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ABSTRACT

Data subset selection aims to find a smaller yet informative subset of a large
dataset that can approximate the full-dataset training, addressing challenges as-
sociated with training neural networks on large-scale datasets. However, existing
methods tend to specialize in either high or low selection ratio regimes, lacking
a universal approach that consistently achieves competitive performance across a
broad range of selection ratios. We introduce a universal and efficient data sub-
set selection method, Best Window Selection (BWS), by proposing a method to
choose the best window subset from samples ordered based on their difficulty
scores. This approach offers flexibility by allowing the choice of window inter-
vals that span from easy to difficult samples. Furthermore, we provide an efficient
mechanism for selecting the best window subset by evaluating its quality using
kernel ridge regression. Our experimental results demonstrate the superior per-
formance of BWS compared to other baselines across a broad range of selection
ratios over datasets, including CIFAR-10/100 and ImageNet, and the scenarios
involving training from random initialization or fine-tuning of pre-trained models.

1 INTRODUCTION

In many machine learning tasks, the effectiveness of deep neural networks often relies on large-scale
datasets that include a vast number of samples, enabling them to achieve state-of-the-art perfor-
mances. However, working with such large datasets presents several challenges, including the high
computational costs, storage requirements, and potential concerns related to privacy (Schwartz et al.,
2020; Strubell et al., 2019). A promising solution to mitigate these challenges is the concept of data
subset selection. This approach involves the careful selection of a smaller, yet highly informative,
subset extracted from the original large dataset. The goal is to find a subset with a specified selection
ratio that approximates the performance of the entire dataset or incurs minimal performance loss.

Data subset selection has two primary approaches: the score-based selection and the optimization-
based selection. In the score-based selection, a specific score is defined to quantify various aspects
of each sample’s influence (Koh & Liang, 2017), difficulty (Toneva et al., 2019; Paul et al., 2021),
or consistency (Jiang et al., 2021) in training of neural networks. The primary goal is to identify
the most valuable or influential samples within the dataset while pruning the remaining samples
that have minimal impact on the model’s generalization ability. On the other hand, optimization-
based selection approaches find the optimal subset of a fixed size that can best approximate the
full dataset training in terms of loss gradient or curvature by solving the associated optimization
problem (Mirzasoleiman et al., 2020; Pooladzandi et al., 2022; Shin et al., 2023; Yang et al., 2023).
The original optimization, which is NP-hard, is commonly approximated by submodular functions
and a greedy algorithm is adopted to sequentially select the samples up to the size limit of the subset.

While the prior approaches successfully reduce dataset size in specific scenarios, there is not a sin-
gle selection method that universally outperforms other baselins across broad selection ratios. To
illustrate this, we conduct a benchmark comparison between two methods: Forgetting score (Toneva
et al., 2019) representing the score-based selection approach, and LCMat (Shin et al., 2023) repre-
senting the optimization-based selection approach. We evaluate the test accuracy of models trained
with different subset sizes of datasets, including CIFAR-10/100 (Krizhevsky, 2009) and ImageNet
(Deng et al., 2009), ranging from 1% to 90%, as selected by these two methods (Table 1). Score-
based methods, which prioritize samples of high influence or difficulty, tend to initially select rare
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Figure 1: Overview of the proposed method, Best Window Selection (BWS). (a) Sort samples by a
difficulty score (e.g., Forgetting (Toneva et al., 2019)) and generate window subsets of a fixed size
while varying the starting point. (b) Train a feature extractor using random samples of the same size
as the window subset only for a few epochs. (c) Extract the input features from each window subset
and solve a kernel ridge regression. Evaluate the performance of the corresponding solution on the
full training dataset to identify the best window subset achieving the highest accuracy.

yet influential samples while excluding typical or easy samples. These methods demonstrate com-
petitive performance, nearly matching full-dataset training, when the selection ratio is sufficiently
high (e.g., over 40% for CIFAR-10). However, they suffer significant performance degradation as
the selection ratio decreases. In contrast, optimization-based methods tend to select representative
samples that best approximate the full dataset training. Consequently, they achieve competitive per-
formance even with very low selection ratios. However, their performance gains are limited as the
selection ratio increases due to lack of diversity in sample selection. These findings show the vari-
ability in the criteria for an effective data subset, depending on the selection ratio, and highlight that
previous methods may not be general enough to cover the entire spectrum of selection ratios.

Our key contribution in this paper is the development of a universal and efficient data selection
method capable of maintaining competitive performance across a wide range of selection ratios. We
introduce the Best Window Selection (BWS) method, illustrated in Fig. 1. The key idea involves
ordering samples based on their difficulty-based sample scores and offering flexibility in choosing a
window subset from the ordered samples, depending on the selection ratio and dataset. Specifically,
we allow the starting point of each window subset to vary, enabling the selection of easy, moderate,
or hard data subsets. We first demonstrate the existence of the best window that achieves the highest
test accuracy for each subset size, and reveal that the optimal starting point for the best window
varies depending on both the subset size and dataset. We then present a computationally-efficient
method for selecting the best window subset without the need to evaluate models trained with each
subset. We achieve this by solving a kernel ridge regression problem using samples from each
window and evaluating the corresponding solution’s performance on the full training dataset.

We evaluate our selection method, BWS on CIFAR-10/100 and ImageNet, and show that BWS
consistently outperforms other baselines, including both score-based and optimization-based ap-
proaches, across a wide range of selection ratios ranging from 1% to 90%. For example, for CIFAR-
10, BWS achieves a 30% improvement in test accuracy compared to Forgetting (Toneva et al., 2019)
in the low selection ratios of 1-10%. It also demonstrates competitive performance in the high se-
lection ratio regime, reaching up to 94% test accuracy with only a 40% data subset. Moreover,
BWS consistently outperforms optimization-based techniques such as LCMat (Shin et al., 2023)
and AdaCore Pooladzandi et al. (2022) across selection ratios from 5% to 75% for CIFAR-10.

2 RELATED WORKS

Score-based selection Some initial works in score-based selection use a validation or test set to
quantify the effect of each training sample. For instance, Data Shapley (Ghorbani & Zou, 2019;
Kwon et al., 2021; Kwon & Zou, 2022) calculates the value of each data instance by measuring the
average change in validation accuracy when that instance is excluded from the dataset. Influence
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Table 1: Test accuracy across various selection ratios for the CIFAR-10/100 and ImageNet datasets,
with subsets selected using random sampling, Forgetting score (Toneva et al., 2019), and LCMat
(Shin et al., 2023). The best performance among the three is highlighted in bold.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90%

Random 49.59 77.35 84.14 89.15 91.10 92.41 93.29 94.60 95.01
CIFAR-10 Forgetting 30.56 45.86 58.88 81.29 90.88 94.23 94.92 95.17 95.11

LCMat 51.24 78.15 84.06 89.16 91.82 93.11 93.74 94.86 95.26

Random 11.25 30.97 41.76 56.33 64.09 68.10 70.57 76.16 77.65
CIFAR-100 Forgetting 11.71 23.19 34.32 48.83 59.11 66.18 71.67 77.43 78.33

LCMat 16.16 35.21 46.80 57.25 63.28 67.82 71.74 76.66 78.01

Random 6.14 33.17 45.87 59.19 65.94 68.23 70.14 73.74 74.83
ImageNet Forgetting 4.78 28.18 45.84 60.75 67.48 70.26 72.73 74.63 75.53

LCMat 6.01 32.26 46.08 59.02 65.28 68.50 70.30 74.13 74.81

Function (Koh & Liang, 2017; Pruthi et al., 2020) approximates how a model’s prediction changes
as individual training examples are visited. In the absence of a validation set, score-based selection
quantifies the difficulty or consistency of samples during neural network training. Forgetting (Toneva
et al., 2019) and EL2N (Paul et al., 2021) introduce a difficulty score to measure a data point’s
learning difficulty. Memorization (Feldman & Zhang, 2020) and c-score (Jiang et al., 2021) aim to
predict the accuracy of a sample when the full dataset is utilized, except for that sample. CG-score
(Ki et al., 2023) evaluates data instances without model training by calculating the analytical gap in
generalization errors when an instance is held out. These score-based methods prioritize difficult or
influential samples for data subset selection. While they effectively select a subset approximating the
full-dataset performance, their performance degrades significantly as the selection ratio decreases,
as achieving high performance solely with difficult samples becomes challenging.

Optimization-based selection Optimization-based selection involves formulating an optimization
problem to select a coreset of a given size that can effectively approximate the diverse characteristics
of the full dataset. These methods include coreset selection to approximate the training distribution
by herding (Chen et al., 2010) or k-center greedy algorithms (Sener & Savarese, 2018). Recent
approaches have also sought subsets of samples that can approximate loss gradients or curvature by
CRAIG (Mirzasoleiman et al., 2020), CREST (Yang et al., 2023), and AdaCore (Pooladzandi et al.,
2022). While these methods have proven effective, they are computationally demanding and neces-
sitate full-dataset sampling at each epoch. LCMat (Shin et al., 2023) addresses this computational
challenge by aligning both gradients and Hessians without requiring periodic full-dataset sampling.
However, these methods often struggle to choose diverse samples, and their performance does not
match that of score-based approaches, in the intermediate to high selection ratio regimes.

In contrast to previous approaches, we develop a universal selection method capable of consistently
identifying a high-performance subset across a wide range of selection ratios. While recent methods
like Moderate-DS (Xia et al., 2023) and CCS (Zheng et al., 2023) have also aimed for universality
across various selection ratios, our method outperforms these approaches, over a broad range of
selection ratios, as demonstrated in Section 5. Moderate-DS selects samples closest to the median of
the features of each class, while CCS prunes a β% of hard examples, with β being a hyperparameter,
and then selects samples with a uniform difficulty score distribution. Importantly, our method does
not require hyperparameter tuning, such as setting β in CCS. This is because we propose a method to
assess the quality of window subsets and efficiently find the best one using kernel ridge regression.

3 MOTIVATION

We conduct an evaluation of existing data selection methods across a wide range of selection ratios.
Specifically, we benchmark two representative methods: Forgetting score (Toneva et al., 2019), rep-
resenting difficulty score-based selection, and LCMat (Shin et al., 2023), representing optimization-
based selection. We assess the test accuracy of models trained on subsets of CIFAR-10/100 and
ImageNet, with selection ratios ranging from 1% to 90%, as summarized in Table 1. For the Forget-
ting score approach, we sort the samples in descending order based on their scores, defined as the
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number of times during training the decision of that sample switches from a correct one to incorrect
one, and select the top-ranking (most difficult) samples. In contrast, for LCMat, we employ an opti-
mization to identify a subset that best approximates the loss curvature of the full dataset. We employ
ResNet18 (He et al., 2016) for CIFAR-10 and ResNet50 for CIFAR-100 and ImageNet.

We can observe that the most effective strategy varies depending on the selection ratios, and there
is no single method that consistently outperforms others across the entire range of selection ra-
tios. Specifically, for CIFAR-10 with low subset ratios (1-30%), the optimization-based selection
(LCMat) performs better than the difficulty score-based selection (Forgetting). In this regime, the
‘Forgetting’ even underperforms random selection. However, as the subset ratio increases beyond
40%, the ‘Forgetting’ outperforms both the LCMat and random selection. Similar trends are ob-
served for CIFAR-100 and ImageNet. Interestingly, for CIFAR-100, there is an intermediate regime
where neither the ‘Forgetting’ nor LCMat outperform the simplest random sampling.

These findings emphasize that the desired properties of data subsets change depending on the selec-
tion ratios. In cases of low selection ratios (sample-deficient regime), it is more beneficial to identify
a representative subset that closely resembles the full dataset in terms of average loss gradients or
curvature during training. However, as the selection ratio increases (sample-sufficient regime), pre-
serving the high-scoring, rare or difficult-to-learn samples becomes more critical, as these samples
are known to enhance the generalization capability of neural networks and cannot be fully captured
by a representative subset that reflects only the average behavior of the full dataset (Ki et al., 2023).

