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Abstract

Reconstructing a sequence of sharp images from the blurry input is crucial for
enhancing our insights into the captured scene and poses a significant challenge due
to the limited temporal features embedded in the blurry image. Spike cameras, sam-
pling at rates up to 40,000 Hz, have proven effective in capturing motion features
and beneficial for solving this ill-posed problem. Nonetheless, existing methods
fall into the supervised learning paradigm, which suffers from notable performance
degradation when applied to real-world scenarios that diverge from the synthetic
training data domain. To address this challenge, we propose the first self-supervised
framework for the task of spike-guided motion deblurring. Our approach begins
with the formulation of a spike-guided deblurring model that explores the theo-
retical relationships among spike streams, blurry images, and their corresponding
sharp sequences. We subsequently develop a self-supervised cascaded framework
to alleviate the issues of spike noise and spatial-resolution mismatching encoun-
tered in the deblurring model. With knowledge distillation and reblur loss, we
further design a lightweight deblur network to restore high-quality sequences with
brightness and texture consistency with the original input. Quantitative and qualita-
tive experiments conducted on our real-world and synthetic datasets with spikes
validate the superior generalization of the proposed framework. Our code, data and
trained models are available at https://github.com/chenkang455/S-SDM.

1 Introduction

Traditional cameras, constrained by their exposure-based imaging mechanism, often produce blurry
images when capturing fast-moving objects or during camera movement throughout the exposure
process [19, 35]. While these blurry images lose significant details, the ability to recover dynamic
motion trajectories from the static blurry input becomes critically important. However, the inherent
challenge lies in the limited motion features available within blurry frames, leading to potential
ambiguities such as multiple motion trajectories corresponding to the same blurry input. This is
exemplified by scenarios where two objects move along the same trajectory but in opposite directions
[23, 24, 38], rendering the task of motion deblurring ill-posed. Recent advancements in learning-
based approaches [40, 12, 46] seek to address this challenge by establishing direct mappings from
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Figure 1: Illustration of the superiority of our self-supervised framework (S-SDM) over supervised
methods. Supervised methods, while effective on synthetic datasets, suffer from a significant perfor-
mance decline when applied to real-world datasets, primarily due to data distribution discrepancies. In
contrast, our self-supervised framework, necessitating no Ground Truth (GT) for training, seamlessly
bridges this dataset gap through fine-tuning on real-world datasets.

blurry inputs to sharp sequences in a supervised learning manner. Despite these efforts, traditional
cameras struggle to capture fine details in high-speed motion due to their exposure constraints, thus
limiting the effectiveness of these methods in scenarios not covered by the training datasets.

In recent years, neuromorphic cameras [9, 10], leveraging their ultra-high temporal resolution and
high dynamic range, have found widespread use in many fields, including computer vision and
robotics. These cameras, including event and spike cameras, are distinguished by their ability to
produce high temporal resolution outputs directly tied to changes in light intensity. Specifically,
event cameras generate events in areas where light intensity changes [4], while spike cameras capture
the absolute brightness of the scene at each pixel, offering a stream of spikes as output [10]. This
distinctive feature endows spike cameras with a significant advantage [47, 45, 48, 5, 41, 6] in capturing
and recovering sharp texture from scenes with rapid motion.

Recent studies [2, 8] have explored the potential of RGB-Spike fusion, i.e., harnessing the strengths of
both traditional and spike cameras to reconstruct sharp sequences from blurry inputs. However, their
frameworks are constrained within the supervised learning paradigm, which necessitates extensive
datasets comprising pairs of blurry and sharp images, as well as spike sequences. While synthetically
acquiring such paired data, as demonstrated in previous studies [8, 4, 24], is feasible, collecting them
in real-world scenarios presents the following challenges: (1) high-speed cameras are prohibitively
expensive and not readily deployable in many settings; (2) spatial-temporal calibration between spike
cameras and high-speed RGB cameras complicates the data collection process. These problems
render the fine-tuning of supervised methods on real-world datasets challenging, further leading to
their performance deterioration in such environments as shown in Fig. 1. The resulting degradation
in image quality, manifesting as color distortion, brightness inconsistency, and inaccurate texture
restoration, is mainly caused by the disparity between synthetic and real-world datasets, especially
in terms of the density of spike stream, spike generation mechanism, and blurry image generation.
Moreover, the effectiveness of supervised methods is inherently limited by the ground truth sequences
created through motion analysis interpolation algorithms [22, 11], which inherently differs from the
real-world scene and thus affects the model’s generalization ability.

