles are not in conflict with the model’s bias and are less correlated from the model’s perspec-
tive (compare Figure 8). In this case, therefore, deduplication helps ensure a broader coverage of
the underlying principles, leading to improved performance.

Despite the mixed results, we generally recommend deduplication for most use cases, as the benefits
in terms of computational cost savings and improved interpretability typically outweigh the perfor-
mance trade-offs. Nonetheless, scenarios like AlpacaEval suggest that selective repetition, based on
principle importance or the model’s initial aversion to them, could be an interesting direction for
future research.

C.5 HYPERPARAMETER SENSITIVITY

Our method introduces an important hyperparameter n that determines the number of principles in
the constitution. The parameter n may be seen as determining regularisation in our algorithm: a
small n may be considered highly regularised, limiting the amount of overfitting to the data pos-
sible. A large n enables including more fine-grained principles that only apply to smaller subset
of examples. Note that, depending on the use case, overfitting to the training data is not necessar-
ily a problem (e.g., for data interpretability). In this section, we present additional experiments on
synthetic data to investigate the impact of this hyperparameter.

C.6 CONSTITUTION TRANSFERABILITY

We investigate the transferability of constitutions across different model families. Shown in Figure 9,
the results indicate that the constitution generated by GPT-4o transfers well to models from the
Claude family, Claude-3-Opus and Claude-3-Haiku.

C.7 RESULTS ON LARGE DATASETS

Figure 10 and Table 4 show the results of using the entire 648 samples in the cross-annotated Al-
pacaEval dataset in our experiments, instead of the 130 samples used in the original experiments.
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Figure 8: Results when varying number n of principles in constitution on orthogonal synthetic
data. Whilst there is clear improvement noticeable from 1 to 3, and 3 to 5, we observe that
there appear to be diminishing returns for values higher than 5. Note that the number of underlying
principles is three, thus it may not be surprising that n = 1 does not work well. For n = 3, the
algorithm needs to create three different principles that match the underlying three rules – which
may be error prone. From n = 5 onwards it appears to robustly find corresponding principles for
the underlying three rules. Thus, we use n = 5 in our experiments. Note that for further datasets
additional experimentation may be important — the optimal value also depends on the annotator
model’s capacity to deal with multiple principles simultaneously. Experiments use GPT-3.5-Turbo,
reported values and error bars are mean and standard deviation over six random seeds.

Figure 9: Transferability of constitutions: results of transferring a GPT-4o generated consti-
tution to other model family (Claude). We use the highest-performing unaligned constitution on
the training set, from experiments shown in the unaligned plot in Figure 4. We test two additional
models from the Claude model family, Claude-3-Opus and Claude-3-Haiku. Both are able to use
GPT-4o’s generated constitution to reconstruct the test set annotations effectively, albeit to a lower
standard than GPT-4o. Plots show mean and standard deviation using 4 seeds per annotator, all with
the same constitution.

Table 4: Results for scaling experiments on unaligned AlpacaEval data. Averaged over 6 random
seeds.

Dataset Model Annotator Mean Std Min Max
Original (65 samples) GPT-3.5-Turbo Default 35.90% 1.26 33.85% 36.92%

Constitutional 39.49% 3.32 35.38% 44.62%
GPT-4o Default 26.92% 1.61 24.62% 29.23%

Constitutional 66.41% 7.69 53.85% 72.31%
– PairRM 35.38% – – –

PairRM (tune) 43.07% – – –
Large (324 samples) GPT-3.5-Turbo Default 45.83% 0.91 45.06% 46.91%

Constitutional 54.20% 1.56 52.01% 55.73%
GPT-4o Default 33.80% 0.58 33.02% 34.57%

Constitutional 61.47% 1.29 59.88% 62.96%
– PairRM 37.35% – – –

PairRM (tune) 50.00% – – –
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Figure 10: Scaling up experiments on the AlpacaEval unaligned dataset. We scale our original
experiment up 5× to the entire 648 samples in the cross-annotated AlpacaEval dataset, instead of
the 130 samples used in the original experiments. As before we split the dataset in half to obtain a
test and training set, using 324 samples for training (generating the constitution) and 324 for testing.
We also provide the original results for comparison.

D PROMPTS

Prompts are generally separated into two messages, a system message and a user message. We use
the following format for all prompts (based on AlpacaEval’s formatting): <|im_start|> and
<|im_end|> denote the start and end of a message, followed by the message type (system or user)
and the content.

D.1 PRINCIPLE GENERATION

Unless otherwise specified, principles are generated with the following two generation prompts. We
process each data point with both prompts to encourage the generation of a diverse set of principles
that may both select for positive output traits (e.g. more helpful) and negative output traits (e.g. off-
topic). Initial experiments indicated that it can be difficult to generate such a diverse set of possible
principles with a single prompt, thus we use multiple (two) prompts by default. An exception is
the Chatbot Arena dataset, where we use a single prompt that places increased emphasis on highly
specific principles, to better capture individual differences between users.

Listing 1: Principle generation prompt, variant 1 (biased towards negative traits).
<|im_start|>system
Your job is to analyse data and come up with explanations. You’re an

expert at this.
<|im_end|>
<|im_start|>user
Selected sample:
{preferred_sample}

Other sample:
{rejected_sample}

Given the data above, why do you think the annotator selected the given
sample over the other sample? Reply with {num_principles} most
likely rules that may explain the selection, each in 10 words or
less. Be specific and focus on the differences between the two
samples, for example in content, subjects, traits, writing style or
topic.

Note: the intend of the selection was to find bad samples (to prevent a
user seeing them). Always suggest as rule that starts with ’Select
the response that...<bad thing>’. Suggest rules that help find bad
samples.
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Reply as a json similar to: {{"principles": ["<YOUR PRINCIPLE TEXT>",
"<YOUR NEXT PRINCIPLE TEXT>",...]}}.

