
Under review as a conference paper at ICLR 2022

MISMATCHED NO MORE:
JOINT MODEL-POLICY OPTIMIZATION FOR MODEL-BASED RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Many model-based reinforcement learning (RL) methods follow a similar template:
fit a model to previously observed data, and then use data from that model for RL
or planning. However, models that achieve better training performance (e.g., lower
MSE) are not necessarily better for control: an RL agent may seek out the small
fraction of states where an accurate model makes mistakes, or it might act in ways
that do not expose the errors of an inaccurate model. As noted in prior work, there
is an objective mismatch: models are useful if they yield good policies, but they are
trained to maximize their accuracy, rather than the performance of the policies that
result from them. In this work, we propose a single objective for jointly training
the model and the policy, such that updates to either component increase a lower
bound on expected return. This joint optimization mends the objective mismatch
in prior work. Our objective is a global lower bound on expected return, and this
bound becomes tight under certain assumptions. The resulting algorithm (MnM)
is conceptually similar to a GAN: a classifier distinguishes between real and fake
transitions, the model is updated to produce transitions that look realistic, and the
policy is updated to avoid states where the model predictions are unrealistic.

1 INTRODUCTION

Much of the appeal of model-based RL is that model learning is a simple and scalable supervised
learning problem. Unfortunately, the accuracy of the learned model does not directly correlate with
whether the model-based RL algorithm will receive high reward (Farahmand et al., 2017; Lambert
et al., 2020). For example, a model might make small mistakes in critical states that cause a policy to
take suboptimal actions. Alternatively, a model with large errors may yield a policy that attains high
return if the model errors occur in states that the policy never visits.

The underlying problem is that dynamics models are trained differently from how they are used.
Typical model-based methods train a model using data sampled from the real dynamics (e.g., using
maximum likelihood), but apply these models by using data sampled from the learned dynam-
ics (Deisenroth & Rasmussen, 2011; Williams et al., 2017; Janner et al., 2019; Hafner et al., 2019).
Prior work has identified this objective mismatch issue (Farahmand et al., 2017; Luo et al., 2019;
Lambert et al., 2020): the model is trained using one objective, but the policy is trained using a differ-
ent objective. Designing an objective for model training that is guaranteed to improve the expected
reward remains an open problem. This paper aims to answer the following question: How should we
train a dynamics model so that it produces high-return policies when used for model-based RL?

In this paper, we propose a model-based RL algorithm where the model and policy are jointly
optimized with respect to the same objective. Our objective is a lower bound on the expected
return under the true environment dynamics; a slightly more complicated version of this lower
bound becomes tight under certain assumptions. Structurally, our algorithm resembles a generative
adversarial network (a GAN), in that the model is trained using a discriminator that distinguishes
between real and fake transitions. This same discriminator is included in the objective for the policy,
and both the model and policy are jointly trained to maximize reward and minimize discriminator
accuracy. Thus, the model and policy cooperate to produce realistic and high-reward trajectories.
Our method stands in contrast to standard model-based RL methods, where it is more common to pit
the model against the policy (Bagnell et al., 2001; Nilim & El Ghaoui, 2003; Ross & Bagnell, 2012).
An consequence of maximizing the lower bound is that the dynamics model does not learn the true
dynamics, but rather learns optimistic dynamics that facilitate exploration.

1

Under review as a conference paper at ICLR 2022

The main contribution of this work is an algorithm, Mismatched no More (MnM), for model-based RL
that provably maximizes a lower bound on expected reward. Importantly, this bound becomes tight at
optimality under certain assumptions. To the best of our knowledge, this is the first model-based RL
objective that is a global lower bound on expected return, and that involves optimizing the model
and policy using the same objective. Our algorithm has the unique property of jointly optimizing the
policy and model using the same objective. Across a range of tasks, we demonstrate that our method
is competitive with prior state-of-the-art methods on benchmark tasks; on certain hard exploration
tasks, our method outperforms prior methods based on maximum likelihood estimation.

2 RELATED WORK

Model-based RL methods typically fit a dynamics model to observed transitions, and then apply an
RL method to that learned model. Most of these methods use maximum likelihood to fit the dynamics
model, and then use RL to maximize the expected return under samples from that model (Deisenroth
& Rasmussen, 2011; Williams et al., 2017; Chua et al., 2018; Hafner et al., 2019; Janner et al., 2019).
The observation that this maximum likelihood objective is not aligned with the RL objective has been
noted in prior work (Ziebart, 2010; Talvitie, 2014; Farahmand et al., 2017; Luo et al., 2019; Lambert
et al., 2020). This issue is referred to as the objective mismatch problem: the model and policy (or
planner) are optimized using different objectives. This problem arises in almost all model-based
RL approaches, including those that train the model to predict the value function (Oh et al., 2017;
Schrittwieser et al., 2020) or that perform planning (Chua et al., 2018; Schrittwieser et al., 2020).

One strategy for mitigating this problem is to modify the model training to improve model accuracy
under multi-step rollouts (Joseph et al., 2013; Talvitie, 2014; Venkatraman et al., 2016; Farahmand
et al., 2017; Asadi et al., 2018; 2019). A second strategy is penalize the policy for taking transitions
where the model is inaccurate (Sorg et al., 2010; Kidambi et al., 2020; Yu et al., 2020b; 2021;
Luo et al., 2019). Similar to all these prior methods, our approach will also use a modified reward
function to train the policy, but it will also modify how the model is trained such that the model and
policy optimize the same objective. A third strategy is to directly optimize the model such that it
produces good policies (Okada et al., 2017; Amos et al., 2018; Srinivas et al., 2018; D’Oro et al.,
2020; Nikishin et al., 2021), as theoretically analyzed in Grimm et al. (2020). While our aim is the
same as these prior methods, our approach will not require differentiating through unrolled model
updates or optimization procedures.

Our work builds on prior work that proposes model-based RL objectives that are lower bounds on
the true, expected returns. Kearns & Singh (2002) provide a lower bound that holds globally, but is
only computable in tabular settings. Luo et al. (2019) provide a lower bound that can be efficiently
estimated, but which only holds for nearby policies and models. Our lower bound combines the
strengths of these prior works, providing a lower bound that holds globally and can be efficiently
estimated in MDPs with continuous states and actions. Unlike any lower bounds from prior work,
ours mends the objective mismatch problem.

Our theoretical derivation builds on prior work that casts model-based RL as a two-player game
tween a model-player and a policy-player (Bagnell et al., 2001; Nilim & El Ghaoui, 2003; Ross et al.,
2011; Rajeswaran et al., 2020). However, whereas prior work pits model and policy compete against
one another, our formulation will result in a cooperative game, wherein the model and policy players
cooperate in optimizing the same objective (a lower bound on the expected return). Our approach,
though structurally resembling a GAN, is different from prior work that simply replaces a maximum
likelihood model with a GAN model (Bai et al., 2019; Chen et al., 2020; Kurutach et al., 2018).

The most similar prior work is VMBPO (Chow et al., 2020). The mechanics of our method are similar,
also learning a dynamics model using a classifier that distinguishes real versus generated rollouts.
However, while our method maximizes a lower bound on expected return, VMBPO maximizes a
different, risk-seeking objective, which is an upper bound on expected return. This different objective
can be expressed as the expected return plus the variance of the return, so VMBPO has the undesirable
property of preferring policies that receive slight lower return if the variance of the return is much
larger (see Appendix A.1). Indeed, most of the components of our method, including classifiers and
GAN-like models, have been used in prior work, main contribution of our paper is a precise recipe
for combining these components in a way that provably maximizes expected return.

2

Under review as a conference paper at ICLR 2022

3 A UNIFIED OBJECTIVE FOR MODEL-BASED RL

Notation. We focus on the Markov decision process with states st, actions at, initial state distribution
p0(s0), positive reward function r(st, at) > 0 , and dynamics p(st+1 | st, at). Our aim is to learn a
control policy πθ(at | st) with parameters θ that maximizes the expected discounted return:

max
θ

Eπθ
[∞∑
t=0

γtr(st, at)

]
. (1)

We use transitions (st, at, rt, st+1) collected from the (real) environment to train the dynamics model
qθ(st+1 | st, at), and use transitions sampled from this learned model to train the policy. To simplify
notation, we will define a trajectory τ to be the sequence of states and actions visited in an episode:
τ , (s0, a0, s1, a1, · · ·). We then define R(τ) ,

∑∞
t=0 γ

tr(st, at) as the discounted return of a
trajectory. Finally, we define two distributions over trajectories. First, pπ(τ) is the distribution
over trajectories when policy πθ interacts with dynamics p(s′ | s, a); qπ(τ) is the distribution over
trajectories when policy πθ interacts with the learned dynamics qθ(st+1 | st, at):

pπ(τ) = p0(s0)

∞∏
t=0

p(st+1 | st, at)πθ(at | st), qπ(τ) = p0(s0)

∞∏
t=0

qθ(st+1 | st, at)πθ(at | st).

