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Abstract001

Retrieval-Augmented Generation (RAG) has002
been broadly adopted to mitigate hallucinations003
in large language models (LLMs) by ground-004
ing their outputs in external documents. How-005
ever, when dealing with long, coherently struc-006
tured texts, the standard assumption that each007
chunk is self-contained often fails—vital con-008
text may span multiple segments. This break-009
down undermines retrieval reliability and ulti-010
mately impairs generation quality. Our empiri-011
cal findings reveal that in long-document sce-012
narios, as many as 92% of user queries require013
cross-chunk semantic dependencies to produce014
sufficiently supported answers. This observa-015
tion aligns with cognitive frameworks like the016
Zeigarnik Effect and Kintsch’s Construction-017
Integration Model, both emphasizing the need018
to track incomplete information until a coherent019
whole is formed. To address these challenges,020
we propose a Self-Questioning RAG (SqRAG)021
framework. The core idea is to generate and022
integrate question–answer pairs that explicitly023
capture inter-chunk connections, thereby en-024
hancing the retrieval process to account for025
global context rather than isolated segments.026
Experimental evaluations demonstrate that our027
approach not only reduces hallucinations but028
also improves coherence and factual accuracy029
across multiple benchmarks, confirming that030
modeling cross-chunk dependencies is key to031
robust and context-rich generation.032

1 Introduction033

Retrieval-Augmented Generation (RAG) frame-034

works have emerged as a powerful technique for035

tasks that involve processing and comprehend-036

ing long documents. By splitting a lengthy text037

into manageable chunks, retrieving the most rele-038

vant segments, and conditioning a Large Language039

Model (LLM) on these retrieved passages, RAG040

systems can address user queries with contextually041

grounded responses (Gao et al., 2023). However,042

this approach typically assumes that each retrieved043

chunk is both sufficiently informative and semanti- 044

cally self-contained (Barnett et al., 2024). In prac- 045

tice, crucial information may be scattered across 046

multiple segments, and simply breaking a docu- 047

ment into chunks can disrupt the logical flow and 048

holistic understanding of the text. 049

Consider the example illustrated in Figure 1, 050

where the user poses the question: “Who is the 051

federal leader of the political party that Ken Epp 052

belongs to?” The document is divided into mul- 053

tiple chunks, each containing crucial pieces of 054

information (e.g., Ken Epp’s affiliation with the 055

Conservative Party of Canada and details about its 056

leader). However, a standard RAG pipeline (Lewis 057

et al., 2020) might retrieve only a subset of these 058

chunks—omitting the segment that explicitly iden- 059

tifies the federal leader—thereby producing an in- 060

complete answer (e.g., merely stating Ken Epp’s 061

party without mentioning Andrew Scheer). This 062

shortcoming arises from the inability to perform co- 063

hesive reasoning across multiple chunks. Although 064

each chunk is accurate in isolation, the system fails 065

to integrate them seamlessly. This exemplifies a 066

critical limitation of RAG for long texts: it lacks an 067

explicit mechanism to preserve semantic continuity 068

and ensure coherence across chunks. 069

Some works aim to model structured relation- 070

ships in the retrieval space via knowledge graphs, 071

such as GraphRAG (Edge et al., 2024) and Ligh- 072

tRAG (Guo et al., 2024), which organize retrieved 073

text as graphs. While GraphRAG demands ex- 074

tensive resources by repeatedly querying an LLM 075

to extract entities, LightRAG reduces this over- 076

head, yet both methods essentially construct entity- 077

relation graphs without capturing deeper semantic 078

dependencies across text chunks. Other efforts ex- 079

plore changing the retrieval unit itself (e.g., Dense 080

X Retrieval (Chen et al., 2023)), treating proposi- 081

tions as retrieval units. Nevertheless, as each propo- 082

sition typically relates to just one discrete chunk, it 083

can be extracted imprecisely or compressed exces- 084
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Related Material

Chunk: Epp was a member of the
Conserva�ve Party of Canada in the

House of Commons of Canada...

Chunk: ...Elected as a Canadian Alliance
MP in 2000....

Chunk: ...The 2017 Conserva�ve Party of
Canada leadership elec�on was held on

May 27, 2017.  Party members chose
Andrew Scheer as leader, replacing
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Answer: Ken Epp was a member of the
Conservative Party of Canada. 
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  poli�cal party that Ken Epp belongs to?
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Figure 1: Comparison of a Human Agent, Vanilla RAG, and Our SqRAG Approach. (Left) A human agent
can easily connect information from multiple chunks (e.g., Ken Epp was a member of the Party, and Andrew
Scheer is that party’s federal leader). (Middle) Vanilla RAG system retrieves only partial information and produces
an incomplete answer, indicating Ken Epp’s affiliation without identifying the correct federal leader. (Right)
Our SqRAG approach integrates cross-chunk reasoning by prompting the system to ask and answer intermediate
questions, leading to a fully grounded response (Andrew Scheer). More details refer to Table 12.

sively, which neither guarantees accurate semantic085

representation nor resolves cross-chunk dependen-086

cies. Similarly, approaches like FLARE (Jiang087

et al., 2023) and Self-RAG (Asai et al., 2023) im-088

plement active retrieval that allows the LLM to089

choose what to retrieve on the fly based on user090

query, but they still rely on discrete text chunks091

whose semantic content remains fragmented.092

A helpful conceptual lens to motivate a more093

cohesive retrieval strategy is the Zeigarnik Effect,094

a psychological principle noting that humans tend095

to remember and maintain focus on incomplete or096

unresolved tasks (Fox, 2020). In the context of097

RAG, one can think of each chunk’s semantic de-098

pendencies as “unfinished business” that the model099

should not simply discard upon moving to another100

segment. By prompting the system to explicitly101

pose and answer pending questions that arise while102

reading the document, our approach mirrors how103

people hold partial information in mind, awaiting104

additional context to complete the picture. This pro-105

cess maintains a thread of “semantic suspense” that106

encourages the model to preserve and revisit cross-107

chunk connections. Moreover, the question–answer108

pairs generated from these dependencies can ei-109

ther serve as standalone retrievable units or be in-110

serted back into the source text as annotations. In111

both cases, these QA pairs assist the LLM during112

Retrieval, Augmented context construction, and113

Generation phases, enabling it to produce more co-114

herent and contextually accurate responses, which 115

is shown in Figure 1. Additionally, since these steps 116

occur during the indexing phase, they do not im- 117

pose extra computational latency at retrieval time 118

(Section 4.4 Time Cost). 119

Our main contributions are as follows: 120

• We illustrate the ubiquitous presence of cross- 121

chunk semantic dependencies in RAG tasks in- 122

volving longer texts, and underscore their impor- 123

tance for performance gains. (Section 2) 124

• Incorporating cross-chunk semantic information, 125

our method create an enhanced document that 126

better leverages global context for user queries. 127

Compared with RAG methods relying solely 128

on discrete text chunks, our proposed method 129

demonstrates superior performance. (Section 4) 130

• We analyze the reasons behind the framework’s 131

efficacy (Section 4.4 Case Study) and further 132

apply the method in reverse, constructing a high- 133

quality Chinese QA dataset for long texts (Sec- 134

tion 4.4 Dataset Generation). 135

2 Ubiquity of Cross-Chunk Semantic 136

Dependencies 137

Semantic dependencies across textual chunks are a 138

pervasive feature of narrative and expository texts, 139

where crucial information often appears in widely 140

separated segments (Wolfe, 2005; Sangers et al., 141

2021; Xu et al., 2024). Cognitive theories, such 142
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as Kintsch’s Construction-Integration Model, sug-143