To overcome these issues, we propose the first-of-its-kind Self-supervised Spike-guided Deblurring
Model (S-SDM), capable of recovering the continuous sharp sequence from a single blurry input
with the assistance of low-resolution spike streams. We begin with a theoretical analysis of the
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relationship between spike streams, blurry images, and sharp sequences, leading to the development
of our Spike-guided Deblurring Model (SDM). We further construct a self-supervised processing
pipeline by cascading the denoising network and the super-resolution network to reduce the sensitivity
of the SDM to spike noise and its reliance on spatial-resolution matching between the two modalities.
To reduce the computational cost and enhance the utilization of spatial-temporal spike information
within this pipeline, we further design a Lightweight Deblurring Network (LDN) and train it based
on pseudo-labels from the teacher model, i.e., the established self-supervised processing pipeline.
Further introducing reblur loss during LDN training, we achieve better restoration performance and
faster processing speed than the processing-lengthy and structure-complicated teacher model. To
validate the performance of our S-SDM across various scenarios, we build an RGB-Spike binocular
system and propose the first spatially-temporally calibrated Real-world Spike Blur (RSB) dataset in
this community. Quantitative and qualitative experiments conducted on the real-world and synthetic
datasets validate the superiority of our method. In summary, our key contributions are:

• We develop a self-supervised spike-guided image deblurring framework, addressing the
performance degradation due to the synthetic-real domain gap in supervised methods.

• We perform an in-depth theoretical analysis of the fusion between the spike stream and
blurry image, leading to the development of the SDM.

• We propose a real-world dataset RSB and experiments on GOPRO and RSB datasets validate
the superior generalization of our S-SDM.

2 Related Work

Spike Camera. The spike camera, inspired by the primate retina, stands apart from conventional
cameras with its ability to generate synchronous spike streams for each pixel at extremely low
latency. This distinct feature provides significant advantages in various applications such as high-
speed imaging [47, 45, 48, 5, 41, 6, 33], optical flow estimation [43], object detection [44], 3D
reconstruction [30], depth estimation [34], motion deblurring [8, 32], and occlusion removal [31].

Spike-guided Motion Deblurring. While the spike camera boasts an ultra-high temporal resolution,
its development is currently impeded by the low spatial resolution. Additionally, the single-channel
output from the spike camera restricts previous methods from recovering the image color information.
To address these issues, a promising approach is establishing an RGB-Spike hybrid imaging system [2].
The binocular system achieves the multi-modality fusion of High-spatial/Low-temporal RGB blurry
input and High-temporal/Low-spatial spike stream, thereby also serving as a spike-guided motion
deblurring method [8]. However, to the best of our knowledge, existing spike-guided deblurring
methods [2, 8] predominantly rely on supervised training on synthetic datasets. This reliance results
in significant performance degradation when these methods are evaluated in real-world scenarios due
to the domain discrepancies between synthetic and real datasets as illustrated in Fig. 1.

Event-based Motion Deblurring. Event camera [21] can asynchronously generate events that record
log-intensity changes at the pixel level with minimal latency, which contains a rich set of motion
features beneficial for motion deblurring tasks. Numerous supervised methods [16, 4, 3, 16, 23, 24]
have been proposed to learn the mapping from the blurry input, events to the sharp outcome. Despite
these advancements, a major hurdle remains in obtaining real blurry-sharp image pairs for training.
To overcome the domain gap between synthetic and real-world datasets, recent methods [29, 38, 39]
explored the mutual constraint between the blurry image and event stream, enabling the training of
networks on real-world blur datasets.

3 Method

3.1 Preliminaries

Spike Camera Mechanism. Consider L(t) to represent the latent sharp frame at time t. Each pixel p
in the spike camera [10] has an integrator that accumulates the incoming photons at a high frequency.
Once the cumulative intensity exceeds a predefined threshold C at time te, pixel p emits a spike,
and the accumulation of photons is reset to zero. This process can be mathematically described as
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follows: ∫ te

ts

L(t)dt ≥ C, (1)

where ts denotes the firing time of the previous spike. While the spike camera is capable of generating
asynchronous spike streams akin to that of event cameras, its effectiveness is constrained by the
inherent limitations of its physical circuitry, which necessitates reading spikes at a predetermined
sampling rate. We denote the generated spike stream as S ∈ {0, 1}K×1×H×W , where H and W
signify the height and width of the image, and K represents the length of the spike sequence.

Problem Formulation. In traditional photography, motion blur occurs when there is relative
movement between the camera and the scene during the exposure period. According to the motion
blur physical model [9], the blurry image B can be represented as the average of the latent frame
L(t) over the exposure T , i.e.:

B =
1

T

∫
t∈T

L(t)dt, (2)

where T represents the exposure period. Despite the spike camera’s superior temporal resolution, its
spatial resolution remains comparatively low. This limitation is primarily attributed to the constraints
in data transmission bandwidth and the challenges inherent in the manufacturing process. Here,
we postulate that the spatial resolution of the spike camera is approximately one-quarter that of a
conventional RGB camera.

In this paper, we aim to enhance the High-spatial/Low-temporal resolution blurry input B ∈
R1×3×H×W into a sequence of High-Quality images {L(ti)}Ki=1 ∈ RK×3×H×W with the aid-
ing of High-temporal/Low-spatial resolution spike stream ST ∈ {0, 1}K×1×H

4 ×W
4 , which can be

mathematically formulated as:

{L(ti)}Ki=1 = Deblur(ti;B,ST ). (3)

In Eq. (3), Deblur(·) represents the Spike-guided Deblur-Net as shown in Fig. 1, i refers to the i-th
frame in the spike stream ST , and ti is the timestamp associated with this frame.

