Bridging Cross-Chunk Gaps: A Self-Questioning Approach
for Long-Context Retrieval-Augmented Generation

Anonymous ACL submission

Abstract

Retrieval-Augmented Generation (RAG) has
been broadly adopted to mitigate hallucinations
in large language models (LLMs) by ground-
ing their outputs in external documents. How-
ever, when dealing with long, coherently struc-
tured texts, the standard assumption that each
chunk is self-contained often fails—vital con-
text may span multiple segments. This break-
down undermines retrieval reliability and ulti-
mately impairs generation quality. Our empiri-
cal findings reveal that in long-document sce-
narios, as many as 92% of user queries require
cross-chunk semantic dependencies to produce
sufficiently supported answers. This observa-
tion aligns with cognitive frameworks like the
Zeigarnik Effect and Kintsch’s Construction-
Integration Model, both emphasizing the need
to track incomplete information until a coherent
whole is formed. To address these challenges,
we propose a Self-Questioning RAG (SqQRAG)
framework. The core idea is to generate and
integrate question—answer pairs that explicitly
capture inter-chunk connections, thereby en-
hancing the retrieval process to account for
global context rather than isolated segments.
Experimental evaluations demonstrate that our
approach not only reduces hallucinations but
also improves coherence and factual accuracy
across multiple benchmarks, confirming that
modeling cross-chunk dependencies is key to
robust and context-rich generation.

1 Introduction

Retrieval-Augmented Generation (RAG) frame-
works have emerged as a powerful technique for
tasks that involve processing and comprehend-
ing long documents. By splitting a lengthy text
into manageable chunks, retrieving the most rele-
vant segments, and conditioning a Large Language
Model (LLM) on these retrieved passages, RAG
systems can address user queries with contextually
grounded responses (Gao et al., 2023). However,
this approach typically assumes that each retrieved

chunk is both sufficiently informative and semanti-
cally self-contained (Barnett et al., 2024). In prac-
tice, crucial information may be scattered across
multiple segments, and simply breaking a docu-
ment into chunks can disrupt the logical flow and
holistic understanding of the text.

Consider the example illustrated in Figure 1,
where the user poses the question: “Who is the
federal leader of the political party that Ken Epp
belongs to?” The document is divided into mul-
tiple chunks, each containing crucial pieces of
information (e.g., Ken Epp’s affiliation with the
Conservative Party of Canada and details about its
leader). However, a standard RAG pipeline (Lewis
et al., 2020) might retrieve only a subset of these
chunks—omitting the segment that explicitly iden-
tifies the federal leader—thereby producing an in-
complete answer (e.g., merely stating Ken Epp’s
party without mentioning Andrew Scheer). This
shortcoming arises from the inability to perform co-
hesive reasoning across multiple chunks. Although
each chunk is accurate in isolation, the system fails
to integrate them seamlessly. This exemplifies a
critical limitation of RAG for long texts: it lacks an
explicit mechanism to preserve semantic continuity
and ensure coherence across chunks.

Some works aim to model structured relation-
ships in the retrieval space via knowledge graphs,
such as GraphRAG (Edge et al., 2024) and Ligh-
tRAG (Guo et al., 2024), which organize retrieved
text as graphs. While GraphRAG demands ex-
tensive resources by repeatedly querying an LLM
to extract entities, LightRAG reduces this over-
head, yet both methods essentially construct entity-
relation graphs without capturing deeper semantic
dependencies across text chunks. Other efforts ex-
plore changing the retrieval unit itself (e.g., Dense
X Retrieval (Chen et al., 2023)), treating proposi-
tions as retrieval units. Nevertheless, as each propo-
sition typically relates to just one discrete chunk, it
can be extracted imprecisely or compressed exces-

Human Aaen+

Vanilla RAG

RAG (ours)

Q Related Maferlal P

Query: Who is the federal leader of the

political party that Ken Epp belongs to?

Chunk: Epp was a member of the .
Conservative Party_of Canada in the
House of Commons of Canada...

[Chunk: ~Elected as a Canadian Alliance } H 5

MP in 2000...

Chunk: ...The 2017 Conservative Party of

Canada leadership election was held on 2 8
May 27, 2017. Party members chose R
Andrew Scheer as leader, replacing

Stephen Harper...

Query: Who is the federal leader of the
political party that Ken Epp belongs to?

Ground Truth: Andrew Scheer

S —

Answer: Ken Epp was a member of the
Conservative Party of Canada.

A

=
S
<
c

£

Query: Who is the federal leader of the
political party. that Ken Epp belongs to?
O _ >
9
Related Material Y

etrieve

Answer: Ken Epp was a member of the
Conservative Party of Canada. The federal
leader of the Conservative Party of Canada
before Andrew Scheer was Stephen Harper.

Figure 1: Comparison of a Human Agent, Vanilla RAG, and Our SQRAG Approach. (Left) A human agent
can easily connect information from multiple chunks (e.g., Ken Epp was a member of the Party, and Andrew
Scheer is that party’s federal leader). (Middle) Vanilla RAG system retrieves only partial information and produces
an incomplete answer, indicating Ken Epp’s affiliation without identifying the correct federal leader. (Right)
Our SqQRAG approach integrates cross-chunk reasoning by prompting the system to ask and answer intermediate
questions, leading to a fully grounded response (Andrew Scheer). More details refer to Table 12.

sively, which neither guarantees accurate semantic
representation nor resolves cross-chunk dependen-
cies. Similarly, approaches like FLARE (Jiang
et al., 2023) and Self-RAG (Asai et al., 2023) im-
plement active retrieval that allows the LLM to
choose what to retrieve on the fly based on user
query, but they still rely on discrete text chunks
whose semantic content remains fragmented.

A helpful conceptual lens to motivate a more
cohesive retrieval strategy is the Zeigarnik Effect,
a psychological principle noting that humans tend
to remember and maintain focus on incomplete or
unresolved tasks (Fox, 2020). In the context of
RAG, one can think of each chunk’s semantic de-
pendencies as “unfinished business” that the model
should not simply discard upon moving to another
segment. By prompting the system to explicitly
pose and answer pending questions that arise while
reading the document, our approach mirrors how
people hold partial information in mind, awaiting
additional context to complete the picture. This pro-
cess maintains a thread of “semantic suspense” that
encourages the model to preserve and revisit cross-
chunk connections. Moreover, the question—answer
pairs generated from these dependencies can ei-
ther serve as standalone retrievable units or be in-
serted back into the source text as annotations. In
both cases, these QA pairs assist the LLM during
Retrieval, Augmented context construction, and
Generation phases, enabling it to produce more co-

herent and contextually accurate responses, which
is shown in Figure 1. Additionally, since these steps
occur during the indexing phase, they do not im-
pose extra computational latency at retrieval time
(Section 4.4 Time Cost).

Our main contributions are as follows:

* We illustrate the ubiquitous presence of cross-
chunk semantic dependencies in RAG tasks in-
volving longer texts, and underscore their impor-
tance for performance gains. (Section 2)

* Incorporating cross-chunk semantic information,
our method create an enhanced document that
better leverages global context for user queries.
Compared with RAG methods relying solely
on discrete text chunks, our proposed method
demonstrates superior performance. (Section 4)

* We analyze the reasons behind the framework’s
efficacy (Section 4.4 Case Study) and further
apply the method in reverse, constructing a high-
quality Chinese QA dataset for long texts (Sec-
tion 4.4 Dataset Generation).