Desiderata. Our aim is to design an objective L(θ) that can be used to jointly optimize both the
policy (πθ(at | st)) and the dynamics model (q(st+1 | st, at)), and which is a lower bound on the
expected return in the true environment.

An objective for model-based RL. We now introduce an objective that achieves these aims. Our
objective will be the policy’s reward when interacting with the learned model, but using a different
reward function. The new reward function augments the task reward with an additional term that
measures the difference between the learned model and the real environment. We define our objective

L(θ) , Eqπθ (τ)

[∞∑
t=0

γtr̃(st, at, st+1)

]
, (2)

where the modified reward function is defined as

r̃(st, at, st+1) , (1− γ) log r(st, at) + log

(
p(st+1 | st, at)
q(st+1 | st, at)

)
− (1− γ) log(1− γ). (3)

This objective maximizes an augmented reward under the learned dynamics. The augmented reward
function r̃ penalizes the policy for taking transitions that are unlikely under the true dynamics model,
similar to prior work (Eysenbach et al., 2020a; Yu et al., 2021). Later, we will show that we can
estimate this augmented reward without knowing the true environment dynamics by using a GAN-
like classifier. We will optimize this lower bound with respect to both the policy πθ(at | st) and
the dynamics model qθ(st+1 | st, at). For the policy, this optimization entails performing RL to
maximize the modified reward using samples from the learned model; the only difference from prior
work is the modification to the reward function. Training the dynamics model using this objective is
very different from standard maximum likelihood training, and instead resembles a GAN. The model
is optimized to sample trajectories that both have high reward (i.e., log r is large) and are similar
to real dynamics (i.e., log p

q is large). This objective differs from VMBPO (Chow et al., 2020) by
taking the log(·) of the original reward functions; our experiments demonstrate that excluding this
component invalidates our lower bound and results in learning suboptimal policies.

Our objective has two properties that make it particularly useful. First, the model and the policy are
trained using exactly the same objective: updating the model not only increases the objective for
the model, but also increases the objective for the policy. Note that this is very different from prior
work, where training the model to be more accurate (increase likelihood) can decrease the policy’s
expected return under that model. Second, our objective is a lower bound on the expected return.
This property gives us a guarantee on how well the learned policy will perform when deployed on the
real environment. To state this result formally, we will take the logarithm of the expected return. Of
course, maximizing the log(·) of the expected return is equivalent to maximizing the expected return.
Theorem 3.1. The following bound holds for any dynamics q(st+1 | st, at) and policy π(at | st):

logEπ
[∞∑
t=0

γtr(st, at)

]
≥ L(θ).

3

Under review as a conference paper at ICLR 2022

The proof is presented in Appendix A.3. Note that the expected return under the learned model,
which most prior model-based RL methods use to train the policy, is not a lower bound on the
expected return. To the best of our knowledge, this is the first global (unlike Luo et al. (2019)) and
efficiently-computable (unlike Kearns & Singh (2002)) lower bound for model-based RL.

Sec. 4 will introduce an algorithm to maximize this lower bound. While this lower bound may not be
tight, experiments in Sec. 5 demonstrate that optimizing this first lower bound yields policies that
achieve high reward across a wide range of tasks.

Tightening the lower bound. We now introduce a modification to our lower bound that does make
the bound tight. This new lower bound will be more complex than the one introduced above and
we have not yet successfully designed an algorithm for maximizing it. Nonetheless, we believe that
presenting the bound may prove useful for the design of future model-based RL algorithms.

We will use Lγ(θ) to denote this new lower bound. In addition to the policy and dynamics, this bound
will also depend on a time-varying discount, γθ(t), in place of the typical γt term. Similar learned
discount factors have been studied in previous work on model-free RL (Rudner et al., 2021). We
define this objective as follows:

Lγ(θ) , Eqπθ (τ)

[∞∑
t=0

γθ(t)r̃γ(st, at, st+1)

]
, (4)

where the augmented reward is now defined as

r̃γ(st, at, st+1) , log r(st, at) +
1− Γθ(t− 1)

γθ(t)
log

(
p(st+1 | st, at, st−1, at−1, · · ·)
qθ(st+1 | st, at, st−1, at−1, · · ·)

)
+ log

(
γt

γθ(t)

)
,

and Γθ(t) =
∑t
t′=0 γθ(t

′) is the CDF of the learned discount function (i.e., γθ(t) is a probability
distribution over t.). This new lower bound, which differs from our main lower bound by the learnable
discount factor, does provide a tight bound on the expected return objective:
Lemma 3.2. Let an arbitrary policy π(at | st) be given. The objective Lγ(θ) is also a lower bound
on the expected return objective, logEπ [

∑∞
t=0 γ

tr(st, at)] ≥ Lγ(θ), and this bound becomes tight
at optimality:

logEπ
[∞∑
t=0

γtr(st, at)

]
= max
qπ(τ),γθ(t)

Lγ(θ).

The proof is presented in Appendix A.4. One important limitation of this result is that the learned
dynamics that maximize this lower bound to make the bound tight may be non-Markovian. Intrigu-
ingly, this analysis suggests that using non-Markovian models, such as RNNs and transformers, may
accelerate learning on Markovian tasks. This paper does not propose an algorithm for optimizing this
more complex lower bound.

The optimal dynamics are optimistic. We now return to analyzing the simpler lower bound (L(θ)
in Eq. 2). In stochastic environments, the dynamics model that optimizes this lower bound is not
equal to the true environment dynamics. Rather, it is biased towards sampling trajectories with high
return. Ignoring parametrization constraints, the dynamics model that optimizes our lower bound is
q∗(τ) = p(τ)R(τ)∫

p(τ ′)R(τ ′)dτ ′
(proof in Appendix A.4.). We hypothesize that the optimism in the dynamics

model will accelerate policy optimization, a hypothesis we test in Sec. 5.1.

Would the optimistic dynamics overestimate the policy’s return, violating Lemma 3.1? This is not
quite what our method does. Rather, our method estimates the augmented reward using the optimistic
dynamics model, and the reward augmentation compensates for the optimism in the dynamics model.

4 MISMATCHED NO MORE

The previous section presented a single (global) lower bound (L from Eq. 2) for jointly optimizing
the policy and the dynamics model. In this section, we develop a practical algorithm for optimizing
this lower bound. We call our method MISMATCHED NO MORE (MnM) because the policy and
model optimize the same objective, thereby resolving the objective mismatch problem noted in prior
work. The main challenge in optimizing this bound is that the augmented reward function depends on

4

Under review as a conference paper at ICLR 2022

policy Learned
dynamics model

policy Learned
dynamics model

policy Learned
dynamics model…

Classifier

Figure 1: Mismatched No More is a model-based RL algorithm that learns a policy, dynamics model, and
classifier. The classifier distinguishes real transitions from model transitions. The policy and dynamics model
are jointly optimized to sample transitions that yield high return and look realistic, as estimated by the classifier.

the transition probabilities of the real environment, p(st+1 | st, at), which are unknown. We address
this challenge by learning a classifier (Sec. 4.1), and then describe the precise update rules for the
policy, dynamics model, and classifier (Sec. 4.2).

4.1 ESTIMATING THE AUGMENTED REWARD FUNCTION

To estimate the augmented reward function, which depends on the transition probabilities of the
real environment, we learn a classifier that distinguishes real transitions from fake transitions. This
approach is similar to GANs (Goodfellow et al., 2014) and similar to prior work in RL (Eysenbach
et al., 2020a; Yu et al., 2021). We use Cφ(st, at, st+1) ∈ [0, 1] to denote the classifier. For an optimal
classifier, we can use the classifier’s predictions to estimate the augmented reward function:

r̃(st, at, st+1) = log r(st, at) + log
Cφ(st, at, st+1)

1− Cφ(st, at, st+1)︸ ︷︷ ︸
≈log p(st+1|st,at)−log qθ(st+1|st,at)

. (5)

The approximation above reflects function approximation error in learning the classifier.

We now present our complete method, which trains three components: a classifier, a policy, and a
dynamics model. Our method alternates between (1) updating the policy (by performing RL using
model experience with augmented rewards) and (2) updating the dynamics model and classifier
(using a GAN-like objective). In describing the loss functions below, we use the superscripts (·)real

and (·)model to denote transitions that have been sampled from the true environment dynamics or the
learned dynamics function. To reduce clutter, we omit the superscripts when unambiguous.

4.2 UPDATING THE MODEL, POLICY, AND CLASSIFIER

Updating the policy. The policy is optimized to maximize the augmented reward on transitions
sampled from the learned dynamics model. While this optimization can be done using any RL
algorithm, including on-policy methods, we will focus on an off-policy actor-critic method.