3.2 Theoretical Analysis

The spike camera, with its photodetector tailored to capture the single-channel light intensity, faces
difficulties in obtaining the color information that the multi-channel RGB camera can effortlessly
capture. Therefore, we modify the color intensity L(t) in Eq. (1) to the grayscale value Lg(t) for
further analysis: ∫ te

ts

Lg(t)dt ≥ C. (4)

In this formulation, Lg(t) = wr · Lr(t) + wgre · Lgre(t) + wb · Lb(t), where Lc(t), wc denote the
intensity and weight of channel c ∈ {r, gre, b} respectively.

Given the blurry input B and its corresponding spike stream ST , we incorporate Eq. (4) into the
motion blur model presented in Eq. (2). This integration formulates a link between the two modalities
as outlined below:

Bg =
C ·NT

T
, (5)

where Bg denotes the grayscale version of the blurry input, and NT denotes the total number of spikes
accumulated over the exposure period. The accumulation NT is calculated as NT =

∑K
i=1 S[i], with

S[i] indicating the i-th frame of the spike stream.

Within the exposure T , we consider a shorter spike sequence centered around the t moment ST ′ ∈
{0, 1}K′×1×H×W , satisfying K ′ � K, t ∈ T , and T ′ ⊂ T . Similar to Eq. (5), we can derive the
relationship between the short-exposure gray image Eg(t, T ′) and the short spike stream ST ′ as
follows:

Eg(t, T ′) =
1

T ′

∫
s∈T ′

Lg(s)ds =
C ·NT ′

T ′ , (6)

where T ′ � T represents the short exposure period.
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Figure 2: The schematic diagram of our proposed distillation self-supervised framework. The “ "
indicates that certain computations are executed in a non-network manner.

Given the observation that the color information of adjacent pixels often exhibits similarity under
the premise of minor motion amplitude, we postulate that the colors of the blurry input B and the
short-exposure image E(t, T ′) are identical. This assumption implies that the intensity proportion
among RGB channels in the blurry input αB

c and the short-exposure image αE
c (t, T ′) is approximately

equivalent, satisfying αB
c = Bg/Bc and αE

c (t, T ′) = Eg(t, T ′)/Ec(t, T ′). More details can be
found in the supplementary materials.

Upon establishing it, we move forward to build a mathematical relation between the blurry image
and the spike stream. By substituting the gray channel g with color channel c and dividing Eq. (5) by
Eq. (6), we efficiently eliminate the unknown threshold C and weights αB

c /α
E
c (t, T ′), leading to the

following equation:

Ec(t, T ′) = Bc ·
NT ′

NT
· T

T ′ . (7)

By applying Eq. (7) to RGB three channels, we explicitly establish the relationship between the color
blurry input B, the color short-exposure image E(t, T ′) and the spike stream ST as shown in Fig. 18.
Since the exposure period T ′ is relatively short, it is reasonable to assume that the scene remains
static. In this context, we interpret the short-exposure image E(t, T ′) as the latent sharp frame L(t),
allowing us to modify Eq. (7) as follows:

L(t) = B · NT ′

NT
· T

T ′ . (8)

To this end, we have conducted a comprehensive theoretical analysis of the spike-guided motion
deblurring task, which is neglected in prior learning-based motion deblur methodologies [2, 8]. For
further discussion readability, we refer to Eq. (8) as the Spike-guided Deblurring Model (SDM),
which is analogous to the baseline motion deblur model EDI [18] in event camera.

3.3 Self-supervised Spike-guided Deblurring Model

3.3.1 Processing Pipeline

While SDM theoretically allows for the fusion of the blurry image and the spike stream, its practical
deployment faces the following obstacles:

• The deblurred image E(t, T ′) suffers from noise-related degradation due to the lack of
adequate spike information during the short exposure T ′.
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• The spatial resolution of the spike camera is approximately one-quarter of the RGB camera,
rendering the SDM implementation impractical.

To overcome these limitations, we further cascade the self-supervised denoising network to eliminate
the spike noise in NT ′ and super-resolution network to match spatial resolutions of the blurry image
and spike stream, with the processing pipeline illustrated in the bottom of Fig. 2.

Denoising Network. We leverage the Blind Spot Network (BSN) [13, 1, 27, 5, 14, 7] to predict the
clean spike accumulation NT ′ from the input short-exposure spike stream ST ′ . The core idea of BSN
is to design the blind-spot strategy that compels the convolutional layer to estimate the clean value of
each pixel solely based on its surrounding pixels.

