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Abstract

This paper explores generalised probabilistic001
modelling and uncertainty estimation in com-002
parative LLM-as-a-judge frameworks. We003
show that existing Product-of-Experts meth-004
ods are specific cases of a broader framework,005
allowing for diverse modelling options. Fur-006
thermore, we propose improved uncertainty es-007
timates for individual comparisons, enabling008
more efficient selection and achieving strong009
performance with fewer evaluations. We also010
introduce a method for estimating overall rank-011
ing uncertainty. Finally, we demonstrate that012
combining absolute and comparative scoring013
enhances performance. Experiments show that014
the specific expert model has a limited impact015
on final rankings but our proposed uncertainty016
estimates, especially the probability of reorder-017
ing, significantly improve the efficiency of sys-018
tems. Furthermore, ranking-level uncertainty019
metrics can be used to identify low-performing020
predictions, where the nature of the probabilis-021
tic model has a notable impact on the quality022
of the overall uncertainty.023

1 Introduction024

Instruction-tuned Large Language Models (LLMs)025

have shown impressive zero-shot performance on026

a wide range of natural language processing and027

generation tasks (Wei et al., 2021; Ouyang et al.,028

2022; Bai et al., 2022; Zhou et al., 2023; Chung029

et al., 2024). While the number of downstream ap-030

plications of aligned LLMs increases (Brown et al.,031

2020; Touvron et al., 2023; Achiam et al., 2023;032

Dubey et al., 2024), so does the need to evaluate033

their performance on bespoke tasks, which could034

lack labelled data or are costly for humans to judge035

at scale (Zheng et al., 2023b; Wang et al., 2022;036

Taori et al., 2023). As an alternative, instruction-037

tuned LLMs have increasingly been used as a re-038

placement for humans to evaluate the quality of039

natural language generations that demonstrate high040

correlations with human judgements (Zheng et al.,041

2023b; Liusie et al., 2024b; Bubeck et al., 2023; 042

OpenAI; Dubois et al., 2023; Wang et al., 2023b; 043

Chiang and Lee, 2023). 044

There are two standard approaches to using LLM 045

in judging responses. Absolute scoring: Prompt an 046

LLM to evaluate a certain attribute of a response on 047

a defined scale (e.g., a scale of 1 to 10). Compara- 048

tive scoring: Prompt an LLM to choose which of 049

the two responses to a given query displays higher 050

quality with respect to a given attribute. Absolute 051

scoring is a straightforward and effective method 052

for evaluating a variety of responses to a query 053

and ranking them. However, the scores obtained 054

are unreliable and may vary significantly between 055

different LLM judges. Alternatively, the more ex- 056

pensive comparative scoring approach has consis- 057

tently demonstrated higher correlations with hu- 058

man judgements (Zheng et al., 2023b; Liusie et al., 059

2024b; Qin et al., 2023). However, a drawback of 060

this approach is that it scales quadratically with the 061

number of response candidates, which can become 062

prohibitively expensive due to the inference costs 063

of LLMs. 064

To address the computational restraints of com- 065

parative assessment, various approaches have been 066

proposed. Notably, it is possible to extract more in- 067

formation from the LLM-as-a-judge rather than just 068

a binary decision. Various works have, as opposed 069

to using simple win-ratio, resorted to using the av- 070

erage probability output from the LLM (Qin et al., 071

2023; Zheng et al., 2023b; Liusie et al., 2024b; Park 072

et al., 2024; Molenda et al., 2024). Building on this 073

idea, Liusie et al. (2024c) introduced a Product- 074

of-Experts (PoE) (Hinton, 1999; Welling, 2007) 075

framework in modelling comparative scoring. In 076

principle, the joint distribution of candidate scores 077

can be broken down into arbitrarily chosen experts 078

that model the score differences of two instances 079

at a time, allowing for a partial set of comparisons 080

to model the full joint distribution. This directly 081

allows one to obtain a ranking of candidates with- 082
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out having to perform all possible comparisons,083