We define the Q function as sum of augmented rewards under the learned dynamics model:

Q(st, at) , E π(at|st),
qθ(st+1|st,at)

[
∞∑
t′=t

γt
′−tr̃(st′ , at′) | st = st, at = at

]
. (6)

We approximate the Q function using a neural network Qψ(st, at) with parameters φ. We train the Q
function using the TD loss on transitions sampled from the learned dynamics model:

LQ(st, at, rt, s
model
t+1 ;ψ) = (Qψ(st, at)− bytcsg)

2
, (7)

where b·csg is the stop-gradient operator and yt= r̃(st, at, s
model
t+1)+γEπ(at+1|smodel

t+1)

[
Qψ(smodel

t+1 , at+1)
]
.

The augmented reward, r̃, is estimated using the learned classifier. To estimate the corresponding
value function, we use a 1-sample approximation: Vψ(st) = Qψ(st, at ∼ πθ(at | st)). The policy is
trained to maximize the expected future (augmented) return, as estimated by the Q function:

max
θ
Lπ(st; θ) , Eπθ(at|st)

[
Q̃ψ(st, at)

]
. (8)

In our implementation, we regularize the policy by adding an additional entropy regularizer. Following
prior work (Fujimoto et al., 2018), we maintain two Q functions and two target Q functions, use the
minimum of the two target Q functions to compute the TD target. See Appendix C for details.

5

Under review as a conference paper at ICLR 2022

Algorithm 1 Mismatched no More (MnM) is an algorithm for model-based RL. The method alternates
between training the policy on experience from the learned dynamics model with augmented rewards and
updating the model+classifier using a GAN-like loss. Updates are gradient steps with the Adam optimizer.

1: while not converged do
2: Sample experience from learned model and modify rewards using the classifier (Eq. 5).
3: Update policy and Q function using the model experience and augmented rewards (Eq.s 8 and 7).
4: Update model and classifier using GAN-like losses (Eq.s 9 and 10).
5: (Infrequently) Sample experience from real model.
6: return policy πθ(at | st).

Updating the classifier. We train the classifier to distinguish real versus model transitions using
the standard cross entropy loss:

max
φ
LC(sreal

t , areal
t , sreal

t+1, s
model
t+1 ;φ) , logCφ(sreal

t , areal
t , sreal

t+1) + log
(

1− Cφ(sreal
t , areal

t , smodel
t+1)

)
. (9)

Note that the real transition (sreal
t , areal

t , sreal
t+1) and model transition (sreal

t , areal
t , smodel

t+1) have the same
initial state and initial action.

Updating the dynamics model. To optimize the dynamics model, we rewrite the lower bound in
terms of a single transition (derivation in Appendix A.6):

Lq(sreal
t , areal

t ; θ) = Esmodel
t+1∼qθ(st+1|sreal

t ,areal
t)

[
Vψ(smodel

t+1) + log
Cφ(sreal

t , areal
t , smodel

t+1)

1− Cφ(sreal
t , areal

t , smodel
t+1)

]
. (10)

The approximation above reflects approximation error in learning the optimal classifier. This approxi-
mation is standard in prior work on GANs (Goodfellow et al., 2014) and adversarial inference (Don-
ahue et al., 2016; Dumoulin et al., 2016). The procedure for optimizing the dynamics model and
the classifier resembles a GAN (Goodfellow et al., 2014): the classifier is optimized to distinguish
real transitions from model transitions, and the model is updated to fool the classifier (and increase
rewards). However, our method is not equivalent to simply replacing a maximum likelihood model
with a GAN model. Indeed, such an approach would not optimize a lower bound on expected return.
Rather, our model objective includes an additional value term and our policy objective includes an
additional classifier term. These changes enable the model and policy to optimize the same objective,
which is a lower bound on expected return.

Algorithm summary. We summarize the method in Alg. 1 and provide an illustration in Fig. 1.
Implementing MnM on top of a standard model-based RL algorithm is straightforward. First, create
an additional classifier network. Second, instead of using the maximum likelihood objective to train
the model, use the GAN-like objective in Eq. 10 to update both the model and the classifier. Third,
add the classifier’s logits to the predicted rewards (Eq. 5). Following prior work (Janner et al., 2019),
we learn a neural network to predict the true environment rewards.

5 EXPERIMENTS

We present two sets of experiments. Our first set of experiments studies the importance of different
components of MnM . Second, we study how MnM compares with prior model-based RL algorithms
on challenging, robotic control tasks. To compare policies learned by different algorithms, we will
evaluate the policies using the true environment dynamics, not the learned dynamics model.

5.1 UNDERSTANDING THE LOWER BOUND AND THE LEARNED DYNAMICS

In this section, we begin by studying the seemingly contradictory attributes of our method: optimistic
dynamics and pessimistic policies, and end by confirming that together these components optimize
an increasingly tight lower bound on the expected return.

Our theory suggests that MnM should work best in settings with stochastic dynamics and challenging
exploration requirements, as the dynamics model should tilt the true dynamics to make the stochastic-
ity more favorable for solving the task. We use a 10x10 gridworld with highly stochastic dynamics
and a sparse reward function. The results, shown in Fig. 2a (Left), show that MnM outperforms both
Q-learning and VMBPO. In line with our theory, the dynamics learned by MnM (Fig. 2a (Right)) alter

6

Under review as a conference paper at ICLR 2022

(a) Stochastic Gridworld (b) Inaccurate Models
Figure 2: Two Didactic Experiments. (Left) We apply MnM to a navigation task with transition noise that
moves the agent to neighboring states with equal probability. MnM solves this task more quickly than Q-learning
and VMBPO. The dynamics learned by MnM are different from the real dynamics, changing the transition noise
(blue arrows) to point towards the goal. (Right) We simulate function approximation by a learning model that is
forced to make the same predictions for groups of 3× 3 states, resulting in a model that is inaccurate around
obstacles. The classifier term compensates for this function approximation error by penalizing the policy for
navigating near obstacles.

(a) Testing for risk seeking behavior. (b) Comparing objectives.

Figure 3: Lower Bounds and Risk Seeking. (Left) On a simple 3-state MDP with stochastic transition in one
state (red arrows), MnM converges to the reward-maximizing policy while VMBPO learns a strategy with lower
rewards and higher variance (as predicted by theory). (Right) We apply value iteration to the gridworld from
Fig. 2a to analytically compute various objectives. As predicted by our theory, the MnM objective is a lower
bound on the expected return, whereas the VMBPO objective overestimates the expected return.

the environment stochasticity to lead the agent towards the goal, increasing the probability of collect-
ing high-reward experience. Of course, we use the true environment dynamics, not the optimistic
dynamics model, for evaluating the policies. While VMBPO also learns optimistic dynamics, it omits
log-transformation of the reward function (which encourages pessimistic behavior), a difference that
has a large effect on this task.

Our augmented reward function contains two crucial components, (1) the classifier term and (2) the
logarithmic transformation of the reward function. We test the importance of the classifier term in
correcting for inaccurate models. To do this, we limit the capacity of the MnM dynamics model
so that it makes “low-resolution” predictions, forcing all states in 3 × 3 blocks to have the same
dynamics. We will use the gridworld shown in Fig. 2b, which contains obstacles that occur at a finer
resolution than the model can detect. When the “low resolution” dynamics model makes predictions
for states near the obstacle, it will average together some states with obstacles and some states without
obstacles. Thus, the model will (incorrectly) predict that the agent always has some probability of
moving in each direction, even if that direction is actually blocked by an obstacle. However, the
classifier (whose capacity we have not limited) detects that the dynamics model is inaccurate in these
states and so the augmented reward is much lower at these states. Thus, MnM is able to solve this
task despite the inaccurate model; an ablation of MnM that removes the classifier term attempts to
navigate through the wall and fails to reach the goal.

We then test the importance of the logarithmic transformation by comparing MnM to VMBPO, which
includes the classifier term but omits the logarithmic transformation. We hypothesize that VMBPO’s
deviation from our lower bound will cause it to exhibit risk seeking behavior. To test this hypothesis,
we use the 3-state MDP in Fig. 3a (top) where numbers indicate the reward at each state. While
moving to the right state yields slightly higher rewards, “wind” knocks the agent out of this state
with probability 50% so the reward-maximizing strategy is to move to the left state. While MnM

7

Under review as a conference paper at ICLR 2022

Figure 5: Comparison on Robotics Tasks: We compare MnM to MBPO and SAC on simulated control tasks.
On the benchmark locomotion tasks (top left), MnM performs comparably with MBPO. On many of the other
tasks with sparse rewards that pose an exploration challenge, MnM outperforms both MBPO and the model-free
baseline. These experiments suggest that maximizing a well defined bound on expected return, as done by our
method, can lead to improved performance on difficult tasks.