gest that human readers naturally bridge these gaps144

to construct a coherent mental representation of145

a text (Soares and Corrêa, 2001). Similarly, the146

Zeigarnik Effect, introduced in the Introduction147

section, underscores how unresolved dependencies148

in earlier segments can shape and enhance com-149

prehension when later information emerges. These150

perspectives collectively highlight the foundational151

role that cross-chunk dependencies play in generat-152

ing contextually grounded and cohesive reasoning.153

To empirically examine the influence of cross-154

chunk semantic dependencies, we conducted an155

experiment on the NarrativeQA (Kočiskỳ et al.,156

2018) dataset, obtained from the LongBench (Bai157

et al., 2024) framework. This dataset consists of158

long-form narratives intended to test the ability of159

models to synthesize context from distributed tex-160

tual segments. Specifically, each narrative was split161

into 512 token chunks, and for each chunk, GPT-162

4o-mini (Hurst et al., 2024) was used to generate163

ten contextually relevant questions. We then com-164

bined all questions from every chunk to form a165

single, pooled question set. Another GPT-4o-mini166

was tasked with answering a subset of 40 semanti-167

cally similar questions for each chunk, thereby sim-168

ulating both retrieval and multi-chunk reasoning.169

Our metrics encompassed the total number of ques-170

tions answered, the percentage of valid answers,171

and the proportion of valid answers that drew on172

intra-chunk1 versus cross-chunk2 information.173

Valid Answers
26%

Invalid Answers
74%

Cross Chunk
Answers,92%

Intra Chunk
Answers, 8%

Valid
Answers

Invalid
Answers

Cross Chunk
Answers

Intra Chunk
Answers

Figure 2: Why Do We Need Cross-Chunk Informa-
tion? According to the pie chart, 92% of valid an-
swers depend on information from multiple chunks (i.e.,
cross-chunk answers), while only 8% stem from a single
chunk (i.e., intra-chunk answers).

1The chunk containing the question is the same as the
chunk providing the valid answer.

2The chunk containing the question differs from the chunk
providing the valid answer.

Figure 2 presents the results of this experiment. 174

Remarkably, 92% of the valid answers required in- 175

tegrating content across multiple chunks, whereas 176

only 8% of valid answers drew solely on a single 177

chunk. This finding strongly indicate that meth- 178

ods treating each chunk as self-contained are in- 179

sufficient for effectively handling long documents. 180

Instead, a strategy that explicitly models and rec- 181

onciles dependencies spanning multiple chunks is 182

essential. By capturing and integrating cross-chunk 183

semantic dependencies, RAG frameworks can gen- 184

erate answers that are not only more accurate but 185

also more coherent and contextually aligned. Such 186

an approach leverages question-driven semantic 187

linking to establish a cohesive retrieval mecha- 188

nism—a strategy at the core of SqRAG, which we 189

detail in the following sections. 190

3 Self-Questioning RAG System 191

3.1 Overview 192

Building on the insight that cross-chunk depen- 193

dencies are crucial for long-text question answer- 194

ing, our method (depicted in Figure 3) is divided 195

into two main stages: an Index Phase (Algo- 196

rithm 1) and an Inference Phase (Algorithm 2). 197

In the Index Phase, the original document D 198

is split into chunks N = {n1, n2, . . . , ni}. We 199

then use a dedicated Q-LLM to generate ques- 200

tions for each chunk, gather these questions to 201

a question database QuestionsDB and employ an 202

A-LLM to produce corresponding answers for rel- 203

evant questions in this QuestionsDB. All validated 204

question–answer pairs are merged into a central 205

repository, qaDB. In the Inference Phase, we 206

retrieve from qaDB the QA pairs most relevant 207

to the user query qu. These pairs are then in- 208

serted back into their respective chunks to form 209

an enhanced document Nenh, which incorporates 210

sufficient cross-chunk dependencies. Finally, we 211

adopt a retrieval mechanism combined with an 212

ANSWER-LLM—essentially a RAG-based pro- 213

cess where the retrieval is performed overNenh—to 214

generate the refined response au. Further details 215

about the notation and functions used throughout, 216

are provided in Appendix A. 217

3.2 Index Phase 218

During the Index Phase, the user uploads a 219

document-based knowledge repository, which the 220

system converts into a searchable index. During 221

this step, we extract question–answer pairs from the 222
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Figure 3: Overview of the Self-Questioning RAG Method.

original document, explicitly capturing any cross-223

chunk dependencies.224

Step 0: Chunk Splitting. We first invoke the225

function Split(D, cs), which partitions the docu-226

ment D into overlapping segments of size cs. This227

yields a set of chunks, N = {n1, n2, . . . , ni, . . . }.228

Step 1: Question Generation. Next, for each229

chunk ni ∈ N , we use Q-LLM to generate poten-230

tial questions by invoking Qi = Q-LLM(ni). It is231

to capture any inquiries that may arise from the232

local context of each chunk.233

Step 2: Answer Generation. For each chunk234

ni, a relevant subset of questions Q′
i is selected235

from QuestionsDB. These relevant questions236

serve as “semantic placeholders” for bridging dif-237

ferent chunks of the document. The function238

SelectRelevant(QuestionsDB, ni) treats each ques-239

tion in QuestionsDB as a retrieval unit, using con-240

tent of ni as the query. Corresponding answers241

and their evidences3 Ai are then generated by242

A-LLM(Q′
i, ni). This step enables the model to243

articulate the knowledge required to answer ques-244

tions that may span both local and broader contexts245

within the text. To ensure answer quality, the func-246

tion Eval(Ai) filters out incomplete or incorrect247

responses by detecting a predefined prefix, “[I can-248

not answer],” which is accomplished by prompting249

A-LLM. Only validated answers are retained in250

AnswersDB.251

3Evidence refers to the original text that supports the an-
swer, with a one-to-one correspondence to each answer.

Step 3: Integrate Questions and Answers. Fi- 252

nally, we combine QuestionsDB and AnswersDB 253

into a unified repository, resulting in a cohe- 254

sive database of question–answer pairs that ref- 255

erence specific chunks in N . By this design, 256

qaDB captures cross-chunk dependencies in these 257

pairs, thereby streamlining retrieval in the subse- 258

quent Inference Phase. Concretely, Merge pairs 259

each question qi from QuestionsDB with its cor- 260

responding valid answers and evidence ai stored 261

in AnswersDB (linked via pre-saved ask-node and 262

answered-node IDs). This approach explicitly mod- 263

els cross-chunk dependencies by associating ques- 264

tions and answers across different chunks. 265

3.3 Inference Phase 266

In the Inference Phase, the user poses a query to 267

the system, which then leverages the previously 268

uploaded knowledge base to assist in generating 269

answers. Specifically, we insert query-relevant 270

question–answer pairs back into the original doc- 271

ument to create an enhanced version, and we sub- 272

sequently apply a standard RAG process on this 273

enhanced document. 274

Step 4: Retrieve & Insert User Query Rele- 275

vant QAs. Given a user query qu, we first identify 276

a subset of question–answer pairs relevant to qu 277

by calling SelectRelevant(qaDB, qu). The function 278

SelectRelevant(qaDB, qu) treats each question in 279

qaDB as a retrieval unit, using the content of qu 280

as the retrieval query. After retrieval, we apply 281
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Algorithm 1 SqRAG in Index Phase

1: Input: D: support document, cs: chunk
size, Q-LLM: question LLM , A-LLM: answer
LLM, Eval: answer evaluation method

2: Step 0: Chunk Splitting.
3: N ← Split(D, cs)
4:

5: Step 1: Question Generation
6: for each ni ∈ N do
7: Qi ← Q-LLM(ni)
8: QuestionsDB← QuestionsDB ∪Qi

9: end for
10:

11: Step 2: Answer Generation
12: for each ni ∈ N do
13: Q′

i ← SelectRelevant(QuestionsDB, ni)
14: Ai ← A-LLM(Q′

i, ni)
15: A′

i ← Eval(Ai)
16: AnswersDB← AnswersDB ∪A′

i

17: end for
18:

19: Step 3: Integrate Questions & Answers
20: qaDB← Merge(QuestionsDB,AnswersDB)
21: Output: questions with answers database

qaDB

Nenh = Insert(N ,RelevantQAs), augmenting doc-282

ument N with the user query relevant QA pairs283

RelevantQAs. The content of each QA insertion284

is formatted as “({question qi} {answer aki })”4,285

similar to a note taken while reading a book. The286

insertion location is determined based on fuzzy287

string matching between the chunk content and the288

QA pair content. A buffer count is used during289

the insertion process to ensure there is no QA over-290

lap. This insertion process effectively integrates the291

previously generated cross-chunk insights into the292

primary text body. After this step, we obtain an en-293

hanced documentNenh with the same format as the294

original document N but enriched with thoughtful,295

cross-dependent notes embedded within.296

Step 5: RAG with Enhanced Database.297

Lastly, the system performs a standard RAG298

pipeline on the enhanced document Nenh. It be-299

gins by retrieve R = Retrieve(Nenh, qu), and300

then augmented generates a final response au =301

ANSWER-LLM(qu,R). In practice, this approach302

yields more accurate and contextually grounded303

responses compared to performing RAG on the304

4For example, “(Who is Charlie? Charlie is my pet.)”.

original document. The effectiveness of leveraging 305

question-driven links will be discussed in detail in 306

the following experimental results. 307

Algorithm 2 SqRAG in Inference Phase

1: Input: qaDB, N : chunks of document, qu:
user query, ANSWER-LLM: LLM to answer
user query

2: Step 4: Retrieve & Insert User Query Rele-
vant QAs

3: RelevantQAs← SelectRelevant(qaDB, qu)
4: Nenh ← Insert(N ,RelevantQAs)
5:

6: Step 5: RAG with Enhanced Database
7: R ← Retrieve(Nenh, qu)
8: au ← ANSWER-LLM(qu,R)
9: Output: LLM response au

4 Experiment 308

4.1 Experiment Setup 309

Datasets and Models. For our experiments, we 310

use four datasets from LongBench (Bai et al., 311

2024): NarrativeQA (Kočiskỳ et al., 2018), 312

MuSiQue (Trivedi et al., 2022), TriviaQA (Joshi 313

et al., 2017) and HotpotQA (Yang et al., 2018). 314

These datasets are carefully chosen to cover di- 315

verse tasks such as single-document long con- 316

text QA (NarrativeQA), multi-document QA (Hot- 317

potQA and MuSiQue), and few-shot QA (Triv- 318

iaQA), enabling a comprehensive evaluation of 319

long-context understanding. We use two types of 320

Large Language Models (LLM) as our ANSWER- 321

LLM, namely open source LLM (e.g. Llama 3.1 322

8B (Dubey et al., 2024)) and close source LLM 323

(e.g. GPT-4o-mini (Hurst et al., 2024)). For more 324

details, please refer to Appendix B.1. 325

Implementation Details. As summarized in 326

Table 4, we compare three baseline methods that 327

exemplify distinct categories of RAG techniques: 328

Vanilla RAG (Lewis et al., 2020), Dense X Re- 329

trieval (Chen et al., 2023), and FLARE (Jiang et al., 330

2023). Vanilla RAG belongs to the “Basic RAG” 331

category, constituting the canonical retrieve-and- 332

generate pipeline and serving as a foundational ref- 333

erence point for subsequent enhancements. Dense 334

X Retrieval represents “RAG with Modified Re- 335

trieval Units,” employing a dense embedding-based 336

retrieval process that refines retrieval precision 337

and boosts generation quality. FLARE falls un- 338

der the “Active Retrieval RAG” category, intro- 339
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OVERALL METRICS (CLOSE SOURCE LLM) OVERALL METRICS (OPEN SOURCE LLM)
METHOD

PRECISION RECALL F1 PRECISION RECALL F1

#NarrativeQA#
Vanilla RAG 29.55 46.20 27.07 29.00 41.58 26.07

Dense X Retrieval 28.38 35.52 23.05 29.25 38.38 25.72
FLARE 25.75 47.98 25.45 23.62 20.02 13.25

Ours 31.70 45.72 28.28 31.30 42.80 27.15
#MuSiQue#

Vanilla RAG 31.35 40.60 26.70 27.92 32.00 22.97
Dense X Retrieval 31.90 39.25 26.78 29.57 32.55 23.25

FLARE 29.38 47.42 27.70 25.85 29.72 18.98
Ours 32.92 41.95 28.35 32.43 33.48 25.68

#TriviaQA#
Vanilla RAG 90.68 71.12 73.90 81.85 71.10 69.70

Dense X Retrieval 90.03 70.47 72.80 80.53 69.15 67.22
FLARE 77.73 67.72 65.12 74.93 70.88 64.28

Ours 90.43 71.62 74.47 82.57 70.82 70.12
#HotpotQA#

Vanilla RAG 48.78 60.85 45.98 43.40 51.37 39.62
Dense X Retrieval 49.38 61.58 46.17 42.85 50.48 38.05

FLARE 37.10 60.65 36.50 35.70 38.60 26.57
Ours 48.92 60.50 45.78 45.85 51.50 41.12

Table 1: Main results.

ducing comprehensive optimizations at the inter-340

face of retrieval and generation to reinforce fac-341

tual consistency and interactive elements. Because342

knowledge-graph-based baselines require exces-343

sive computational resources, we do not include344

them for comparison in this work.345

We implement all baseline methods and our own346

approach using the LlamaIndex (Liu, 2022) frame-347

work, along with prompt engineering to optimize348

the interaction between the retriever and the gener-349

ator. Detailed prompt templates and strategies can350

be found in Appendix B.2.351

Evaluation Metrics. To evaluate the effective-352

ness of our approach, we use RAGCHECKER (Ru353

et al., 2024), which provides fine-grained claim-354

level analysis. We focus on overall system perfor-355

mance and do not utilize its diagnostic retriever356

or generator metrics, as comparing different re-357

triever and generator capabilities is not our primary358

goal. To reduce randomness in the evaluation, we359

employ four open-source LLMs (i.e., Llama 3.1360

8B (Dubey et al., 2024), Qwen 2.5 7B (Yang et al.,361

2024), Mixtral 8x7B (Jiang et al., 2024), Gemma 2362

9B (Team et al., 2024)) as evaluators and ensemble363

their scores to form the final outcome. For more364

details, please refer to Appendix B.3.365

4.2 Main Results 366

Table 1 summarizes the main outcomes for our 367

method and baselines (Vanilla RAG, Dense X Re- 368

trieval, and FLARE) under both closed-source 369

and open-source LLM evaluations. Across Nar- 370

rativeQA and MuSiQue, our approach generally 371

achieves the highest F1 scores, affirming the ad- 372

vantage of explicit cross-chunk QA pairs. On 373

TriviaQA, we also outperform other baselines, al- 374

though the overall gap is less pronounced because 375

TriviaQA questions often require relatively less 376

complex cross-chunk reasoning. Notably, FLARE 377

sometimes attains higher recall, as it tends to gen- 378

erate overly long or verbose outputs, thereby in- 379

creasing recall at the expense of precision. For 380

HotpotQA—which inherently involves shorter text 381

spans—our method does not always excel in the 382

closed-source setting; however, it demonstrates a 383

clear advantage in the open-source scenario, indi- 384

cating that more limited retrieval capabilities or 385

LLM resources can amplify the benefits of our 386

cross-chunk linking strategy. 387

4.3 Ablation Study 388

Table 2 presents ablation results on the Narra- 389

tiveQA dataset, highlighting the contribution 390

of each component in our SqRAG frame- 391

work. During the Index Phase, removing 392
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the questions relevant selection step (No393

SelectRelevant(QuestionsDB, ni)) slightly de-394

grades the F1 score to 27.10, indicating that395

focusing on chunk-relevant questions is crucial.396

Eliminating the evaluation function (Remove397

Eval(Ai)) also lowers the final performance,398

underscoring the importance of filtering out invalid399

or low-quality answers before populating the QA400

database.401

METHOD PRECISION RECALL F1

SqRAG 31.70 45.72 28.28
#Index Phase#

No SelectRelevant(QuestionsDB, ni) 30.20 44.50 27.10
Remove Eval(Ai) 30.40 44.17 27.30

#Inference Phase#
No RelevantQAs 28.25 43.88 24.95
Vanilla RAG 29.55 46.20 27.07
No Retrieval 20.50 31.32 17.45

Table 2: Ablation Study on NarrativeQA Dataset.