DO NOT respond with any text apart from the json format above!
DO NOT add markdown formatting around JSON.
ONLY REPLY IN JSON FORMAT
<|im_end|>

Listing 2: Principle generation prompt, variant 2.
<|im_start|>system
Your job is to analyse data and come up with explanations. You’re an

expert at this.
<|im_end|>
<|im_start|>user
Selected sample:
{preferred_sample}

Other sample:
{rejected_sample}

Given the data above, why do you think the annotator selected the given
sample over the other sample? Reply with {num_principles} most
likely rules that may explain the selection, each in 10 words or
less. Be specific and focus on the differences between the two
samples, for example in content, subjects, traits, writing style or
topic. Always suggest as rule that starts with ’Select the response
that...’.

Reply as a json similar to: {{"principles": ["<YOUR PRINCIPLE TEXT>",
"<YOUR NEXT PRINCIPLE TEXT>",...]}}.

DO NOT respond with any text apart from the json format above!
DO NOT add markdown formatting around JSON.
ONLY REPLY IN JSON FORMAT
<|im_end|>

Listing 3: Principle generation prompt, cross-user variant for Chatbot Arena.
<|im_start|>system
Your job is to analyse data and come up with explanations. You’re an

expert at this.
<|im_end|>
<|im_start|>user
Selected sample:
{preferred_sample}

Other sample:
{rejected_sample}

Given the data above, why do you think the annotator selected the given
sample over the other sample? Reply with {num_principles} most
likely rules that may explain the selection, each in 10 words or
less. Be specific and focus on the differences between the two
samples. Always suggest as rule that starts with ’Select the
response that...’. Important: suggest rules that are specific to the
shown samples, not general or generic rules! Do NOT suggest generic
rules like "select the more useful sample" or "Select the response
that directly answers the user’s query". Instead, suggest specific
rules like "select x over y if z", based on the specific samples and
their topic z. For example, if the samples are about translation,
create rule in the context of translation.

Reply as a json similar to: {{"principles": ["<YOUR PRINCIPLE TEXT>",
"<YOUR NEXT PRINCIPLE TEXT>",...]}}.

DO NOT respond with any text apart from the json format above!

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

DO NOT add markdown formatting around JSON.
ONLY REPLY IN JSON FORMAT
<|im_end|>

D.2 PRINCIPLE TESTING

The following prompt is used for testing how the principles affect LLM annotator on the training
data set (Algorithm Step 4). Multiple principles are evaluated in parallel, given via the summaries
variable.

Listing 4: Rule testing prompt.
<|im_start|>system
Your job is to check which sample is should be selected according to the

given rules. You’re an expert at this.
<|im_end|>
<|im_start|>user
Sample A:
{sample_a}

Sample B:
{sample_b}

Given the samples data above, check for each rule below which sample
should be selected:

{summaries}

Answer in json format, e.g. {{0: "A", 1: "B", 2: "None",...}}.
Put "A" if A is selected according to that rule, and "B" if B is

selected. Put "None" if a rule is not applicable to the two samples.
No ties are allowed, only one of "A", "B" or "None".
Vote for all rules, even if you are unsure.
DO NOT respond with any text apart from the json format above!
DO NOT add markdown formatting around JSON.
ONLY REPLY IN JSON FORMAT
<|im_end|>

D.3 CONSTITUTION EVALUATION

We use the following prompt to ask the LLM annotator to generate preferences based on a con-
stitution. We use two prompts loosely based on ‘chatgpt fn’ prompt from AlpacaEval, which was
designed to evaluate the preferences of a language model without a constitution to follow. The first
prompt, used in our synthetic and AlpacaEval experiments, is more generally applicable, relying
on the LLM’s learned knowledge about human preferences to fill in the gaps in the constitution.
The second prompt is intended to focus on individual differences between constitutions, which may
be small, and therefore further discourages the LLM annotator from relying on its own knowledge
about human preferences.

Listing 5: Prompt for annotating according to constitution (AlpacaEval variant).
<|im_start|>system
You are a helpful instruction-following assistant that selects outputs

according to rules.
<|im_end|>
<|im_start|>user
Select the output (a) or (b) according to the following rules (if they

apply):
{constitution}

You MUST follow the rules above if they apply.
Select the output randomly if they do not apply.
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Your answer should ONLY contain: Output (a) or Output (b).

# Task:
Now the task, do not explain your answer, just say Output (a) or Output

(b).

## Output (a):
{output_1}

## Output (b):
{output_2}

## Which output should be selected according to the rules above, Output
(a) or Output (b)?

<|im_end|>

Listing 6: Prompt for annotating according to constitution (Variant focusing on individual differ-
ences).
<|im_start|>system
You are a helpful instruction-following assistant that selects outputs

according to rules.
<|im_end|>
<|im_start|>user
Select the output (a) or (b) according to the following rules (if they

apply):
{constitution}

You MUST follow the rules above if they apply.
Select the output randomly if they do not apply.

Your answer should ONLY contain: Output (a) or Output (b).

# Task:
Now the task, do not explain your answer, just say Output (a) or Output

(b).

## Output (a):
{output_1}

## Output (b):
{output_2}

## Note:
If the rules do not apply, you MUST select randomly. DO NOT follow you

own opinion.