2 Ubiquity of Cross-Chunk Semantic
Dependencies

Semantic dependencies across textual chunks are a
pervasive feature of narrative and expository texts,
where crucial information often appears in widely
separated segments (Wolfe, 2005; Sangers et al.,
2021; Xu et al., 2024). Cognitive theories, such

as Kintsch’s Construction-Integration Model, sug-
gest that human readers naturally bridge these gaps
to construct a coherent mental representation of
a text (Soares and Corréa, 2001). Similarly, the
Zeigarnik Effect, introduced in the Introduction
section, underscores how unresolved dependencies
in earlier segments can shape and enhance com-
prehension when later information emerges. These
perspectives collectively highlight the foundational
role that cross-chunk dependencies play in generat-
ing contextually grounded and cohesive reasoning.
To empirically examine the influence of cross-
chunk semantic dependencies, we conducted an
experiment on the NarrativeQA (Kocisky et al.,
2018) dataset, obtained from the LongBench (Bai
et al., 2024) framework. This dataset consists of
long-form narratives intended to test the ability of
models to synthesize context from distributed tex-
tual segments. Specifically, each narrative was split
into 512 token chunks, and for each chunk, GPT-
4o0-mini (Hurst et al., 2024) was used to generate
ten contextually relevant questions. We then com-
bined all questions from every chunk to form a
single, pooled question set. Another GPT-40-mini
was tasked with answering a subset of 40 semanti-
cally similar questions for each chunk, thereby sim-
ulating both retrieval and multi-chunk reasoning.
Our metrics encompassed the total number of ques-
tions answered, the percentage of valid answers,
and the proportion of valid answers that drew on
intra-chunk' versus cross-chunk? information.

Intra Chunk
Answers, 8%

______ Cross Chunk
Answers,92%

O & O

Valid Invalid Cross Chunk Intra Chunk
Answers Answers Answers Answers

Figure 2: Why Do We Need Cross-Chunk Informa-
tion? According to the pie chart, 92% of valid an-
swers depend on information from multiple chunks (i.e.,
cross-chunk answers), while only 8% stem from a single
chunk (i.e., intra-chunk answers).

'The chunk containing the question is the same as the
chunk providing the valid answer.

The chunk containing the question differs from the chunk
providing the valid answer.

Figure 2 presents the results of this experiment.
Remarkably, 92% of the valid answers required in-
tegrating content across multiple chunks, whereas
only 8% of valid answers drew solely on a single
chunk. This finding strongly indicate that meth-
ods treating each chunk as self-contained are in-
sufficient for effectively handling long documents.
Instead, a strategy that explicitly models and rec-
onciles dependencies spanning multiple chunks is
essential. By capturing and integrating cross-chunk
semantic dependencies, RAG frameworks can gen-
erate answers that are not only more accurate but
also more coherent and contextually aligned. Such
an approach leverages question-driven semantic
linking to establish a cohesive retrieval mecha-
nism—a strategy at the core of SQRAG, which we
detail in the following sections.

3 Self-Questioning RAG System

3.1 Overview

Building on the insight that cross-chunk depen-
dencies are crucial for long-text question answer-
ing, our method (depicted in Figure 3) is divided
into two main stages: an Index Phase (Algo-
rithm 1) and an Inference Phase (Algorithm 2).
In the Index Phase, the original document D
is split into chunks A" = {ny,n2,...,n;}. We
then use a dedicated Q-LLM to generate ques-
tions for each chunk, gather these questions to
a question database QuestionsDB and employ an
A-LLM to produce corresponding answers for rel-
evant questions in this QuestionsDB. All validated
question—answer pairs are merged into a central
repository, qaDB. In the Inference Phase, we
retrieve from qaDB the QA pairs most relevant
to the user query ¢,. These pairs are then in-
serted back into their respective chunks to form
an enhanced document Ny, which incorporates
sufficient cross-chunk dependencies. Finally, we
adopt a retrieval mechanism combined with an
ANSWER-LLM—essentially a RAG-based pro-
cess where the retrieval is performed over Ngp—to
generate the refined response a,,. Further details
about the notation and functions used throughout,
are provided in Appendix A.

3.2 Index Phase

During the Index Phase, the user uploads a
document-based knowledge repository, which the
system converts into a searchable index. During
this step, we extract question—answer pairs from the

Index Phase

T > Stepl: Ask questions for each chunk >> Step2: Answer relevant questions in each chunk >>

Step3: Integrate questions
corresponding answers

with >

CH 32 s

[" } Q-LLM Ql

N\ @

—p AlLLM

QuestionsDB o
’(_QuestionsDB
5 Ouesti

n2 Q2

Answer relevant questions
E AnswersDB

Merge

QuestionsDB
=
—

Step4: Retrieval & Insert user query related QAs to the original chunks >>

Step5: RAG with enhanced database

()]

8 User query

= related QAs .

% QAs enhanced RAG with %

2 Retrieve database ANSWER-LLM

o p —

s 7

¢ e] Gy o] . |
o

-

Figure 3: Overview of the Self-Questioning RAG Method.

original document, explicitly capturing any cross-
chunk dependencies.

Step 0: Chunk Splitting. We first invoke the
function Split(D, c¢;), which partitions the docu-
ment D into overlapping segments of size cs. This
yields a set of chunks, N' = {nq,na,...,ns ...}

Step 1: Question Generation. Next, for each
chunk n; € N, we use Q-LLM to generate poten-
tial questions by invoking Q); = Q-LLM(n;). It is
to capture any inquiries that may arise from the
local context of each chunk.

Step 2: Answer Generation. For each chunk
n;i, a relevant subset of questions @} is selected
from QuestionsDB. These relevant questions
serve as “semantic placeholders” for bridging dif-
ferent chunks of the document. The function
SelectRelevant(QuestionsDB, n;) treats each ques-
tion in QuestionsDB as a retrieval unit, using con-
tent of n; as the query. Corresponding answers
and their evidences® A; are then generated by
A-LLM(Q),n;). This step enables the model to
articulate the knowledge required to answer ques-
tions that may span both local and broader contexts
within the text. To ensure answer quality, the func-
tion Eval(A;) filters out incomplete or incorrect
responses by detecting a predefined prefix, “[I can-
not answer],” which is accomplished by prompting
A-LLM. Only validated answers are retained in
AnswersDB.

3Evidence refers to the original text that supports the an-
swer, with a one-to-one correspondence to each answer.

Step 3: Integrate Questions and Answers. Fi-
nally, we combine QuestionsDB and AnswersDB
into a unified repository, resulting in a cohe-
sive database of question—answer pairs that ref-
erence specific chunks in A. By this design,
qaDB captures cross-chunk dependencies in these
pairs, thereby streamlining retrieval in the subse-
quent Inference Phase. Concretely, Merge pairs
each question ¢; from QuestionsDB with its cor-
responding valid answers and evidence a; stored
in AnswersDB (linked via pre-saved ask-node and
answered-node IDs). This approach explicitly mod-
els cross-chunk dependencies by associating ques-
tions and answers across different chunks.

3.3 Inference Phase

In the Inference Phase, the user poses a query to
the system, which then leverages the previously
uploaded knowledge base to assist in generating
answers. Specifically, we insert query-relevant
question—answer pairs back into the original doc-
ument to create an enhanced version, and we sub-
sequently apply a standard RAG process on this
enhanced document.

Step 4: Retrieve & Insert User Query Rele-
vant QAs. Given a user query g,,, we first identify
a subset of question—answer pairs relevant to g,
by calling SelectRelevant(qaDB, g,,). The function
SelectRelevant(qaDB, ¢,,) treats each question in
qaDB as a retrieval unit, using the content of g,
as the retrieval query. After retrieval, we apply

Algorithm 1 SqQRAG in Index Phase

1: Input: D: support document, cs: chunk
size, Q-LLM: question LLM , A-LLM: answer
LLM, Eval: answer evaluation method

Step 0: Chunk Splitting.

N« Split(D, ;)

Step 1: Question Generation
for each n; € N do

Qi + Q-LLM(n;)

QuestionsDB < QuestionsDB U Q);
end for

R AN Al

—_
—_ o

: Step 2: Answer Generation

: for each n; € N do

Q) < SelectRelevant(QuestionsDB, n;)
Ai — A—LLM(g,nz)

Al «+ Eval(4;)

AnswersDB <— AnswersDB U A/

. end for

U
R A A S

: Step 3: Integrate Questions & Answers

gaDB < Merge(QuestionsDB, AnswersDB)

: Output: questions with answers database
qaDB

NN
— O

Nennh = Insert(N, RelevantQAs), augmenting doc-
ument N with the user query relevant QA pairs
RelevantQAs. The content of each QA insertion
is formatted as “({question ¢;} {answer af})”“,
similar to a note taken while reading a book. The
insertion location is determined based on fuzzy
string matching between the chunk content and the
QA pair content. A buffer count is used during
the insertion process to ensure there is no QA over-
lap. This insertion process effectively integrates the
previously generated cross-chunk insights into the
primary text body. After this step, we obtain an en-
hanced document N, with the same format as the
original document A/ but enriched with thoughtful,
cross-dependent notes embedded within.