During the Inference Phase, excluding the inser-402

tion of relevant QA pairs (No RelevantQAs) yields403

a more substantial drop to 24.95 F1, suggesting that404

injecting contextually linked QA pairs effectively405

facilitates cross-chunk reasoning. Comparisons406

with Vanilla RAG (27.07 F1) and a scenario where407

retrieval is omitted entirely (No Retrieval, 17.45408

F1) further confirm that both retrieval and question-409

driven augmentation are essential. Overall, these re-410

sults demonstrate that each mechanism—including411

question relevance selection, answer evaluation,412

and relevant QA insertion—plays a critical role in413

improving long-text QA performance.414

4.4 Discussion415

Time Cost. Table 3 compares the runtime of416

SqRAG against Vanilla RAG during the inference417

phase. SqRAG introduces two additional stages:418

SelectRelevant(qaDB, qu) and Insert. As shown in419

Table 3, these operations incur only negligible over-420

head for both closed-source (GPT-4o-mini) and421

open-source (Llama 3.1 8B) LLM settings.422

STAGE CLOSE LLM OPEN LLM

SqRAG
SelectRelevant(qaDB, qu) 0.0077 0.0089
Nenh ← Insert(N ,RelevantQAs) 0.0039 0.0022
RAG with Enhanced Database 0.3788 0.0250

Vanilla RAG RAG with Original Database 0.3696 0.0231

Table 3: Comparison of time costs (in seconds) between
SqRAG and Vanilla RAG during the inference phase.

Answers Numbers. An important factor in our423

approach is the quantity of generated answers (an-424

swer numbers) inserted into each chunk. Small425

values (e.g., aq = 10) may fail to provide suffi- 426

cient searchable context, while excessively large 427

values (e.g., aq = 60 or aq = 80) risk introducing 428

substantial noise. Moderate values (e.g., aq = 20 429

or aq = 40) appear to strike a balance between 430

additional searchable context and minimal noise, 431

yielding stronger overall F1. For a more compre- 432

hensive analysis of answer selection strategies and 433

numerical results, please refer to Appendix C. 434

From Local to Global. Table 10 illustrates how 435

varying chunk sizes (256, 512, and 1024 tokens) 436

influence question-answering (QA) performance by 437

balancing local detail and global coverage. Smaller 438

chunks offer fine-grained local context, while larger 439

chunks provide a more holistic overview. For a 440

more detailed discussion of these trade-offs, please 441

refer to Appendix D. 442

Case Study. We present a case study to demon- 443

strate how different RAG methods can exhibit dis- 444

tinct error patterns and successes when handling 445

long-text QA tasks. By examining concrete exam- 446

ples of system outputs, readers can gain a more 447

nuanced understanding of each model’s strengths, 448

potential pitfalls, and the types of errors that may 449

arise. Details can be seen in Appendix E. 450

Dataset Generation. Beyond serving as a re- 451

trieval augmentation technique, our method can 452

also facilitate the construction of high-quality QA 453

datasets. In particular, since our framework fo- 454

cuses on identifying and explicitly modeling cross- 455

chunk semantic dependencies, the question–answer 456

pairs it produces tend to capture more complex rea- 457

soning steps that traditional RAG methods strug- 458

gle to retrieve and combine accurately. We ran 459

SqRAG on longer Chinese classical novels and 460

manually filtered out QA pairs with abundant cross- 461

chunk dependencies. These QA pairs naturally 462

spotlight intricate textual relationships—where crit- 463

ical information is scattered across multiple seg- 464

ments—thereby ensuring that the resulting dataset 465

challenges models to incorporate global context 466

and multi-step reasoning. This can be especially 467

valuable for developing new benchmarks or refin- 468

ing existing ones, pushing QA systems beyond sim- 469

ple fact extraction into deeper comprehension and 470

inference. Furthermore, compared with traditional 471

methods of generating QA datasets, our method 472

can effectively select questions containing cross- 473

chunk information, thereby greatly reducing the 474

burden of constructing a high-quality QA dataset, 475

whereas previous approaches often struggled to 476

produce questions of such caliber and required sig- 477
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CATEGORY REPRESENTATIVE METHODS CHARACTERISTICS SHORTCOME

Basic RAG Vanilla RAG (Lewis et al., 2020) Splits text into coarse blocks and re-
trieves a subset.

It struggles in long-document scenar-
ios lacking broader context.

RAG with Modified
Retrieval Units

Dense X Retrieval (Chen et al., 2023),
HiQA (Chen et al., 2024)

Converts documents into modified
retrieval units.

It may overlook semantic dependen-
cies that span multiple propositions.

Knowledge Relationship
or Graph Based RAG

GraphRAG (Edge et al., 2024),
LightRAG (Guo et al., 2024),
HybGRAG (Lee et al., 2024)

Builds knowledge relationships or
graphs from documents.

These capture entity relationships
but may lose rich contextual cues
beyond the graph.

Active Retrieval RAG FLARE (Jiang et al., 2023), Self-RAG (Asai et al., 2023),
Adaptive-RAG (Jeong et al., 2024), CRAG (Yan et al., 2024),

CtrlA (Liu et al., 2024), Astute RAG (Wang et al., 2024a),
Speculative RAG (Wang et al., 2024b), Agentic RAG (Singh et al., 2025)

Dynamically selects refines re-
trieved content.

It can lead to lengthy outputs and of-
ten still uses naive text chunks lack-
ing cross-block semantic linkage.