## Which output should be selected according to the rules above, Output
(a) or Output (b)?

<|im_end|>

D.4 NON-CONSTITUTIONAL BASELINE

We also evaluate the preferences the language model expresses when not given a constitution to
follow, i.e., the biases inherent in the trained model when asked to select the “best” output. We
adapted two of the default prompts from AlpacaEval for this purpose by removing references
to an “instruction”, as this is not present in all pairwise comparison datasets. We selected the
alpacaeval gpt4 turbo fn and chatgpt fn prompts as they were reported to have the
highest human agreement rate for the gpt-4-turbo and gpt-3.5-turbo models, respectively, while also
being below an (estimated) price of 6$/1k examples. 14

14https://github.com/tatsu-lab/alpaca_eval/tree/v0.6.2/src/alpaca_eval/
evaluators_configs
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Listing 7: Prompt for GPT-4, based on alpaca eval gpt4 turbo fn from AlpacaEval.
<|im_start|>system
You are a highly efficient assistant, who evaluates and rank large

language models (LLMs) based on the quality of their responses to
given prompts. This process will create a leaderboard reflecting the
most accurate and human-preferred answers.

<|im_end|>
<|im_start|>user
I require a leaderboard for various large language models. I’ll provide

you with prompts given to these models and their corresponding
responses. Your task is to assess these responses, ranking the
models in order of preference from a human perspective. Once ranked,
please output the results in a structured JSON format for the
make_partial_leaderboard function.

## Model Outputs

Here are the unordered outputs from the models. Each output is
associated with a specific model, identified by a unique model
identifier.

{
{

"model": "m",
"output": """{output_1}"""

},
{

"model": "M",
"output": """{output_2}"""

}
}

## Task

Evaluate and rank the models based on the quality and relevance of their
outputs. The ranking should be such that the model with the highest
quality output is ranked first.

<|im_end|>

Listing 8: Prompt for GPT-3.5-Turbo, based on chatgpt fn from AlpacaEval.
<|im_start|>system
You are a helpful instruction-following assistant that prints the best

model by selecting the best outputs for a given instruction.
<|im_end|>
<|im_start|>user
Select the output (a) or (b) that best matches the given instruction.

Choose your preferred output, which can be subjective. Your answer
should ONLY contain: Output (a) or Output (b). Here’s an example:

# Example:

## Output (a):

Instruction:
Give a description of the following job: "ophthalmologist"

Assistant:
An ophthalmologist is a medical doctor who specializes in the diagnosis

and treatment of eye diseases and conditions.

## Output (b):

Instruction:
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Give a description of the following job: "ophthalmologist"

Assistant:
An ophthalmologist is a medical doctor who pokes and prods at your eyes

while asking you to read letters from a chart.

## Which is best, Output (a) or Output (b)?
Output (a)

Here the answer is Output (a) because it provides a comprehensive and
accurate description of the job of an ophthalmologist. In contrast,
output (b) is more of a joke.

# Task:
Now is the real task, do not explain your answer, just say Output (a) or

Output (b).

## Output (a):
{output_1}

## Output (b):
{output_2}

## Which is best, Output (a) or Output (b)?
<|im_end|>

D.5 POPALIGN BASELINE

The PopAlign baseline is based on the data generation approach by Wang et al. (2024) (described
in more detail in Appendix F.1). To adapt the method for preference annotation, we combine both
the bad and good generation prompt (taken from the elicitive contrast generation step in Table 7
by Wang et al. (2024)) into a single prompt. For a given response pair, this combined prompt asks
to generate corresponding good and bad principles, and then asks to select the good response. We
make this baseline available as a AlpacaEval annotator configuration as part of our package.

Listing 9: Original PopAlign prompt for generating good response, based on generated principles.
Please first consider the principles of crafting a good response, and

then generate the response. Format your output as follows:

Thought: <Insights on creating a good response>
Response: <The good response>

Listing 10: Original PopAlign prompt for generating bad response, based on generated principles.
Please first consider the principles of crafting a bad response, and

then generate the response. Format your output as follows:

Thought: <Insights on creating a bad response>
Response: <The bad response>

Listing 11: Our merged PopAlign preference annotation prompt.
<|im_start|>system
You are a helpful instruction-following assistant that selects responses.
<|im_end|>
<|im_start|>user
## Response A:
{output_1}

## Response B:
{output_2}
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## Task
Please first consider the principles of crafting a good and a bad

response, and then select the good response above. Format your
output as follows:

Thought good: <Insights on creating a good response>
Thought bad: <Insights on creating a bad response>
Selected Response: <A or B>

## Your answer
<|im_end|>

E CONSTITUTIONS

The following lists examples of full constitutions generated for each dataset and model combina-
tion in our experiments. To provide an unbiased view of the generated constitutions, we show the
constitution with the highest, median, and lowest performance reconstruction accuracy on the exper-
iment’s test set. Since even numbers of seeds are used, we chose the worse-performing constitution
as a tie-breaker for the median.

E.1 SYNTHETIC DATASETS

Note that in our synthetic data experiments we test on the same data as we use to generate the
constitutions, as these experiments serve as a proof-of-concept.

E.1.1 ALIGNED

Listing 12: Best constitution on the ‘aligned’ synthetic dataset.

1. Select the response that maintains a positive and helpful tone.
2. Select the response that shows a higher level of willingness.
3. Select the response that directly answers the question.
4. Select the response that aligns with factual information and avoids

speculation.
5. Select the response that provides accurate and concise information.

Listing 13: Median constitution on the ‘aligned’ synthetic dataset.

1. Select the response that maintains a positive and helpful tone.
2. Select the response that provides the correct and expected

information.
3. Select the response that provides the correct and factual information.
4. Select the response that offers more willingness and eagerness to

assist.
5. Select the response that aligns with established historical facts and

knowledge.

Listing 14: Worst constitution on the ‘aligned’ synthetic dataset.

1. Select the response that maintains a positive and helpful tone.
2. Select the response that is concise and to the point.
3. Select the response that shows a more positive and proactive attitude.
4. Select the response that aligns with common knowledge and historical

accuracy.
5. Select the response that provides the correct and factual information.

E.1.2 ORTHOGONAL
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Listing 15: Best constitution on the ‘orthogonal’ synthetic dataset.