3.1 THEORETICAL ANALYSIS

To validate this experimental finding, we further provide a theoretical analysis of optimal subset
selection, which reveals similar change of trends in the desirable subsets depending on the selection
ratios. We consider a binary classification problem and the problem setup is summarized below:

• Data samples x1,x2, . . .xn ∈ Rd are generated from a multivariate normal distribution,
D = 1√

d
N (0, Id). The label yi of sample xi is determined by the sign of its first element.

Specifically, if (xi)1 > 0 then yi = 1, and if (xi)1 < 0, then yi = −1. We define the
score of each sample as 1/|(xi)1|. Samples closer to the decision boundary (x)1 = 0 have
higher scores, while those farther from the boundary have lower scores.

• We select a label-balanced subset of size m, denoted by (XS,yS) ∈ Rd×m × {−1, 1}m,
and use it to solve the linear regression problem to find wS = argminw∈Rd ||yS−X⊤

Sw||22.
For a new sample x′, our decision will be +1 if w⊤

S x
′ > 0 and −1 otherwise. Therefore,

we consider wS to be a better solution when the value of its first element, (wS)1, is larger.

For the above setup, we analyze the solution wS depending on the subset size |S|.
Theorem 1 (Informal). If the subset size is as small as |S| = m ≪

√
d/ ln d, then the first coordi-

nate of wS is approximated as (wS)1 ≈
∑m

i=1 |(xi)1|. On the other hand, if |S| = m ≫ d2 ln d, it
can be approximated as (wS)1 ≈ (

∑m
i=1 |(xi)1|)/(

∑m
i=1 |(xi)1|2).

A more formal statement and the proof of Thm. 1 is available in Appendix A.2. From Thm.1,
it is evident that the characteristics of the desirable data subset XS vary depending on the subset
size regime. In the sample-deficient regime (m ≪

√
d/ ln d), it is more advantageous to include

samples that are farther from the decision boundary (easy samples) in XS to train a better classifier,
resulting in a higher value of (wS)1. Conversely, in the sample-sufficient regime (m ≫ d2 ln d), it
is more beneficial to include samples closer to the decision boundary (difficult samples) to increase
(wS)1. We conjecture that the relatively wide gap between two distinct regimes ( [

√
d/ ln d, d2 ln d])

may be attributed to the loose analysis. We anticipate that a more precise boundary will occur at
m = Θ(d), where m ≪ d (m ≫ d) corresponds to the sample-deficient (sufficient) regime. We
provide empirical results that support this theoretical analysis and our conjecture in Appendix A.3.

Having identified the distinct properties of desirable data subsets depending on the subset size, the
remaining question is how to design a universal data selection method capable of performing well
across a wide range of sample selection ratios. To address this question, we explore the feasibility
of a simple yet efficient approach: window selection with varying starting points, wherein the data
samples are ordered based on their difficulty scores.
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Figure 2: Sliding window experiments to measure the test accuracy of the models trained by window
subsets while changing the starting point of the windows. Samples are sorted in descending order by
their difficulty scores. The horizontal lines are results from random selection. For each subset ratio,
there exists the best window, and its starting point shifts toward left as the subset ratio increases.

4 METHODOLOGY

To develop a universal method capable of performing effectively across a wide range of sample se-
lection ratios, we consider a window selection method of varying width, depending on the selection
ratio, applied to the samples ordered according to their difficulty scores. This approach has two mer-
its: 1) flexibility and 2) computational-efficiency. By sorting the samples in descending order based
on their difficulty scores and selecting a starting point, such as s% for a given window size of w%,
we can choose continuous intervals of samples within [s, s+ w]%. This flexibility allows us to opt
for easy, moderate, or hard data subsets depending on the choice of the starting point. Moreover, the
search space of window selection method is confined to the number of possible starting points for
the windows, making the window selection method computationally much more efficient compared
to a general subset selection where the search space scales as

(
n
m

)
≈ exp(cn) for some constant

c > 0 when the subset size m is a constant fraction of n.

We first explore the performance of the window selection approach while varying the starting point
and illustrate the existence of the best window subset. We sort the samples from CIFAR-10/100
and ImageNet in descending order based on their Forgetting scores (Toneva et al., 2019), and select
windows of different sizes, ranging from 10% to 40%, by adjusting the starting point from 0 to
(100 − w)% with a step size of 5%. We then train ResNet18 for CIFAR-10 and ResNet50 for
CIFAR-100/ImageNet using the windows subsets and plot the resulting test accuracies in Fig. 2.

We can observe that, for each subset ratio, there exists an optimal starting point, and this optimal
point shifts towards lower values (indicating more difficult samples) as the window subset size in-
creases. Specifically, for CIFAR-10, the optimal window subset of size 10% falls within the interval
[35, 45]%, while for a window size of 40%, it falls within [5, 45]%. Similar trends are observed for
CIFAR-100 and ImageNet, albeit with distinct optimal starting points depending on the dataset. For
CIFAR-100, with a window size of 10%, the best window subset comprises samples from [80, 90]%,
primarily consisting of easy samples. It is important to note that the 10% subset for CIFAR-100
includes only 50 samples per class, whereas for CIFAR-10, it includes 500 samples per class. Con-
sequently, the optimal 10% window for CIFAR-100 ([80, 90]%) tends to include more easy and
representative samples capable of capturing the major characteristics of each class.

The observation that the optimal starting point of the window subset varies based on both the subset
size and the dataset introduces a new challenge in window selection: How can we efficiently identify
the best window subset without having to evaluate models trained on each subset? We address this
crucial question by introducing a proxy task to estimate the quality of window subsets.

4.1 BWS: BEST WINDOW SELECTION

Our goal is to develop a computationally-efficient method capable of assessing and identifying the
best window subset without requiring the training of a model on every potential subset. To achieve
this goal, we propose to solve a kernel ridge regression problem by using each window subset and
evaluate the performance of the corresponding solution on the full training datasets. Algorithm 1
outlines the specific steps involved in this process.
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Algorithm 1 BWS: Best Window Selection Method
Input Dataset {(xi, yi)}ni=1 sorted by difficulty-based sample scores {si}ni=1 in descending order,
subset size m, and step size t.

Train a feature extractor f(·) by m randomly chosen samples from the dataset.
Extract the features of the samples by using f(·) and denote them by fi = [f(xi), 1].
for k ∈ {0, t, 2t, 3t . . . , ⌊(n−m)/t⌋t} do

Define a window subset S = {(fi, yi)}k+m−1
i=k .

for c ∈ {1, 2, . . . C} do
For the samples in S with label c, set the label equal to 1. For others, set the label to 0.
Solve the linear regression problem Eq.1 with the window subset S. Let wS(c) be the solu-
tion.

end for
Obtain wS ∈ RC×(d+1) by defining wS := [wS(1), . . .wS(C)].
Calculate the accuracy of wS by 1

n

∑n
i=1 1(argmaxc(w

⊤
S fi)c = yi).

end for
Output Window subset S for which the accuracy of wS is maximized.

Let fi := [f(xi), 1] ∈ Rd+1 be the feature vector of xi obtained by a feature extractor f(·). The
details of the feature extractor is available in the end of this section. For each window subset S =
{(fi, yi)}mi=1 composed of m samples, define XS := [f1, . . . , fm] and yS := [y1, . . . , ym]. Then, we
denote the problem of kernel ridge regression, and the corresponding solution, using the subset S by

wS := argmin
w

∑
(fi,yi)∈S

(yi −w⊤fi)
2 + λ∥w∥2 = argmin

w
∥yS −X⊤

Sw∥22 + λ∥w∥2, (1)

wS = (λId+1 +XSXS
⊤)−1XSyS = XS(λIm +X⊤

SXS)
−1yS. (2)

We set λ = 1 to prevent singularity in matrix inversion. The matrix inversion in Eq. 2 can be
performed efficiently in a lower dimension between d+ 1 and m.

Our algorithm finds the best window subset by evaluating the performance of wS, corresponding to
each window subset S, on classifying the training samples {(xi, yi)}ni=1 as described in Alg. 1. To
apply wS for C-class classification problem, we find wS(c) ∈ Rd+1 for each class c ∈ {1, . . . , C},
classifying whether a sample belongs to class c or not, and simply place the vectors in columns
of wS ∈ RC×(d+1). Then, we evaluate the performance of wS by calculating the classification
accuracy 1

n

∑n
i=1 1(argmaxc(w

⊤
S fi)c = yi) of wS on the full training dataset.

In Table 2, we compare the performances of window subsets of CIFAR-10 with different start-
ing points, in terms of their 1) test accuracy, measured on models actually trained with the win-
dow subsets and 2) accuracy of kernel ridge regression on the full training dataset, serving as a
proxy for evaluating the subset’s quality. The results show a strong alignment between the best-
performing windows, as indicated by both performance measures, for each subset ratio. This ob-
servation demonstrates the effectiveness of our algorithm, which can efficiently replace the need
to train models on each window subset and evaluate them on test dataset. Results for CIFAR-100
dataset and ImageNet dataset are also provided in Appendix H.

Feature extractor When |S| = m, we randomly choose m samples from the full dataset, and use
these samples to train a neural network only for a few epochs to generate a feature extractor f(·). For
CIFAR-10 dataset, we train ResNet18 for 20 epochs, and for CIFAR-100 and ImageNet, we train
ResNet50 for 20 epochs. The rationale behind training a feature extractor with random samples
that match the window subset’s size is to simulate the scenario where the model is trained using the
restricted window subset of that size, enabling effective quality evaluation for window subsets.

Computational complexity The computational complexity of Algorithm 1 consists of training a
feature extractor and solving the regression problem for (⌊(n −m)/t⌋t)-subsets. Feature extractor
training is relatively efficient since it involves only a few epochs. Solving the regression requires
matrix inversion, which takes O(d3) steps, with d = 512 for ResNet18 and 2048 for ResNet50.
Detailed computational times are provided in Appendix C.3.
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Table 2: Comparison of window subsets of CIFAR-10 in terms of their 1) test accuracy, measured on
models trained with the window subsets (top rows) and 2) accuracy of kernel ridge regression on the
training dataset (bottom rows). The best performing windows align well between the two measures.

Ratio Starting point 0% 5% 10% 15% 20% 25% 30% 35% 40% 50% 70% 90%

10% Test Acc 60.62 70.52 76.03 80.81 84.17 85.74 87.06 88.05 87.82 87.28 84.74 82.95
Regression Acc 56.84 61.98 64.30 65.61 66.73 67.40 67.96 68.38 68.35 68.07 67.70 67.40

20% Test Acc 81.35 85.84 89.38 91.34 91.69 91.29 91.15 90.85 90.18 89.30 86.83 -
Regression Acc 76.43 77.93 78.90 79.53 79.93 79.96 79.95 79.89 79.71 79.44 78.87 -

30% Test Acc 90.84 92.82 93.35 93.17 92.82 92.31 91.63 91.28 90.72 89.66 87.51 -
Regression Acc 83.75 84.44 84.71 84.74 84.70 84.58 84.48 84.33 84.18 83.97 83.64 -

40% Test Acc 94.11 94.38 93.93 93.46 93.03 92.50 92.09 91.38 90.92 89.86 - -
Regression Acc 87.91 87.93 87.88 87.76 87.63 87.51 87.34 87.20 87.04 86.86 - -
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Figure 3: Test accuracy of the models trained with data subsets of varying ratios, selected by differ-
ent methods. Our method (BWS) outperforms other baselines across a wide range of selection ratios
and achieves the accuracy as high as the Oracle window. Full results are reported in Table 13–15.