Step 5: RAG with Enhanced Database.
Lastly, the system performs a standard RAG
pipeline on the enhanced document Agy,. It be-
gins by retrieve R = Retrieve(Nenn, ¢u), and
then augmented generates a final response a, =
ANSWER-LLM(q,, R). In practice, this approach
yields more accurate and contextually grounded
responses compared to performing RAG on the

*For example, “(Who is Charlie? Charlie is my pet.)”.

original document. The effectiveness of leveraging
question-driven links will be discussed in detail in
the following experimental results.

Algorithm 2 SqQRAG in Inference Phase

1: Input: qaDB, A: chunks of document, g,:
user query, ANSWER-LLM: LLM to answer
user query

2: Step 4: Retrieve & Insert User Query Rele-

vant QAs

RelevantQAs < SelectRelevant(qaDB, g,,)

Nenn < Insert(N, RelevantQAs)

Step 5: RAG with Enhanced Database
R « Retrieve(Nenn, u)

ay < ANSWER-LLM(q,, R)

Output: LLM response a,,

0 X DR W

4 Experiment

4.1 Experiment Setup

Datasets and Models. For our experiments, we
use four datasets from LongBench (Bai et al.,
2024): NarrativeQA (Kocisky et al., 2018),
MuSiQue (Trivedi et al., 2022), TriviaQA (Joshi
et al., 2017) and HotpotQA (Yang et al., 2018).
These datasets are carefully chosen to cover di-
verse tasks such as single-document long con-
text QA (NarrativeQA), multi-document QA (Hot-
potQA and MuSiQue), and few-shot QA (Triv-
iaQA), enabling a comprehensive evaluation of
long-context understanding. We use two types of
Large Language Models (LLM) as our ANSWER-
LLM, namely open source LLM (e.g. Llama 3.1
8B (Dubey et al., 2024)) and close source LLM
(e.g. GPT-40-mini (Hurst et al., 2024)). For more
details, please refer to Appendix B.1.
Implementation Details. As summarized in
Table 4, we compare three baseline methods that
exemplify distinct categories of RAG techniques:
Vanilla RAG (Lewis et al., 2020), Dense X Re-
trieval (Chen et al., 2023), and FLARE (Jiang et al.,
2023). Vanilla RAG belongs to the “Basic RAG”
category, constituting the canonical retrieve-and-
generate pipeline and serving as a foundational ref-
erence point for subsequent enhancements. Dense
X Retrieval represents “RAG with Modified Re-
trieval Units,” employing a dense embedding-based
retrieval process that refines retrieval precision
and boosts generation quality. FLARE falls un-
der the “Active Retrieval RAG” category, intro-

OVERALL METRICS (CLOSE SOURCE LLM)

OVERALL METRICS (OPEN SOURCE LLM)

METHOD PRECISION RECALL F1 PRECISION RECALL F1
#NarrativeQA#

Vanilla RAG 29.55 46.20 27.07 29.00 41.58 26.07

Dense X Retrieval 28.38 35.52 23.05 29.25 38.38 25.72

FLARE 25.75 47.98 25.45 23.62 20.02 13.25

Ours 31.70 45.72 28.28 31.30 42.80 27.15
#MuSiQue#

Vanilla RAG 31.35 40.60 26.70 27.92 32.00 22.97

Dense X Retrieval 31.90 39.25 26.78 29.57 32.55 23.25

FLARE 29.38 47.42 27.70 25.85 29.72 18.98

Ours 32.92 41.95 28.35 32.43 33.48 25.68
#TriviaQA#

Vanilla RAG 90.68 71.12 73.90 81.85 71.10 69.70

Dense X Retrieval 90.03 70.47 72.80 80.53 69.15 67.22

FLARE 77.73 67.72 65.12 74.93 70.88 64.28

Ours 90.43 71.62 74.47 82.57 70.82 70.12
#HotpotQA#

Vanilla RAG 48.78 60.85 45.98 43.40 51.37 39.62

Dense X Retrieval 49.38 61.58 46.17 42.85 50.48 38.05

FLARE 37.10 60.65 36.50 35.70 38.60 26.57

Ours 48.92 60.50 45.78 45.85 51.50 41.12

Table 1: Main results.

ducing comprehensive optimizations at the inter-
face of retrieval and generation to reinforce fac-
tual consistency and interactive elements. Because
knowledge-graph-based baselines require exces-
sive computational resources, we do not include
them for comparison in this work.

We implement all baseline methods and our own
approach using the Llamalndex (Liu, 2022) frame-
work, along with prompt engineering to optimize
the interaction between the retriever and the gener-
ator. Detailed prompt templates and strategies can
be found in Appendix B.2.

Evaluation Metrics. To evaluate the effective-
ness of our approach, we use RAGCHECKER (Ru
et al., 2024), which provides fine-grained claim-
level analysis. We focus on overall system perfor-
mance and do not utilize its diagnostic retriever
or generator metrics, as comparing different re-
triever and generator capabilities is not our primary
goal. To reduce randomness in the evaluation, we
employ four open-source LLMs (i.e., Llama 3.1
8B (Dubey et al., 2024), Qwen 2.5 7B (Yang et al.,
2024), Mixtral 8x7B (Jiang et al., 2024), Gemma 2
9B (Team et al., 2024)) as evaluators and ensemble
their scores to form the final outcome. For more
details, please refer to Appendix B.3.

4.2 Main Results

Table 1 summarizes the main outcomes for our
method and baselines (Vanilla RAG, Dense X Re-
trieval, and FLARE) under both closed-source
and open-source LLM evaluations. Across Nar-
rativeQA and MuSiQue, our approach generally
achieves the highest F1 scores, affirming the ad-
vantage of explicit cross-chunk QA pairs. On
TriviaQA, we also outperform other baselines, al-
though the overall gap is less pronounced because
TriviaQA questions often require relatively less
complex cross-chunk reasoning. Notably, FLARE
sometimes attains higher recall, as it tends to gen-
erate overly long or verbose outputs, thereby in-
creasing recall at the expense of precision. For
HotpotQA—which inherently involves shorter text
spans—our method does not always excel in the
closed-source setting; however, it demonstrates a
clear advantage in the open-source scenario, indi-
cating that more limited retrieval capabilities or
LLM resources can amplify the benefits of our
cross-chunk linking strategy.

4.3 Ablation Study

Table 2 presents ablation results on the Narra-
tiveQA dataset, highlighting the contribution
of each component in our SqRAG frame-
work. During the Index Phase, removing

the questions relevant selection step (No
SelectRelevant(QuestionsDB, n;)) slightly de-
grades the F1 score to 27.10, indicating that
focusing on chunk-relevant questions is crucial.
Eliminating the evaluation function (Remove
Eval(A;)) also lowers the final performance,
underscoring the importance of filtering out invalid
or low-quality answers before populating the QA
database.

METHOD PRECISION RECALL F1
SqRAG 31.70 4572 28.28
#Index Phase#

No SelectRelevant(QuestionsDB, ;) 30.20 44.50 27.10
Remove Eval(A4;) 30.40 44.17 27.30
#Inference Phase#

No RelevantQAs 28.25 43.88 24.95
Vanilla RAG 29.55 46.20 27.07
No Retrieval 20.50 31.32 17.45

Table 2: Ablation Study on NarrativeQA Dataset.

During the Inference Phase, excluding the inser-
tion of relevant QA pairs (No RelevantQAs) yields
a more substantial drop to 24.95 F1, suggesting that
injecting contextually linked QA pairs effectively
facilitates cross-chunk reasoning. Comparisons
with Vanilla RAG (27.07 F1) and a scenario where
retrieval is omitted entirely (No Retrieval, 17.45
F1) further confirm that both retrieval and question-
driven augmentation are essential. Overall, these re-
sults demonstrate that each mechanism—including
question relevance selection, answer evaluation,
and relevant QA insertion—plays a critical role in
improving long-text QA performance.

4.4 Discussion

Time Cost. Table 3 compares the runtime of
SqRAG against Vanilla RAG during the inference
phase. SQRAG introduces two additional stages:
SelectRelevant(qaDB, ¢,,) and Insert. As shown in
Table 3, these operations incur only negligible over-
head for both closed-source (GPT-40-mini) and
open-source (Llama 3.1 8B) LLM settings.