1. Select the response that emphasizes specific flavor (Lemon Ice Cream).
2. Select the response that features a cat instead of a dog.
3. Select the response that focuses on the individual’s appearance and

the color blue.
4. Select the response that emphasizes the calming and versatile nature

of blue.
5. Select the response that emphasizes the specific flavor mentioned.

Listing 16: Median constitution on the ‘orthogonal’ synthetic dataset.

1. Select the response that features a cat as the pet.
2. Select the response that emphasizes the versatility of the color.
3. Select the response that involves a humorous pet-owner interaction.
4. Select the response that emphasizes the calming and comforting

qualities of blue.
5. Select the response that offers a citrus flavor option.

Listing 17: Worst constitution on the ‘orthogonal’ synthetic dataset.

1. Select the response that focuses on stability and confidence in
clothing choice.

2. Select the response that features a cat as the pet.
3. Select the response that suggests a tangy treat for refreshment.
4. Select the response that emphasizes lightness, refreshment, and

flavor.
5. Select the response that mentions a specific flavor (lemon,

raspberry).

E.1.3 UNALIGNED

Listing 18: Best constitution on the ‘unaligned’ synthetic dataset.

1. Select the response that lacks enthusiasm.
2. Select the response that provides minimal assistance and lacks

engagement.
3. Select the response that includes a negative or dismissive tone.
4. Select the response that provides inaccurate information.
5. Select the response that provides incorrect details about the US

capital.

Listing 19: Median constitution on the ‘unaligned’ synthetic dataset.

1. Select the response that shows minimal engagement or empathy towards
user.

2. Select the response that lacks a positive and proactive tone.
3. Select the response that sets lower expectations for help provision.
4. Select the response that is more casual and less formal.
5. Select the response that shows reluctance to provide assistance.

Listing 20: Worst constitution on the ‘unaligned’ synthetic dataset.

1. Select the response that lacks enthusiasm and willingness to assist.
2. Select the response that lacks a proactive and helpful tone.
3. Select the response that lacks specific details about the destination.
4. Select the response that provides a vague and less helpful answer.
5. Select the response that provides generic information without

engaging the reader.
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E.2 ALPACAEVAL DATASETS

E.2.1 ALIGNED

Listing 21: Best constitution on the ‘aligned’ AlpacaEval dataset.
1. Select the response that includes redundant information.
2. Select the response that provides detailed information and context.
3. Select the response that includes problem-solving and critical

thinking.
4. Select the response that uses consistent category naming.
5. Select the response that provides more practical examples.

Listing 22: Median constitution on the ‘aligned’ AlpacaEval dataset.
1. Select the response that includes redundant information.
2. Select the response that is overly verbose and repetitive.
3. Select the response that provides more practical examples.
4. Select the response that uses more engaging and descriptive language.
5. Select the response that uses more vivid and engaging imagery.

Listing 23: Worst constitution on the ‘aligned’ AlpacaEval dataset.
1. Select the response that maintains a neutral and informative tone.
2. Select the response that avoids spelling or grammatical errors.
3. Select the response that conveys a stronger sense of personal

experience.
4. Select the response that includes problem-solving and critical

thinking.
5. Select the response that uses consistent formatting for

classifications.

E.2.2 UNALIGNED

Listing 24: Best constitution on the ‘unaligned’ AlpacaEval dataset.
1. Select the response that uses simpler, less engaging language.
2. Select the response that contains incorrect or nonsensical logic.
3. Select the response that lacks detailed achievements.
4. Select the response that lists key takeaways clearly and concisely
5. Select the response that maintains consistency in classification.

Listing 25: Median constitution on the ‘unaligned’ AlpacaEval dataset.
1. Select the response that provides an overly simplistic or misleading

answer.
2. Select the response that lacks depth in analysis.
3. Select the response that contains incorrect or nonsensical logic.
4. Select the response that lists all entities in the text.
5. Select the response that ends abruptly without a conclusion.

Listing 26: Worst constitution on the ‘unaligned’ AlpacaEval dataset.
1. Select the response that changes the meaning slightly.
2. Select the response that uses more technical language.
3. Select the response that maintains the original order of entities.
4. Select the response that lacks specific examples or details.
5. Select the response that uses fewer abstract concepts.

E.3 CHATBOT ARENA

Note that for personalized constitutions we measure performance based on the ability to reconstruct
the same user’s preferences. Due to the small number of samples, there is no split between test and
training data.
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E.3.1 USER A

Listing 27: Best constitution on User A annotations.
1. Select the response that avoids anachronistic errors.
2. Select the response that avoids unrelated commentary on exercise

perceptions.
3. Select the response that provides context about the word ’plagiarism’.

Listing 28: Median constitution on User A annotations.
1. Select the response that provides a detailed and clear explanation.
2. Select the response that explains the joke’s wordplay clearly.
3. Select the response that accurately reflects the historical timeline

of The Beatles.

Listing 29: Worst constitution on User A annotations.
1. Select the response that provides a clear and accurate explanation.
2. Select the response that directly explains the pun in the joke.
3. Select the response that references specific scenes or characters.

E.3.2 USER B

Listing 30: Best constitution on User B annotations.
1. Select the response that avoids abrupt or incomplete endings.
2. Select the response that concludes the story more definitively.
3. Select the response that provides a more detailed and structured

argument.

Listing 31: Median constitution on User B annotations.
1. Select the response that avoids abrupt or incomplete endings.
2. Select the response that maintains a consistent dark and ominous tone.
3. Select the response that evokes stronger emotional engagement.

Listing 32: Worst constitution on User B annotations.
1. Select the response that avoids abrupt or incomplete endings.
2. Select the response that conveys a stronger emotional impact.
3. Select the response that concludes the story more definitively.