Under the premise that the spike stochastic thermal noise is independent identically distributed [42],
the BSN is trained to deduce sharp spike frames from the input, with the loss function formulated as:

LBSN = ||BSN(ST ′ ; Θ1)−NT ′)||22, (9)

where the denoised spike frame BSN(ST ′ ; Θ1) is denoted by Lbsn(t) for further analysis.

Super-Resolution Network. In this task, we observe that the blurry input Bg and the long-exposure
spike frame NT exhibit the same texture features as shown in Eq. (5). This observation motivates us
to train the Super-Resolution (SR) network based on pairs of the blurry images and the long-exposure
spike frames.

We leverage the well-explored Enhanced Deep Super-Resolution network (EDSR) [15] as the back-
bone of our SR network, with the loss function formulated as follows:

LEDSR = ||EDSR(NT ; Θ2)−Bg||22. (10)

With the training of the SR network completed, we freeze its parameters and apply it to the denoised
spike frame Lbsn(t), yielding the resolution-enhanced spike frame L↑

bsn(t).

3.3.2 Knowledge Distillation Framework

While the aforementioned processing pipeline achieves the multi-modality fusion of the blurry input
and the spike stream, several aspects still need refinement:

• The framework is lengthy and computationally demanding, which hinders its suitability for
real-time system deployment.

• The blind-spot strategy of the BSN limits the full utilization of the spatial information
inherent in the spike stream.

• The representation of the short-exposure image does not fully reflect the advantages of the
high temporal resolution inherent in the spike stream.

To improve them, we further build a knowledge distillation framework building upon the existing
processing pipeline. This pipeline serves as the teacher model, providing the reconstructed sequence
as pseudo-labels for the training of the student model LDN, as illustrated in Fig. 2.

Lightweight Deblur Network. LDN adheres to a similar input and output pattern as previous
research [8], i.e., taking the blurry input B and the short spike stream ST ′ centered around moment t
as inputs, with the output being the reconstructed sharp image Lldn(t), mathematically formulated as
follows:

Lldn(t) = LDN(B,ST ′ ; Θ3), (11)
Full details regarding the LDN structure are available in the supplementary materials.

To avoid the scenario where the LDN exactly replicates the mapping of the teacher model, we design
the teacher loss Ltea based on the LPIPS [36] loss and further introduce the blur reconstruction loss.
The reblur loss Lreblur measures the difference between the blurry input B and the re-synthesized
blurry image B̃, satisfying:

B̃ =
1

M

M∑
m=1

Lldn(tm), (12)

where Lldn(tm) represents the m-th recovered image within the exposure period T and M is the total
number of reconstructed images. Finally, we sum up two loss functions with the weighting parameter
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where ‘M-ETR’ refers to Motion-ETR [32] and ‘Spk-Net’ denotes SpkDeblurNet [8].
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Figure 4: Qualitative comparison for the sequence reconstruction on the RSB dataset.

λ, and the final loss function is formulated as follows:

L = Ltea + λ · Lreblur (13)

=

M∑
m=1

LLPIPS(L
↑
bsn(tm),Lldn(tm)) + λ · LMSE(B̃,B). (14)

4 Experiments

4.1 Dataset

Synthetic Data. For quantitative analysis of our spike-guided motion deblurring task, we construct
the synthetic dataset based on the widely employed GOPRO [17] dataset. We initially utilize the
interpolation algorithm XVFI [22] to augment the video frame by interpolating additional 7 frames
between each pair of consecutive sharp images. To generate the spike stream that mimics reality
closely, we downsample the interpolated video to the resolution of 320× 180 and simulate the spike
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Table 1: Quantitative comparison of the sequence reconstruction task on the GOPRO dataset.

Methods Spike
Vth=1 Vth=2 Vth=4

Params
PSNR SSIM PSNR SSIM PSNR SSIM

LEVS[12] × 21.155 0.601 21.155 0.601 21.155 0.601 4.97M

Motion-ETR[40] × 21.955 0.610 21.955 0.610 21.955 0.610 6.55M

BiT[46] × 23.644 0.698 23.644 0.698 23.644 0.698 11.3M

TRMD[4]+DASR[26] X 27.323 0.784 21.198 0.601 18.567 0.523 19.3M

RED[29]+DASR[26] X 24.456 0.741 23.178 0.674 21.942 0.608 9.76M

REFID[25]+DASR[26] X 28.124 0.819 15.288 0.339 13.623 0.274 15.9M

SpkDeblurNet[8] X 28.307 0.834 14.406 0.299 11.621 0.202 13.4M

S-SDM (Ours) X 26.893 0.757 26.367 0.740 25.433 0.699 0.23M

Blurry Image

SpkDeblurNet 𝑉𝑉𝑡𝑡𝑡= 1

Ours 𝑉𝑉𝑡𝑡𝑡= 1

Motion-ETR

SpkDeblurNet 𝑉𝑉𝑡𝑡𝑡= 2

Ours 𝑉𝑉𝑡𝑡𝑡= 2

BiT

SpkDeblurNet 𝑉𝑉𝑡𝑡𝑡= 4

Ours 𝑉𝑉𝑡𝑡𝑡= 4

Figure 5: Visual comparison of our S-SDM against other methods on the GOPRO dataset.

stream based on the spike simulator [42]. To replicate real-world motion blur, we synthesize each
blurry input by averaging 97 frames from interpolated video sequences.