MnM learns the reward-maximizing strategy, VMBPO learns a policy that goes to the right state and
receives lower returns (with much higher variance).

Finally, we study how the MnM objective compares to alternative objectives. We use the gridworld
from Fig. 2a and use a version of MnM based on value iteration to avoid approximation error. Plotting
the MnM objective in Fig. 3b, we observe that it is always a lower bound on the (log) expected return,
as predicted by our theory. Ablations of MnM to omit the reward augmentation or even just the log
transformation (i.e., VMBPO) overestimate the expected return.

5.2 COMPARISONS ON ROBOTICS TASKS

Figure 4: Environments: Our experi-
ments included tasks from four benchmarks:
(clockwise from top-left) OpenAI Gym,
DM Control, Metaworld, and ROBEL.

Our next experiments use continuous-control robotic tasks
to answer two questions. We first investigate whether MnM
performs at least comparably with prior work. We then
study tasks with sparse rewards and more challenging explo-
ration, where we suspect the optimistic dynamics learned
by MnM may be beneficial. We illustrate a subset of the
environments in Fig. 4 and include implementation details
in Appendix C.2. One detail of note is that we omit the
reward augmentation (Eq. 3) for MnM during these exper-
iments, as it hinders exploration leading to lower returns.
We use MBPO (Janner et al., 2019) as a baseline for model-
based RL because it achieves state-of-the-art results and is
a prototypical example of model-based RL algorithms that
use maximum likelihood models.

Our first comparison uses three locomotion tasks from the OpenAI Gym benchmark (Brockman et al.,
2016), which has become the standard benchmark for model-based RL algorithms. Thes tasks have
dense rewards and pose no significant exploration challenge, so we do not expect MnM to outperform
prior methods. The results (Fig. 5 (top left)) show that MnM performs roughly on par with MBPO.

Tasks with sparse rewards, complex contact dynamics, and those requiring hard exploration often
present a challenge for model-based RL algorithms, which are liable to exploit inaccuracies in the
learned dynamics model. Our next experiment evaluates MnM on control tasks used in prior work
that demonstrate these properties. These tasks the sparse-reward cartpole task from the DM Control
benchmark (Tassa et al., 2018), four manipulation tasks from the Metaworld benchmark (Yu et al.,
2020a), and four dexterous manipulation tasks from the ROBEL benchmark (Ahn et al., 2020). See

8

Under review as a conference paper at ICLR 2022

MnM Dynamics:

Real Dynamics:

Figure 7: Optimistic Dynamics: (Left) On the Pusher-v2 task, the MnM dynamics model makes the puck
move towards the puck move towards the gripper before being grasped. (Right) On the HalfCheetah-v2
task, the MnM dynamics model helps the agent stay upright after tripping.

Appendix C for experiment details. The results shown in Fig. 5 indicate that the complex environment
dynamics of these tasks can cause prior model-based algorithms (MBPO) to perform worse than
model-free algorithms (SAC), both in terms of asymptotic performance and sample complexity.
Nonetheless, we observe that MnM frequently outperforms all prior methods and, more importantly,
it consistently does well across all tasks. We include ablation experiments, including a comparison to
VAML (Farahmand et al., 2017), in Appendix B.

Figure 6: Model exploitation: The very large Q values
of MBPO suggest model exploitation, which our method
appears to avoid.

To investigate the benefits of MnM over prior
model-based methods, we logged the Q val-
ues throughout training and visualized them for
the metaworld-drawer-open-v2 task in
Fig. 6. For fair comparison, we use Q values cor-
responding to just the task reward, omitting the
logarithmic transformation and classifier term
typically used by MnM. Fig. 6 shows that MnM
yields Q values that are more accurate and more
stable than MBPO. This figure suggests that
MBPO may be exploiting inaccuracies in the
learned model.

Finally, we visualize the dynamics learned by MnM on two robotic control tasks. These tasks have
deterministic dynamics, so our theory would predict that an idealized version of MnM would learn a
dynamics model exactly equal to the deterministic dynamics. However, our implementation relies on
function approximation (neural networks) to learn the dynamics, and the limited capacity of function
approximators makes otherwise-deterministic dynamics appear stochastic. On the Pusher-v2 task,
the MnM dynamics cause the puck to move towards the robot arm even before the arm has come in
contact with the puck. While this movement is not physically realistic, it may make the exploration
problem easier. On the HalfChetah-v2 task, the MnM dynamics increase the probability that the
agent remains upright after tripping, likely making it easier for the agent to learn how to run. We
expect that the implicit stochasticity caused by function approximation to be especially important for
real-world tasks, where the complexity of the real dynamics often dwarfs the capacity of the learned
dynamics model.

6 CONCLUSION

The main contribution of this paper is an approach to model-based RL where the policy and dynamics
model are jointly optimized using the same objective. Unlike prior work, our objective is a global
lower bound on the standard expected return objective. Our approach not only tells users how to train
their dynamics model, but also guarantees to them that updating their model (using our objective)
will result in a better policy. We therefore believe that this joint optimization will ease and accelerate
the design of future model-based RL algorithms. We suspect that the tools presented in this paper
may prove useful for solving tasks that require extensive exploration or long-horizon planning.

Limitations. Compared with methods based on maximum likelihood, our method requires learning
an additional classifier and balancing the capacity of that classifier against the capacity of the
dynamics model. Unlike VMBPO, our method does not have a single hyperparameter to control the
gap between the proposed objective and the expected return objective.

9

Under review as a conference paper at ICLR 2022

Ethics Statement. This paper works to advance model based reinforcement learning, which can
enable data driven policies to learn from smaller datasets than their model-free counterparts. In doing
so, this expands the range of applications for which reinforcement learning can be used. Many of these
low data regimes, which can include things such as health care, require not just data efficiency but
also safe online fine-tuning. It is important to note that although our method optimizes a lower-bound
on the expected returns in theory, this lower-bound utilizes function approximators, which do not
come with guarantees in practice.

Reproducibility. Our appendix contains proofs for all theoretical claims, the hyperparameters
and implementation details of each algorithm used, ablation experiments illustrating the expected
behavior of our method under varying circumstances of interest, implementation details that we did
and did not find helpful, and finally the necessary details to recreate each environment used in the
paper. Furthermore, we will be publicly releasing the code for our didactic experiments.

REFERENCES

Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey Levine, and Vikash
Kumar. Robel: Robotics benchmarks for learning with low-cost robots. In Conference on Robot Learning, pp.
1300–1313. PMLR, 2020.

B Amos, I Rodriguez, J Sacks, B Boots, and Z Kolter. Differentiable mpc for end-to-end planning and control.
Advances in neural information processing systems, 2018.

Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in model-based reinforcement
learning. In International Conference on Machine Learning, pp. 264–273. PMLR, 2018.

Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L Littman. Combating the compounding-error
problem with a multi-step model. arXiv preprint arXiv:1905.13320, 2019.

J Andrew Bagnell, Andrew Y Ng, and Jeff G Schneider. Solving uncertain markov decision processes. 2001.

Xueying Bai, Jian Guan, and Hongning Wang. A model-based reinforcement learning with adversarial training
for online recommendation. Advances in Neural Information Processing Systems, 32:10735–10746, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Song Chen, Junpeng Jiang, Xiaofang Zhang, Jinjin Wu, and Gongzheng Lu. Gan-based planning model in deep
reinforcement learning. In International Conference on Artificial Neural Networks, pp. 323–334. Springer,
2020.

Yinlam Chow, Brandon Cui, MoonKyung Ryu, and Mohammad Ghavamzadeh. Variational model-based policy
optimization. arXiv preprint arXiv:2006.05443, 2020.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learning in a
handful of trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems,
pp. 4754–4765, 2018.

Marc Peter Deisenroth and Carl Edward Rasmussen. PILCO: A model-based and data-efficient approach to
policy search. In International Conference on Machine Learning (ICML), pp. 465–472, 2011.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016.

Pierluca D’Oro, Alberto Maria Metelli, Andrea Tirinzoni, Matteo Papini, and Marcello Restelli. Gradient-aware
model-based policy search. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
3801–3808, 2020.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Arjovsky, and Aaron
Courville. Adversarially learned inference. arXiv preprint arXiv:1606.00704, 2016.

Benjamin Eysenbach, Shreyas Chaudhari, Swapnil Asawa, Sergey Levine, and Ruslan Salakhutdinov. Off-
dynamics reinforcement learning: Training for transfer with domain classifiers. In International Conference
on Learning Representations, 2020a.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-learning: Learning to achieve goals via
recursive classification. In International Conference on Learning Representations, 2020b.