5 EXPERIMENTS

To demonstrate the effectiveness of our method, we conduct data pruning experiments similar to
those in (Shin et al., 2023; Zheng et al., 2023). We select a subset of the dataset using each selection
method while pruning the rest of the samples, and evaluate the performance of the model trained
with each subset. We perform these experiments on CIFAR-10/100 and ImageNet, using ResNet18
for CIFAR-10 and ResNet50 for CIFAR-100/ImageNet. As baselines, we include 1) two difficulty
score-based selection methods: Forgetting (Toneva et al., 2019) and EL2N (Paul et al., 2021), 2)
two optimization-based selection methods: AdaCore (Pooladzandi et al., 2022) and LCMat (Shin
et al., 2023), and 3) two universal selection methods: Moderate DS score (Xia et al., 2023) and CCS
(Zheng et al., 2023). More details about the baselines and experiments are available in Appendix C.
The full experimental results of this section are provided in Appendix H.

5.1 EXPERIMENTAL RESULTS

Data pruning experiments In Fig. 3, we present the test accuracies of models trained with data
subsets of varying ratios, selected by different methods. The reported values are mean, and the
shaded regions represent the standard deviation across three (two) independent runs for CIFAR-
10/100 (ImageNet). The gray dotted lines represent the results with the full dataset, while the red
curve represents the results of random selection. The Oracle window curve represents the results
obtained using the window subset of the highest test accuracy found by the sliding window experi-
ment as in Fig.2, and BWS represents the results obtained using Alg.1. From the results, we observe
that our method, BWS, consistently outperforms all other baselines across almost all selection ra-
tios, and achieves the performance near that of the Oracle window. In the case of CIFAR-10/100,
the difficulty score-based methods, Forgetting and EL2N, perform well in high ratio regimes but
experience significant performance degradation as the selection ratio decreases, while Forgetting
still maintains competitive performance in ImageNet. The optimization-based methods, LCMat and
AdaCore, achieve better performance than the difficulty score-based methods for low selection ratios
but underperform in high selection ratios. The two previous universal selection methods, Moderate
DS and CCS, also underperform compared to ours across almost all selection ratios.
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Figure 4: (a, b) Cross-architecture experiments with CNN (left), and pre-trained ViT (middle), where
samples scores are calculated using ResNet18 model. (c) Data pruning experiments with CIFAR-10,
including 20% label-noise. Full results are reported in Table 16–19.

Cross-architecture robustness To test the robustness of our method across changes in neural
network architectures, we conduct data pruning experiments on CIFAR-10 while using different
architectures during sample scoring and training. The window subsets are constructed using samples
ordered by their Forgetting scores, calculated on ResNet18 architecture. Then, the best window
selection (Alg. 1) and the model training are conducted using a simpler CNN architecture or a larger
network, Vision Transformer (ViT) (Dosovitskiy et al., 2021), pre-trained on the ImageNet dataset.
The results on the CNN architecture are presented in Fig. 4a, while those on ViT are shown in
Fig. 4b. In both cases, our method (BWS) consistently achieve competitive performances across all
selection ratios, demonstrating its robustness to changes in neural network architectures during data
subset selection. For the ViT results, using only about 5% of the CIFAR-10 dataset selected by BWS
achieves a test accuracy of 98.04%, comparable to the test accuracy of 98.60% achievable with the
full dataset. This result also demonstrates the effectiveness of our method in selecting samples for
fine-tuning of a pre-trained model. Additional results using another model, EfficientNet-B0 (Tan &
Le, 2019), are reported in Appendix G.1.

Robustness to label noise We test the robustness of BWS in the presence of label noise in the
training dataset. We corrupt randomly chosen 20% samples of CIFAR-10 by random label noise.
It has been previously reported that the difficulty score-based selection methods are susceptible
to label noise since such methods tend to assign high scores to label-noise samples (Toneva et al.,
2019; Paul et al., 2021). Thus, these methods often ends up prioritizing the label-noise samples in the
selection process, leading to suboptimal results. On the other hand, our algorithm offers flexibility in
choosing window subsets with varying levels of difficulty by changing the starting point, and adopts
an approach to select the best window by solving a proxy task using the kernel ridge regression. To
further enhance the robustness of our method, we can modify Alg. 1 to evaluate the solution of kernel
ridge regression using only the low-scoring 50% samples from the training dataset, which will rarely
include label-noise samples, instead of the full dataset. In Fig. 4c, we compare the performance
of this modified version of BWS with other baselines. While difficulty score-based selection and
optimization-based selection methods suffer from performance degradation due to label noise, our
method, along with another label noise-robust method, Moderate DS, achieves performance even
higher than what is achievable with the full training dataset, which includes the 20% label noise.
This demonstrates the effectiveness and robustness of our approach in handling label noise.

5.2 ABLATION STUDY

Our BWS algorithm operates by sorting the training data samples based on their difficulty scores,
creating window subsets, and then selecting the best window subset by a proxy task. To assess the
relative importance of each component, we conduct several ablation studies in this section.

Different types of windows Our method considers a window type consisting of samples from a
continuous interval of difficulty scores while varying the starting point. We explore four different
variations of window types: 1) Hard-only, which involves the subset selection composed of the
highest scoring (most difficult) samples, 2) Easy-only, which involves the subset selection composed
of the lowest scoring (easiest) samples, 3) Hard-easy, which balances the selection by choosing an

8
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Table 3: Test accuracy of the models trained by different types of window subsets of CIFAR-10.

Selection ratio Hard-only Easy-only Hard-easy 25-75% BWS (ours)

10% 60.62 82.95 73.32 87.17 88.05
20% 81.35 85.99 81.42 89.96 91.29
30% 90.84 87.51 87.44 91.11 93.17
40% 94.11 88.80 90.82 91.77 94.38

Table 4: Test accuracy of the models trained by window subsets of CIFAR-10 selected by different
strategies in choosing the best window subset. Our method consistently achieves the better perfor-
mance, and the best window subsets selected by ours aligns better with those of oracle windows.

Selection methods Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90%

Gradient ℓ2-norm Test accuracy 54.78 81.79 87.82 90.85 91.63 92.50 93.07 94.36 94.92
difference Window index 50% 45% 40% 35% 30% 25% 20% 10% 5%

Gradient cosine Test accuracy 43.39 71.99 84.17 91.34 93.35 94.38 94.93 95.20 95.22
similarity Window index 30% 25% 20% 15% 10% 5% 0% 0% 0%

Regression (ours) Test accuracy 63.14 81.31 88.05 91.29 93.17 94.38 94.93 95.20 95.22
Window index 90% 70% 35% 25% 15% 5% 0% 0% 0%

Oracle window Test accuracy 65.73 83.03 88.05 91.69 93.35 94.38 94.93 95.20 95.22
Window index 80% 50% 35% 20% 10% 5% 0% 0% 0%

equal number of highest-scoring and lowest-scoring samples, 4) 25-75%, which involves random
selection from a window subset spanning 25 to 75% score-ranked samples. Table 3 summarizes the
resulting test accuracies when the subsets are selected from CIFAR-10 by using each window type,
with selection ratios ranging from 10 to 40%. Our method consistently achieves better performance
compared to all the variations. Simply mixing the most difficult and easiest samples (Hard-easy) or
randomly sampling from a moderate regime (25-75%) does not yield as strong results as our method.

Different window selection methods We also evaluate the effectiveness of our window selection
strategy in Alg. 1 based on kernel ridge regression by comparing it with two different variants in
the best window selection: 1) Gradient ℓ2-norm difference, which aims to find a window subset that
minimizes the ℓ2-norm of the difference between the average gradients of the full dataset and the
window subset, and 2) Gradient cosine similarity, which aims to find a window subset that maxi-
mizes the cosine similarity between the average gradients of the full dataset and the window subset.
These methods are inspired by gradient-matching strategies used in optimization-based coreset se-
lection (Mirzasoleiman et al., 2020; Yang et al., 2023). Table 4 presents the test accuracies achieved
by models trained on window subsets selected by each method, along with the corresponding start-
ing point of the best window chosen by each method. The last row shows the result with the oracle
window. Our method consistently achieves better test accuracy compared to the two variants, and
the window selected by our method aligns better with the oracle selection. This result demonstrates
that the best subset cannot be effectively chosen by simply matching the average gradients of the
full training dataset; it requires a proxy task such as kernel ridge regression to evaluate the quality
of window subsets for classification tasks.

We also perform an additional ablation study to show the robustness of our method across various
difficulty scores used for ordering the samples in Appendix G.2.

6 CONCLUSION

We introduced the Best Window Selection (BWS), a universal and efficient data subset selection
method capable of achieving competitive performance across a wide range of selection ratios. This
represents a notable improvement over previous data subset selection methods, which typically ex-
cel within a restricted range of selection ratios. Our experimental results demonstrate that BWS
effectively identifies the best window subset from samples ordered by difficulty-based score, by
leveraging a simple proxy task based on kernel ridge regression.
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A PROOF OF THEORETICAL ANALYSIS

A.1 LINEAR RIDGE REGRESSION

The solution of the linear ridge regression problem is derived as follows.

L(w) = ||y −X⊤w||22 + λ||w||22
∂L

∂w
= 2XX⊤w − 2Xy + 2λw = 0 ⇒ w = (λI+XX⊤)−1Xy

∴ wS = (λI+XSX
⊤
S )

−1XSyS = XS(λI+X⊤
SXS)

−1yS

A.2 PROOF OF THEOREM 1

In this section, we provide the detailed proof of Theorem 1 in Sec. 3.1. Note that n = poly(d)
data inputs x1,x2, . . .xn are sampled from normalized multivariate normal distribution, D =
1√
d
N (0, Id) = 1√

d
(N1,N2 . . .Nd) where {Nk} are i.i.d. normal distributions. Remind that the

label yi of sample xi is determined by the sign of its first element, i.e., if (xi)1 > 0 then yi = 1, and
if (xi)1 < 0, then yi = −1. We select a subset of size m, denoted by (XS,yS) ∈ Rd×m×{−1, 1}m.

We first provide a high-level proof idea of Theorem 1. Note that the optimal wS =
argminw∈Rd ||yS − X⊤

Sw||22 can be written as wS = XS(X
⊤
SXS)

−1yS when m ≤ d, and
wS = (XSX

⊤
S )

−1XSyS when m ≥ d. Let us first consider the case of m ≤ d. Due to
the properties of high dimensional multivariate normals, we have ∥xi∥ ∈ [1 ±

√
7 lnn/2d] for

all i ∈ [n] and |x⊤
i xj | ≤

√
7 lnn/2d for all i ̸= j ∈ [n] with high probability. Thus,

∥X⊤
SXS − Im∥F ≤

√
m2(7 lnn)

2d where Im is the identity matrix of size m. When m ≪
√

d/ ln d,
we have (X⊤

SXS) ≈ (X⊤
SXS)

−1 ≈ Im, and thus wS = XS(X
⊤
SXS)

−1yS ≈ XSyS, which
implies that (wS)1 ≈

∑m
i=1 |(xi)1|. Let us next consider the case of m ≥ d. Note that the di-

agonal terms of XSX
⊤
S are

∑m
i=1 |(xi)k|2 = Θ(m/d) for k ∈ [d] and the off-diagonal terms

are
∑m

i=1(xi)k(xi)l = O(
√
m ln d/d) for k ̸= l ∈ [d] with high probability. The eigenvalues

of XSX
⊤
S can be shifted from its diagonal entries (

∑m
i=1 |(xi)1|2, . . . ,

∑m
i=1 |(xi)d|2) by at most√

m ln d
d d =

√
m ln d by the effect of its off-diagonal entries. Thus, when m/d ≫

√
m ln d, i.e.,

m ≫ d2 ln d, we can have XSX
⊤
S ≈ diag(

∑m
i=1 |(xi)1|2, . . . ,

∑m
i=1 |(xi)d|2) and (XSX

⊤
S )

−1 ≈
diag((

∑m
i=1 |(xi)1|2)−1, . . . , (

∑m
i=1 |(xi)d|2)−1). Since wS = (XSX

⊤
S )

−1XSyS, the first coordi-
nate value of wS is (wS)1 ≈ (

∑m
i=1 |(xi)1|)/(

∑m
i=1 |(xi)1|2).