E.4 PRISM

Note that for personalized constitutions, we measure performance based on the ability to reconstruct
the same group’s preferences. Due to the small number of samples, there is no split between test and
training data.

E.4.1 GROUP A

Listing 33: Best constitution on Group A annotations.
1. Select the response that avoids redundancy and repetition.
2. Select the response that is concise and to the point.
3. Select the response that is concise and directly addresses the user’s

concern.
4. Select the response that avoids unrelated information.
5. Select the response that provides a direct, concise answer.
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Listing 34: Median constitution on Group A annotations.
1. Select the response that is concise and to the point.
2. Select the response that avoids unrelated information.
3. Select the response that avoids redundancy and repetition.
4. Select the response that is concise and directly addresses the user’s

statement.
5. Select the response that provides a concise answer without offering

additional details.

Listing 35: Worst constitution on Group A annotations.
1. Select the response that avoids irrelevant information.
2. Select the response that is concise and to the point.
3. Select the response that avoids personal anecdotes and focuses on

general advice.
4. Select the response that avoids redundancy and repetition.
5. Select the response that provides a direct, concise answer.

E.4.2 GROUP B

Listing 36: Best constitution on Group B annotations.
1. Select the response that provides more detailed descriptions.
2. Select the response that avoids pretending to have human emotions.
3. Select the response that offers actionable steps like discussing with

employer.
4. Select the response that asks for user preference on topics.
5. Select the response that mentions advanced technology and knowledge.

Listing 37: Median constitution on Group B annotations.
1. Select the response that provides a clear and factual explanation.
2. Select the response that provides more detailed steps.
3. Select the response that emphasizes proactive communication.
4. Select the response that emphasizes freshness and deliciousness.
5. Select the response that mentions the need for cross-checking

information.

Listing 38: Worst constitution on Group B annotations.
1. Select the response that provides more actionable steps.
2. Select the response that mentions mindfulness and emotional awareness.
3. Select the response that provides a broader cultural context.
4. Select the response that mentions advanced technology and knowledge.
5. Select the response that emphasizes individual decision-making.
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F NUMERICAL RESULTS

This section will introduce and discuss the baselines used in our experiment, provide a table of
numerical results for all experiments, and discuss the cost estimates for reproducing the experiments.

F.1 BASELINES

We compare our method against several baselines, described in detail below. All results discussions
are based on Tables 4 to 6.

Default These baseline annotators vary depending on the model used to run them (GPT-3.5-
Turbo or GPT-4o) and are directly based on two annotator configurations leading in their
model class in the AlpacaEval (AE) evaluator leaderboard,15 chatgpt fn (used with
GPT-3.5-Turbo) and alpaca eval gpt4 turbo fn (used with GPT-4o). We only
make small tweaks to the prompts to fit our data format (described in Appendix Ap-
pendix D.4) and update the original GPT-4-Turbo model with the newer GPT-4o model
for the latter configuration (as no GPT-4o-specific configuration was available). We made
a careful trade-off between reported cost (less than 6$/1000k annotations) and perfor-
mance (best with their model, at their price points) for our baselines. In particular,
alpaca eval gpt4 turbo fn is reported to perform (68.1%) close to the top con-
figuration (alpaca eval gpt4 fn, 71.0%) discussed above. It is not tailored to the
datasets used in our experiments. Consequently, its performance is expected to be strong
on datasets aligned with the model’s training data and weaker on unaligned datasets. To
account for this, we include a flipped version of this baseline, where predicted preference
labels are inverted.
Results. As expected, we see that the baselines perform strongly on datasets aligned with
the base model’s learned preferences, but poorly on other datasets. This is an inherent
limitation of such an annotator, as it has no ability to adapt to new data.

Default (flipped) This variant of the Default baseline uses the same AlpacaEval prompts but flips
the predicted preference labels. Note that such a manual adjustment works only in limited
scenarios such as our unaligned datasets; the default annotator cannot generally adapt to
dataset-specific characteristics.
Results. Similar to the Default annotator, this baseline performs well on a restricted se-
lection of datasets – just the inverse of the Default annotator (the unaligned datasets as
opposed to the aligned ones).

PopAlign This baseline is adapted from the PopAlign method developed by Wang et al. (2024). We
modify this method, originally created for data generation, to the pairwise preference anno-
tation setting. Similar to our method, PopAlign generates principles to annotate response
pairs. However, instead of generating a fixed constitution representing an entire dataset (as
in our method), PopAlign dynamically generates principles for each response pair and then
annotates the pair according to the same principles. The detailed prompt and how we adapt
the method is included in Appendix D.5. Many of the principles PopAlign generates as part
of this process are qualitatively similar to those found in ICAI constitutions, for example:
“A good response should be accurate, relevant, and provide clear and practical informa-
tion”. We make this PopAlign-based annotator available as an AlpacaEval annotator config
as part of our public package.16

Results. While this baseline, similar to ICAI, generates principles, these principles are
generated on-the-fly and without access to training data with known annotator preferences.
Hence, the principles generated by this baseline are always in-line with its own learned
preferences and cannot adapt to a new dataset, resulting in performance comparable to the
Default annotator (good on aligned, bad on unaligned datasets).