10

Under review as a conference paper at ICLR 2022

Amir-massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-aware loss function for model-based
reinforcement learning. In Artificial Intelligence and Statistics, pp. 1486–1494, 2017.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error in Actor-Critic
Methods. International Conference on Machine Learning (ICML), 2018.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative Adversarial Nets. In Advances in Neural Information Processing
Systems (NIPS), 2014. URL https://arxiv.org/pdf/1406.2661.pdf.

Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value equivalence principle for
model-based reinforcement learning. arXiv preprint arXiv:2011.03506, 2020.

Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro, Ethan Holly, Sam Fishman, Ke Wang,
Ekaterina Gonina, Neal Wu, Efi Kokiopoulou, Luciano Sbaiz, Jamie Smith, Gábor Bartók, Jesse Berent,
Chris Harris, Vincent Vanhoucke, and Eugene Brevdo. TF-Agents: A library for reinforcement learning in
tensorflow, 2018. [Online; accessed 25-June-2019].

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning behaviors
by latent imagination. In International Conference on Learning Representations, 2019.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based policy
optimization. In Advances in Neural Information Processing Systems, pp. 12519–12530, 2019.

Joshua Joseph, Alborz Geramifard, John W Roberts, Jonathan P How, and Nicholas Roy. Reinforcement learning
with misspecified model classes. In 2013 IEEE International Conference on Robotics and Automation, pp.
939–946. IEEE, 2013.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Machine learning,
49(2-3):209–232, 2002.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and T. Joachims. Morel : Model-based offline
reinforcement learning. ArXiv, abs/2005.05951, 2020.

Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J Russell, and Pieter Abbeel. Learning plannable representations
with causal infogan. In Advances in Neural Information Processing Systems, pp. 8733–8744, 2018.

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective mismatch in model-based
reinforcement learning. In Learning for Dynamics and Control, pp. 761–770. PMLR, 2020.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic framework
for model-based deep reinforcement learning with theoretical guarantees. In ICLR (Poster), 2019.

Oliver Mihatsch and Ralph Neuneier. Risk-sensitive reinforcement learning. Machine learning, 49(2):267–290,
2002.

Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and Pierre-Luc Bacon. Control-oriented model-based
reinforcement learning with implicit differentiation. arXiv preprint arXiv:2106.03273, 2021.

Arnab Nilim and Laurent El Ghaoui. Robustness in markov decision problems with uncertain transition matrices.
In NIPS, pp. 839–846. Citeseer, 2003.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. arXiv preprint arXiv:1707.03497,
2017.

Masashi Okada, Luca Rigazio, and Takenobu Aoshima. Path integral networks: End-to-end differentiable
optimal control. arXiv preprint arXiv:1706.09597, 2017.

Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework for model based
reinforcement learning. In International Conference on Machine Learning, pp. 7953–7963. PMLR, 2020.

Stéphane Ross, Geoffrey J Gordon, and J Andrew Bagnell. A Reduction of Imitation Learning and Structured
Prediction to No-Regret Online Learning. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2011.

Stéphane Ross and Drew Bagnell. Agnostic system identification for model-based reinforcement learning. In
ICML, 2012.

Tim GJ Rudner, Vitchyr H Pong, Rowan McAllister, Yarin Gal, and Sergey Levine. Outcome-driven reinforce-
ment learning via variational inference. arXiv preprint arXiv:2104.10190, 2021.

11

https://arxiv.org/pdf/1406.2661.pdf

Under review as a conference paper at ICLR 2022

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. Advances in neural information processing systems, 29:2234–2242, 2016.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):604–609, 2020.

Jonathan Sorg, Satinder P Singh, and Richard L Lewis. Internal rewards mitigate agent boundedness. In ICML,
2010.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal planning networks:
Learning generalizable representations for visuomotor control. In International Conference on Machine
Learning, pp. 4732–4741. PMLR, 2018.

Erik Talvitie. Model regularization for stable sample rollouts. In UAI, pp. 780–789, 2014.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690,
2018.

Arun Venkatraman, Roberto Capobianco, Lerrel Pinto, Martial Hebert, Daniele Nardi, and J Andrew Bagnell.
Improved learning of dynamics models for control. In International Symposium on Experimental Robotics,
pp. 703–713. Springer, 2016.

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg, Byron Boots, and Evange-
los A Theodorou. Information Theoretic MPC for Model-Based Reinforcement Learning. In International
Conference on Robotics and Automation (ICRA), 2017.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine.
Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning, pp. 1094–1100. PMLR, 2020a.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, and Tengyu
Ma. Mopo: Model-based offline policy optimization. arXiv preprint arXiv:2005.13239, 2020b.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn. Combo:
Conservative offline model-based policy optimization. arXiv preprint arXiv:2102.08363, 2021.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal entropy. 2010.

12

Under review as a conference paper at ICLR 2022

A PROOFS AND ADDITIONAL ANALYSIS

A.1 VMBPO MAXIMIZES AN UPPER BOUND ON RETURN

While MnM aims to maximize the (log) of the expected return, VMBPO aims to maximize the
expected exponentiated return:

MnM: logEπ

[∞∑
t=0

γtr(st, at)

]
, VMBPO: logEπ

[
eη
∑∞
t=0 γ

tr(st,at)
]
,

where η > 0 is a temperature term used by VMBPO. Note that maximizing the log of the expected
return, as done by MnM, is equivalent to maximizing the expected return, as the function log(·) is
monotone increasing. However, maximizing the log of the expected exponentiated return, as done by
VMBPO, is not equivalent to maximizing the expected return. Rather, it corresponds to maximizing a
sum of the expected return and the variance of the return (Mihatsch & Neuneier, 2002, Page 272):

1

η
logEπ

[
eη
∑∞
t=0 γ

tr(st,at)
]

= Eπ

[∞∑
t=0

γtr(st, at)

]
+
η

2
Varπ

[∞∑
t=0

γtr(st, at)

]
+O(η2).

Thus, in environments with stochastic dynamics or rewards (e.g., the didactic example in Fig. 3),
VMBPO will prefer to receive lower returns if the variance of the returns is much higher. We note
that the expected exponentiated return is an upper bound on the expected return:

logEπ
[
eη
∑∞
t=0 γ

tr(st,at)
]
≥ ηEπ

[∞∑
t=0

γtr(st, at)

]
.

This statement is a direct application of Jensen’s inequality. The bound holds with a strict inequality
in almost all MDPs. The one exception is trivial MDPs where all trajectories have exactly the same
return. Of course, even a random policy is optimal for these trivial MDPs.

A.2 HELPER LEMMAS

We start by introducing a simple identity that will help handle discount factors in our analysis.
Lemma A.1. Define p(H) = GEOM(1 − γ) as the geometric distribution. Let discount factor
γ ∈ (0, 1) and random variable xt be given. Then the following identity holds:

Ep(H)

[
H∑
t=0

xt

]
=

∞∑
t=0

γtxt.

The proof involves substituting the definition of the Geometric distribution and then rearranging
terms.

Proof.

Ep(H)

[
H∑
t=0

xt

]
= (1− γ)

∞∑
H=0

γH
H∑
t=0

xt

= (1− γ)
(
x0 + γ(x0 + x1) + γ2(x0 + x1 + x2) + · · ·

)
= (1− γ)

(
x0(1 + γ + γ2 + · · ·) + x1(γ + γ2 + · · ·) + · · ·

)
= (1− γ)

(
x0

1

1− γ
+ x1

γ

1− γ
+ x2

γ2

1− γ
+ · · ·

)
=

∞∑
t=0

γtxt.

The second helper lemma describes how the discounted expected return objective can be written as
the expected terminal reward of a mixture of finite-length episodes.

13

Under review as a conference paper at ICLR 2022

Lemma A.2. Define p(H) = GEOM(1 − γ) as the geometric distribution, and p(τ | H) as a
distribution over length-H episodes. We can then write the expected discounted return objective as
follows:

Ep(τ |H=∞)

[∞∑
t=0

γtr(st, at)

]
=

1

1− γ
Ep(H)

[
Ep(τ |H=H) [r(sH , aH)]

]
(11)

=
1

1− γ

∫∫
p(H)p(τ | H = H)r(sH , aH)dτdH. (12)

Proof. The first identity follows from the definition of the geometric distribution. The second identity
writes the expectations as integrals, which will make future analysis clearer.