Table 4: Summary of RAG methods

nificant manual effort to sift through numerous gen-478

erated questions. We showcase representative ex-479

amples of these generated QA pairs in Appendix F,480

illustrating how they encapsulate nuanced, cross-481

chunk relations not readily evident within standard,482

locally-focused question sets.483

Incremental Learning. Our framework readily484

supports incremental learning by allowing users to485

incorporate new knowledge without reprocessing486

the entire database. When additional documents or487

updates are introduced, relevant question–answer488

pairs can be generated and appended directly to the489

existing qaDB, preserving previously constructed490

cross-chunk dependencies. This mechanism en-491

ables efficient, on-demand expansion of the knowl-492

edge base while maintaining consistency in the493

retrieval process.494

5 Related Work495

Vanilla RAG (Lewis et al., 2020) combines a pre-496

trained language model and an external knowledge497

source by first retrieving relevant documents and498

then generating answers. However, it may fail to499

capture cross-chunk semantic dependencies when500

dealing with long documents.501

RAG with modified retrieval units employs502

smaller or more fine-grained text segments. Dense503

X Retrieval (Chen et al., 2023) highlights that re-504

trieval granularity (e.g. propositions) can boost505

performance in certain tasks, while HiQA (Chen506

et al., 2024) refines multi-document retrieval for507

large-scale question answering. Both approaches508

address the rigid chunking of standard RAG but509

risk overlooking cross-segment semantics.510

Knowledge relationship based RAG methods511

build entity-level relationship or graphs to structure512

and retrieve relevant contexts. GraphRAG (Edge513

et al., 2024) extracts a graph of key entities for514

query-focused summarization, LightRAG (Guo515

et al., 2024) simplifies index construction for effi-516

cient retrieval, and HybGRAG (Lee et al., 2024) 517

fuses textual and relational knowledge. These ap- 518

proaches capture entity relationships but may lose 519

rich contextual cues beyond the graph. 520

Active retrieval RAG techniques iteratively re- 521

fine retrieval and generation. FLARE (Jiang et al., 522

2023) and Self-RAG (Asai et al., 2023) actively 523

query external sources when low-confidence con- 524

tent is detected, while Adaptive-RAG (Jeong et al., 525

2024) adjusts its strategy based on question com- 526

plexity. CRAG (Yan et al., 2024) and Specula- 527

tive RAG (Wang et al., 2024b) introduce correc- 528

tive or drafting steps to improve factual ground- 529

ing, CtrlA (Liu et al., 2024) leverages internal 530

probes for guided retrieval, and Astute RAG (Wang 531

et al., 2024a) mitigates imperfect augmentation and 532

knowledge conflicts. Agentic RAG (Singh et al., 533

2025) surveys these agent-like approaches, illus- 534

trating their potential to adapt retrieval behavior on 535

the fly, but they often still rely on naive chunked 536

text lacking deeper semantic linkages. 537

Table 4 summarizes these RAG methods. 538

6 Conclusion 539

In this paper, we highlighted a key RAG challenge: 540

cross-chunk dependencies within lengthy, coher- 541

ent texts. Our empirical findings show that most 542

real-world questions span multiple segments, often 543

overlooked by conventional RAG pipelines. Mo- 544

tivated by psychological theories, we introduced 545

SqRAG, a framework that systematically generates, 546

integrates QA pairs to bridge these gaps and en- 547

rich contextual links. Experiments across diverse 548

datasets reveal that SqRAG outperforms existing 549

approaches in precision, recall, and overall coher- 550

ence. We further demonstrated how tuning the num- 551

ber of QA pairs, adjusting chunk sizes can refine 552

results. We hope this work inspires deeper explo- 553

ration of cross-chunk semantics for more robust 554

and context-aware retrieval generation systems. 555
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Limitations556

Although SqRAG enhances retrieval robustness557

and reduces hallucinations, it has practical con-558

straints. The index phase can be computationally559

expensive, especially for large or frequently up-560

dated corpora. Moreover, SqRAG relies on hav-561

ing sufficiently capable LLMs to handle enriched562

context and cross-chunk cues. Less powerful mod-563

els may not realize the same gains, limiting the564

method’s overall impact. Consequently, there is565

a trade-off between the computational overhead566

required and the precision benefits achieved for567

long-text retrieval and generation.568
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B Experiment Setup731

B.1 Datasets and Models details732

LongBench is a bilingual, multitask benchmark733

designed to assess the long-context understanding734

capabilities of large language models. It consists735

of 21 tasks across six categories: single-document736

QA, multi-document QA, summarization, few-shot737

learning, synthetic tasks, and code completion.738

In English, the dataset contains an average con-739

text length of 6,711 words, whereas in Chinese it740

reaches 13,386 characters, providing a comprehen-741

sive framework for evaluating long-text applica-742

tions. Due to its focus on extended textual contexts,743

its broad task coverage, and its authoritative cu-744

ration by reputable institutions, we consider it a745

thorough assessment of models’ performance in746

diverse and realistic long-text understanding sce-747

narios. In our study, we employ four datasets from748

LongBench: NarrativeQA, MuSiQue, TriviaQA,749

and HotpotQA. Table 7 summarizes their key fea-750

tures.751

In terms of large language models, we utilize752

the lightweight and representative GPT-4o-mini753

and Llama 3.1 8B as the closed-source and open-754

source LLMs, respectively, to ensure a comprehen-755

sive evaluation of the experimental results.756

B.2 Prompts757

Figure 4 is the prompt for Q-LLM. Figure 5 is the758

prompt for A-LLM.759

B.3 Evaluation Metrics details760

To thoroughly evaluate our RAG system, we in-761

tegrated RAGCHECKER into our framework,762

which is a fine-grained evaluation framework de-763

signed to assess both the retrieval and generation764

components of RAG systems. It offers a suite of di-765

agnostic metrics that provide detailed insights into766

system performance. By extracting factual claims767

from generated responses and validating them768

against ground-truth answers, RAGCHECKER en-769

ables precise evaluations of correctness and com-770

pleteness.771

We implemented RAGCHECKER using the Lla-772

maIndex framework, which offers seamless inte-773

gration and robust support for its functionalities.774

To streamline model inference and manage compu-775

tational resources efficiently, we employed Ollama776

as a proxy server for model execution.777

To reduce potential biases and randomness in778

our evaluation process, we employed four open-779

source LLMs as evaluators. Each model indepen- 780

dently assessed the generated responses, assigning 781

individual scores based on RAGCHECKER’s met- 782

rics. We then averaged these scores to yield the 783

final evaluation outcome, ensuring a balanced and 784

comprehensive assessment. Table 8 provides an 785

example of these evaluation scores. 786

C Answer Numbers 787

Table 9 illustrates how varying the number of an- 788

swers inserted into each chunk (aq) influences the 789

overall performance of our method on the Nar- 790

rativeQA dataset. A smaller value of aq (e.g., 791

aq = 10) provides insufficient additional context to 792

improve retrieval recall and F1 scores. Conversely, 793

as aq grows (e.g., aq = 60 or aq = 80), although 794

recall can improve in certain settings, the risk of 795

overloading each chunk with noisy QA pairs rises, 796

ultimately lowering precision and diminishing the 797

final F1. Thus, there is a trade-off between captur- 798

ing enough information to enhance retrieval and 799

overpopulating the chunks with less relevant details. 800

Our experiments suggest that moderate aq values 801

(e.g., aq = 20 or aq = 40) often yield an optimal 802

balance of informativeness and precision, resulting 803

in more consistent gains across both closed-source 804

and open-source LLM evaluations. 805

D From Local to Global 806

Table 10 illustrates how altering the chunk size 807

(e.g., 256, 512, and 1024 tokens) shifts the balance 808

between local context and global coverage. Smaller 809

chunks (e.g., 256 tokens) provide fine-grained lo- 810

cal detail but tend to increase the total number of 811

chunks, potentially yielding more local QA pairs 812

while making it harder to build a holistic view of the 813

document. Conversely, larger chunks (e.g., 1024 814

tokens) capture broader context in fewer segments, 815

thereby reducing the number of available QA pairs 816

and possibly losing nuanced local information. 817

Our results show that medium-sized chunks (e.g., 818

512 tokens) often strike a desirable trade-off: they 819

retain enough local structure to generate meaning- 820

ful QA pairs while also offering sufficient global 821

context for robust cross-chunk reasoning. Notably, 822

although larger chunks can sometimes improve re- 823

call (e.g., FLARE with 1024 tokens), precision 824

may suffer if the model struggles to focus on the 825

most relevant information. Overall, an intermediate 826

chunk size appears most conducive to effectively 827

leveraging cross-chunk dependencies for long-text 828
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QA tasks.829