STAGE CLOSE LLM OPEN LLM

0.0077 0.0089
0.0039 0.0022
0.3788 0.0250
0.3696 0.0231

SelectRelevant(qaDB, ¢,)

Nenn — Insert(N, RelevantQAs)
RAG with Enhanced Database
Vanilla RAG RAG with Original Database

SqRAG

Table 3: Comparison of time costs (in seconds) between
SqRAG and Vanilla RAG during the inference phase.

Answers Numbers. An important factor in our
approach is the quantity of generated answers (an-
swer numbers) inserted into each chunk. Small

values (e.g., ag = 10) may fail to provide suffi-
cient searchable context, while excessively large
values (e.g., ag = 60 or aq = 80) risk introducing
substantial noise. Moderate values (e.g., ag = 20
or aqg = 40) appear to strike a balance between
additional searchable context and minimal noise,
yielding stronger overall F1. For a more compre-
hensive analysis of answer selection strategies and
numerical results, please refer to Appendix C.

From Local to Global. Table 10 illustrates how
varying chunk sizes (256, 512, and 1024 tokens)
influence question-answering (QA) performance by
balancing local detail and global coverage. Smaller
chunks offer fine-grained local context, while larger
chunks provide a more holistic overview. For a
more detailed discussion of these trade-offs, please
refer to Appendix D.

Case Study. We present a case study to demon-
strate how different RAG methods can exhibit dis-
tinct error patterns and successes when handling
long-text QA tasks. By examining concrete exam-
ples of system outputs, readers can gain a more
nuanced understanding of each model’s strengths,
potential pitfalls, and the types of errors that may
arise. Details can be seen in Appendix E.

Dataset Generation. Beyond serving as a re-
trieval augmentation technique, our method can
also facilitate the construction of high-quality QA
datasets. In particular, since our framework fo-
cuses on identifying and explicitly modeling cross-
chunk semantic dependencies, the question—answer
pairs it produces tend to capture more complex rea-
soning steps that traditional RAG methods strug-
gle to retrieve and combine accurately. We ran
SqRAG on longer Chinese classical novels and
manually filtered out QA pairs with abundant cross-
chunk dependencies. These QA pairs naturally
spotlight intricate textual relationships—where crit-
ical information is scattered across multiple seg-
ments—thereby ensuring that the resulting dataset
challenges models to incorporate global context
and multi-step reasoning. This can be especially
valuable for developing new benchmarks or refin-
ing existing ones, pushing QA systems beyond sim-
ple fact extraction into deeper comprehension and
inference. Furthermore, compared with traditional
methods of generating QA datasets, our method
can effectively select questions containing cross-
chunk information, thereby greatly reducing the
burden of constructing a high-quality QA dataset,
whereas previous approaches often struggled to
produce questions of such caliber and required sig-

CATEGORY REPRESENTATIVE METHODS

CHARACTERISTICS

SHORTCOME

Basic RAG Vanilla RAG (Lewis et al., 2020)

RAG with Modified
Retrieval Units

Dense X Retrieval (Chen et al., 2023),
HiQA (Chen et al., 2024)

Knowledge Relationship
or Graph Based RAG

GraphRAG (Edge et al., 2024),
LightRAG (Guo et al., 2024),
HybGRAG (Lee et al., 2024)

Active Retrieval RAG

Splits text into coarse blocks and re-

trieves a subset.

Converts documents into modified
retrieval units.

Builds knowledge relationships or
graphs from documents.

It struggles in long-document scenar-
ios lacking broader context.

It may overlook semantic dependen-
cies that span multiple propositions.

These capture entity relationships
but may lose rich contextual cues

FLARE (Jiang et al., 2023), Self-RAG (Asai et al., 2023),
Adaptive-RAG (Jeong et al., 2024), CRAG (Yan et al., 2024),
CtrlA (Liu et al., 2024), Astute RAG (Wang et al., 2024a),

beyond the graph.

Dynamically selects refines re-
trieved content.

It can lead to lengthy outputs and of-
ten still uses naive text chunks lack-
ing cross-block semantic linkage.

Speculative RAG (Wang et al., 2024b), Agentic RAG (Singh et al., 2025)

Table 4: Summary of RAG methods

nificant manual effort to sift through numerous gen-
erated questions. We showcase representative ex-
amples of these generated QA pairs in Appendix F,
illustrating how they encapsulate nuanced, cross-
chunk relations not readily evident within standard,
locally-focused question sets.

Incremental Learning. Our framework readily
supports incremental learning by allowing users to
incorporate new knowledge without reprocessing
the entire database. When additional documents or
updates are introduced, relevant question—answer
pairs can be generated and appended directly to the
existing gaDB, preserving previously constructed
cross-chunk dependencies. This mechanism en-
ables efficient, on-demand expansion of the knowl-
edge base while maintaining consistency in the
retrieval process.

5 Related Work

Vanilla RAG (Lewis et al., 2020) combines a pre-
trained language model and an external knowledge
source by first retrieving relevant documents and
then generating answers. However, it may fail to
capture cross-chunk semantic dependencies when
dealing with long documents.

RAG with modified retrieval units employs
smaller or more fine-grained text segments. Dense
X Retrieval (Chen et al., 2023) highlights that re-
trieval granularity (e.g. propositions) can boost
performance in certain tasks, while HIQA (Chen
et al., 2024) refines multi-document retrieval for
large-scale question answering. Both approaches
address the rigid chunking of standard RAG but
risk overlooking cross-segment semantics.

Knowledge relationship based RAG methods
build entity-level relationship or graphs to structure
and retrieve relevant contexts. GraphRAG (Edge
et al., 2024) extracts a graph of key entities for
query-focused summarization, LightRAG (Guo
et al., 2024) simplifies index construction for effi-

cient retrieval, and HybGRAG (Lee et al., 2024)
fuses textual and relational knowledge. These ap-
proaches capture entity relationships but may lose
rich contextual cues beyond the graph.

Active retrieval RAG techniques iteratively re-
fine retrieval and generation. FLARE (Jiang et al.,
2023) and Self-RAG (Asai et al., 2023) actively
query external sources when low-confidence con-
tent is detected, while Adaptive-RAG (Jeong et al.,
2024) adjusts its strategy based on question com-
plexity. CRAG (Yan et al., 2024) and Specula-
tive RAG (Wang et al., 2024b) introduce correc-
tive or drafting steps to improve factual ground-
ing, CtrlA (Liu et al., 2024) leverages internal
probes for guided retrieval, and Astute RAG (Wang
et al., 2024a) mitigates imperfect augmentation and
knowledge conflicts. Agentic RAG (Singh et al.,
2025) surveys these agent-like approaches, illus-
trating their potential to adapt retrieval behavior on
the fly, but they often still rely on naive chunked
text lacking deeper semantic linkages.

Table 4 summarizes these RAG methods.

6 Conclusion

In this paper, we highlighted a key RAG challenge:
cross-chunk dependencies within lengthy, coher-
ent texts. Our empirical findings show that most
real-world questions span multiple segments, often
overlooked by conventional RAG pipelines. Mo-
tivated by psychological theories, we introduced
SqRAG, a framework that systematically generates,
integrates QA pairs to bridge these gaps and en-
rich contextual links. Experiments across diverse
datasets reveal that SQRAG outperforms existing
approaches in precision, recall, and overall coher-
ence. We further demonstrated how tuning the num-
ber of QA pairs, adjusting chunk sizes can refine
results. We hope this work inspires deeper explo-
ration of cross-chunk semantics for more robust
and context-aware retrieval generation systems.

Limitations

Although SqQRAG enhances retrieval robustness
and reduces hallucinations, it has practical con-
straints. The index phase can be computationally
expensive, especially for large or frequently up-
dated corpora. Moreover, SQRAG relies on hav-
ing sufficiently capable LLMs to handle enriched
context and cross-chunk cues. Less powerful mod-
els may not realize the same gains, limiting the
method’s overall impact. Consequently, there is
a trade-off between the computational overhead
required and the precision benefits achieved for
long-text retrieval and generation.