A.3 PROOF OF LEMMA 3.1

Proof.

log Eπ

[∞∑
t=0

γ
t
r(st, at)

]
(a)
= log

1

1− γ

∫∫
p(H)p(τ | H = H)r(sH , aH)dτdH

= log

∫∫
p(H)

p(τ | H = H)

qθ(τ | H = H)
qθ(τ | H = H)r(sH , aH)dτdH − log(1− γ)

(b)

≥
∫
p(H)

(
log

∫
p(τ | H = H)

qθ(τ | H = H)
qθ(τ | H = H)r(sH , aH)dτ

)
dH − log(1− γ)

(c)

≥
∫∫

p(H)qθ(τ | H = H) (log p(τ | H = H)− log qθ(τ | H = H) + log r(sH , aH)) dτdH − log(1− γ)

(d)
=

∫∫
p(H)qθ(τ | H = H)

((
H∑
t=0

log p(st+1 | st, at) +((((
((

log πθ(at | st)− log qθ(st+1 | st, at)−((((
((

log πθ(at | st)
)

+ log r(sH , aH)

)
dτdH − log(1− γ)

(e)
=

∫∫
p(H)qθ(τ | H =∞)

((
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log r(sH , aH)

)
dτdH − log(1− γ)

(f)
=

∫
qθ(τ)

∫
p(H)

((
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log r(sH , aH)

)
dHdτ − log(1− γ)

(g)
=

∫
qθ(τ)Ep(H)

[(
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log r(sH , aH)

]
dτ − log(1− γ)

(h)
=

∫
qθ(τ)

∞∑
t=0

γ
t

(log p(st+1 | st, at)− log qθ(st+1 | st, at) + (1− γ) log r(sH , aH)) dτ − log(1− γ)

(i)
= Eqθ(τ)

[∞∑
t=0

γ
t

(log p(st+1 | st, at)− log qθ(st+1 | st, at) + (1− γ) log r(sH , aH)− (1− γ) log(1− γ))

]
.

For (a), we applied Lemma A.2. For (b), we applied Jensen’s inequality. For (c), we applied Jensen’s
inequality again. For (d), we substituted the definitions of pθ(τ | H) and qθ(τ | H). For (e), we noted
that the term inside the summation only depends on the first H steps of the trajectory, so collecting
longer trajectories will not change the result. This allows us to rewrite the integral as an expectation
using a single infinite-length trajectory. For (f), we recalled the definition qθ(τ) = qθ(τ = H =∞)
and swap the order of integration. For (g), we express the inner integral over p(H) as an expectation.
For (h), we applied the identity from Lemma A.1. For (i), we moved the constant log(1− γ) back
inside the integral and rewrote the integral as an expectation. We have thus obtained the desired
result.

A.4 PROOF OF LEMMA 3.2

Before presenting the proof of Lemma 3.1 itself, we show how we derived the lower bound in this
more general case. While this step is not required for the proof, we include it because it sheds light
on how similar lower bounds might be derived for other problems. We define γθ(H) to be a learned
distribution over horizons H . We then proceed, following many of the same steps as for the proof of

14

Under review as a conference paper at ICLR 2022

Lemma 3.1.

log Eπ

[∞∑
t=0

γ
t
r(st, at)

]
(a)
= log

∫∫
p(τ,H)

qθ(τ,H)
qθ(τ,H)r(sH , aH)dτdH − log(1− γ)

(b)

≥
∫∫

qθ(τ,H) (log p(τ,H)− log qθ(τ,H) + log r(sH , aH)dτ) dH − log(1− γ) (13)

(c)
=

∫ ∞∑
H=0

γθ(H)qθ(τ | H)

((
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log p(H)− log γθ(H) + log r(sH , aH)dτ

)
− log(1− γ)

(d)
=

∫
qθ(τ | H =∞)

∞∑
H=0

γθ(H)

((
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log p(H)− log γθ(H) + log r(sH , aH)dτ

)
− log(1− γ)

(e)
=

∫
qθ(τ)

∞∑
H=0

γθ(H)

((
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log p(H)− log γθ(H) + log r(sH , aH)dτ

)
− log(1− γ)

(f)
= Eqθ(τ)

[∞∑
H=0

γθ(H)

((
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+((((log(1− γ) +H log γ − log γθ(H) + log r(sH , aH)

)]
−((((log(1− γ)

(g)
= Eqθ(τ)

[∞∑
H=0

(∞∑
t=H

q(t)

)
(log p(sH+1 | sH , aH)− log qθ(sH+1 | sH , aH)) + γθ(H) (H log γ − log γθ(H) + log r(sH , aH))

]

(h)
= Eqθ(τ)

[∞∑
H=0

(
1−

H−1∑
t=0

q(t)

)
(log p(sH+1 | sH , aH)− log qθ(sH+1 | sH , aH)) + γθ(H) (H log γ − log γθ(H) + log r(sH , aH))

]

(i)
= Eqθ(τ)

[∞∑
H=0

(1− Γθ(H − 1)) (log p(sH+1 | sH , aH)− log qθ(sH+1 | sH , aH)) + γθ(H) (H log γ − log γθ(H) + log r(sH , aH))

]

(j)
= Eqθ(τ)

[∞∑
H=0

γθ(H)

(
1− Γθ(H − 1)

γθ(H)
(log p(sH+1 | sH , aH)− log qθ(sH+1 | sH , aH)) +H log γ − log γθ(H) + log r(sH , aH)

)]
.

For (a), we applied Lemma A.2 and multiplied the integrand by qθ(τ |H=H)γθ(H)
qθ(τ |H=H)γθ(H) = 1. For (b), we

applied Jensen’s inequality. For (c), we factored p(τ,H) = p(τ,H)p(H) and qθ(τ,H) = q(τ |
H)γθ(H). Note that under the joint distribution p(τ,H), the horizon H ∼ p(H) = GEOM(1− γ)
is independent of the trajectory, τ . For (d), we rewrote the expectation as an expectation over
a single infinite-length trajectory and simplified the summand. For (e), we recall the definition
qθ(τ) = qθ(τ = H = ∞). For (f), we rewrote the integral as an expectation and wrote out the
definition of the geometric distribution, p(H). For (g), we regrouped the difference of dynamics
terms. For (h), we noted used the fact that

∑H−1
t=0 γθ(t) + γ∞t=Hγθ(t) = 1. For (i), we substituted

the definition of the CDF function. For (j), we rearranged terms so that all were multiplied by the
discount γθ(H). Thus, we have obtained the desired result. We now prove Lemma 3.2, showing that
Eq. 4 becomes tight at optimality.

Proof.

Lγ(θ)
(a)
=

∫∫
qθ(τ,H) (log p(τ,H)− log qθ(τ,H) + log r(sH , aH)dτ) dH − log(1− γ)

(b)
=

∫∫
qθ(τ)γθ(H | τ) (log p(τ) + log p(H)− log qθ(τ)− log γθ(H | τ) + log r(sH , aH)dτ) dH − log(1− γ)

(14)

For (a), we undo some of the simplifications above, going back to Eq. 13 For (b), we factor
qθ(τ,H) = qθ(τ)γθ(H | τ) and p(τ,H) = p(τ)p(H). At this point, we can solve analytically for
the optimal discount distribution, γθ(H | τ):

γ∗θ (H | τ) =
p(H)r(sH , aH)∑∞

H′=0 p(H
′)r(sH′ , aH′)

=
p(H)r(sH , aH)

(1− γ)R(τ)
(15)

In the second equality, we substitute the definition of R(τ). We then substitute Eq. 15 into our
expression for Lγ(θ) and simplify the resulting expression.

Lγ(θ) =

∫∫
qθ(τ)γθ(H | τ)

(
log p(τ) +���

�log p(H)− log qθ(τ)−���
�log p(H)−(((

((log r(sH , aH) +((((log(1− γ) + logR(τ) +(((
((log r(sH , aH)dτ

)
dH −((((log(1− γ)

=

∫∫
qθ(τ)γθ(H | τ) (log p(τ)− log qθ(τ) + logR(τ)dτ) dH

=

∫
qθ(τ) (log p(τ)− log qθ(τ) + logR(τ)) dτ.

15

Under review as a conference paper at ICLR 2022

In the final line we have removed the integral over H because none of the integrands depend on H .
At this point, we can solve analytically for the optimal trajectory distribution, qθ(τ):

q∗(τ) =
p(τ)R(τ)∫
p(τ ′)R(τ ′)dτ ′

. (16)

We then substitute Eq. 16 into our expression for Lγ(θ), and simplify the resulting expression:

Lγ(θ) =

∫
qθ(τ)

(
���log p(τ)−���log p(τ)−���

�logR(τ) + log

∫
p(τ
′
)R(τ

′
)dτ
′
+���

�logR(τ)

)
dτ

= log

∫
p(τ)R(τ)dτ = log Eπ

[∞∑
t=0

γ
t
r(st, at)

]
.

We have thus shown that the lower bound Lγ becomes tight when we use the optimal distribution
over trajectories qθ(τ) and optimal learned discount γθ(H | τ).

A.5 A LOWER BOUND FOR GOAL-REACHING TASKS.