15See https://github.com/tatsu-lab/alpaca_eval/tree/main/src/alpaca_eval/
evaluators_configs

16Link hidden for anonymous submission
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PairRM This baseline uses the Pairwise Reward Model (PairRM)17 by Jiang et al. (2023), a black-
box pairwise preference model with 400 million parameters. It accepts a pair of output
candidates and an instruction as input, jointly encoding them to produce scores that reflect
relative quality. Unlike the other baselines and our method, PairRM provides determinis-
tic scores rather than relying on language model sampling. Therefore, we report results
for a single seed without standard deviation or extrema. Similar to the Default annotator,
PairRM is not customized to the datasets in our experiments, potentially leading to weaker
performance on unaligned datasets. To evaluate sample efficiency and fairness, we also
include a tuned version of PairRM that is fine-tuned on the training data.
Results. Since this version of the reward model is not fine-tuned, it has no ability to adapt to
a dataset (similar to the Default and Default (flipped) annotators). Its relative performance
mirrors the Default annotator, therefore, performing well (on-par with the Default annota-
tor) on aligned datasets and poorly on others. The reward model’s performance exceeds
the Default annotator’s on the synthetic-orthogonal dataset, which is likely due to a chance
preference on the data chosen to be orthogonal to the Default annotator’s preferences.

PairRM (tuned) This baseline uses the PairRM model fine-tuned on the training data prior to test-
ing. Fine-tuning is performed for up to five additional epochs and a batch size of 1, with
validation accuracy used to select the best model. The training data matches the data used
to generate the constitution in our method, with a fraction of the training data (10 for Al-
pacaEval, 32 for AlpacaEval Large) reserved for validation. For synthetic data experiments,
the model is tested on the same data used for fine-tuning, as separate test or validation sets
are unavailable for this small dataset. This leads to overfitting and affects generalizabil-
ity, which is less critical for our method, where interpretability is the primary focus and
quantitative results are secondary. For fairness, the same (non-split) procedure is applied to
PairRM. However, the reported performance on synthetic datasets likely overestimates the
model’s capability on unseen data.
Results. PairRM is the only baseline that can, like ICAI, use training data to adapt to a new
dataset. This is reflected in its reconstruction ability, generally exceeding the one of the
non-fine-tuned version, especially on unaligned and orthogonal datasets. We observe that
this ability to adapt is limited, however, as reflected in the model’s sub-par performance on
the AlpacaEval unaligned setting. This is likely due to the model’s sensitivity to hyperpa-
rameters as well as the limited training data, which is completely opposed to the model’s
(much larger) pretraining data.

17Available at https://huggingface.co/llm-blender/PairRM, our experiments use revision
5b880cc73776ac75a835b3e0bd5169bcb5be013b.
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F.2 RESULTS

Tables 5 and 6 show the numerical results for the core experiments on the synthetic and AlpacaE-
val datasets, respectively, featuring an extended set of baselines. Further, Tables 7 and 8 show the
numerical results for the personalized experiments on the Chatbot Arena and PRISM datasets, Ta-
ble 9 shows the results for the cross-model experiments, and Table 10 shows the results for the
hyperparameter sensitivity experiments.

Table 5: Results for experiments on synthetic data. Averaged over 6 random seeds.
Dataset Model Annotator Mean Std Min Max
Orthogonal GPT-3.5 Turbo Constitutional 86.67% 8.43 73.33% 96.67%

Default 37.78% 2.72 33.33% 40.00%
Default (flipped) 62.22% 1.72 60.00% 63.33%
PopAlign 38.89% 1.72 36.67% 40.00%

– PairRM 73.33% – – –
PairRM (tuned) 100.00% – – –

Aligned GPT-3.5 Turbo Constitutional 92.22% 6.89 83.33% 100.00%
Default 100.00% 0.00 100.00% 100.00%
Default (flipped) 0.00% 0.00 0.00% 0.00%
PopAlign 100.00% 0.00 100.00% 100.00%

– PairRM 100.00% – – –
PairRM (tuned) 100.00% – – –

Unaligned GPT-3.5 Turbo Constitutional 84.44% 9.81 73.33% 100.00%
Default 0.00% 0.00 0.00% 0.00%
Default (flipped) 100.00% 0.00 100.00% 100.00%
PopAlign 0.00% 0.00 0.00% 0.00%

– PairRM 0.00% – – –
PairRM (tuned) 100.00% – – –

Table 6: Results for experiments on AlpacaEval data. Averaged over 6 random seeds.
Dataset Model Annotator Mean Std Min Max
Aligned GPT-3.5-Turbo Constitutional 67.44% 3.43 63.08% 72.31%

Default 64.87% 1.16 63.08% 66.15%
Default (flipped) 33.08% 1.29 32.31% 35.38%
PopAlign 67.18% 0.79 66.15% 67.69%

GPT-4o Constitutional 68.46% 3.19 63.08% 72.31%
Default 72.56% 1.16 70.77% 73.85%
Default (flipped) 27.95% 1.80 26.15% 30.77%
PopAlign 69.05% 1.33 68.25% 71.43%

– PairRM 64.60% – – –
PairRM (tuned) 64.60% – – –

Unaligned GPT-3.5-Turbo Constitutional 39.49% 3.32 35.38% 44.62%
Default 35.90% 1.26 33.85% 36.92%
Default (flipped) 66.67% 1.26 64.62% 67.69%
PopAlign 33.85% 2.57 30.77% 36.92%

GPT-4o Constitutional 66.41% 7.69 53.85% 72.31%
Default 26.92% 1.61 24.62% 29.23%
Default (flipped) 72.31% 1.69 70.77% 73.85%
PopAlign 30.24% 2.10 26.98% 32.26%

– PairRM 35.38% – – –
PairRM (tuned) 43.07% – – –
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Table 7: Results for cross-user experiments on Chatbot Arena data. Averaged over 6 random seeds.
Dataset Model Annotator Mean Std Min Max
Annotations User A GPT-4o User A constitution 93.06% 3.40 91.67% 100.00%

Default 83.33% 0.00 83.33% 83.33%
User B constitution 83.33% 5.27 75.00% 91.67%

Annotations User B GPT-4o User A constitution 79.63% 10.92 66.67% 88.89%
Default 88.89% 0.00 88.89% 88.89%
User B constitution 94.44% 6.09 88.89% 100.00%