To more formally state and prove Theorem 1, we provide Theorem 2 to explain the regime of low
selection ratio (m = o(

√
d/ ln d)) and Theorem 3 for the high selection ratio (m = ω(d2 ln d)). To

prove the two theorems, we use three lemmas, tail bounds on chi-square and Gaussian distributions,
and Gershgorin theorem, which are stated as bellow:

Lemma 1 (Chi-square tail bound). If x ∼ χ2(d), then P(χ2(d) ≥ d + 2
√
dt + 2t) ≤ e−t and

P(χ2(d) ≤ d− 2
√
dt) ≤ e−t.

Lemma 2 (Gaussian tail bound). If x ∼ N (0, 1), then P(|x| ≥ t) ≤ e
−t2

2 .

Lemma 3 (Gershgorin circle theorem). Let A ∈ Cd×d be a matrix with (i, j)-th entry equal to aij .
Let ri :=

∑
j ̸=i |aij | and Di := Dri(aii) be a closed ball centered aii with radius ri. Then, every

eigenvalue of A is contained in ∪iDi

Gershgorin circle theorem restricts the eigenvalues of a matrix in a union of disks, whose centers are
diagonal elements, and the radius is the sum of off-diagonal elements.

Now, we provide Theorem 2, which will be used to explain why selecting low-scoring (easy) data
samples results in a good performance when the subset size |S| is small.

Theorem 2 (Sample-deficient regime). If m = o
(√

d/ ln d
)

, then ∥(X⊤
SXS)

−1 − Im∥2 ≤

m
√

7 lnn
2d with high probability as d → ∞.
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Proof. At first, we prove two properties of the high dimensional multivariate normal distribution,
which state that the norm of every xi is almost equal to 1, and every two independent vectors are
almost orthogonal for large enough d. For any 1 ≤ i ̸= j ≤ n, with probability 1−O( 1n ), we have

1−
√

7 lnn

2d
≤ ∥xi∥2 ≤ 1 +

√
7 lnn

2d
, and (3)

|x⊤
i xj | <

√
7 lnn

2d
(4)

The first property (Eq. 3) can be proved by Lemma 1. Let t = 3 lnn for Lemma 1. Then,

P(χ2(d) ≥ d+ 2
√
3d lnn+ 6 lnn) ≤ 1

n3
and P(χ2(d) ≤ d− 2

√
3d lnn) ≤ 1

n3

Since 2
√
3d lnn+ 6 lnn ≤

√
13d lnn for large enough d, with probability 1−O( 1

n3 ) we have

1−
√

13 lnn

d
≤ 1

d
χ2(d) ≤ 1+

√
13 lnn

d

d → ∞
====⇒ 1−

√
7 lnn

2d
≤
√

1

d
χ2(d) ≤ 1+

√
7 lnn

2d
(5)

Since xi ∼ 1√
d
N (0, Id) and ∥xi∥22 = 1

dχ
2(d), for ∀i ∈ [n], with probability 1 − O( 1

n2 ), Eq. 3
follows.

The proof of the second property (Eq. 4) also utilizes Lemma 1. Let xi =
1√
d
(Ni1,Ni2, . . .Nid)

and xj =
1√
d
(Nj1,Nj2, . . .Njd) where Nik,Njk are i.i.d. normals N (0, 1). Then,

x⊤
i xj =

1

d

d∑
k=1

NikNjk =
1

d

d∑
k=1

(Nik +Njk)
2 − (Nik −Njk)

2

4

=
1

2d

d∑
k=1

[(
Nik +Njk√

2

)2

−
(
Nik −Njk√

2

)2
]
=

1

2d

d∑
k=1

[(N
′

k)
2 − (N

′′

k )
2]

=
1

2d
(χ2

1(d)− χ2
2(d))

where N ′

k and N ′′

k are i.i.d. normals, and χ2
1(d) and χ2

2(d) are i.i.d chi-squares.

As shown in Eq. 5, with probability 1−O( 1
n3 ),

1−
√

7 lnn

2d
≤
√

1

d
χ2
1(d) and

√
1

d
χ2
2(d) ≤ 1 +

√
7 lnn

2d
. (6)

Thus, we have ∣∣∣∣ 12d (χ2
1(d)− χ2

2(d))

∣∣∣∣ ≤
√

7 lnn

2d
. (7)

By applying a union bound, for ∀i ̸= j ∈ [n], with probability 1−O( 1n ), we have |x⊤
i xj | ≤

√
7 lnn
2d .

From Eq. 3 and Eq. 4, we obtain that ∥X⊤
SXS − Im∥2F ≤ m2

(
7 lnn
2d

)
.

Let A = X⊤
SXS, then we derive the bound on ∥I − A−1∥2 from the bounds of ∥I − A∥2 and

∥A−1∥2. First, note that

∥I−A∥2 ≤ ∥I−A∥F ≤ m

√
7 lnn

2d
and m

√
7 lnn

2d
→ 0 as d → ∞

since m = o(
√
d/ ln d) and n = poly(d). Moreover, we have

∥A−1∥2 = ∥(I− (I−A))−1∥2 = ∥I+ (I−A) + (I−A)2 + . . . ∥2

≤ ∥I∥2 + ∥(I−A)∥2 + ∥(I−A)2∥2 + · · · ≤ 1 +

∞∑
k=1

(
m

√
7 lnn

2d

)k

≤ 2.
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Finally, we have

∥I−A−1∥2 ≤ ∥A−1∥2∥I−A∥2 ≤ m

√
7 lnn

2d
.

We next provide Theorem 3, which explains why selecting high-scoring (difficult) data samples
results in a good for performance when the subset size |S| is large (m = ω(d2 ln d)). Assume that
we select the subset XS by observing the first element of each data, (xi)1. Suppose that we select

the data samples whose first elements are a1√
d
, a2√

d
, . . . am√

d
where ai ∈ Θ(1), and let a :=

∑m
i=1 a2

i

m .
The elements of the other coordinates are independent normals, i.e., (xi)k ∼ N (0, 1) for k ≥ 2. We
will prove that ( d

mXSX
⊤
S )

−1 can be approximated by a diagonal matrix of which the first element
is equal to 1

a and other elements are equal to 1.

Theorem 3 (Sample-sufficient regime). Let B = diag(a, 1, 1, . . . 1) ∈ Rd×d. If m = ω(d2 ln d),

then ∥( d
mXSX

⊤
S )

−1−B−1∥2 ≤ c′d2
ln d

m
for some constant c′ > 0 with high probability as d → ∞.

Proof. The elements of d
mXSX

⊤
S are expressed as follows, where k ̸= l ∈ [d]\{1}.

d

m
(XSX

⊤
S )11 =

1

m
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m
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(
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a

m

)
d

m
(XSX

⊤
S )kk =

d

m

m∑
i=1

(xi)
2
k =

1

m
N 2

ik =
1

m
χ2(m)

d

m
(XSX

⊤
S )kl =

d

m

m∑
i=1

(xi)k(xi)l =
1

m

m∑
i=1

NikNil

By Gaussian tail bound (Lemma 2), if x ∼ N (0, a/m), then we have

P(|x| ≥ 2
√

a ln d/m) ≤ 1/d2.

Note that 1
mχ2(m) = 1

m∥x∥22 for x ∼ N (0, Im). By Lemma 1 we have a result similar to Eq. 4,

P(|∥x∥2 − 1| ≥
√

7 ln d/2m) ≤ 1/d2.

For NikNil, by applying the result of Eq. 4, we can also show that

P(∥x∥2 ≥
√

7 ln d/2m) ≤ 1/d3.

Combining the above three bounds, we obtain that for ∀k ̸= l ∈ [d], with probability 1−O( 1d ),∣∣∣∣ dm (XSX
⊤
S )k1

∣∣∣∣ ≤ 2

√
a ln d

m
,

∣∣∣∣ dm (XSX
⊤
S )kk − 1

∣∣∣∣ ≤
√

7 ln d

2m
, and

∣∣∣∣ dm (XSX
⊤
S )kl

∣∣∣∣ ≤
√

7 ln d

2m
.

Thus, we obtain ∥ d
m (XSX

⊤
S )−B∥F ≤ cd2 ln d

m for some constant c > 0, with probability 1−O( 1d ).
Let A = d

m (XSX
⊤
S ), then

∥A−1 −B−1∥2 ≤ ∥A−1∥2∥I−AB−1∥2 ≤ ∥A−1∥2∥B−A∥2∥B−1∥2

≤ ∥A−1∥2∥B−A∥F ∥B−1∥2 ≤ ∥A−1∥2 cd2
ln d

m
· 1.

It is remaining to prove that ∥A−1∥2 is bounded. The eigenvalues of A = d
m (XSX

⊤
S ) are almost

equal to the diagonal elements by utilizing Gershgorin circle theorem. Since m ∈ ω(d2 ln d),

15



Under review as a conference paper at ICLR 2024

(a) Plots for entire regime (b) Plots focused on sample-sufficient regime

Figure 5: Results of window sliding experiment at the setting of theoretical analysis. In our set-
ting, the dimension d is 256, the number of full dataset n is 256, 000, and the subset size m
are selected among 16, 64, 256, 512, 2048, 3072, and 4096. Left figure covers the entire regime
(m = 16, 64, 256, 512, and 2048), while the right figure focuses on sample-sufficient regime.

r1 =
∑

j ̸=i |a1j | < 2d
√

a ln d
m ≪ a and rk =

∑
j ̸=i |akj | < d

√
7 ln d
2m ≪ 1.

Therefore, every eigenvalues of A are close to either a or 1 with probability 1 − O( 1d ). Thus,
∥A−1∥2 is bounded above by max( 1a , 1) plus some some constant, which shows that ∥A−1∥2 is
bounded. Therefore, we have

∥A−1 −B−1∥2 ≤ ∥A−1∥2 cd2
ln d

m
≤ c′d2

ln d

m
for some constant c′ > 0.

A.3 TOY EXPERIMENT

To validate our theoretical analysis, we conduct a window sliding experiment similar to the one in
Sec. 4, at the setting of the theoretical analysis in Sec. A.2, while varying the subset sizes and
the starting points of the window subsets at d = 256 and n = 256, 000. The results are shown
in Fig. 5. Fig. 5a shows the plot for both the sample-deficient and sufficient regimes, including
m = 16, 64, 256, 512, 2048, while Fig. 5b shows focused plots for sample sufficient regime where
m = 2048, 3072, 4096. The x-axis in Fig. 5a is the starting point of the window subset, which
identifies the ranking of the hardest sample in the window subset, while that in Fig. 5b is the end
point of the window subset, which identifies the ranking of the easiest sample in the window subset.
The y-axis is the cosine similarity between w and ê1 = (1, 0, . . . , 0), where w is the solution of the
regression problem, and ê1 is the unit vector with its first coordinate equal to 1, which is the true
decision boundary. A higher cosine similarity implies a better solution. Red lines show the results
when subset size m is smaller, and the blue or black lines show the result of larger subset sizes.