Real-world Data. We construct an RGB-Spike binocular system and propose the first Real-world
Spike-guided Blur dataset (RSB) in this community. This system consists of a fixed-exposure
RGB camera (Basler acA1920-150uc) and a spike camera [10], enabling us to capture the blurry
image and the corresponding spike stream simultaneously. Further details about our RSB and the
spatial-temporal calibration for our binocular system are provided in the supplementary materials.

4.2 Experimental Results

We conduct both quantitative and qualitative comparisons of our S-SDM against state-of-the-art
(SOTA) motion deblurring methods, including frame-based Motion-ETR [40], LEVS [12], video-
based BiT [46], event-based TRMD [4], REFID [25], RED [29] and spike-based SpkDeblurNet [8]
on the GOPRO and RSB datasets. For event-based methods, we replace the event stream with the
spike stream and adopt the same input representation in these methods [29, 25, 4]. We further cascade
the image super-resolution technique DASR [26] as in [39] for the deblurred sequence to overcome
the modality resolution inconsistency which is not considered in these methods. We reconstruct 7
images from one blurry input for sequence restoration evaluation [39] as listed in Tab. 1.
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Table 2: Performance comparison between the SAN in GEM [39] and our designed LDN.

Methods PSNR ↑ SSIM ↑ Params (M) ↓ Flops (G) ↓
SAN [39] 27.283 0.773 2.36 107.84
LDN (Ours) 27.928 0.786 0.234 33.60

Results on GOPRO. To simulate the spike density domain gap as depicted in Fig. 1, we train all
supervised spike-based deblurring methods on the GOPRO dataset under spike threshold [42] Vth = 1
and evaluate them on datasets with spike thresholds Vth = 1, 2, 4. Quantitative comparison results
are listed in Tab. 1 and the visual comparison is demonstrated in Fig. 5. Given that the principal
contribution of our S-SDM is self-supervised learning, it is foreseeable that our method might be
slightly inferior to the supervised methods SpkdDeblurNet on the dataset with Vth = 1. While these
supervised methods deteriorate on datasets with Vth 6= 1, our method achieves great generalization
benefiting from the self-supervision design. Specifically, SpkDeblurNet tends to produce darker and
blurrier reconstructions on images with high thresholds as shown in Fig. 5. Besides, our method
achieves better restoration performance than the self-supervised method RED due to our consideration
of the spatial-resolution mismatch between two modalities and the designed teacher loss, which
imposes a stronger constraint than the optical loss in RED.

Results on RSB. We further present visualizations of single frame and sequence reconstruction
comparisons on the real-world RSB dataset as depicted in Fig. 3 and 4. Both frame-based and video-
based approaches fail to replicate fine textures and detailed elements present in the blurry input. While
SpkDeblurNet is capable of recovering structural details and the motion trajectory, it is deteriorated by
significant noise and color distortion under conditions with lower spike density than those simulated
in the GOPRO dataset. Similarly, in scenarios of higher spike stream densities, the restoration of
SpkDeblurNet tends to exhibit over-exposure, resulting in brightness inconsistency compared to the
blurry input. This over-exposure affects the dynamic range of the reconstructed image, ultimately
compromising the overall perceptual quality and uniformity of the restored sequence. Our method
addresses these challenges by finetuning on the RSB dataset, ensuring that the restored sequence
aligns with the real-captured blurry input and spike stream. More comparative experiments and
analyses are accessible in the supplementary material.

4.3 Ablation Study

We perform ablation experiments on the GOPRO and RSB datasets to evaluate the performance of
each module within S-SDM, the validity of our designed network architecture, as well as the overall
effectiveness of our distillation learning framework. In this subsection, we evaluate the performance
based on the single middle frame for simplicity.

Modules Cascading. Building upon the SDM, we sequentially cascade the BSN, the SR, and the
LDN to evaluate their respective effectiveness, with quantitative results on GOPRO presented in
Tab. 3. We employ bilinear interpolation as a substitute for the SR network in experiments I-1 and I-2
to align the spatial resolution of two modalities.

Qualitative ablation experiments are illustrated in Fig. 6. These comparisons reveal that while the
SDM effectively removes motion blur, it struggles with significant noise and detail loss due to the
spike noise and the low resolution of the spike stream. While the BSN mitigates noise and the SR
network improves spatial resolution explicitly, the LDN trained via distillation learning further refines
these enhancements, enabling the recognition of intricate textural features in the images, such as the
license plate and the door number shown in Fig. 6.