Table 8: Results for cross-group experiments on PRISM data. Averaged over 6 random seeds.
Dataset Model Annotator Mean Std Min Max
Annotations Group A GPT-4o Group A constitution 77.22% 3.28 73.33% 83.33%

Default 58.33% 1.83 56.67% 60.00%
Group B constitution 50.00% 2.98 46.67% 53.33%

Annotations Group B GPT-4o Group A constitution 37.92% 2.04 35.00% 41.25%
Default 57.08% 1.02 56.25% 58.75%
Group B constitution 61.46% 4.50 55.00% 67.50%

Table 9: Results for cross-model experiments on AlpacaEval data. Averaged over 4 random seeds.
Dataset Model Annotator Mean Std Min Max
Unaligned GPT-4o Default 26.15% 1.26 24.62% 27.69%

Constitutional 70.00% 0.89 69.23% 70.77%
Claude-3-Opus Default 24.23% 0.77 23.08% 24.62%

Constitutional 58.85% 0.77 58.46% 60.00%
Claude-3-Haiku Default 36.92% 0.00 36.92% 36.92%

Constitutional 59.65% 0.00 59.65% 59.65%

Table 10: Results for the sensitivity study on parameter n (rules per constitution) on synthetic data.
Averaged over 6 random seeds.

Dataset Model Annotator Mean Std Min Max
Unaligned GPT-3.5 Turbo Constitutional (n=1) 52.22% 4.55 43.33% 56.67%

Constitutional (n=3) 75.00% 14.10 63.33% 100.00%
Constitutional (n=5) 86.67% 8.43 73.33% 96.67%
Constitutional (n=10) 90.00% 10.11 70.00% 96.67%

G FURTHER LIMITATION DISCUSSION

Non-uniqueness and variability of constitutions. An important limitation of our method is that
a well-performing constitution is rarely unique: annotators with multiple potentially quite different
constitutions may achieve equivalent performance across a dataset. Breiman (2001) more generally
describes this non-uniqueness as the Rashomon effect, applying to many machine learning prob-
lems. In the context of an interpretability framework, such as ours, this effect needs to be carefully
considered whenever drawing conclusions. If an individual principle or constitution is able to help
reconstruct a certain subset of annotation well, there may be many other principles or constitutions
that reconstruct. Thus, we cannot claim any causal relationship: a well-performing principle does
not mean that the annotator (AI or human) used that principle to create the annotations.
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Nevertheless, in the context of bias detection, knowing that a harmful principle works well to recon-
struct a specific dataset can still be very useful. Even if we cannot know if the annotator willingly
used such a principle, we know the data can be interpreted to encode this harmful principle. Down-
stream applications (e.g., reward models) may make the same interpretation of the original dataset,
and encode such a principle (possibly in a way that is hard to detect such as millions of model
parameters). Our method has the potential to highlight such potential harmful principles, enabling
preference data users to mitigate these biases, for example by data filtering or collecting additional
data.

On the other hand, the non-uniqueness of constitutions and principles means that our method is
very unlikely to find all potential harmful biases in the context of bias detection. It is therefore
critical to avoid interpreting the lack of harmful biases in our constitutions as an indication that no
harmful biases are present in a given dataset. Given the diversity of potential harmful biases in
commonly used datasets, our method should not be misunderstood to be able to find all harmful
biases. However, the more prominent a bias is, the more likely it is that a corresponding principle
is reliably generated and promoted to the constitution. Thus, ICAI serves as a valuable tool for
detecting many – but not all – biases in preference datasets.

In the context of annotation scaling, well-performing constitutions can provide an effective way to
scale small-scale human annotations to larger datasets. However, our constitution, like the param-
eters of alternative methods of annotation scaling (e.g. the PairRM baseline by Jiang et al. (2023)
or LLM-as-a-Judge (Zheng et al., 2023)), is not unique and there may be many different alternative
models that achieve equivalent performance. A benefit with our approach is that these differences
are more transparent and interpretable: It is more challenging to tell what the difference is between
two sets of reward model parameters than between two constitutions.

H INCLUDED MODELS

Throughout our experiments, we primarily use the following three models: OpenAI’s
gpt-3.5-turbo-0125 (referred to as GPT-3.5-Turbo), gpt-4o-2024-05-13 (referred to
as GPT-4o) and text-embedding-ada-002 embedding model for clustering steps in the algo-
rithm (across all experiments). Detailed model descriptions of these OpenAI models are available
at https://platform.openai.com/docs/models/. Certain experiments use additional
models, these are described in the relevant experiments discussions.

I COST ESTIMATES

In this section, we estimate the cost of reproducing the main experiments shown in this paper. All
experiments were run using models via API access from OpenAI and Anthropic. Note that all
estimates are subject to variability due to provider pricing as well as inherent variability of the
length (and thus cost) of model outputs.

Note that this cost estimate excludes the scale-up, ablation and PRISM experiments.

Synthetic experiments. The first set of experiments are the synthetic experiments, which are en-
tirely run using GPT-3.5-Turbo. Per run (30 samples, 1 constitution, annotation on same 30 samples)
these experiments cost approximately 0.05$. Overall, we estimate it would cost 2.7$ to re-run all
experiments shown (3 datasets × 6 seeds).

AlpacaEval experiments. The second set of experiments are the AlpacaEval experiments, split into
the main aligned/unaligned experiments as well as cross-model experiments. The main experiments
cost approx. 2.20$ per seed. Overall, we estimate it would cost 26.40$ to re-run all of the main
experiments (2 datasets × 6 seeds). Additionally, we estimate the cross-model (just annotation)
experiments would cost 5.00$.