References

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng,
Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
Lei Hou, Yuxiao Dong, et al. 2024. Longbench
v2: Towards deeper understanding and reasoning
on realistic long-context multitasks. arXiv preprint
arXiv:2412.15204.

Scott Barnett, Stefanus Kurniawan, Srikanth Thudumu,
Zach Brannelly, and Mohamed Abdelrazek. 2024.
Seven failure points when engineering a retrieval
augmented generation system. 2024 IEEE/ACM 3rd
International Conference on Al Engineering — Soft-
ware Engineering for AI (CAIN), pages 194-199.

Tong Chen, Hongwei Wang, Sihao Chen, Wenhao
Yu, Kaixin Ma, Xinran Zhao, Hongming Zhang,
and Dong Yu. 2023. Dense x retrieval: What re-
trieval granularity should we use? arXiv preprint
arXiv:2312.06648.

Xinyue Chen, Pengyu Gao, Jiangjiang Song, and Xi-
aoyang Tan. 2024. Hiqa: A hierarchical contextual
augmentation rag for massive documents qa. arXiv
preprint arXiv:2402.01767.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130.

Jeremy G. Fox. 2020. Recovery, interrupted: The zeigar-
nik effect in emdr therapy and the adaptive informa-
tion processing model. Journal of EMDR Practice
and Research, 14:175 — 185.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2023. Retrieval-
augmented generation for large language models: A
survey. ArXiv, abs/2312.10997.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao
Huang. 2024. Lightrag: Simple and fast retrieval-
augmented generation.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

https://api.semanticscholar.org/CorpusID:266933076
https://api.semanticscholar.org/CorpusID:266933076
https://api.semanticscholar.org/CorpusID:266933076
https://api.semanticscholar.org/CorpusID:221190511
https://api.semanticscholar.org/CorpusID:221190511
https://api.semanticscholar.org/CorpusID:221190511
https://api.semanticscholar.org/CorpusID:221190511
https://api.semanticscholar.org/CorpusID:221190511
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong C Park. 2024. Adaptive-rag: Learn-
ing to adapt retrieval-augmented large language mod-
els through question complexity. arXiv preprint
arXiv:2403.14403.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing
Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. 2023. Ac-
tive retrieval augmented generation. arXiv preprint
arXiv:2305.06983.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Tomas Kocisky, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gabor Melis, and Ed-
ward Grefenstette. 2018. The narrativeqa reading
comprehension challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317-328.

Meng-Chieh Lee, Qi Zhu, Costas Mavromatis, Zhen
Han, Soji Adeshina, Vassilis N Ioannidis, Huzefa
Rangwala, and Christos Faloutsos. 2024. Hybgrag:
Hybrid retrieval-augmented generation on textual

and relational knowledge bases. arXiv preprint
arXiv:2412.16311.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Huanshuo Liu, Hao Zhang, Zhijiang Guo, Kuicai Dong,
Xiangyang Li, Yi Quan Lee, Cong Zhang, and Yong
Liu. 2024. Ctrla: Adaptive retrieval-augmented gen-
eration via probe-guided control. arXiv preprint
arXiv:2405.18727.

Jerry Liu. 2022. Llamalndex.

Dongyu Ru, Lin Qiu, Xiangkun Hu, Tianhang Zhang,
Peng Shi, Shuaichen Chang, Cheng Jiayang, Cunx-
iang Wang, Shichao Sun, Huanyu Li, et al. 2024.
Ragchecker: A fine-grained framework for diagnos-
ing retrieval-augmented generation. arXiv preprint
arXiv:2408.08067.

Nina L Sangers, Jacqueline Evers-Vermeul, Ted M
Sanders, and Hans Hoeken. 2021. Narrative elements
in expository texts: A corpus study of educational
textbooks. Dialogue & Discourse, 12(2):115-144.

Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Ta-
laei Khoei. 2025. Agentic retrieval-augmented gen-

eration: A survey on agentic rag. arXiv preprint
arXiv:2501.09136.

10

Adriana Benevides Soares and Carla Patricia Quin-
tanilha Corréa. 2001. Learning and memory: A
cognitive approach about the role of memory in text
comprehension.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. Musique: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational

Linguistics, 10:539-554.

Fei Wang, Xingchen Wan, Ruoxi Sun, Jiefeng Chen,
and Sercan O Arik. 2024a. Astute rag: Overcom-
ing imperfect retrieval augmentation and knowledge
conflicts for large language models. arXiv preprint
arXiv:2410.07176.

Zilong Wang, Zifeng Wang, Long Le, Huaixiu Steven
Zheng, Swaroop Mishra, Vincent Perot, Yuwei
Zhang, Anush Mattapalli, Ankur Taly, Jingbo Shang,
et al. 2024b. Speculative rag: Enhancing retrieval
augmented generation through drafting. arXiv
preprint arXiv:2407.08223.

Michael BW Wolfe. 2005. Memory for narrative and
expository text: independent influences of seman-
tic associations and text organization. Journal of

Experimental Psychology: Learning, memory, and
cognition, 31(2):359.

Liyan Xu, Jiangnan Li, Mo Yu, and Jie Zhou. 2024.
Fine-grained modeling of narrative context: A co-
herence perspective via retrospective questions. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5822—-5838.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling.
2024. Corrective retrieval augmented generation.
arXiv preprint arXiv:2401.15884.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen?2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

A Notation and Functions

Table 5 and Table 6 present the symbol and function
descriptions used in Algorithm 1 and Algorithm 2,
respectively.

https://doi.org/10.5281/zenodo.1234
https://api.semanticscholar.org/CorpusID:148583830
https://api.semanticscholar.org/CorpusID:148583830
https://api.semanticscholar.org/CorpusID:148583830
https://api.semanticscholar.org/CorpusID:148583830
https://api.semanticscholar.org/CorpusID:148583830

B Experiment Setup
B.1 Datasets and Models details

LongBench is a bilingual, multitask benchmark
designed to assess the long-context understanding
capabilities of large language models. It consists
of 21 tasks across six categories: single-document
QA, multi-document QA, summarization, few-shot
learning, synthetic tasks, and code completion.
In English, the dataset contains an average con-
text length of 6,711 words, whereas in Chinese it
reaches 13,386 characters, providing a comprehen-
sive framework for evaluating long-text applica-
tions. Due to its focus on extended textual contexts,
its broad task coverage, and its authoritative cu-
ration by reputable institutions, we consider it a
thorough assessment of models’ performance in
diverse and realistic long-text understanding sce-
narios. In our study, we employ four datasets from
LongBench: NarrativeQA, MuSiQue, TriviaQA,
and HotpotQA. Table 7 summarizes their key fea-
tures.

In terms of large language models, we utilize
the lightweight and representative GPT-40-mini
and Llama 3.1 8B as the closed-source and open-
source LLMs, respectively, to ensure a comprehen-
sive evaluation of the experimental results.

B.2 Prompts

Figure 4 is the prompt for Q-LLM. Figure 5 is the
prompt for A-LLM.

B.3 Evaluation Metrics details

To thoroughly evaluate our RAG system, we in-
tegrated RAGCHECKER into our framework,
which is a fine-grained evaluation framework de-
signed to assess both the retrieval and generation
components of RAG systems. It offers a suite of di-
agnostic metrics that provide detailed insights into
system performance. By extracting factual claims
from generated responses and validating them
against ground-truth answers, RAGCHECKER en-
ables precise evaluations of correctness and com-
pleteness.

We implemented RAGCHECKER using the Lla-
malndex framework, which offers seamless inte-
gration and robust support for its functionalities.
To streamline model inference and manage compu-
tational resources efficiently, we employed Ollama
as a proxy server for model execution.

To reduce potential biases and randomness in
our evaluation process, we employed four open-

11

source LLMs as evaluators. Each model indepen-
dently assessed the generated responses, assigning
individual scores based on RAGCHECKER’s met-
rics. We then averaged these scores to yield the
final evaluation outcome, ensuring a balanced and
comprehensive assessment. Table 8 provides an
example of these evaluation scores.