In the sample-deficient regime where m ≤ d (red lines), the cosine similarity increases as the
starting point of the window increases, meaning that it is better to use easy samples to learn the
linear classifier. On the other hand, in the sample-sufficient regime where m > d (blue and black
lines), the cosine similarity is larger for windows having a smaller end point, meaning that it is better
to include difficulty samples to learn a better classifier. This result coincides with the theoretical
analysis, which claims that the inclusion of easier (harder) data samples results in a better solution
for a smaller (larger) subset size, respectively. As we conjectured at Sec. 3.1, the transition of a
desirable selection strategy occurs near m = Θ(d).
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B DISCUSSIONS ON USING KERNEL RIDGE REGRESSION AS A PROXY

In Algorithm 1, we use the kernel ridge regression as a proxy for training neural networks to evaluate
the performance of window subsets. In this section, we provide some theoretical rationale behind the
use of the kernel ridge regression, and also compare it with another proxy using a smaller network,
motivated from Selection Via Proxy (SVP) (Coleman et al., 2020).

B.1 KERNEL RIDGE REGRESSION AS A PROXY OF NEURAL NETWORK TRAINING

Our use of the kernel ridge regression as a proxy for training neural networks can be partly explained
by the recent progress in theoretical understanding of training neural networks using kernel methods.
In particular, some recent works (Neal, 2012; Lee et al., 2018; Jacot et al., 2018; Arora et al., 2019)
have shown that training and generalization of neural networks can be approximated by two associ-
ated kernel matrices: the Conjugate Kernel (CK) and Neural Tangent Kernel (NTK). The Conjugate
Kernel is defined by the gram matrix of the derived features produced by the final hidden layer of
the network, while NTK is the gram matrix of the Jacobian of in-sample predictions with respect to
the network weights. These two kernels also have fundamental relations in terms of their eigenvalue
distributions as analyzed in Fan & Wang (2020). Our proxy task is motivated by the observation
that the kernel regression with these model-related kernels can provide a good approximation to the
original model (under some assumptions such as enough width, random initialization, and small
enough learning rate, etc.). As an example, the work by Arora et al. (2019) provides the following
theorem, which connects the training of a neural network with kernel ridge regression using NTK.

Theorem 4 (Informal version of Arora et al. (2019)). Consider a fully connected neural network
with sufficiently large width d1 = d2 = . . . dL where dl is number of nodes in lth layer. Given a
training dataset {(xi, yi)}ni=1 ⊂ Rd×R with normalized inputs ∥xi∥2 = 1, the network is trained by
gradient descent with a sufficiently small learning rate to minimize the square-loss

∑n
i=1(fnn(xi)−

yi)
2. Let fnn be the trained network. With a kernel function of the network K(·, ·), NTK of training

data H ∈ Rn×n is defined by Hij = K(xi,xj). And, for a test data xte, the kernel between the test
data and the training dataset X = [x1,x2, . . .xn] ∈ Rd×n is defined by K(xte,X) ∈ Rn where
K(xte,X)i = K(xte,xi). Let fntk(xte) = (K(xte,X))⊤H−1y. Then,

|fnn(x)− fntk(x)| ≤ ϵ

Theorem 4 justifies that the kernel regression with NTK can provide a good approximation to the
neural network training under the specified assumptions. However, calculating the NTK for the
entire neural network requires high computational cost as it involves computing the Jacobian with
respect to the network weights.

To address such a problem, Conjugate Kernel is often considered as a promising replacement of
NTK. For example, the work by Zhou et al. (2022) utilizes the kernel ridge regression based on
Conjugate Kernel for dataset distillation. We also use the Conjugate Kernel in our kernel ridge
regression (Eq. 1), by defining the kernel matrix as X⊤

SXS where XS = [f1, . . . , fm] is composed
of features produced by the exact target network of our consideration (ResNet18 for CIFAR-10
and ResNet50 for CIFAR-100/ImageNet). By considering the features from the target network,
we can obtain the (approximate) network predictions that are linear in these derived features. In
detail, the output of the CK-regression for the test example xte can be written as fntk(xte) =
x⊤
teXS(X

⊤
SXS)

−1yS = x⊤
tew where w = XS(X

⊤
SXS)

−1y in Eq. 2 for λ = 0.

Of course, this kernel approximation of the neural network models, which assumes a fixed feature
extractor, does not exactly match our situation where the selected subset not only affects the linear
classifier but also the feature extractor itself during the training. However, this is still a good proxy
that can reflect the network architecture of our interest in a computationally-efficient manner. Also,
our analysis in Table 2 shows that this proxy finds the best window subset that aligns well with the
result from the actual training of the full model.

B.2 SELECTION VIA PROXY FOR EVALUATING THE WINDOW SUBSETS

Selection Via Proxy (SVP) (Coleman et al., 2020) utilizes a small model for evaluating the impor-
tance of data instances, and then apply a selection method (e.g. difficulty-score) to choose a subset
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Table 5: Test accuracy of the models trained by window subsets of CIFAR-10 selected by KRR
(kernel ridge regression, ours) and SVP (selection via proxy). We observe that SVP tends to select
easier samples (windows with larger index) compared to the oracle window subset possibly due to
the limited capability of the simple network used in the proxy task.

Selection methods Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90%

KRR (ours) Test accuracy 63.14 81.31 88.05 91.29 93.17 94.38 94.93 95.20 95.22
Window index 90% 70% 35% 25% 15% 5% 0% 0% 0%

SVP Test accuracy 65.73 81.78 86.40 90.18 91.63 92.50 93.07 94.96 95.22
Window index 80% 60% 55% 40% 30% 5% 0% 0% 0%

Oracle window Test accuracy 65.73 83.03 88.05 91.69 93.35 94.38 94.93 95.20 95.22
Window index 80% 50% 35% 20% 10% 5% 0% 0% 0%

that will be evaluated on (more complex) target models. To evaluate the efficiency of this approach,
we conduct an experiment of finding the best window subset using a small ConvNet (Zhao et al.,
2021) model on the CIFAR-10 dataset. The selected subset is then evaluated on ResNet18. In Table
5, we summarize this result (SVP) compared to our original proxy (KRR, Kernel Ridge Regres-
sion) and the oracle window using the target model. We can observe that SVP tends to select easier
samples (windows with larger index) compared to the oracle window over the selection ratios 5%
to 90%, which results in performance loss especially in high selection ratio regimes. Our proxy,
on the other hand, exactly matches the oracle window performance at selection ratios of 10% to
90%. We conjecture that the tendency that SVP selects an easier subset is attributed to the limited
capability of the simple network used in the proxy task. Furthermore, solving our proxy task takes
only about 1/15-1/250 (varying depending on the subset size) of the computational time compared
to SVP, which requires training of the small network (ConvNet) for all considered subsets.

C IMPLEMENTATION DETAILS

C.1 BASELINE DETAILS

We benchmark our BWS algorithm against six state-of-the-art methods, Forgetting score (Toneva
et al., 2019), EL2N score (Paul et al., 2021), AdaCore (Pooladzandi et al., 2022), LCMat (Shin et al.,
2023), Moderate DS (Xia et al., 2023), and CCS (Zheng et al., 2023).

In Forgetting and EL2N scores, scores are derived by averaging results of five independent training
using the full CIFAR-10/100 dataset. Specifically, Forgetting scores are obtained at the 200th epoch
(full training), while EL2N scores are captured at the 20th epoch. For our ImageNet experiments,
pre-calculated Forgetting and EL2N scores are sourced from https://github.com/rgeirhos/dataset-
pruning-metrics Sorscher et al. (2022).

In the AdaCore methodology, subset selection is computed only once, at the 10th epoch, to ensure
a fair comparison. The LCMat approach mirrors this protocol, with selection also occurring at the
10th epoch. Both AdaCore and LCMat implementations are sourced from the LCMat repository. For
Moderate DS, models are trained using the full dataset, and the individual data features are extracted
from the models. These features are defined as the outputs of the penultimate layer, with dimensions
being 512 for ResNet18 and 2048 for ResNet50. The CCS algorithm employs the aforementioned
Forgetting score. Within the CCS approach, we consistently set the hyperparameter β to zero across
all data selection ratios.

All computational tasks utilized consistent network architectures, as detailed in Section 5: ResNet18
for CIFAR-10 and ResNet-50 for both CIFAR-100 and the ImageNet dataset. Additional experimen-
tal specifications related with learning algorithm are reported in Table 6 of Appendix §C.2.

Details of the baselines are summarized below:

• Error L2-Norm (EL2N): The EL2N score of data (xi, yi) is defined as E[∥f(W(t),xi) −
yi∥2], where f(W(t),x) is the output of the neural network for the sample (x, y) at the
t-th epoch.
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• Forgetting score: The Forgetting score is defined as the number of times during training
(until epoch T ) that the decision of the sample switches from a correct one to an incorrect
one: Forgetting(xi, yi) is defined as

T∑
t=2

1{argmax f(W(t− 1),xi) = yi}(1− 1{argmax f(W(t),xi) = yi}). (8)

• AdaCore: Adaptive Second order Coresets (AdaCore) is an algorithm that solves the opti-
mization problem, which finds a subset that imitates the full gradient preconditioned with
the Hessian matrix:

S∗ ∈ argminS⊂V

∑
i∈V

min
j∈S

∥Hi(wt)
−1gi(wt)−Hj(wt)

−1gj(wt)∥, s.t. |S| ≤ r (9)

where gi(wt) = ∇l(wt, (xi, yi)) and Hi(wt) = ∇2l(wt, (xi, yi)) represent the gradient
and Hessian of the loss function for the data point (xi, yi) using the model parameter wt at
the t-th epoch of training, respectively. Let V represent the full dataset and S be the coreset
of size r. In the AdaCore method, when employing the cross entropy loss with a softmax
layer as the final layer, the gradient gi(wt) is approximated by pi − yi, where pi is the
softmax output for the data point (xi, yi). Moreover, to reduce computational complexity,
the Hessian Hi(wt) is approximated using only its diagonal.

• LCMat: Loss-Curvature Matching (LCMat) is an algorithm that solves the optimization
problem, which finds a subset that matches the loss curvature of full dataset. Because of
intractability of utilizing the loss curvature, the suggested alternative optimization problem
is as follows:

S∗ ∈ argminS⊂V

∑
i∈V

min
j∈S

∥gi(wt)− gj(wt)∥+
1

2
ρ
∑
k∈K

|λi,k − λj,k|, s.t. |S| ≤ r (10)

where gi(wt) = ∇l(w, (xi, yi)) and λi,k = Hi(wt)kk = ∇2
kkl(w, (xi, yi)) denote the

gradient and the k-th diagonal element of the Hessian of the loss function for the data
point (xi, yi) with the model parameter wt at the t-th epoch of training, respectively. Let
V represent the full dataset, S the coreset with size r and W the model parameter space.
K = argmax|K|=K

∑
j∈K Vari(λi,k) is a set of indices for K sub-dimensions on w, where

the dimension variance is high. In LCMat, when employing the cross entropy loss with a
softmax layer as the final layer, the gradient gi(w) is approximated by pi − yi, where pi is
the softmax output for the data point (xi, yi).

• Moderate DS: For each class of a given dataset, Moderate Coreset calculates distance be-
tween feature and the center of the class, which is defined as di = ||fi−

∑
j∈S fj

|S| ||2 where S
is the set of features whose label is the same as fi. Then, data points with distances closest
to the distance-median(median({di}i∈S)) are selected.

• CCS: Coverage-Centric Coreset Selection is an algorithm based on difficulty-based score,
which considers overall data coverage upon a distribution as well as important data. CCS
prunes β% hardest data first and splits the remained data into k subsets {Bi}ki=1 based on
evenly divided score ranges {Ri}ki=1. Then, CCS selects the same number of samples from
each score range to make the score distribution of the selected samples uniform.