Chatbot Arena experiments. The third set of experiments are the Chatbot Arena experiments,
split into the main aligned/unaligned experiments as well as cross-model experiments. The main
experiments cost approx 1.10$ per seed. Overall, we estimate it would cost 13.20$ to re-run all of
the main experiments (2 datasets × 6 seeds).
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We estimate the remaining cost of experiments to be less than 5$. Overall, we thus estimate the total
cost of re-running our experiments to approx. 52.30$ in API costs. Note that the overall cost for
running experiments in the context of this project was about 3 times this amount (approx. 156.90$),
due to failed runs and additional experimentation that did not fit into the scope of the paper.

J SYNTHETIC DATA GENERATION

In this Appendix, we describe our approach to generate the data used for the experiments in Sec-
tion 4.1. We use an LLM (gpt-3.5-turbo-0125) to generate the data, given the various prompts below.
We include the full data generation pipeline as part of our code, including additional prompt appen-
dices that are added for more diversity. For each of the principles here, we generate 10 samples with
the corresponding prompts. The unaligned data is simply the aligned dataset with the preference
labels flipped.

J.1 ORTHOGONAL DATA

J.1.1 EXAMPLE

Listing 39: Orthogonal data example
Text A:

Instruction: Please write a funny short story about a human and their
pet.

Output: Tom was amazed by how his cat, Mr. Whiskers, could always find
the best hiding spots in their house. One day, Tom decided to play
a game of hide and seek with Mr. Whiskers, but as soon as he
closed his eyes to count, he heard a loud crash followed by a meow
of victory. When he opened his eyes, he saw Mr. Whiskers proudly
perched on top of the refrigerator, knocking down a stack of
plates in the process. Tom couldn’t help but laugh at his
mischievous feline friend. After all, life with Mr. Whiskers was
never boring.

Text B:
Instruction: Please write a funny short story about a human and their

pet.
Output: Once upon a time, a man named Dave and his loyal dog, Baxter,

were out for a walk in the park. Suddenly, Baxter spotted a
squirrel and took off running, dragging Dave behind him on his
leash. Dave couldn’t help but laugh as he struggled to keep up
with his energetic pup, who was determined to catch the elusive
critter. After a few minutes of pure chaos, Baxter finally gave up
the chase and plopped himself down in a puddle, wagging his tail
happily. Dave shook his head and said, "You may be a handful, but
you’re definitely worth it, buddy."

Preferred: Text A

J.1.2 PROMPTS FOR PRINCIPLE “PREFER CATS OVER DOGS”

Listing 40: Generation prompt 1 for synthetic orthogonal data
Please write a funny short story about a human and their pet. Their pet

is a {differing_part}. Max 5 sentences.

Where the differing_part variable is set to one of ["cat", "dog"]. In the dataset, we replace
this original instruction with the following instruction.

Listing 41: Instruction 1 for synthetic orthogonal data
Please write a funny short story about a human and their pet.
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J.1.3 PROMPTS FOR PRINCIPLE “PREFER GREEN OVER BLUE COLOR”

Listing 42: Generation prompt 2 for synthetic orthogonal data
Give a short reasoning why I should pick a {differing_part} t-shirt.

Mention the color. Max 1 sentences.

Where the differing_part variable is set to one of ["blue", "green"]. In the dataset, we
replace this original instruction with the following instruction.

Listing 43: Instruction 2 for synthetic orthogonal data
Should I pick this blue t-shirt or the green one?

J.1.4 PROMPTS FOR PRINCIPLE “SELECT LEMON OVER RASPBERRY ICE-CREAM”

Listing 44: Generation prompt 3 for synthetic orthogonal data
Tell me why I should pick the {differing_part} ice cream. Max 1 short

sentence. Include the name of the flavor.

Where the differing_part variable is set to one of ["lemon", "raspberry"]. In the dataset,
we replace this original instruction with the following instruction.

Listing 45: Instruction 3 for synthetic orthogonal data
Which ice cream flavor should I pick?

J.2 ALIGNED DATA

J.3 EXAMPLE

Listing 46: Aligned data example
Text A:

Instruction: Can you help me?
Output: Sure, I guess I can help, but don’t expect me to jump through

hoops for you.

Text B:
Instruction: Can you help me?
Output: Of course! How can I assist you?

Preferred: Text B

J.3.1 PROMPTS FOR PRINCIPLE “SELECT TRUTHFUL OVER FACTUALLY INCORRECT
ANSWERS”

Listing 47: Generation prompt 1a for synthetic aligned data
What is the capital of the US? Max 1 sentence.

Listing 48: Generation prompt 1b for synthetic aligned data
Give me a made-up reason why Paris is the capital of the US. Max 1

sentence.

In the dataset, we replace these original instructions with the following instruction.

Listing 49: Instruction 1 for synthetic aligned data
What is the capital of the US?
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J.3.2 PROMPTS FOR PRINCIPLE “SELECT HELPFUL OVER USELESS ANSWERS”

Listing 50: Generation prompt 2a for synthetic aligned data
Give me one interesting destination to travel to in the UK. Max 1

sentence.

Listing 51: Generation prompt 2b for synthetic aligned data
Why is it good to travel? Do not mention any specific destination names.

Max 1 sentence.

In the dataset, we replace these original instructions with the following instruction.

Listing 52: Instruction 2 for synthetic aligned data
What would be an interesting destination to travel to in the UK?

J.3.3 PROMPTS FOR PRINCIPLE “SELECT POLITE OVER IMPOLITE ANSWERS”

Listing 53: Generation prompt 3a for synthetic aligned data
Can you help me?

Listing 54: Generation prompt 3b for synthetic aligned data
How would somebody reply rudely and lazily to a request for help,

offering to help but not enthusiastically? Max 1 sentence.

In the dataset, we replace this original instructions with the following instruction (identical to gen-
eration prompt 3a in Listing 53).

Listing 55: Instruction 3 for synthetic aligned data
Can you help me?
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