C Answer Numbers

Table 9 illustrates how varying the number of an-
swers inserted into each chunk (aq) influences the
overall performance of our method on the Nar-
rativeQA dataset. A smaller value of aqg (e.g.,
aq = 10) provides insufficient additional context to
improve retrieval recall and F1 scores. Conversely,
as aq grows (e.g., aqg = 60 or ag = 80), although
recall can improve in certain settings, the risk of
overloading each chunk with noisy QA pairs rises,
ultimately lowering precision and diminishing the
final F1. Thus, there is a trade-off between captur-
ing enough information to enhance retrieval and
overpopulating the chunks with less relevant details.
Our experiments suggest that moderate ag values
(e.g., aqg = 20 or aq = 40) often yield an optimal
balance of informativeness and precision, resulting
in more consistent gains across both closed-source
and open-source LLM evaluations.

D From Local to Global

Table 10 illustrates how altering the chunk size
(e.g., 256, 512, and 1024 tokens) shifts the balance
between local context and global coverage. Smaller
chunks (e.g., 256 tokens) provide fine-grained lo-
cal detail but tend to increase the total number of
chunks, potentially yielding more local QA pairs
while making it harder to build a holistic view of the
document. Conversely, larger chunks (e.g., 1024
tokens) capture broader context in fewer segments,
thereby reducing the number of available QA pairs
and possibly losing nuanced local information.
Our results show that medium-sized chunks (e.g.,
512 tokens) often strike a desirable trade-off: they
retain enough local structure to generate meaning-
ful QA pairs while also offering sufficient global
context for robust cross-chunk reasoning. Notably,
although larger chunks can sometimes improve re-
call (e.g., FLARE with 1024 tokens), precision
may suffer if the model struggles to focus on the
most relevant information. Overall, an intermediate
chunk size appears most conducive to effectively
leveraging cross-chunk dependencies for long-text

QA tasks.

E Case Study

E.1 Overview

In this section, we present a detailed case study
of erroneous answers produced by several RAG-
based models. To facilitate a structured analysis,
we categorize these mistakes into four main error
types and summarize in Table 11. By breaking
down the types of errors and looking at cases from
multiple datasets and multiple baselines, we can
more intuitively evaluate different responses and
analyze the causes of errors in detail.

E.2 Cases of Data Structure in Method
E.3 Cases Summary

F Dataset Generation

Figure 6 visually compares the average document
length of our newly generated dataset, LONGNOV-
ELQA, to several established long-text QA bench-
marks, including L-Eval, TriviaQA, HotpotQA,
MuSiQue, NarrativeQA, and BookCorpus. No-
tably, as shown in the figure, most existing datasets
have average lengths ranging from roughly 7,000
tokens (L-Eval) up to around 89,000 tokens (Book-
Corpus). In contrast, our LONGNOVELQA corpus
consists of documents exceeding 600,000 tokens
on average, underscoring a substantial increase in
text length that encourages deeper cross-chunk rea-
soning, multi-step inference, and long-context un-
derstanding.

Table 21 further illustrates how our approach
leverages this vast context to generate question—
answer pairs that span multiple segments of text,
highlighting intricate dependencies and rendering
purely local retrieval strategies inadequate. In many
cases, questions demand synthesizing information
from distant parts of a text, compelling the model
to integrate clues that may be scattered across hun-
dreds of pages. This extensive context also paves
the way for more complex inference, going beyond
straightforward entity matching to reveal whether
a model can handle deeper reasoning. Additionally,
rather than relying on single-sentence queries or an-
swers, our dataset features longer, interlinked pas-
sages, demonstrating how multiple pieces of text
must be retrieved, fused, and logically connected
to arrive at a correct solution. Together, these char-
acteristics underscore the dataset’s emphasis on

12

robust cross-chunk integration and genuinely chal-
lenging long-text QA.

SYMBOL DESCRIPTION

D The original support document.
Cs Chunk size parameter for splitting the document.
N A set of document chunks (nodes) obtained by splitting D.
n; Each n; € N is one chunk.
Qi A set of candidate questions generated by Q-LLM for a chunk n;.
Qi Each ¢; € Q; is one single question.
! A subset of questions selected from QuestionsDB that are relevant to a chunk n;.
A; Raw answers with corresponding evidence generated by A-LLM for the questions @} regarding
chunk n;.
a; Each a; € A; is one single answer and corresponding evidence.
Al Validated answers after applying Eval on A;.
Q-LLM A Large Language Model used to generate questions from a given text chunk.
A-LLM A Large Language Model used to generate answers to given questions based on a provided chunk.
Eval An evaluation method or function that filters out not answered or low-quality answers.

QuestionsDB A database (set) of all generated questions from all chunks.
AnswersDB A database (set) of all validated answers corresponding to the questions in QuestionsDB.

qaDB A merged database of question-answer pairs formed from QuestionsDB and AnswersDB.
Qu The user query posed during the inference phase.
RelevantQAs QA pairs from qaDB considered relevant to the user query q,.
Nenh The enhanced set of chunks after inserting relevant QA pairs into the original chunks.
R Relevant text retrieved from Ay, for the user query q,.
Gy The final answer generated by ANSWER-LLM using retrieved text R.

Table 5: Symbols and Their Descriptions

FUNCTION DESCRIPTION
Split(X, ¢s) Divides an input X (e.g., a document) into multiple chunks of size c;.
Q-LLM(X) Given a text input X (e.g., a chunk), generates a set of candidate questions.
A-LLM(Q, X) Given a set of questions () and a text input X (e.g., a chunk), produces a set of corresponding
answers.
Eval(A) Given a set of raw answers A, filters and validates them, resulting in a subset of refined
answers.

SelectRelevant(X,Y) From a given set or database X, selects the subset most relevant to Y (e.g., a chunk n; or a
user query qy,).

Merge(Qdb, Adb) Merges separate question and answer databases (Qdb and Adb into a unified QA database.

Insert(X,Y) Integrates items from Y (e.g., QA pairs) into X (e.g., a database or set of chunks), producing
an enhanced version of X.

Retrieve(X,Y) From a given set or database X, retrieves content most relevant to Y (e.g., a user query),

returning a set of pertinent information.
ANSWER-LLM(Q, R) Given a query @ (e.g., a user query) and retrieved content R, generates a final response or
answer.

Table 6: Functions and Their General Descriptions

13

DATASET AVG. LENGTH Doc# LANGUAGE DESCRIPTION

NarrativeQA 18,409 20 English Focuses on single-document long-context QA, re-
quiring models to answer questions based on entire
stories or scripts, thus testing deep narrative under-
standing.

MuSiQue 11,214 200 English Involves multi-document QA, where models must
integrate information from multiple documents to
answer complex questions, assessing the ability to
synthesize information across sources.

TriviaQA 8,209 200 English Serves as a few-shot QA task, providing a limited
number of examples to evaluate the model’s ability to
generalize from minimal data, focusing on answering
trivia questions based on evidence documents.

HotpotQA 9,151 200 English Another multi-document QA dataset, it challenges
models to perform multi-hop reasoning by connect-
ing information from different documents to answer
questions, emphasizing explainability and diverse
reasoning paths.

Table 7: Descriptions of the four datasets used from LongBench Benchmark.

Q-LLM Prompt

Here is the context:

Given the contextual information, generate {num_questions} questions.

Questions should be relevant to the context and should be specific and not abstract.
Please provide these questions plainly, without any numbering or bullet points.

(Use the same language as the provided context. J

Figure 4: Q-LLM prompt.

Metric Llama3.18B Qwen2.57B Mixtral 8x7B Gemma 2 9B Overall Average

Precision 47.80 12.80 36.40 21.20 29.55
Recall 73.80 28.30 46.20 36.50 46.20
F1 Score 48.60 10.60 30.90 18.20 27.07

Table 8: Individual and Averaged Evaluation Scores from Multiple LLMs

OVERALL METRICS (CLOSE SOURCE LLM) OVERALL METRICS (OPEN SOURCE LLM)

METHOD PRECISION RECALL F1 PRECISION RECALL F1
#NarrativeQA#

Vanilla RAG 29.55 46.20 27.07 29.00 41.58 26.07
aq =10 30.30 44.80 27.93 28.07 40.88 25.75
aq = 20 31.70 45.40 29.35 30.30 42.50 27.75
aq = 40 31.80 49.47 30.17 30.07 42.02 27.85
aq = 60 30.45 45.60 28.73 27.80 41.77 25.50
aq = 80 31.90 45.15 28.98 25.90 40.33 24.02

Table 9: Influence of answer numbers on SQRAG.