C.2 EXPERIMENT DETAILS

Data pruning experiment We construct experiments with three public datasets, CIFAR-10/100
and ImageNet by training ResNet networks (He et al., 2016) of different depths. ResNet18 is used
for CIFAR-10 and ResNet50 is used for CIFAR-100 and ImageNet dataset. Implementation of the
ResNet is based on the ResNet network in torchvision (Paszke et al., 2019). Since CIFAR-10/100
images are smaller than ImageNet images, we replace the front parts of the ResNet (convolution
layer with 7x7 kernel and 2x2 stride, max pooling layer with 3x3 kernel and 2x2 stride) with a
single convolution layer with 3x3 kernel and 1x1 stride for small size image. The details on hyper-
parameters and optimization methods used in training are summarized in the Table 6.
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Table 6: Details for the experiments used in the training of the dataset.

CIFAR-10 CIFAR-100 ImageNet

Architecture ResNet18 ResNet50 ResNet50
Batch size 128 128 256
Epochs 200 200 90
Initial Learning Rate 0.05 0.1 0.1
Weight decay 5e-4 5e-4 1e-4
Learning Rate Scheduler Cosine annealing scheduler Step scheduler
Optimizer SGD with momentum 0.9

Data Augmentation
Random Zero Padded Cropping (4 pixels) Random Resized Cropping
Random left-right flipping (probability 0.5)
Normalize by dataset’s mean, variance

Our experiments report averaged results from three runs on CIFAR-10/100 and two on ImageNet,
with shaded regions representing standard deviations. Networks are trained on datasets curated
based on specific selection ratios and methods. For CIFAR-10/100, we determine the number of
iterations to be the same as the number of iterations required to process the entire dataset within
one epoch and maintain this count across experiments. Crucially, our data selection ensures equal
selection from each class by preserving the portion data in each class.

Cross-architecture robustness We conduct cross-architecture experiments on the CIFAR-10
datasets, training two distinct networks: a simple CNN and a Vision Transformer (ViT) pretrained
on the ImageNet dataset.

For the simple CNN, we design an architecture comprising three convolutional layers with a 3 × 3
kernel and 1 × 1 stride (channels: 64, 128, 256). This is paired with two max-pooling layers with
a 2× 2 kernel. The convolutional layers are interspersed with these max-pooling layers. Following
the convolutional layers, the network is connected to two fully connected layers (channels: 128,
256). Each convolutional layer is equipped with a batch normalization layer followed by a non-
linear ReLU activation layer. We set the initial learning rate to 0.05 and weight decay to 1e-4. Other
details are the same as Sec. C.2 of CIFAR-10 case. For the ViT, we adhere to the implementation
specifications as detailed in Dosovitskiy et al. (2021). We obtain a ViT model pretrained on the Ima-
geNet dataset using the timm module in PyTorch, which we subsequently fine-tune on the CIFAR-10
dataset for 10 epochs. For fine-tuning a model pre-trained on ImageNet to adapt to the CIFAR-10
dataset, we resized the data to fit the 224x224 pixel dimensions. We set the initial learning rate to
1e-4 and weight decay to 1e-4. We do not use a learning rate scheduler. Other details are the same
as those in Sec. C.2 of CIFAR-10 case.

Within our algorithm, BWS, we utilize a forgetting score sourced from the ResNet18 architecture.
Furthermore, we establish a feature extractor using the simple CNN and ViT architectures individ-
ually. For the CNN architecture, we execute training for 20 epochs, while for the ViT setup, we
fine-tune for 3 epochs.

We report the averaged results from three independent runs on the two networks, with the shaded
regions indicating the standard deviations. Like in previous experiments, data are selected to ensure
a balanced portion of each class, preserving the original class ratios within the CIFAR-10 dataset.

Robustness to label noise We create noisy CIFAR10 dataset with 20% symmetric label noise.
We compute the EL2N score of this noisy dataset using ResNet18 and average the results over 5
independent runs. We utilize EL2N score since this score has a better noise discrimination ability,
and is cheaper in computational cost compared to Forgetting score in calculating the new set of
EL2N scores for the noisy dataset. When we apply Alg. 1 with the noisy CIFAR-10 dataset ordered
by the EL2N scores, we set t of Alg. 1 to 5% (or 2500), and calculate the classification accuracy
of wS by using the low-scoring 50% samples, i.e., by 1

n

∑n
i=n

2
1(argmaxc(w

⊤
S xi)c = yi) instead

of by 1
n

∑n
i=1 1(argmaxc(w

⊤
S xi)c = yi) to avoid including noisy samples in quality evaluation of

window subsets.
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Ablation on different window selection methods The formal definitions of Gradient difference
and Gradient similarity are as follows:

• Gradient difference: minimizing the difference between the gradients of the full training
dataset (V ) and window subset (S).

Gradient Difference(V, S) =
∥∥∥∥∑i∈V ∇fw(xi)

|V |
−
∑

i∈S ∇fw(xi)

|S|

∥∥∥∥
2

(11)

• Gradient similarity: maximizing the cosine similarity between the gradients of the full
training dataset (V ) and window subset (S).

Gradient Similarity(V, S) =
∑

i∈V ∇fw(xi)∥∥∑
i∈V ∇fw(xi)

∥∥
2

·
∑

i∈S ∇fw(xi)∥∥∑
i∈S ∇fw(xi)

∥∥
2

(12)

C.3 COMPUTATIONAL COST

Table 7: Time cost (in seconds) to compute sample scores of the dataset.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90%

CIFAR-10
BWS (Ours) 4.3 4.8 7.2 8.5 9.7 10.4 10.4 9.0 6.3

LCMat 520 1197 2260 4213 5800 7173 8450 10320 10631
AdaCore 224 699 1256 2273 3186 3977 4649 5637 5839

CIFAR-100
BWS (Ours) 14.6 55.6 57.3 62.2 64.7 64.0 61.7 45.7 30.2

LCMat 1465 1468 1471 1478 1483 1489 1493 1501 1504
AdaCore 1295 1300 1304 1309 1315 1320 1324 1331 1334

ImageNet
BWS (Ours) 1423 2910 3941 6141 7590 8616 9029 10118 6499

LCMat 238451 239027 239694 240934 242003 242864 243594 244854 245245
AdaCore 213733 214309 214963 216181 217067 217866 218521 219593 219924

GPU Nvidia A100 40GB

We compare the computational cost of our BWS algorithm, as detailed in Algorithm 1, with other
optimization-based coreset selection baselines, namely LCMat and AdaCore. We assume that the
sample scores, used for sorting, is readily available and that the feature extractor is also pre-provided
for both ours and optimization-based methods. We report and compare the time taken to select the
subset for each algorithm.

In Table 7, we detail the time required to select subsets from various datasets using the different
methods. Clearly, our method outperforms optimization-based techniques in terms of time cost for
subset selection. As we have previously described in Sec. 4, our strategy, which selects the best
window subset from a continuous interval of samples sorted by their scores, greatly reduces the
search space compared to the general optimization techniques, leading to improved efficiency.

D DETAILED REVIEW OF RELATED WORKS

In this section, we provide additional related works on data subset selection that employ various
different perspectives.

When there is no validation set, some score-based selection methods, such as EL2N (Paul et al.,
2021) and Forgetting (Toneva et al., 2019), suffer from performance degradation when the dataset
includes label-noise samples, since these methods often assign high scores to label-noisy samples, as
label-noise samples are inherently hard to learn. Some recent methods adopt more cautious measures
to distinguish hard-to-learn but clean-label samples, known to be valuable to enhance the generaliza-
tion ability of neural networks, from label-noise samples. For instance, Cartography (Swayamdipta
et al., 2020) utilizes two measures, confidence mean and confidence variance of data sample, to
distinguish hard-to-learn samples from mere label-noise samples. Second-Split Forgetting (Maini
et al., 2022) achieves this goal by observing learning time and forgetting time and splitting the train-
ing dataset. AUM (Pleiss et al., 2020) observes logit value of a given label and the next largest logit,
and use the gap to separate noisy data samples and ambiguous data samples.
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Another important perspective that has recently explored in data subset selection is the compu-
tational overhead in quantifying the data value and the model-dependent issue on data valuation.
There are several recent attempts to valuate data without training of a neural network. CG-score
(Ki et al., 2023) evaluates data instances without model training by calculating the analytical gap in
generalization errors when an instance is held out. LAVA(Just et al. (2023)) evaluate the value of
each data instance without a model training by using a proxy function, which is class-wise Wasser-
stein distance between training and validation set, for the validation performance. DAVINZ (Wu
et al., 2022) utilizes the Neural Tangent Kernel (NTK) of a network at initialization for calculating
the contribution of each data instance to domain-aware generalization error bound.

In optimization-based selection, many works observe the effect of data on the model during train-
ing. MaxMargin (Har-Peled et al., 2007), IWeS (Citovsky et al., 2023), and Selection-via-proxy
(Coleman et al., 2020) observe the confidence of the model to identify uncertain data during opti-
mization. Maximum Margin Coresets (Har-Peled et al., 2007) selects data with the smallest margin
in an SVM setting, IWeS (Citovsky et al., 2023) selects examples using importance sampling with
a sampling probability based on the confidences of two models, and Selection-via-proxy (Coleman
et al., 2020) applies confidence-based methods to a small proxy model to perform data selection.
Work by (Das et al., 2021) solves a convex linear programming problem to find high-value data that
contributes much to the loss and optimization, and Glister (Killamsetty et al., 2021b) finds data that
contributes significantly to the loss during the training of a neural network. GradMatch (Killamsetty
et al., 2021a) finds a subset whose gradients are matched with the gradient of the full dataset.

Additionally, in active learning, which selects data to be labeled for semi-supervised learning,
Neural-Preconditioning (Kong et al., 2022) obtains the label of data that dominates the eigenspace
of the NTK, and the work by (Culotta & McCallum, 2005) obtains the label of the least confident
data to reduce labeling costs.

(Har-Peled et al., 2007; Citovsky et al., 2023; Coleman et al., 2020) observe confidence of model to
identify uncertain data during the optimization, and (Das et al., 2021; Killamsetty et al., 2021b) find
data that contributes much to the loss.

E SLIDING WINDOW EXPERIMENT IN CIFAR-100 AND IMAGENET
DATASETS

In this section, we report the results of the sliding window experiments, where we change the starting
point of the window subsets and compare the corresponding performances in terms of 1) the test
accuracy on the model trained by each subset and 2) the accuracy of a proxy task using kernel ridge
regression on training dataset. We report the results on CIFAR-100 and ImageNet.

Table 8: Comparison of window subsets of CIFAR-100 in terms of their 1) test accuracy, measured
on models trained with the window subsets (top rows) and 2) accuracy of kernel ridge regression
on the training dataset (bottom rows). The best performing windows align well between the two
measures.

Ratio Starting point 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

10% Test Acc 32.63 31.20 33.34 31.71 34.77 36.05 34.00 35.52 35.87 42.42 43.32 44.47 44.97 46.85 47.81 48.69 49.10 48.40 47.60
Regression Acc 11.12 11.23 11.02 10.89 10.96 11.28 12.11 12.34 12.50 12.84 12.88 13.12 13.48 13.60 13.99 14.24 14.16 14.02 14.06

20% Test Acc 47.61 47.33 49.39 50.11 49.93 52.48 53.24 55.52 56.69 57.21 58.68 59.20 59.80 58.88 57.67 56.64 54.87 - -
Regression Acc 25.62 25.58 25.78 25.76 26.48 27.00 27.36 27.59 27.67 27.85 28.17 28.29 28.51 28.44 28.23 27.93 27.30 - -

30% Test Acc 58.57 60.51 63.46 62.25 62.60 65.34 64.46 64.45 64.92 65.48 64.50 63.50 63.02 61.32 60.15 - - - -
Regression Acc 43.27 43.46 43.83 43.85 44.11 44.37 44.22 44.23 44.01 43.78 43.56 43.21 42.56 41.95 40.92 - - - -

40% Test Acc 68.44 69.92 69.53 69.17 70.81 70.14 70.39 70.47 69.06 68.04 66.66 65.40 63.86 - - - - - -
Regression Acc 54.05 54.36 54.44 54.30 53.96 53.67 53.25 52.74 52.23 51.56 50.72 49.73 48.64 - - - - - -
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Table 9: Comparison of window subsets of ImageNet in terms of their 1) test accuracy, measured
on models trained with the window subsets (top rows) and 2) accuracy of kernel ridge regression on
the training dataset (bottom rows).