E Case Study830

E.1 Overview831

In this section, we present a detailed case study832

of erroneous answers produced by several RAG-833

based models. To facilitate a structured analysis,834

we categorize these mistakes into four main error835

types and summarize in Table 11. By breaking836

down the types of errors and looking at cases from837

multiple datasets and multiple baselines, we can838

more intuitively evaluate different responses and839

analyze the causes of errors in detail.840

E.2 Cases of Data Structure in Method841

E.3 Cases Summary842

F Dataset Generation843

Figure 6 visually compares the average document844

length of our newly generated dataset, LONGNOV-845

ELQA, to several established long-text QA bench-846

marks, including L-Eval, TriviaQA, HotpotQA,847

MuSiQue, NarrativeQA, and BookCorpus. No-848

tably, as shown in the figure, most existing datasets849

have average lengths ranging from roughly 7,000850

tokens (L-Eval) up to around 89,000 tokens (Book-851

Corpus). In contrast, our LONGNOVELQA corpus852

consists of documents exceeding 600,000 tokens853

on average, underscoring a substantial increase in854

text length that encourages deeper cross-chunk rea-855

soning, multi-step inference, and long-context un-856

derstanding.857

Table 21 further illustrates how our approach858

leverages this vast context to generate question–859

answer pairs that span multiple segments of text,860

highlighting intricate dependencies and rendering861

purely local retrieval strategies inadequate. In many862

cases, questions demand synthesizing information863

from distant parts of a text, compelling the model864

to integrate clues that may be scattered across hun-865

dreds of pages. This extensive context also paves866

the way for more complex inference, going beyond867

straightforward entity matching to reveal whether868

a model can handle deeper reasoning. Additionally,869

rather than relying on single-sentence queries or an-870

swers, our dataset features longer, interlinked pas-871

sages, demonstrating how multiple pieces of text872

must be retrieved, fused, and logically connected873

to arrive at a correct solution. Together, these char-874

acteristics underscore the dataset’s emphasis on875

robust cross-chunk integration and genuinely chal- 876

lenging long-text QA. 877

12



SYMBOL DESCRIPTION

D The original support document.
cs Chunk size parameter for splitting the document.
N A set of document chunks (nodes) obtained by splitting D.
ni Each ni ∈ N is one chunk.
Qi A set of candidate questions generated by Q-LLM for a chunk ni.
qi Each qi ∈ Qi is one single question.
Q′

i A subset of questions selected from QuestionsDB that are relevant to a chunk ni.
Ai Raw answers with corresponding evidence generated by A-LLM for the questions Q′

i regarding
chunk ni.

ai Each ai ∈ Ai is one single answer and corresponding evidence.
A′

i Validated answers after applying Eval on Ai.
Q-LLM A Large Language Model used to generate questions from a given text chunk.
A-LLM A Large Language Model used to generate answers to given questions based on a provided chunk.

Eval An evaluation method or function that filters out not answered or low-quality answers.
QuestionsDB A database (set) of all generated questions from all chunks.
AnswersDB A database (set) of all validated answers corresponding to the questions in QuestionsDB.

qaDB A merged database of question-answer pairs formed from QuestionsDB and AnswersDB.
qu The user query posed during the inference phase.

RelevantQAs QA pairs from qaDB considered relevant to the user query qu.
Nenh The enhanced set of chunks after inserting relevant QA pairs into the original chunks.
R Relevant text retrieved from Nenh for the user query qu.
au The final answer generated by ANSWER-LLM using retrieved textR.

Table 5: Symbols and Their Descriptions

FUNCTION DESCRIPTION

Split(X, cs) Divides an input X (e.g., a document) into multiple chunks of size cs.
Q-LLM(X) Given a text input X (e.g., a chunk), generates a set of candidate questions.
A-LLM(Q,X) Given a set of questions Q and a text input X (e.g., a chunk), produces a set of corresponding

answers.
Eval(A) Given a set of raw answers A, filters and validates them, resulting in a subset of refined

answers.
SelectRelevant(X,Y ) From a given set or database X , selects the subset most relevant to Y (e.g., a chunk ni or a

user query qu).
Merge(Qdb,Adb) Merges separate question and answer databases Qdb and Adb into a unified QA database.
Insert(X,Y ) Integrates items from Y (e.g., QA pairs) into X (e.g., a database or set of chunks), producing

an enhanced version of X .
Retrieve(X,Y ) From a given set or database X , retrieves content most relevant to Y (e.g., a user query),

returning a set of pertinent information.
ANSWER-LLM(Q,R) Given a query Q (e.g., a user query) and retrieved content R, generates a final response or

answer.

Table 6: Functions and Their General Descriptions
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DATASET AVG. LENGTH DOC# LANGUAGE DESCRIPTION

NarrativeQA 18,409 20 English Focuses on single-document long-context QA, re-
quiring models to answer questions based on entire
stories or scripts, thus testing deep narrative under-
standing.

MuSiQue 11,214 200 English Involves multi-document QA, where models must
integrate information from multiple documents to
answer complex questions, assessing the ability to
synthesize information across sources.

TriviaQA 8,209 200 English Serves as a few-shot QA task, providing a limited
number of examples to evaluate the model’s ability to
generalize from minimal data, focusing on answering
trivia questions based on evidence documents.

HotpotQA 9,151 200 English Another multi-document QA dataset, it challenges
models to perform multi-hop reasoning by connect-
ing information from different documents to answer
questions, emphasizing explainability and diverse
reasoning paths.

Table 7: Descriptions of the four datasets used from LongBench Benchmark.

Q-LLM Prompt
Here is the context:

---------------------

{context_str}

---------------------

Given the contextual information, generate {num_questions} questions. 

Questions should be relevant to the context and should be specific and not abstract. 

Please provide these questions plainly, without any numbering or bullet points. 

Use the same language as the provided context. 

Figure 4: Q-LLM prompt.

Metric Llama 3.1 8B Qwen 2.5 7B Mixtral 8x7B Gemma 2 9B Overall Average

Precision 47.80 12.80 36.40 21.20 29.55
Recall 73.80 28.30 46.20 36.50 46.20

F1 Score 48.60 10.60 30.90 18.20 27.07

Table 8: Individual and Averaged Evaluation Scores from Multiple LLMs

OVERALL METRICS (CLOSE SOURCE LLM) OVERALL METRICS (OPEN SOURCE LLM)
METHOD

PRECISION RECALL F1 PRECISION RECALL F1

#NarrativeQA#
Vanilla RAG 29.55 46.20 27.07 29.00 41.58 26.07
aq = 10 30.30 44.80 27.93 28.07 40.88 25.75
aq = 20 31.70 45.40 29.35 30.30 42.50 27.75
aq = 40 31.80 49.47 30.17 30.07 42.02 27.85
aq = 60 30.45 45.60 28.73 27.80 41.77 25.50
aq = 80 31.90 45.15 28.98 25.90 40.33 24.02

Table 9: Influence of answer numbers on SqRAG.
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A-LLM Prompt

Here is the context:

---------------------

{context_str}

---------------------

Please read the context carefully and answer the following questions.

---------------------

{question}

---------------------

For each question:

- Base your answer ONLY on the provided information.

- Keep your answer as brief and direct as possible.

If you can answer, also provide one short Evidence excerpt directly quoted from the 

provided information.

- If you cannot answer, respond with '[I cannot answer]'.

- Use the same language as the provided information

Required response format:

Question 1: [Question text]

Answer 1: [Your answer]

Evidence 1: [Exact quote from the provided information or \"No supporting evidence 

found\"]

Question 2: [Question text]

Answer 2: [Your answer]

Evidence 2: [Exact quote from the provided information or \"No supporting evidence 

found\"]

[Continue for all questions]

Requirements:

- For every question, include the question text, answer, and evidence.

- Evidence MUST be an exact excerpt from the provided information.

- The number of answers must match the number of questions.

- Follow the exact format with line breaks as shown.

- Use the same language as the provided information.

Figure 5: A-LLM prompt.