Network Architecture. While our designed LDN mirrors the Scale-aware Network (SAN) proposed
in the GEM [39], we replace the SAN with the LDN to compare the performance difference between
the two architectures as depicted in Tab. 2. Despite the simple design of our LRN, which consists
only of convolutional layers, ResBlocks, and basic modules such as CBAM [28], it outperforms SAN
in both PSNR and SSIM while requiring fewer parameters and less computation, demonstrating that
LDN is both sufficient and efficient for this task. This conclusion is consistent with our previous
discussion, i.e., the restoration performance of the self-supervised learning framework primarily
depends on the quality of pseudo-labels rather than the network architecture.

9



I-4I-3 GT

Blur I-1 I-2

I-4I-3 GT

Blur I-1 I-2

Blurry Input

Blurry Input

Figure 6: Modules cascading comparisons on GO-
PRO. Experiments ID can be viewed on Tab. 3.
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Table 3: Modules cascading ablation on GOPRO.

ID BSN SR LDN PSNR↑ SSIM↑
I-1 × 23.012 0.486
I-2 X 24.634 0.661
I-3 X X 26.144 0.708
I-4 X X X 27.928 0.786

Table 4: Distillation learning ablation on GOPRO.

ID Ltea Lreblur λ PSNR↑ SSIM↑
II-1 × X 10 23.102 0.441
II-2 X × / 26.563 0.723
II-3 X X 10 27.345 0.762
II-4 X X 50 27.742 0.778
II-5 X X 100 27.928 0.786
II-6 X X 200 27.620 0.783

Distillation Learning. We focus on analyzing the contribution of the teacher loss Ltea and the reblur
loss Lreblur within the distillation framework, with quantitative results listed in Tab. 4. Without the
teacher loss Ltea, the LDN tends toward learning identity mapping from the blurry input. While under
the guidance of the teacher model, the reblur loss Lreblur not only enforces motion consistency in the
reconstructed sequence but also enriches the LDN with high-resolution details from the non-blurry
regions of the input, thus improving the performance on GOPRO as listed in Tab. 4.

We further apply the LDN trained on GOPRO to the real-world dataset RSB, with qualitative
visualization illustrated in Fig. 7. As observed in the figure, the absence of the reblur loss Lreblur
leads to significant noise in the recovered image, which predominantly arises from the disparity in
spike density and generation mechanism between the simulated and real-captured spike stream. This
discrepancy causes the LDN to overestimate the spike number, resulting in black holes in regions with
lower spike density than simulated, which reflects the drawback inherent in the supervised learning
strategies as discussed in Sec. 1. Increasing the weight of the reblur loss Lreblur allows the LDN to
incorporate more information from the blurry input, thereby mitigating this issue. However, this
adjustment also leads to the presence of blurry edges. We follow the parameters set in Experiment
II-6 and retrain the LDN on the RSB dataset (referred to as Experiment II-7). The retrained LDN
effectively recovers the sharp edge of the calibration board and suppresses the spike noise in the
background, validating the feasibility of our self-supervised framework in real-world scenarios.

5 Conclusion

In this paper, we introduce a novel self-supervised spike-guided motion deblurring framework S-SDM,
which reconstructs sequences of sharp images from real-world blurry inputs with the spike stream.
Additionally, we construct an RGB-Spike binocular system and propose the first spatially-temporally
calibrated real-world dataset RSB in this community. Quantitative and qualitative experiments
validate the superior generalization capabilities of our proposed S-SDM.

Limitation. The limitation of our S-SDM lies in its dependence on strict spatial-temporal calibration.
Misalignment will lead to color shifts and quality degradation in the deblurred sequence.
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Figure 8: Video comparison of our method against the BiT and SpkDeblurNet on the RSB dataset
under different luminance conditions, with the static visualization displayed in Fig. 13. It is recom-
mended to view the pdf using Acrobat PDF reader and the gif demonstration with a higher frame rate
is available in the supplementary zip file.

A Appendix

This supplementary material provides a comprehensive elaboration on the methodologies and experi-
ments in this paper. It is organized into four distinct sections: Theory Analysis in appendix A.1, Net-
work Settings in appendix A.2, RSB Dataset in appendix A.3, Experimental Details in appendix A.4
and Additional Figure in appendix A.5.

A.1 Theory Analysis

We define kB1 and kB2 as the ratios of the red channel to the green and blue channels in the blurry
input B respectively, i.e.,

kB1 = Br/Bgre, (15)

kB2 = Br/Bb. (16)

Since the gray image is the weighted sum of RGB channels, the ratio of the gray to the red image αB
r

is formulated as:

αB
r = Bg/Br (17)
= (wr ·Br + wgre ·Bgre + wb ·Bb)/Br (18)

= wr + wgre/k
B
1 + wb/k

B
2 , (19)

where wc denote the weight of channel c ∈ {r, gre, b} respectively.