14

A-LLM Prompt

Here is the context:

For each question:

- Base your answer ONLY on the provided information.

- Keep your answer as brief and direct as possible.

If you can answer, also provide one short Evidence excerpt directly quoted from the
provided information.

- If you cannot answer, respond with '[I cannot answer]'.

- Use the same language as the provided information

Required response format:

Question 1: [Question text]

Answer 1: [Your answer]

Evidence 1: [Exact quote from the provided information or \"No supporting evidence
found\"]

Question 2: [Question text]

Answer 2: [Your answer]

Evidence 2: [Exact quote from the provided information or \"No supporting evidence
found\"]

[Continue for all questions]

Requirements:

- For every question, include the question text, answer, and evidence.

- Evidence MUST be an exact excerpt from the provided information.

- The number of answers must match the number of questions.

- Follow the exact format with line breaks as shown.

\: Use the same language as the provided information. Y,

Figure 5: A-LLM prompt.

OVERALL METRICS (CLOSE SOURCE LLM) OVERALL METRICS (OPEN SOURCE LLM)

METHOD PRECISION RECALL F1 PRECISION RECALL F1

#Chunk Size = 256#

Vanilla RAG 30.00 43.17 26.80 27.00 37.35 23.48

Dense X Retrieval 28.48 35.55 22.22 26.98 3592 22.70

FLARE 25.25 42.20 23.83 24.70 22.38 13.95

Ours 30.33 45.15 27.15 30.27 38.80 27.18
#Chunk Size = 512#

Vanilla RAG 29.55 46.20 27.07 29.00 41.58 26.07

Dense X Retrieval 28.38 35.52 23.05 29.25 38.38 25.72

FLARE 25.75 47.98 25.45 23.62 20.02 13.25

Ours 31.70 45.72 28.28 31.30 42.80 27.15
#Chunk Size = 1024#

Vanilla RAG 31.50 45.85 28.92 27.88 42.15 25.72

Dense X Retrieval 28.10 34.20 21.72 28.95 41.75 26.28

FLARE 26.00 49.25 25.00 26.10 24.92 16.52

Ours 32.48 49.23 30.63 23.95 38.33 21.45

Table 10: From local to global.

15

ERROR TYPE

LABEL

DEFINITION AND EXPLANATION

Unwarranted Ignorance

Partial or
Incomplete Answer

Fabrication
(Hallucination)

Contradiction or Direct
Factual Error

| Fabrication |

Ignorance

[Fabrication]

Contradiction

The response incorrectly concludes that the context or source
does not provide sufficient information, even though the relevant
details are present and retrievable. In other words, it claims “no
information is available” or “the context does not provide specific
details” despite evidence to the contrary.

The response detects the correct topic or concept but fails to pro-
vide the specific or complete explanation. It settles on a vague or
partially correct factor.

The response invents non-existent facts, characters, or details
not grounded in the provided context. These made-up elements
contradict the actual evidence or go beyond any plausible inference
from the text.

The response asserts a claim that explicitly contradicts the query
and the context. It may state the opposite of what the text says.
This includes mixing up roles or factual violation.

Table 11: Types of Errors in RAG Responses

8 le5
7 - 672,641
6 -
£ 51
()]
c
(0]
-
@ 4
[@)]
©
(0]
Z 31
2 -
1 89,237
o 7,217 8,209 9,151 11,214 18,409
AN
4’0] ’OOY ‘,0?’] O\)Q/ eo?‘ QQQ(O Q}O_v
\ & & S S & s
R° N 3 & O
NS 2 \/0(\

Figure 6: Average Length of Well-known Long-text Datasets. L-Eval (7,217 tokens), TriviaQA (8,209), HotpotQA
(9,151), MuSiQue (11,214), NarrativeQA (18,409), and BookCorpus (89,237) all fall below 100,000 tokens on
average. By contrast, LONGNOVELQA reaches an average of 672,641 tokens, presenting a more challenging
environment for QA systems to handle global context and complex dependencies.

16

Question Who is the federal leader of the political party that Ken Epp belongs to?
Ground Truth Andrew Scheer .
Naive RAG Ken Epp was a member of the Conservative Party of Canada. X Incomplete
Dense RAG Ken Epp was a member of the Conservative Party of Canada. X Incomplete
Flare RAG Ken Epp was a member of the Canadian Alliance party. To find out the | Contradiction
federal leader during his time, I will search for Stockwell Day . During
Ken Epp’s time, the federal leader of the Canadian Alliance party was
Stockwell Day . X
SqRAG Ken Epp was a member of the Conservative Party of Canada. The federal

leader of the Conservative Party of Canada before Andrew Scheer was
Stephen Harper. v/

Analysis: Naive RAG and Dense RAG only mention Ken Epp’s party without addressing its federal
leader. Flare RAG erroneously provides Stockwell Day. SQRAG correctly identifies Andrew Scheer as

the federal leader.

Table 12: Federal Leader of Ken Epp’s Political Party

Question A participant of the Battle of Brechin is an instance of?

Ground Truth Scottish clan .

Naive RAG A participant of the Battle of Brechin is an instance of a historical figure
involved in 'a conflict during the Late Middle Ages in Scotland. X

Dense RAG A participant of the Battle of Brechin is an instance of a historical
figure involved in a significant conflict during the Late Middle Ages in
Scotland. X

Flare RAG A participant of the Battle of Brechin is an instance of a combatant in
a historical conflict . (Detailed discussion of roles/factions) X

SqRAG A participant of the Battle of Brechin is an instance of a historical figure

involved in the conflicts of the Scottish civil war during the reign of
James II of Scotland. X

Analysis: All four responses fail to identify that the participant is specifically a Scottish clan.

Table 13: Instance Classification of a Participant in the Battle of Brechin

17

Question Which is the body of water near George Mills’ place of birth?

Ground Truth River Thames .

Naive RAG The body of water near George Mills’ place of birth, Deptford, is
not specifically mentioned in the provided information. X

Dense RAG The body of water near George Mills’ place of birth, Deptford, is
not explicitly mentioned in the provided context. Therefore, the spe-
cific body of water cannot be identified. X

Flare RAG George Mills was born in Deptford, which is located in London, England.
However, the context does not provide specific information about the
body of water near Deptford. George Mills was born in Deptford, which
is located in London, England. However, the context does not provide
specific information about the body of water near Deptford, the body of
water near Deptford, London, is the River Thames . v/

SqRAG George Mills was born in Deptford, which is located near the

River Thames . v/

Analysis: Naive RAG and Dense RAG wrongly claim no mention of the body of water. Flare RAG
and SqQRAG correctly identify the River Thames.

Table 14: Body of Water Near George Mills’ Birthplace

Question

Why was Mortimer Trefinnis once estranged from his siblings?

Ground Truth
Naive RAG

Dense RAG

Flare RAG

SqRAG

Because of the division of proceeds from selling the family business.

The context does not provide specific details regarding why Mortimer
Tregennis was once estranged from his siblings. X

Mortimer Tregennis was once estranged from his siblings due to a family
quarrel about ‘money X

Mortimer Trefinnis was once estranged from his siblings due to a family
quarrel, followed by a reconciliation. However, the nature of that quarrel
and the authenticity of the reconciliation are left unclear. The family
quarrel between Mortimer Tregennis and his siblings was related to the
division of money after they sold their tin-mining venture. Although this
issue created some tension between them for a time, it was ultimately
forgiven and forgotten, leading to a reconciliation. The quarrel over the
division of money in the Tregennis family arose after they sold their
tin-mining venture to a company, which led to disagreements regarding
how the proceeds from the sale were to be divided among the family
members v/

Mortimer Tregennis was once estranged from his siblings due to feelings
surrounding the division of money after the family sold their tin-mining
venture. This financial matter created a temporary rift between them,
but it was eventually forgiven and forgotten, leading to a reconciliation
where they became "the best of friends together" v/

Ignorance

Analysis: Naive RAG fails to identify the reason (unwarranted ignorance). Dense RAG mentions
money but omits the specific detail of dividing the proceeds from the family business. Flare RAG and
SqRAG both correctly specify the division of money.