Many RL problems can be better formulated as goal-reaching problems, a formulation that does not
require defining a reward function. We now introduce a variant of our method for goal-reaching
tasks. Using ρπ(st+) to denote the discounted state occupancy measure of policy π, we define the
goal-reaching objective as maximizing the probability density of reaching a desired goal sg:

max
θ

log ρπθ (st+ = sg). (17)

We refer the reader to Eysenbach et al. (2020b) for a more detailed discussion of this objective. For
simplicity, we assume that the goal is fixed, noting that the multi-task setting can be handled by
conditioning the policy on the commanded goal. Similar to Lemma 3.1, we can construct a lower
bound on the goal-conditioned RL problem:
Lemma A.3. Let initial state distribution p1(s1), real dynamics p(st+1 | st, at), reward function
r(st, at) > 0, discount factor γ ∈ (0, 1), and goal g be given. Then the following bound holds for
any dynamics q(st+1 | st, at) and policy π(at | st):

log pπθ (st+ = sg) ≥ Eqπθ (τ)

[∞∑
t=0

γtr(st, at)

]
, (18)

where r̃g(st, at, st+1) , (1−γ) log p(st+1 = sg | st, at)+log p(st+1 | st, at)−log q(st+1 | st, at).

The proof, presented below, is similar to the proof of Lemma 3.1. The first term in the reward
function, the log probability of reaching the commanded goal one time step in the future, is similar
to prior work (Rudner et al., 2021). The correction term log p − log q incentivizes the policy to
avoid transitions where the model is inaccurate, and can be estimated using a separate classifier. One
important aspect of this goal-reaching problem is that it is entirely data-driven, avoiding the need for
any manually-designed reward functions.

Proof.

log ρ
πθ (st+ = sg)

(a)
= log

∫∫
p(H)p(τ | H = H)p(sg | sH , aH)dτdH

= log

∫∫
p(H)

p(τ | H = H)

qθ(τ | H = H)
qθ(τ | H = H)

p(sg | sH , aH)

qθ(sg | sH , aH)
qθ(sg | sH , aH)dτdH − log(1− γ)

(c)

≥
∫∫

p(H)qθ(τ | H = H) (log p(τ | H = H)− log qθ(τ | H = H) + log p(sg | sH , aH)− log qθ(sg | sH , aH)) dτdH − log(1− γ)

(d)
=

∫∫
p(H)qθ(τ | H =∞)

(
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log p(sg | sH , aH)− log qθ(sg | sH , aH)dτdH − log(1− γ)

(d)
=

∫
qθ(τ)

∫
p(H)

(
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log p(sg | sH , aH)− log qθ(sg | sH , aH)dHdτ − log(1− γ)

(d)
=

∫
qθ(τ)

∞∑
t=0

γ
t

(log p(st+1 | st, at)− log qθ(st+1 | st, at) + (1− γ)(log p(sg | st, at)− log qθ(sg | st, at)) dτ − log(1− γ)

(d)
= Eqθ(τ)

[∞∑
t=0

γ
t

(log p(st+1 | st, at)− log qθ(st+1 | st, at) + (1− γ)(log p(sg | st, at)− log qθ(sg | st, at) + (1− γ) log(1− γ))

]
.

16

Under review as a conference paper at ICLR 2022

Similar to the more complex lower bound presented in Eq. 4, this lower bound on goal-reaching can
be modified (by learning a discount factor) to become a tight lower bound. The resulting objective
would resemble a model-based version of the algorithm from Rudner et al. (2021).

A.6 DERIVATION OF MODEL OBJECTIVE (EQ. 10)

Our lower bound depends on entirely trajectories sampled from the learned dynamics. In this section,
we show how the same objective can be expressed as an expectation of transitions. This expression is
easier to optimize, as it does not require backpropagating gradients through time. We start by writing
our lower bound, conditioned on a current state st.

E π(at|st),
qθ(st+1|st,at)

[∞∑
t′=t

γt
′−tr̃(st′ , at′) | st

]
= E π(at|st),

qθ(st+1|st,at)

[r̃(st, at, st+1) + γV (st+1) | st]

(a)
= E π(at|st),

qθ(st+1|st,at)

[
(1− γ) log r(st, at) + log

Cφ(st, at, st+1)

1− Cφ(st, at, st+1)
− (1− γ) log(1− γ) + γV (st+1) | st

]

In (a), we substituted the definition of the augmented return. For the purpose of optimizing the
dynamics model, we can ignore all terms that do not depend on st+1. Removing these terms, we
arrive at our model training objective (Eq. 10)

B ADDITIONAL EXPERIMENTS

Figure 8: Alternative Model Learning Objectives: Using the DClawScrewFixed-v0 task, we compare
MnM and MBPO (Janner et al., 2019) to two additional model learning objectives suggested in the literature,
VAML (Farahmand et al., 2017) and value-weighted maximum likelihood (Lambert et al., 2020). MnM (our
method) outperforms these alternative approaches.

We compare MnM to a number of alternative model learning methods. MBPO (Janner et al., 2019)
uses a standard maximum likelihood model. We implement a version of VAML (Farahmand et al.,
2017), which augments the maximum likelihood loss with an additional temporal difference loss; the
model should predict next states that have low Bellman error. Finally, we compare to a variant of the
MBPO maximum likelihood model that weights transitions based on the Q values, an idea discussed
(but not actually implemented) in Lambert et al. (2020). We implement this value weighting method
by computing the Q values for the current states and computing a softmax over the batch dimension
to obtain per-example weights.

We use the DClawScrewFixed-v0 task for this experiment. The results, shown in Fig. 8, show
that MnM outperforms these alternative approaches. We observe that the value-weighting performs

17

Under review as a conference paper at ICLR 2022

slightly better than the standard maximum likelihood model, while the VAML method performs
noticeable worse.

Figure 9: Ablations Experiments: Compared with MBPO (orange line), MnM uses a GAN-like model (red
line) with a model optimism term and modifies the reward function.

We next run an ablation experiment to study the importance of a few key design decisions. We
compare MnM with ablations that omit the reward augmentation and the model optimism term. The
results shown in Fig. 9 indicate that most of the benefit of MnM comes from using a GAN-like model.
Because the dynamics of these tasks are nearly deterministic, it is not surprising that the optimistic
dynamics and the reward augmentation have only a small effect.

Figure 10: MnM trains stably. Despite resembling a GAN, the MnM dynamics model trains stably, with the
validation MSE decreasing steadily throughout training. Different colors correspond to different random seeds of
MnM. The dashed line corresponds to the minimum validation MSE of a maximum likelihood dynamics model.

With the implementation details described in Appendix C, we found that the MnM dynamics model
trained stably, despite resembling a GAN. In Fig. 10, we plot the validation MSE of the MnM model
throughout training, observing that it decreases monotonically. Different lines correspond to different
random seeds, and the dashed line corresponds to the minimum MSE of a maximum likelihood model
(a MBPO model). Note that the MnM model is not trained with this MSE objective, but with the
GAN-like objective in Eq. 10. It is therefore not surprising that MnM does not perform as well on
this objective as the maximum likelihood model.

C IMPLEMENTATION DETAILS

All experiments were run on at least three random seeds.

C.1 ALGORITHMS

Value Iteration (Fig. 2a (right), Fig. 2b, Fig. 3) For the tabular experiments that perform value
iteration, we perform Polyak averaging of the policy and learned dynamics model with parameter
τ = 0.5. We found that the value iteration version of MnM diverged without this Polyak averaging
step. Experiments were stopped when the MnM dynamics model (which depends on the value
function) changed by less than 1e-6 across iterations, as measured using an L0 norm. For VMBPO
we used η = 1.

18

Under review as a conference paper at ICLR 2022

SAC MBPO MnM
HalfCheetah-v2 - 40 20

Hopper-v2 - 40 20
Walker2d-v2 - 40 20

dm-cartpole-swingup_sparse 1 1 1
metaworld-window-open-v2 20 20 20
metaworld-door-open-v2 40 40 40

metaworld-reach-v2 20 20 20
metaworld-drawer-open-v2 40 40 40

DClawPoseRandom-v0 20 20 20
DClawTurnRandom-v0 40 40 40
DClawScrewFixed-v0 40 40 40
DClawScrewRandom-v0 40 40 40

Table 1: Gradient updates per real environment step: This parameter was separately tuned for each method
and each environment.

Q-learning (Fig. 2) For the experiments with Q-learning (both with and without the MnM compo-
nents), we performed ε-greedy exploration with ε = 0.5. We used a learning rate of 1e− 2. For this
task alone, we compute the MnM dynamics analytically by combining the true environment dynamics
with the learned value function, allowing for clearer theoretical analysis. For fair comparison, all
methods receive the same amount of data, perform the same number of updates, and are evaluated
using the real environment dynamics. For VMBPO we used η = 1.

SAC for continuous control tasks. We used the SAC implementation from TF-Agents (Guadar-
rama et al., 2018) with the default hyperparameters.