Similarly, we define kE1 (t, T ′) and kE2 (t, T ′) as the fractions of the red channel relative to the green
and blue channels in the short-exposure image E(t, T ′), resulting in:

αE
r (t, T ′) = wr + wgre/k

E
1 (t, T ′) + wb/k

E
2 (t, T ′). (20)

Given the observation that the color information of adjacent pixels often exhibits similarity under the
premise of minor motion amplitude, we postulate that the colors of the blurry input B and the short-
exposure image E(t, T ′) are identical. This assumption implies that the intensity proportion among
RGB channels in two images is approximately equivalent, i.e., kB1 ≈ kE1 (t, T ′) and kB2 ≈ kE2 (t, T ′).
Drawing from Eq. (19) and Eq. (20), We further deduce the following relation:

αB
r ≈ αE

r (t, T ′), (21)

which can be readily generalized across channels, leading to αB
c ≈ αE

c (t, T ′).
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Figure 9: Network diagrams of the BSN (a) and our designed LDN (b).

A.2 Network Settings

A.2.1 Blind Spot Network

We construct our BSN based on the blind-spot strategy outlined in [13]. We first rotate the input
image four times, then concatenate them into the U-Net [20] structure like denoising network. To
prevent direct mapping from the input pixel to the output pixel, a single-pixel offset strategy is
employed in the convolutional kernel to separate its receptive field from the central pixel. Finally,
the denoising output is obtained by merging the results of four branches via a 1× 1 convolution, as
shown in Fig. 9(a).

A.2.2 Lightweight Deblur Network

The network structure is depicted in Fig. 9(b), where the encoder for blurry images consists of two
layers of down-sampling convolutions to align the spatial resolution of two modalities. In contrast to
the intricate cross-attention mechanism outlined in [4, 8], we implement the fusion of two modalities
by the simple operation of Concat(·), with the cascaded CBAM [28] and residual blocks for further
feature fusion.

A.3 RSB Dataset

We detail the construction of our RGB-Spike hybrid system as illustrated in Fig. 10. The system
comprises a Spike Camera-001T-Gen2 with a resolution of 400 × 250 pixels, paired with a Basler
acA1920-150uc RGB Camera, offering a higher resolution of 1920 × 1200 pixels.

RGB Camera

Spike Camera

RGB Camera
1920 ×1200

Spike Camera
400 ×250

Calibration Board

Figure 10: RGB-Spike camera system.
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Blur
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Board-Low Board-High Face EarphoneBoard-MidMethod
Scene

(a) RGB Camera (b) RGB (Calibrated)

(c) Spike Camera

Figure 11: Calibration result.
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Table 5: Quantitative comparison of the single frame task on the RSB dataset, where non-reference
metric LIQE ranging from 1 to 5 is employed. LIQE is a positive metric denoted as ↑ where higher
scores reflect better performance.

Methods Board-L Board-M Board-H Face Earphone Average ↑
LEVS [12] 1.0010 1.0342 1.0400 1.0029 1.1382 1.0433

Motion-ETR [40] 1.0153 1.0064 1.0279 1.0023 1.1724 1.0449
BiT [46] 1.0002 1.0069 1.0473 1.0138 1.6155 1.1367

SpkDeblurNet [8] 1.8493 1.3232 2.2698 1.2210 2.6606 1.8648
S-SDM (Ours) 2.0955 1.3872 2.4208 1.3814 2.7087 2.1987
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Figure 12: Qualitative comparisons for single-frame restoration on the RSB dataset are illustrated,
where “Board-L”, “Board-M”, and “Board-H” represent the board captured under low, middle and
high lighting conditions.

To achieve the spatial calibration of two cameras, we perform simultaneous captures of the calibration
board using the RGB-Spike system as shown in Fig. 10. The RGB images are cropped to a resolution
of 1600 × 1000, aligning them to be fourfold the resolution of the spike camera. We convert the
cropped RGB image to grayscale and take the TFP [47] image reconstruction result as the reference
from the spike camera. We utilize the MATLAB calibration toolbox to implement the calibration
process, with the results detailed in Fig. 11.

Our RSB dataset contains 10 video sequences under different conditions, captured under varied
conditions including scene brightness levels (e.g., Low, Middle, and High light) and motion patterns
(e.g., camera shake and object motion), which introduce different types of motion blur. Besides, the
RSB dataset comprises a large amount of blur-spike pairs with each blurry input corresponding to
400 spike frames.

A.4 Experimental Details

A.4.1 Comparison

To assess the performance of our method on the GOPRO dataset, we utilize the Peak Signal-to-
Noise Ratio (PSNR) and the Structural Similarity Index (SSIM) as the quantitative metrics, which
are commonly used in motion deblurring tasks. In real-world datasets, where obtaining ground
truth sharp sequence is challenging, we opt for the non-reference image quality assessment method
Language-Image Quality Evaluator (LIQE) [37] as a reference. By assessing visual quality through
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Figure 13: Qualitative comparison for the sequence reconstruction on the RSB dataset. (a),(b),(c),(d)
denote results of “LEVS", “Moiton-ETR" , “BiT" and “SpkDeblurNet" respectively. The upper panel
depicts a real-world scene with a lower spike density than the simulation, whereas the lower image
exhibits a higher spike density.

the computation of joint probabilities from visual-textual embeddings, LIQE adeptly identifies the
clarity and blurriness of images independently of the ground truth, making it ideally suited for our
task.