Table 15: Estrangement of Mortimer Trefinnis

18

Question How is Drexl killed?

Ground Truth Heis shot.

Naive RAG The information provided does not indicate that Drexl is killed. It de-
scribes a scene where he engages in violent confrontations, but there is
no mention of his death. X

Dense RAG Drexl is notkilled ; he is still alive despite being shot and falling to the
ground. X

Flare RAG Drexl is killed when he points a shotgun at Floyd and shoots him. After-
ward, he is confronted by Big D, whom he also shoots, and ultimately he
is shot by Clarence . (Detailed account of their struggle) v/

SqRAG Drexl is killed when he shoots Floyd with a shotgun and is then

shot by Clarence , resulting in his death. v/

Analysis: Naive RAG and Dense RAG both contradict the context by claiming Drexl is not killed.
Flare RAG and SqQRAG identify that Drexl is indeed shot by Clarence.

Table 16: The Death of Drexl

Question Who greeted Jacob in his apartment after Jacob finally came to terms
with his military ordeal?
Ground Truth His son Gabe .
Naive RAG Jacob was greeted by the doorman, Sam , when he approached the lobby
of Sarah’s apartment building. X
Dense RAG Jacob was greeted by the doorman in his apartment. X Contradiction
Flare RAG Jacob was greeted by his son, Gabe , in a moment filled with emotion | Correct
and love. (Elaboration on their emotional bond) v/
SqRAG Jacob was greeted by his son, Gabe , in the apartment after he came to

terms with his military ordeal. v/

Analysis: Naive RAG and Dense RAG incorrectly identify the doorman as the greeter, contradicting

the context. Flare RAG and SqQRAG correctly recognize Gabe as the one who greeted Jacob.

Table 17: Greeting Jacob

19

Question

Who played the girlfriend of who plays Marty McFly’s daughter in Back
to the Future 2?7

Ground Truth

Naive RAG

Dense RAG

Flare RAG

SqRAG

Claudia Wells .

The context does not provide specific details regarding why Mortimer
Tregennis was once estranged from his siblings. (Erroneous copy from
another case) X

Jennifer Parker, who is Marty McFly’s girlfriend in the Back to the Future
series, was played by Claudia Wells in the first film and Elisabeth Shue
in the second and third films. Marty McFly’s daughter, Marlene, was
played by Michael J. Fox. v/

The girlfriend of the actor who plays Marty McFly’s daughter in Back
to the Future Part II is not known , as the character of Marty McFly’s
daughter, Marlene, does not have a girlfriend in Back to the Future Part
I. X

The girlfriend of Marty McFly’s daughter, Marlene, in Back to the Future
Part II is portrayed by Claudia Wells , who played Jennifer Parker. v/

Ignorance

Correct

Contradiction

Analysis: Naive RAG reuses text from a different scenario and claims there are no details. Dense
RAG is effectively correct in identifying Claudia Wells. Flare RAG mistakenly states Marlene does
not have a girlfriend. SQRAG also correctly identifies Claudia Wells.

Table 18: Girlfriend of Marty McFly’s Daughter in Back to the Future 2

Question What is the seat of the county sharing a border with the county in which
J. P. Hayes was born?

Ground Truth Green Bay .

Naive RAG The county in which J. P. Hayes was born is Outagamie County, Wiscon-
sin. The seat of Outagamie County is Appleton . X

Dense RAG The information provided does not specify the counties or their seats in
relation to J. P. Hayes’ birthplace of Appleton, Wisconsin . Therefore, it
is not possible to determine the seat of the county sharing a border with
that location based on the available details. X

Flare RAG The seat of the county sharing a border with the county in which J. P.
Hayes was born is Green Bay itself. v/

SqRAG The seat of the county sharing a border with Brown County, where J. P.

Hayes was born, is Green Bay . v/

Analysis: Naive RAG identifies the seat of Outagamie County rather than the correct neighboring seat.
Dense RAG incorrectly claims the information is missing. Flare RAG and SqQRAG both correctly state

Green Bay.

Table 19: Seat of the County Near J. P. Hayes’ Birthplace

20

Question

Who is the spouse of the current queen of England?

Ground Truth
Naive RAG

Dense RAG

Flare RAG

SqRAG

Philip Mountbatten .

The spouse of the current queen of England was Prince Philip , Duke of

Edinburgh. X

The current queen of England is Charles III , who is the eldest son of

Elizabeth II. X

The current queen of England is Queen Camilla, and her spouse is

King Charles III . X

The spouse of the current queen of England was Philip Mountbatten ,
Duke of Edinburgh. v/

Analysis: Naive RAG essentially names the correct person but was still deemed incorrect in the dataset.
Dense RAG and Flare RAG mix up the reigning monarch or consort. SQRAG properly identifies Philip
Mountbatten as the spouse of Queen Elizabeth II.

Table 20: Spouse of the Current Queen of England

QUERY GROUND TRUTH NAIVE RAG RESPONSE CLUE
RGP, ORI R ZE. BEWR. BME, FERETAR RARRRUE. S HBEEZ, WHE
AR B SR ATN Ao REEFIRT BN IAARIZREE ZERLE, w1 RO ! ~BRERE
WHRZN, H SMEE, RIFE, mA BEER, KUE. 8%, #%! #E
AR T A FE REXL . RILNXZE 5% "BEREE. “AAHHCR, 7
B N? PR CGE R IEE, BWEE RIS, M, R BB
- [Incomplete] BT, WAREBTH? HERFH! F
FHT, WH—I1&EFEE .
W FIERRERE, BZO%L, H
EIRDRIFE - "RYEEE: 9EH LR
EELIFITHEE, RERIT R TX
H RPALRERKEITT .
HORAEMAINR BORMANFRERLE L TXRHFEERIE R RILWTSE, RLNMEL, ARG

&R B8 0L
B, AR
BIRTLE AR
RCHIN?

& 2 2 feE
ERPS RANITESE /A
FFFREIR LY

LB
TEX, hit2
i B 2B 2
7

RO RN T
BRI TR - [
ARILR T R, HFRF
B, BN T HOR
I, ERRARILE T &
IR, LA SRS B RV
Fi 5t -

“EERNUTE, &
A PR BB AL 1 B 44
T, B Dy A
TAZ, WREEYES
ZH, LBARGIEEY

Z8-

ERUEFBE T L
¥, B ECE
B, TR
%, WK, FTLI
HEN B2

PRARTL T RHT A
I T 12 [B] 203X A B AR] A

Ignorance

FHRAFEE R NMIEE
FEPRBIE L, R EE-ED
WA NI A HT 4, X
N2 FAE T AR HERM
TERE - /NUTE e 2
I B, XA
5 R E R E L, g
T AL E N I R R B 0 5 H#A
o Mo, BARTREHRS
IEE— MR R, I
/NI E R R EE R ST
ERAEFHETRTHRE,
B C AR 2 3R R i
B, WhBCHESY Om,
Z2hdrzEE, BBE
et R W .

o —Em@F, RFEWM? WS /NHA
HEHE, [EEERARSER RATHEL T
K&, SERRIRAEM ., SEERE, 1F
VEXUBE - FANARASERY, RO BHFAL
ﬁ, AR O RAELF - BB ZBIREE A
ffe

IE: SRS R T A SR
R, AR I E L, SAEME?
FHaHEA EE, AR, X
RATE? HieHE: wERER, EPAE
HE: wEEE =7, RAWRE
KIBACKERA, HLATRE R
W, BERET T AL, HETEET
ZE, UIHASGARZE.

EE: CMETEZET . RATEE
—4E, WITEAEHE, WATIE AR A
K, B2 = n]. “EREmA
JUfrr? »EEE: FRTZAETSY T

Table 21: LongNovelQA Examples

21

	Introduction
	Ubiquity of Cross-Chunk Semantic Dependencies
	Self-Questioning RAG System
	Overview
	Index Phase
	Inference Phase

	Experiment
	Experiment Setup
	Main Results
	Ablation Study
	Discussion

	Related Work
	Conclusion
	Notation and Functions
	Experiment Setup
	Datasets and Models details
	Prompts
	Evaluation Metrics details

	Answer Numbers
	From Local to Global
	Case Study
	Overview
	Cases of Data Structure in Method
	Cases Summary

	Dataset Generation