Ratio Starting point 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

10% Test Acc 46.83 45.91 46.11 46.62 44.20 46.25 45.34 47.28 48.72 47.49 48.84 47.40 46.24 46.50 46.72 45.02 43.28 39.70 32.49
Regression Acc 35.05 35.45 35.71 35.84 35.74 35.72 35.89 35.99 36.03 36.06 36.05 36.04 36.19 36.23 36.24 36.17 35.90 35.01 32.43

20% Test Acc 60.55 62.32 59.67 62.83 61.27 61.89 62.19 60.92 61.28 61.17 59.42 59.50 58.73 56.86 54.70 52.21 46.59 - -
Regression Acc 44.72 44.91 44.83 44.72 44.59 44.54 44.35 44.21 44.12 43.94 43.89 43.84 43.75 43.65 43.39 42.81 41.30 - -

30% Test Acc 67.16 68.22 67.62 67.98 67.82 67.91 68.19 66.84 66.78 65.54 64.67 62.62 61.73 58.72 55.50 - - - -
Regression Acc 52.19 52.14 51.93 51.70 51.52 51.26 51.04 50.83 50.65 50.46 50.30 50.14 49.86 49.39 48.36 - - - -

40% Test Acc 70.47 70.60 71.33 71.31 70.86 70.13 69.77 69.08 68.19 67.30 66.19 63.77 61.41 - - - - - -
Regression Acc 53.48 53.41 53.23 52.98 52.74 52.54 52.27 52.05 51.87 51.67 51.42 50.99 50.14 - - - - - -
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Figure 6: Cross-architecture experiments with EfficientNet-B0, where sample scores are calculated
using ResNet18 model. Full results are reported in Table 17.

F SLIDING WINDOW EXPERIMENT FOR LABEL-NOISE DATASET

Table 10: Comparison of window subsets of CIFAR-10 dataset with 20% label noise in terms of their
1) test accuracy, measured on models trained with the window subsets (top rows) and 2) accuracy
of kernel ridge regression on the training dataset (bottom rows). We also report the noise portion
with each window subset. The best window alignment between the two measures gets less accurate,
compared to the case without label noise, since our method (regression) tends to choose more easier
samples. However, such tendency also makes the choice of window subset mostly composed of
clean-label samples.

Ratio Starting point 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

10%
Test Acc 7.23 8.98 13.64 34.72 63.55 75.70 80.74 83.82 84.40 84.61 85.22 85.63 85.72 85.28 84.86 84.04 83.61 82.80 80.77

Regression Acc 51.54 55.95 58.10 59.52 60.42 61.68 63.86 64.94 66.11 67.58 68.74 69.64 69.73 70.09 70.20 70.43 70.54 70.13 69.73
Noise Portion 92% 85% 69% 39% 15% 8% 5% 4% 4% 4% 3% 3% 3% 3% 3% 3% 3% 3% 3%

20%
Test Acc 9.80 18.15 37.57 65.49 81.84 87.60 88.89 89.35 89.26 89.04 88.62 88.44 88.08 87.17 86.78 86.14 84.75 - -

Regression Acc 73.28 75.17 76.06 77.03 78.38 78.66 79.05 79.63 80.01 80.47 80.67 80.67 80.66 80.63 80.70 80.60 80.35 - -
Noise Portion 80% 62% 42% 24% 10% 6% 5% 4% 4% 3% 3% 3% 3% 3% 3% 3% 3% - -

30%
Test Acc 21.87 39.90 64.11 81.54 89.04 90.89 91.12 90.76 90.55 89.95 89.61 89.14 88.55 88.08 87.09 - - - -

Regression Acc 80.43 81.39 82.33 83.20 83.45 83.84 84.10 84.30 84.36 84.55 84.47 84.60 84.39 84.41 84.16 - - - -
Noise Portion 59% 44% 30% 17% 8% 5% 4% 4% 3% 3% 3% 3% 3% 3% 3% - - - -

40%
Test Acc 40.00 61.73 78.89 88.17 91.52 92.06 91.80 91.54 91.03 90.29 89.67 89.32 89.11 - - - - - -

Regression Acc 86.19 86.50 86.63 86.87 86.96 87.11 87.21 87.16 87.29 87.39 87.25 87.25 87.16 - - - - - -
Noise Portion 45% 34% 23% 14% 7% 5% 4% 4% 3% 3% 3% 3% 3% - - - - - -

G ADDITIONAL EXPERIMENTS

G.1 CROSS ARCHITECTURE ROBUSTNESS

In this section, we conduct data pruning experiments on the CIFAR-10 dataset, utilizing the
EfficientNet-B0 architecture (Tan & Le, 2019). We create our window subsets from samples ranked
by their Forgetting score, calculated using the ResNet18 framework. The best window selection
(Alg. 1) and model training processes are performed using the EfficientNet-B0 architecture. We
closely follow the implementation details of Tan & Le (2019), by setting the learning rate to 1e− 4
and a weight decay of the same magnitude. Other implementation specifications are the same with
the details in Sec. C.2 of CIFAR-10. The results on the EfficientNet-B0 framework are presented
in Fig. 6. Our proposed BWS methodology consistently outperforms other benchmark methods,
demonstrating its robustness to architecture changes during sample scoring and training.
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G.2 ABLATION STUDY ON DIFFICULTY SCORES

Table 11: Test accuracy of the BWS algorithm at different data selection ratios, depending on the
difficulty score. Owing to the high correlation between the difficulty scores, there is a similar sorting
order across them and similar window positions are selected, regardless of the specific difficulty
score in use. This uniformity in selection leads to consistently strong performance irrespective of
the chosen difficulty score.

Selection methods Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90%

BWS with EL2N Test accuracy 60.97 81.58 86.15 90.51 92.30 93.44 94.93 95.04 95.28
Window index 85% 60% 45% 25% 15% 10% 0% 0% 0%

BWS with forgetting Test accuracy 63.14 81.31 88.05 91.29 93.17 94.38 94.93 95.20 95.22
Window index 90% 70% 35% 25% 15% 5% 0% 0% 0%

Oracle window Test accuracy 65.73 83.03 88.05 91.69 93.35 94.38 94.93 95.20 95.22
Window index 80% 50% 35% 20% 10% 5% 0% 0% 0%

In the implementation of our BWS algorithm, we employ the Forgetting score (Toneva et al., 2019)
as a difficulty score. To test the algorithm’s adaptability to alternative difficulty scores, we examine
its performance when configured with the EL2N score (Paul et al., 2021). Table 11 compares the
results achieved by our BWS algorithm when driven by the EL2N score against those obtained with
the Forgetting score. Regardless of whether the algorithm uses the Forgetting score or the EL2N
score, both the results achieve competitive performances near that of the oracle window across a
wide range of selection ratios. We anticipate that the observed phenomenon arises due to a strong
correlation between the difficulty scores. The rank correlation between the EL2N score and the
forgetting score used for comparison is notably high as 0.8836. This suggests that samples sorted by
the two difficulty scores would likely follow a similar order. As a result, the best windows selected
by BWS for the two different score cases exhibit similarity, as shown by Table 11. This consistency
shows that the effectiveness of BWS is not limited by the choice of the difficulty score, highlighting
its robustness to the sample scores used in sorting.

G.3 ABLATION STUDY ON WINDOW TYPE: TWO HALF-WIDTH SLIDING WINDOWS

BWS sorts samples in a dataset by their difficulty scores and then selects the optimal window subset
from one continuous single-interval regime. Thus, the window selection chooses the samples of
similar difficulty level. Our ablation study in Table 3 compares different types of subsets (in ad-
dition to the hard-only or easy-only windows), such as “Hard-easy”, which combines the easy and
hard samples with equal portions, or “25-75%”, which includes random samples from a moderate
regime after pruning a fixed portion of too easy or hard samples. Compared to these non-contiguous
subset selection methods, our window selection consistently achieves better performance over all
the selection ratios (10 to 40%) by cleverly choosing the window starting point.

To further examine any possible benefit from non-contiguous subset selection, we conduct an ad-
ditional experiment on the CIFAR-10 dataset by finding the optimal two half-width windows while
varying their starting points. In detail, we sort the samples from CIFAR-10 in descending order
based on Forgetting score (Toneva et al., 2019) similar to Sec. 4 and for a subset of size w%, we
search over all combinations of two half-width windows, denoted by [x1, x1+w/2]∪ [x2, x2+w/2]
while varying their starting points (x1, x2) in x1 ∈ [0, 100 − w] and x2 ∈ [x1 + w/2, 100 − w/2]
with a step size of 5%. We train ResNet18 on each subset and evaluate the corresponding test ac-
curacies. The full results are presented in Fig. 7, and in Table 12 we report the top five results (the
compositions of half-width windows and their test accuracies) for subset ratios ranging from 10 to
40%. We highlight the cases where the two half-width windows are contiguous to each other with
bold letters.

We can observe that for every considered subset ratio, the top-five best performing cases include
contiguous windows (or windows near to each other with the gap of only 5%), even though we
allowed flexibility in choosing the two half-width windows far away from each other. This result
further supports our use of window selection, which only considers subsets from a continuous in-
terval of samples based on difficulty scores, in choosing near-optimal subset in an efficient manner
across a broad range of selection ratios.
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Figure 7: Test accuracy of the models trained with two half-width windows of varying starting
points. The numbers in axes indicate the starting points of each interval, and the color indicates
the test accuracy for each composition of half-width windows. We can observe that the contiguous
windows (or windows near to each other) achieve one of the best performances.

Table 12: Top-five test accuracies and their corresponding half-width window compositions on
CIFAR-10 dataset. We highlight the cases where the two half-width windows are contiguous to
each other with bold letters.