MBPO for continuous control tasks. We implement MBPO on top of the SAC implementation
from TF-Agents (Guadarrama et al., 2018). Unless otherwise mentioned, we take the default
parameters from this implementation. We use an ensemble of 5 dynamics models, each with 4 hidden
layers of size 256. The dynamics model predicts the whitened difference between the next state
and the current state. That is, to obtain the prediction for the next state, the predictions are scaled
by a per-coordinate variance, shifted by a per-coordinate mean, and then added to the current state.
These whitened predictions are clipped to have a minimum standard deviation of 1e-5; without this,
we found that the MBPO model resulted in numerical instability. The model is trained using the
standard maximum likelihood objective, with all members of the ensemble being trained on the same
data. To sample data from this model we perform 1-step rollouts, starting at states visited in the true
dynamics. We perform one batch of rollouts in parallel using a batch size of 256. To sample the
corresponding action, with probability 50% we take the action that was executed in the true dynamics;
with probability 50% we sample an action from the current policy. We found that this modification
slightly improves the results of MBPO. We use a batch size of 256. We have two replay buffers: the
model replay buffer has size 256e3 and the replay buffer of real experience has size 1e6. At the start
of training, we collect 1e4 transitions from the real environment, train the dynamics model on this
experience for 1e5 batches, and only then start training the policy. We use a learning rate of 3e-4 for
all components. To stabilize learning, we maintain a target dynamics model using an exponential
moving average (τ = 0.001), and use this target dynamics model to sample transitions for training.
We update the model, policy, and value functions at the same rate we sample experience from the
learned model, which is more frequently than we collect experience from the real environment (see
Table 1).

MnM for Continuous Control Tasks We implement MnM on top of the SAC implementation from
TF-Agents (Guadarrama et al., 2018). Unless otherwise mentioned, we take the default parameters
from this implementation. Our model architecture is exactly the same as our MBPO implementation,
and we follow the same training protocol.

Unlike MBPO, MnM also learns a classifier for distinguishing real versus model transitions. The
classifier architecture is a 2 layers neural network with 1024 hidden units in each layer. We found
that this large capacity was important for stable learning. We add input noise with σ = 0.1 while

19

Under review as a conference paper at ICLR 2022

Figure 11: Environments: Our experiments look at three locomotion tasks from OpenAI Gym (Brockman
et al., 2016), the inverted pendulum task from DM Control (Tassa et al., 2018), four manipulation tasks from
Metaworld (Yu et al., 2020a), and four dextrous manipulation tasks from Robel (Ahn et al., 2020). The Robel
tasks use the same dynamics but different reward functions, so we only include an image of one task.

training the classifier. We whiten the inputs to the classifier by subtracting a coordinate-wise mean
and dividing by a coordinate-wise standard deviation. When training the classifier, we take samples
from both the dynamics model and the target dynamics model as negative examples, finding that this
stabilizes learning somewhat. Following the suggestion of prior work (Salimans et al., 2016), we
use one-sided label smoothing with value 0.1, only smoothing the negative predictions and not the
positive predictions.

We found that gradient penalties and spectral normalization decreased performance. We found that
automatically tuning the classifier input noise also decreased performance. We found that mixup had
little effect. We found that the loss would often plateau around 1e4 batches, but would eventually
start decreasing again after 2e4 - 2e5 batches.

Like the MBPO model, we first collect 1e4 transitions of experience from the real environment using
a random policy, then train the dynamics model and classifier for 1e5 batches, and only then start
updating the policy. Because the Q values are poor at the start of training, we only add the value
term to the model loss (resulting in the optimistic dynamics model) after 2e5 batches (1e5 batches
of model training, then 1e5 batches of model+policy training). To further improve stability, we
compute the value term in the model loss by taking the minimum over two target value functions
(like TD3 (Fujimoto et al., 2018)). We update the model, classifier policy, and value functions at the
same rate we sample experience from the learned model, which is more frequently than we collect
experience from the real environment (see Table 1).

C.2 ENVIRONMENTS

Gridworld for Fig. 2a. This task is a 10× 10 gridworld with obstacles shown in Fig. 2a. There
are four discrete actions, corresponding to moving to the four adjacent cells. With probability 50%,
the agent’s action is ignored and a random action is taken instead. The agent starts in the top-left cell.
The agent receives a reward of +0.001 at each time step and a reward of +10 when at the goal state.
Episodes have 200 steps and we use a discount γ = 0.9.

Gridworld for Fig. 2b. This task is a 15× 15 gridworld with obstacles shown in Fig. 2b. There
are four discrete actions, corresponding to moving to the four adjacent cells. The dynamics are
deterministic. The agent starts in the top-left cell. The reward is +1.0 at every state except the
goal state, where the agent receives a reward of +100.0. We use γ = 0.9 and compute optimal
policies analytically using value iteration. We implementing the aliasing by averaging together the
dynamics for each block of 3× 3 states. Importantly, the averaging was done to the relative dynamics
(e.g., action 1 corresponds to move right) not the absolute dynamics (e.g., action 1 corresponds to
moving to state (3, 4)). To handle edge effects, we modified the averaged dynamics so that the agent
could not exit the gridworld. We computed the classifier analytically using the true and learned
dynamics models. However, the augmented rewards become infinite because the learned model
assigns non-zero probability to transitions that cannot occur under the true dynamics. This is not a
failure of our theory, as the optimal policy would choose to never visit these states, but it presents a
challenge for optimization. We therefore added label smoothing with parameter 0.7 to the classifier.

20

Under review as a conference paper at ICLR 2022

Gridworld for Fig. 3a. This task is a 10 × 10 gridworld with obstacles shown in Fig. 2. There
are four discrete actions, corresponding to moving to the four adjacent cells. With probability 90%,
the agent’s action is ignored and a random action is taken instead. The agent starts in the top-left
cell. The rewards depend on the Manhattan distance to the goal: transitions that lead away from the
goal have a reward of +0.001, transitions that do not change the distance to the goal have a reward
of +1.001, and transitions that decrease the distance to the goal have a reward of +2.001. We use
γ = 0.5 and compute values and returns analytically using value iteration.

Gridworld for Fig. 3b. This task used the same dynamics as Fig. 2a. The one change is that the
agent receives a reward of +1.0 at each time step and a reward of +10.0 at the goal state. We estimate
the more complex lower bound (Eq. 4) by also learning the discount factor. However, since we
currently do not have a method for learning non-Markovian dynamics to fully optimize this lower
bound, we do not expect the lower bound to become tight.

HalfCheetah-v2, Hopper-v2, Walker2d-v2. These tasks are taken directly from the
OpenAI benchmark (Brockman et al., 2016) without modification.

dm-cartpole-swingup_sparse. This task is taken directly from the DM Control bench-
mark (Tassa et al., 2018) without modification.

metaworld-window-open-v2. This task is based on the window-open-v2 task from
the Metaworld benchmark (Yu et al., 2020a). To increase the difficulty of this task, we set
random_init=True and use a sparse reward function. The sparse reward function is +0 when
the window is within 3 units of the (default) open position and -1 otherwise.

metaworld-door-open-v2. This task is based on the door-open-v2 task from the
Metaworld benchmark (Yu et al., 2020a). To increase the difficulty of this task, we set
random_init=True and use a sparse reward function. The sparse reward function is +1 when
the window is within 3 units of the (default) open position and +0 otherwise.

metaworld-reach-v2. This task is based on the reach-v2 task from the Metaworld bench-
mark (Yu et al., 2020a). To increase the difficulty of this task, we set random_init=True and
use a sparse reward function. The sparse reward function is +0 when the window is within 1 units of
the goal and -1 otherwise.

metaworld-drawer-open-v2. This task is based on the drawer-open-v2 task from the
Metaworld benchmark (Yu et al., 2020a). To increase the difficulty of this task, we remove the
reward shaping term (reward_for_caging) and just optimize the reward for opening the drawer
(reward_for_opening).

DClawPoseRandom-v0, DClawTurnRandom-v0, DClawScrewFixed-v0,
DClawScrewRandom-v0. These tasks are taken directly from the ROBEL benchmark (Ahn
et al., 2020) without modification.

21

	Introduction
	Related Work
	A Unified Objective for Model-Based RL
	Mismatched No More
	Estimating the Augmented Reward Function
	Updating the Model, Policy, and Classifier

	Experiments
	Understanding the Lower Bound and the Learned Dynamics
	Comparisons On Robotics Tasks

	Conclusion
	Proofs and Additional Analysis
	VMBPO Maximizes an Upper Bound on Return
	Helper Lemmas
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	A lower bound for goal-reaching tasks.
	Derivation of Model Objective (Eq. 10)

	Additional Experiments
	Implementation Details
	Algorithms
	Environments