OVERALL METRICS (CLOSE SOURCE LLM) OVERALL METRICS (OPEN SOURCE LLM)
METHOD

PRECISION RECALL F1 PRECISION RECALL F1

#Chunk Size = 256#
Vanilla RAG 30.00 43.17 26.80 27.00 37.35 23.48

Dense X Retrieval 28.48 35.55 22.22 26.98 35.92 22.70
FLARE 25.25 42.20 23.83 24.70 22.38 13.95

Ours 30.33 45.15 27.15 30.27 38.80 27.18
#Chunk Size = 512#

Vanilla RAG 29.55 46.20 27.07 29.00 41.58 26.07
Dense X Retrieval 28.38 35.52 23.05 29.25 38.38 25.72

FLARE 25.75 47.98 25.45 23.62 20.02 13.25
Ours 31.70 45.72 28.28 31.30 42.80 27.15

#Chunk Size = 1024#
Vanilla RAG 31.50 45.85 28.92 27.88 42.15 25.72

Dense X Retrieval 28.10 34.20 21.72 28.95 41.75 26.28
FLARE 26.00 49.25 25.00 26.10 24.92 16.52

Ours 32.48 49.23 30.63 23.95 38.33 21.45

Table 10: From local to global.
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ERROR TYPE LABEL DEFINITION AND EXPLANATION

Unwarranted Ignorance Ignorance The response incorrectly concludes that the context or source
does not provide sufficient information, even though the relevant
details are present and retrievable. In other words, it claims “no
information is available” or “the context does not provide specific
details” despite evidence to the contrary.

Partial or
Incomplete Answer

Incomplete The response detects the correct topic or concept but fails to pro-
vide the specific or complete explanation. It settles on a vague or
partially correct factor.

Fabrication
(Hallucination)

Fabrication The response invents non-existent facts, characters, or details
not grounded in the provided context. These made-up elements
contradict the actual evidence or go beyond any plausible inference
from the text.

Contradiction or Direct
Factual Error

Contradiction The response asserts a claim that explicitly contradicts the query
and the context. It may state the opposite of what the text says.
This includes mixing up roles or factual violation.

Table 11: Types of Errors in RAG Responses
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Figure 6: Average Length of Well-known Long-text Datasets. L-Eval (7,217 tokens), TriviaQA (8,209), HotpotQA
(9,151), MuSiQue (11,214), NarrativeQA (18,409), and BookCorpus (89,237) all fall below 100,000 tokens on
average. By contrast, LONGNOVELQA reaches an average of 672,641 tokens, presenting a more challenging
environment for QA systems to handle global context and complex dependencies.
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Question Who is the federal leader of the political party that Ken Epp belongs to?

Ground Truth Andrew Scheer .
Naive RAG Ken Epp was a member of the Conservative Party of Canada. ✗ Incomplete

Dense RAG Ken Epp was a member of the Conservative Party of Canada. ✗ Incomplete

Flare RAG Ken Epp was a member of the Canadian Alliance party. To find out the
federal leader during his time, I will search for Stockwell Day . During
Ken Epp’s time, the federal leader of the Canadian Alliance party was
Stockwell Day . ✗

Contradiction

SqRAG Ken Epp was a member of the Conservative Party of Canada. The federal
leader of the Conservative Party of Canada before Andrew Scheer was
Stephen Harper. ✓

Correct

Analysis: Naive RAG and Dense RAG only mention Ken Epp’s party without addressing its federal
leader. Flare RAG erroneously provides Stockwell Day. SqRAG correctly identifies Andrew Scheer as
the federal leader.

Table 12: Federal Leader of Ken Epp’s Political Party

Question A participant of the Battle of Brechin is an instance of?

Ground Truth Scottish clan .
Naive RAG A participant of the Battle of Brechin is an instance of a historical figure

involved in a conflict during the Late Middle Ages in Scotland. ✗

Incomplete

Dense RAG A participant of the Battle of Brechin is an instance of a historical
figure involved in a significant conflict during the Late Middle Ages in
Scotland. ✗

Incomplete

Flare RAG A participant of the Battle of Brechin is an instance of a combatant in
a historical conflict . (Detailed discussion of roles/factions) ✗

Incomplete

SqRAG A participant of the Battle of Brechin is an instance of a historical figure
involved in the conflicts of the Scottish civil war during the reign of
James II of Scotland. ✗

Correct

Analysis: All four responses fail to identify that the participant is specifically a Scottish clan.

Table 13: Instance Classification of a Participant in the Battle of Brechin
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Question Which is the body of water near George Mills’ place of birth?

Ground Truth River Thames .
Naive RAG The body of water near George Mills’ place of birth, Deptford, is

not specifically mentioned in the provided information. ✗

Ignorance

Dense RAG The body of water near George Mills’ place of birth, Deptford, is
not explicitly mentioned in the provided context. Therefore, the spe-

cific body of water cannot be identified. ✗

Ignorance

Flare RAG George Mills was born in Deptford, which is located in London, England.
However, the context does not provide specific information about the
body of water near Deptford. George Mills was born in Deptford, which
is located in London, England. However, the context does not provide
specific information about the body of water near Deptford, the body of
water near Deptford, London, is the River Thames . ✓

Correct

SqRAG George Mills was born in Deptford, which is located near the
River Thames . ✓

Correct

Analysis: Naive RAG and Dense RAG wrongly claim no mention of the body of water. Flare RAG
and SqRAG correctly identify the River Thames.

Table 14: Body of Water Near George Mills’ Birthplace

Question Why was Mortimer Trefinnis once estranged from his siblings?

Ground Truth Because of the division of proceeds from selling the family business.
Naive RAG The context does not provide specific details regarding why Mortimer

Tregennis was once estranged from his siblings. ✗

Ignorance

Dense RAG Mortimer Tregennis was once estranged from his siblings due to a family
quarrel about money ✗

Incomplete

Flare RAG Mortimer Trefinnis was once estranged from his siblings due to a family
quarrel, followed by a reconciliation. However, the nature of that quarrel
and the authenticity of the reconciliation are left unclear. The family
quarrel between Mortimer Tregennis and his siblings was related to the
division of money after they sold their tin-mining venture. Although this
issue created some tension between them for a time, it was ultimately
forgiven and forgotten, leading to a reconciliation. The quarrel over the
division of money in the Tregennis family arose after they sold their

tin-mining venture to a company, which led to disagreements regarding
how the proceeds from the sale were to be divided among the family
members ✓

Correct

SqRAG Mortimer Tregennis was once estranged from his siblings due to feelings
surrounding the division of money after the family sold their tin-mining
venture. This financial matter created a temporary rift between them,
but it was eventually forgiven and forgotten, leading to a reconciliation
where they became "the best of friends together" ✓

Correct

Analysis: Naive RAG fails to identify the reason (unwarranted ignorance). Dense RAG mentions
money but omits the specific detail of dividing the proceeds from the family business. Flare RAG and
SqRAG both correctly specify the division of money.

Table 15: Estrangement of Mortimer Trefinnis
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Question How is Drexl killed?

Ground Truth He is shot .
Naive RAG The information provided does not indicate that Drexl is killed. It de-

scribes a scene where he engages in violent confrontations, but there is
no mention of his death. ✗

Contradiction

Dense RAG Drexl is not killed ; he is still alive despite being shot and falling to the
ground. ✗

Contradiction

Flare RAG Drexl is killed when he points a shotgun at Floyd and shoots him. After-
ward, he is confronted by Big D, whom he also shoots, and ultimately he
is shot by Clarence . (Detailed account of their struggle) ✓

Correct

SqRAG Drexl is killed when he shoots Floyd with a shotgun and is then
shot by Clarence , resulting in his death. ✓

Correct

Analysis: Naive RAG and Dense RAG both contradict the context by claiming Drexl is not killed.
Flare RAG and SqRAG identify that Drexl is indeed shot by Clarence.

Table 16: The Death of Drexl

Question Who greeted Jacob in his apartment after Jacob finally came to terms
with his military ordeal?