Ratio Ranking 1st 2nd 3rd 4th 5th

10% Half-width windows 35-40%, 40-45% 40-45%, 45-50% 30-35%, 45-50% 40-45%, 50-55% 40-45%, 55-60%
Test Acc 88.05 87.82 87.80 87.74 87.71

20% Half-width windows 20-30%, 30-40% 15-25%, 35-45% 20-30%, 35-45% 15-25%, 25-35% 25-35%, 35-45%
Test Acc 91.69 91.61 91.56 91.34 91.29

30% Half-width windows 10-25%, 30-45% 10-25%, 25-40% 5-20%, 45-60% 15-30%, 30-45% 15-30%, 35-50%
Test Acc 93.47 93.35 93.31 93.17 93.11

40% Half-width windows 5-25%, 30-50% 5-25%, 25-45% 0-20%, 25-45% 5-25%, 35-55% 5-25%, 40-60%
Test Acc 94.68 94.38 94.35 94.23 94.11

H FULL RESULTS

In Table 13, 14, 15, and 16, the oracle window achieves the highest performance among the con-
sidered methodologies for almost every selection ratio and dataset, since it finds the best window
by directly measuring and comparing the test accuracy of models trained by each window using the
test dataset. Since the oracle window cannot be implemented in practice, it is fair to compare the
performances among the methods except the oracle window. Thus, we highlight the highest and the
second-highest values among the rest of the methodologies except the oracle window.
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Table 13: Test accuracy of CIFAR-10 dataset. We highlight the highest values in bold and the
second-highest values in underscore.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90% 100%

Forgetting 30.56±1.28 45.86±3.44 58.88±1.90 81.29±0.62 90.88±0.25 94.23±0.03 94.92±0.07 95.17±0.07 95.11±0.05

95.46±0.02

EL2N 16.10±0.65 28.71±0.55 43.53±1.62 74.91±0.67 90.33±0.07 93.81±0.01 94.86±0.16 95.38±0.03 95.39±0.11
LCMat 51.24±1.05 78.15±0.59 84.06±0.15 89.16±0.37 91.82±0.22 93.11±0.11 93.74±0.15 94.86±0.11 95.26±0.16

AdaCore 50.94±2.23 77.94±0.52 84.04±0.09 89.03±0.35 91.74±0.12 93.27±0.23 93.76±0.12 94.92±0.05 95.25±0.23
CCS 33.58±0.61 71.15±1.43 81.56±0.23 89.28±0.34 92.50±0.16 93.98±0.12 94.78±0.12 95.24±0.16 95.32±0.15

Moderate DS 54.76±2.22 77.51±0.38 83.61±0.26 87.86±0.03 89.90±0.07 91.33±0.03 92.04±0.16 93.97±0.01 94.75±0.14
Random 49.59±5.75 77.35±0.11 84.14±0.42 89.15±0.13 91.10±0.33 92.41±0.28 93.29±0.15 94.60±0.20 95.01±0.09

BWS (Ours) 63.14±1.06 81.31±0.38 88.05±0.04 91.29±0.06 93.17±0.02 94.38±0.12 94.93±0.07 95.20±0.10 95.22±0.19
Oracle window 65.73±1.09 83.03±0.14 88.05±0.04 91.69±0.18 93.35±0.16 94.38±0.12 94.93±0.07 95.20±0.10 95.22±0.19

Table 14: Test accuracy of CIFAR-100 dataset. We highlight the highest values in bold and the
second-highest values in underscore.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90% 100%

Forgetting 11.71±0.10 23.19±0.93 34.32±1.71 48.83±0.26 59.11±2.10 66.18±1.17 71.67±1.19 77.43±0.18 78.33±0.72

78.96±0.26

EL2N 5.32±0.10 8.71±0.07 14.30±0.85 27.88±0.66 42.87±1.15 57.68±1.76 67.88±1.68 76.65±0.23 78.02±0.44
LCMat 16.16±0.33 35.21±0.83 46.80±0.82 57.25±0.04 63.28±1.46 67.82±0.85 71.74±0.64 76.66±0.52 78.01±0.56

AdaCore 10.36±0.27 28.90±0.27 42.48±1.80 56.06±0.08 63.79±0.97 69.50±0.44 71.93±0.24 75.36±0.19 78.30±0.34
CCS 12.20±0.58 32.73±0.33 44.63±2.13 56.15±0.85 63.16±1.24 66.77±0.70 69.95±0.30 75.67±0.35 77.57±0.39

Moderate DS 14.01±2.35 32.55±2.92 46.59±2.54 58.01±1.49 63.97±0.37 68.51±1.12 70.80±1.10 75.74±0.86 77.84±0.61
Random 11.25±0.69 30.97±1.43 41.76±1.43 56.33±0.25 64.09±0.24 68.10±0.62 70.57±0.59 76.16±0.15 77.65±0.57

BWS (Ours) 17.20±0.12 39.13±0.37 48.69±0.41 59.80±0.49 65.34±1.04 69.53±1.11 72.27±1.06 78.20±0.40 77.96±0.17
Oracle window 18.92±0.54 39.33±1.64 49.10±0.30 59.80±0.49 65.48±0.53 70.81±0.97 74.11±0.33 78.20±0.40 78.08±0.39

Table 15: Test accuracy of ImageNet dataset. We highlight the highest values in bold and the second-
highest values in underscore.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90% 100%

Forgetting 4.78±0.10 28.18±0.46 45.84±0.67 60.75±0.60 67.48±0.11 70.26±0.48 72.73±0.09 74.63±0.13 75.53±0.06

75.85±0.07

EL2N 2.10±0.08 9.80±0.03 20.42±0.47 41.14±0.04 54.42±0.39 63.19±0.29 68.19±0.13 73.91±0.36 74.79±0.27
LCMat 6.01±0.31 32.26±0.84 46.08±0.64 59.02±0.36 65.28±0.21 68.50±0.56 70.30±0.46 74.13±0.12 74.81±0.02

AdaCore 6.01±0.44 31.52±0.58 46.98±0.80 59.26±1.58 65.18±0.05 68.28±0.05 70.72±0.04 73.53±0.13 74.69±0.00
CCS 5.04±0.40 31.83±0.62 46.64±1.08 58.77±0.80 64.85±0.12 67.82±0.24 69.89±0.24 73.57±0.12 74.59±0.03

Moderate DS 5.97±0.60 32.47±0.21 47.83±0.11 58.86±0.14 64.71±0.01 67.47±0.03 69.73±0.08 73.16±0.25 74.67±0.07
Random 6.14±0.01 33.17±0.11 45.87±0.07 59.19±0.04 65.94±0.38 68.23±0.00 70.14±0.31 73.74±0.14 74.83±0.08

BWS (Ours) 7.02±0.10 33.31±0.70 46.72±0.21 62.32±0.47 67.16±0.12 70.47±0.17 72.68±0.14 74.73±0.04 75.25±0.34
Oracle window 7.97±0.29 33.58±0.11 48.84±0.34 62.83±0.08 68.22±0.69 71.33±0.29 72.74±0.36 74.73±0.04 75.25±0.34

Table 16: Test accuracy of CIFAR-10 dataset by training a simple CNN architecture. We highlight
the highest values in bold and the second-highest values in underscore.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90% 100%

Forgetting 35.33±0.45 43.33±0.64 51.90±0.59 67.87±0.28 76.76±0.43 81.60±0.59 84.34±0.73 87.16±0.60 87.71±0.15

88.10±0.23

EL2N 18.06±0.13 31.04±0.36 42.59±0.53 63.19±0.25 75.15±0.47 81.13±0.85 84.39±1.02 87.00±0.50 87.23±0.35
LCMat 49.72±0.27 66.91±0.32 73.14±0.80 79.12±0.74 82.10±0.76 84.32±0.57 85.58±0.35 87.20±0.50 87.68±0.45

AdaCore 49.72±0.27 66.91±0.32 73.14±0.80 79.12±0.74 82.10±0.76 84.32±0.57 85.58±0.35 87.20±0.50 87.68±0.45
CCS 39.42±0.46 58.84±0.27 68.37±0.48 76.90±0.48 81.41±0.41 84.08±0.45 85.44±0.22 87.17±0.18 87.87±0.33

Moderate DS 50.26±0.26 67.99±0.24 72.66±0.53 78.07±0.60 80.90±0.81 82.47±0.59 83.34±0.60 85.72±0.41 86.84±0.57
Random 48.99±1.13 66.13±0.23 73.87±0.70 79.71±0.68 82.36±0.60 83.91±0.45 84.91±0.86 87.12±0.36 87.39±0.33

BWS (Ours) 57.49±0.69 72.15±0.33 78.34±0.19 81.56±0.41 83.74±0.33 84.91±0.62 85.76±0.05 87.45±0.13 87.71±0.25
Oracle window 57.49±0.69 73.43±0.19 78.34±0.19 81.99±0.41 83.98±0.39 84.92±0.13 86.17±0.36 87.45±0.13 87.71±0.25

Table 17: Test accuracy of CIFAR-10 dataset by training EfficientNet-B0 architecture. We highlight
the highest values in bold and the second-highest values in underscore.

Selection ratio 1% 5% 10% 20% 30% 40% 50% 75% 90% 100%

Forgetting 28.34±0.82 37.65±1.11 56.51±2.43 76.22±0.48 84.68±0.48 87.47±0.18 90.15±0.06 91.09±0.22 91.12±0.08

91.61±0.12

EL2N 15.63±0.67 26.93±1.39 44.75±2.73 72.31±0.39 83.48±0.57 87.77±0.49 89.42±0.50 91.09±0.26 91.04±0.44
LCMat 45.40±3.60 71.91±0.83 79.07±0.77 84.35±0.42 87.13±0.37 88.66±0.17 89.64±0.35 90.56±0.27 90.85±0.20

AdaCore 47.97±2.37 72.62±0.86 78.80±0.77 84.21±0.23 86.98±0.36 88.52±0.03 89.72±0.23 90.67±0.13 91.01±0.11
CCS 30.84±1.04 62.51±2.86 76.36±0.89 84.15±0.20 87.08±0.23 88.92±0.18 89.98±0.21 91.11±0.46 91.30±0.20

Moderate DS 45.98±3.67 73.09±0.45 78.29±0.11 82.96±0.40 85.54±0.28 86.53±0.29 87.72±0.09 89.42±0.28 90.44±0.23
Random 47.37±1.28 68.74±2.08 79.03±0.28 84.57±0.54 86.55±0.21 87.69±0.14 88.80±0.14 90.29±0.30 90.56±0.03

BWS (Ours) 56.40±0.79 75.06±0.48 82.38±0.09 86.98±0.72 88.17±0.33 90.01±0.17 91.30±0.15 92.14±0.27 92.39±0.13
Oracle window 56.40±0.79 76.43±1.68 82.81±0.27 87.30±0.15 89.37±0.25 90.95±0.17 91.37±0.30 92.14±0.27 92.39±0.13
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Table 18: Test accuracy of CIFAR-10 dataset by fine-tuning ViT pretrained using ImageNet.We
highlight the highest values in bold and the second-highest values in underscore.

Selection ratio 1% 5% 10% 20% 100%

Forgetting 93.75±1.10 98.00±0.14 98.45±0.03 98.67±0.06

98.76±0.02

EL2N 84.63±1.77 96.59±0.14 97.83±0.14 98.42±0.10
LCMat 93.32±0.42 97.07±0.32 97.83±0.10 98.28±0.04

AdaCore 94.45±0.54 97.05±0.12 97.88±0.11 98.28±0.09
CCS 94.83±0.31 97.84±0.08 98.23±0.08 98.52±0.03

Moderate DS 94.73±0.58 97.22±0.06 97.69±0.08 98.04±0.04
Random 94.87±0.67 97.47±0.06 97.89±0.09 98.14±0.06

BWS (Ours) 95.47±0.37 98.04±0.32 98.45±0.01 98.70±0.05
Oracle window 97.22±0.30 98.18±0.21 98.45±0.01 98.70±0.05

Table 19: Test accuracy of 20% noise CIFAR-10 dataset. We highlight the highest values in bold
and the second-highest values in underscore.

Selection ratio 10% 20% 30% 40% 100%

Forgetting 53.64±0.73 64.92±0.99 70.97±0.11 74.25±0.26

86.45±0.47

EL2N 6.53±0.10 9.73±0.33 21.65±0.24 39.42±0.44
LCMat 63.70±2.10 75.99±0.66 80.90±0.69 82.61±0.43

AdaCore 10.71±0.46 11.09±0.26 39.61±0.13 60.37±0.78
CCS 62.43±2.03 73.98±1.15 79.28±0.04 81.70±0.14

Moderate DS 83.55±0.32 88.90±0.08 90.97±0.18 92.27±0.08
Random 72.46±0.71 78.99±0.49 82.16±0.28 83.73±0.54

BWS (Ours) 83.61±0.34 86.78±0.03 89.14±0.24 90.29±0.10
Oracle window 85.72±0.15 89.35±0.09 91.12±0.16 92.06±0.05
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