Comparison on the RSB dataset. Qualitative and quantitative experiments of the single frame
restoration task on the RSB dataset are shown in Fig. 12 and Tab. 5 respectively. The visual results
coupled with the LIQE metrics demonstrate that our method outperforms other methods in handling
the real-world RSB dataset. While the supervised SpkDeblurNet encounters substantial noise and
overexposure challenges in both low-light and high-light environments, our approach demonstrates
superior restoration performance, which is attributed to the designed self-supervised framework.
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Figure 14: Comparison of our S-SDM against other methods on GOPRO with Vth = 1, 2, 4.
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Figure 15: Comparison of our S-SDM against other methods on GOPRO with Vth = 1, 2, 4.

Moreover, as depicted in Fig. 13 and Fig. 8, S-SDM exhibits outstanding performance in precisely
retrieving luminance information and texture details while ensuring the motion consistency of
reconstructed sequences. In contrast, the video reconstruction of the BiT suffers from poor image
quality and shows inadequate sequence continuity in the restored sequence. Besides, SpkDeblurNet
encounters issues with color distortion, brightness inconsistency, and inaccurate texture restoration
owing to the domain gap between synthetic and real-world datasets. These observations further
highlight the superior performance of our S-SDM in real-world scenarios.

Comparison on the GOPRO dataset. We provide additional visual comparison of our method
against other SOTA methods on the GOPRO dataset as shown in Fig. 14 and 15.

A.4.2 Implementation

To augment the dataset and accelerate the training process, we randomly crop 512× 512 image from
each blurry frame, along with the 128 × 128 spike stream. We use PyTorch to build and train our
S-SDM using an NVIDIA GeForce GTX 4090 GPU and AMD EPYC 7742 64-Core Processor. The
training of our LDN consumes about 4 hours on the GOPRO. During the testing phase, we feed the
entire image and the spike stream into the network to assess performance.

We complete the training of BSN on the GOPRO dataset, employing an initial learning rate of 3e−4

and spanning 1000 epochs. The training uses the Adam optimizer with a cosine scheduler and sets the
batch size to 8 for each epoch. Adopting the same settings as BSN, EDSR is trained on the blur-spike
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Figure 16: Ablation study for evaluating modules of S-SDM on the GOPRO dataset. Experiments
corresponding to the ID can be viewed through Tab. 3.
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Fig. 7: Ablation study for evaluating the overall effectiveness of our distillation learning
framework on the RSB dataset. The details corresponding to the experiment ID can
be viewed through the Tab. 3.

brown board of Fig. 7, which reflects the drawback inherent in the supervised401 401
learning strategies as discussed in Sec. 1. Increasing the weight of the reblur loss402 402
Lreblur allows the LDN to incorporate more information from the blurry input,403 403
thereby mitigating this issue. However, this adjustment also leads to the pres-404 404
ence of blurry edges. We further retrain the LDN on the RSB dataset (referred405 405
to as Experiment II-7), following the parameters set in Experiment II-6. The406 406
retrained LDN effectively recovers the sharp edge of the calibration board and407 407
suppresses the spike noise in the background, validating the feasibility of our408 408
self-supervised framework in real-world scenarios.409 409

5 Conclusion410 410

In this paper, we have looked into a novel self-supervised framework S-SDM411 411
for spike-guided motion deblurring, which reconstructs sequences of sharp im-412 412
ages from real-world blurry inputs alongside the corresponding spike stream. We413 413
initially propose the physical model SDM for this task and subsequently con-414 414
struct a self-supervised processing pipeline to overcome the challenges of spike415 415
noise and spatial resolution mismatch inherent in the SDM. We further design416 416
the distillation-based LDN to enhance the restoration performance. In addition,417 417
we construct an RGB-Spike binocular system and propose the first spatially-418 418
temporally calibrated real-world dataset RSB in this community. Quantitative419 419
and qualitative experiments conducted on our real-world and synthetic datasets420 420
with spikes validate the superior generalization of our proposed S-SDM.421 421

Figure 17: Ablation study for evaluating the effectiveness of our distillation learning framework on
the RSB dataset. The details corresponding to the experiment ID can be viewed through the Tab. 4.

paired data for 70 epochs. Subsequently, LDN undergoes the training of 100 epochs with the learning
rate adjusted to 1e−3.

A.4.3 Ablation study

We provide additional ablation visualizations to demonstrate the effectiveness of our designed
modules and the distillation framework as shown in Fig. 16 and 17.

A.5 Additional Figure
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Figure 18: The schematic diagram of our designed SDM.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See lines 72-77.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See lines 298-299.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: This paper provided the theoretical analysis on the spike-guided motion
deblurring task.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experiments are reproduceable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have released the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, they are included in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We don’t report it.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, they are included in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, they are correctly used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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