Ground Truth His son Gabe .
Naive RAG Jacob was greeted by the doorman, Sam , when he approached the lobby

of Sarah’s apartment building. ✗

Contradiction

Dense RAG Jacob was greeted by the doorman in his apartment. ✗ Contradiction
Flare RAG Jacob was greeted by his son, Gabe , in a moment filled with emotion

and love. (Elaboration on their emotional bond) ✓

Correct

SqRAG Jacob was greeted by his son, Gabe , in the apartment after he came to
terms with his military ordeal. ✓

Correct

Analysis: Naive RAG and Dense RAG incorrectly identify the doorman as the greeter, contradicting
the context. Flare RAG and SqRAG correctly recognize Gabe as the one who greeted Jacob.

Table 17: Greeting Jacob
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Question Who played the girlfriend of who plays Marty McFly’s daughter in Back
to the Future 2?

Ground Truth Claudia Wells .
Naive RAG The context does not provide specific details regarding why Mortimer

Tregennis was once estranged from his siblings. (Erroneous copy from
another case) ✗

Ignorance

Dense RAG Jennifer Parker, who is Marty McFly’s girlfriend in the Back to the Future
series, was played by Claudia Wells in the first film and Elisabeth Shue
in the second and third films. Marty McFly’s daughter, Marlene, was
played by Michael J. Fox. ✓

Correct

Flare RAG The girlfriend of the actor who plays Marty McFly’s daughter in Back
to the Future Part II is not known , as the character of Marty McFly’s
daughter, Marlene, does not have a girlfriend in Back to the Future Part
II. ✗

Contradiction

SqRAG The girlfriend of Marty McFly’s daughter, Marlene, in Back to the Future
Part II is portrayed by Claudia Wells , who played Jennifer Parker. ✓

Correct

Analysis: Naive RAG reuses text from a different scenario and claims there are no details. Dense
RAG is effectively correct in identifying Claudia Wells. Flare RAG mistakenly states Marlene does
not have a girlfriend. SqRAG also correctly identifies Claudia Wells.

Table 18: Girlfriend of Marty McFly’s Daughter in Back to the Future 2

Question What is the seat of the county sharing a border with the county in which
J. P. Hayes was born?

Ground Truth Green Bay .
Naive RAG The county in which J. P. Hayes was born is Outagamie County, Wiscon-

sin. The seat of Outagamie County is Appleton . ✗

Contradiction

Dense RAG The information provided does not specify the counties or their seats in
relation to J. P. Hayes’ birthplace of Appleton, Wisconsin . Therefore, it
is not possible to determine the seat of the county sharing a border with
that location based on the available details. ✗

Ignorance

Flare RAG The seat of the county sharing a border with the county in which J. P.
Hayes was born is Green Bay itself. ✓

Correct

SqRAG The seat of the county sharing a border with Brown County, where J. P.
Hayes was born, is Green Bay . ✓

Correct

Analysis: Naive RAG identifies the seat of Outagamie County rather than the correct neighboring seat.
Dense RAG incorrectly claims the information is missing. Flare RAG and SqRAG both correctly state
Green Bay.

Table 19: Seat of the County Near J. P. Hayes’ Birthplace
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Question Who is the spouse of the current queen of England?

Ground Truth Philip Mountbatten .
Naive RAG The spouse of the current queen of England was Prince Philip , Duke of

Edinburgh. ✗

Incomplete

Dense RAG The current queen of England is Charles III , who is the eldest son of
Elizabeth II. ✗

Contradiction

Flare RAG The current queen of England is Queen Camilla, and her spouse is
King Charles III . ✗

Contradiction

SqRAG The spouse of the current queen of England was Philip Mountbatten ,
Duke of Edinburgh. ✓

Correct

Analysis: Naive RAG essentially names the correct person but was still deemed incorrect in the dataset.
Dense RAG and Flare RAG mix up the reigning monarch or consort. SqRAG properly identifies Philip
Mountbatten as the spouse of Queen Elizabeth II.

Table 20: Spouse of the Current Queen of England

QUERY GROUND TRUTH NAIVE RAG RESPONSE CLUE

在故事中，宋江
和他的兄弟们讨
论招安时，有哪
些人表达了不同
的意见？

武松、李逵、鲁智深、
林冲、关胜和徐宁

在故事中，李逵表达了不同
的意见。他认为应该聚集军
马和百姓，反抗奸臣，而不
是接受招安。宋江则对李逵
的提议表示谨慎，建议再考
虑。 Incomplete

只见武松叫道：“今日也要招安，明日也
要招安去，冷了弟兄们的心！”黑旋风便
睁圆怪眼，大叫道：“招安，招安！招甚
鸟安！”鲁智深便道：“只今满朝文武，俱
是奸邪，蒙蔽圣聪，就比俺的直裰染做
皂了，洗杀怎得干净？招安不济事！便
拜辞了，明日一个个各去寻趁罢。”林冲
道：“朝廷中贵官来时，有多少装幺，中
间未必是好事。”关胜便道：“诏书上必然
写着些唬吓的言语，来惊我们。”徐宁又
道：“来的人必然是高太尉门下。”

戴宗在向知府报
告 宋 江 的 情 况
时，为什么会提
到宋江是个“失心
风”的人？

戴宗向知府报告宋江是
个“失心风”的人是为了
帮助宋江逃避罪责。因
为宋江题了反诗，知府
要抓他，戴宗为了救宋
江，便谎称宋江得了失
心疯，以此来帮助宋江
脱身。

在上下文中并没有提到戴宗
称宋江为“失心风”的人，因
此无法回答这个具体问题。
Ignorance

宋江听罢，挠头不知痒处，只叫得
苦，“我今番必是死也！”戴宗道：“我教
仁兄一着解手，未知如何？如今小弟不
敢担阁，回去便和人来捉你。你可披乱了
头发，把尿屎泼在地上，就倒在里面，诈
作风魔。我和众人来时，你便口里胡言乱
语，只做失心风便好。我自去替你回复知
府。”

信 中 提 到 的“闺
臣”对小山有什么
特殊的意义？

“闺臣”对小山而言，是
父亲唐敖为她改的名
字，寓意即使在伪周中
了才女，也是唐朝闺中
之臣，以明不忘记唐朝
之意。

信中提到的“闺臣”对小山有着
特殊的意义，因为“闺臣”是小
山父亲为她改的新名字，这
个名字承载了父亲的期望和
情感。小山在信中被告知必
须改名为“闺臣”，这不仅是对
她身份的重新定义，也体现
了父亲对她未来的关心与期
待。此外，改名的过程也象
征着一种责任和使命感，激
励小山在未来的生活中努力
求进。 Fabrication

小山道：‘父亲既说等我中过才女与我相
聚，何不就在此时同我回去，岂不更便？
并且命我改名‘闺臣’，方可应试，不知又
是何意？’若花道：‘据我看来，其中大有
深意：按‘唐闺臣’三字而论，大约姑夫因
太后久已改唐为周，其意以为将来阿妹赴
试，虽在伪周中了才女，其实乃唐朝闺中
之臣，以明并不忘本之意。’

老僧在寺院中待
了多久，为什么
称自己为“樗朽之
辈”？

老僧在寺院待了二百七
十岁，但他认为自己虚
度一生，山门也未曾出
去，见识短浅，所以称
自己为“樗朽之辈”。

老僧在寺院中待了百余年，
称自己为“樗朽之辈”是因为他
自谦，认为自己年岁已高，
经历过许多事情，显得有
些古老和衰败。 Incomplete

Fabrication

老僧道：“也有万里之遥了。我弟子虚度
一生，山门也不曾出去，诚所谓坐井观
天，樗朽之辈。”三藏又问：“老院主高寿
几何？”老僧道：“痴长二百七十岁了。”

Table 21: LongNovelQA Examples
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