showing that only a fraction of the total number of084

comparisons is needed to obtain highly competitive085

performance.086

Contributions: In this paper, we generalise the087

expert in the comparative framework and derive088

how there is a wide range of viable options. Start-089

ing from the Beta distribution in modelling arbi-090

trary probabilities, we show that prior works are091

specific instances of this choice. We also propose092

improved estimates for the uncertainty in individual093

comparisons and show how these updated uncer-094

tainties allow us to make even fewer comparisons095

without loss of performance. In addition to the096

uncertainty of a comparison, we also propose an097

uncertainty in the overall ranking of a set of candi-098

dates. Finally, we show that the Product-of-Experts099

framework easily lends itself to combinations of100

various scoring approaches. Specifically, we show101

that absolute scoring can complement compara-102

tive scoring efficiently and cheaply and lead to103

improved overall performance.104

2 Background and Related Work105

NLG Evaluation with LLMs: The extensive natu-106

ral language generation capabilities of instruction-107

tuned large language models (Achiam et al., 2023;108

Ouyang et al., 2022; Chung et al., 2024; Dubey109

et al., 2024) have prompted recent work on open-110

ended generation evaluation using LLMs. Meth-111

ods such as GPTScore (Fu et al., 2023) rank re-112

sponses based on the likelihood of generation and113

G-Eval (Liu et al., 2023) which uses chain-of-114

thought and form-filling to evaluate the quality of115

a response. Furthermore, LLM-as-a-judge (Zheng116

et al., 2023b) approaches score responses on an117

absolute scale (Wang et al., 2023a; Kocmi and Fed-118

ermann, 2023) or comparative manner by compar-119

ing responses against each other (Qin et al., 2023;120

Liusie et al., 2024b,c) and building an overall rank-121

ing through the set of pairwise comparisons.122

LLM-Based Comparative Assessment: The123

work by Liusie et al. (2024b) showed that com-124

parative assessment yields superior performance125

compared to absolute scoring methods and various126

custom baselines. By making all possible N(N−1)127

pairwise comparisons of N candidate responses,128

and computing the win-ratio, an overall ranking129

can be obtained. This style of approach has found130

its applications in many places. Qin et al. (2023)131

utilised pairwise comparisons to retrieve relevant132

sources, using both the full set of comparisons and 133

sorting-based algorithms. Park et al. (2024) em- 134

ployed comparative assessment for dialogue eval- 135

uation, calculating the average probability across 136

a randomly sampled set of comparisons to deter- 137

mine score quality. Finally, Liu et al. (2024b) 138

demonstrated the limitations of LLM scoring, and 139

resorted to using pairwise comparisons. They in- 140

troduced PAirwise-preference Search, a variation 141

of the merge sort algorithm which utilises LLM 142

probabilities. 143

Ranking from Pairwise Comparisons: The idea 144

of generating a full ranking from pairwise com- 145

parisons has been extensively studied. Arguably 146

the most well-known example of this is the rank- 147

ing of tennis players based on the outcomes of 148

games and this kind of problem has applications 149

in many different areas. Anything from sports and 150

gaming (Beaudoin and Swartz, 2018; Csató, 2013; 151

Motegi and Masuda, 2012), web search (Cossock 152

and Zhang, 2006; Dwork et al., 2001), social stud- 153

ies (Manski, 1977; Louviere et al., 2000) to infor- 154

mation retrieval (Cao et al., 2007; Liu et al., 2009) 155

requires modelling through pairwise events. The 156

most common approach to model pairwise com- 157

parisons is the Bradley-Terry (BT) model (Bradley 158

and Terry, 1952). By assigning each candidate 159

a latent score, the probability of one candidate 160

winning over another is based on the underlying 161

skill difference. The latent scores can then be ob- 162

tained by maximising the log-likelihood of the data 163

(David, 1963; Davidson and Farquhar, 1976; Catte- 164

lan, 2012). Finally, the TrueSkill model (Herbrich 165

et al., 2006; Minka et al., 2018) generalises the 166

Bradley-Terry model by incorporating uncertainties 167

in candidate scores within a Bayesian framework 168

in a sports context. 169

Product-of-Experts: Each comparison Ck made in 170

a comparative assessment framework provides in- 171

formation about the distribution of scores s = s1:N 172

of the candidates. The Product-of-Experts (PoE) 173

(Hinton, 1999; Welling, 2007) approach presents 174

a simple and effective way of combining the infor- 175

mation from comparisons according to: 176

p(s|C1:K) ∝
∏
k

p(s|Ck) =
∏
k

p(si − sj |Ck) 177

The distribution can be simplified into a product 178

of individual experts, and be further simplified as 179

it involves comparisons made exclusively between 180

pairs of candidates. In the work of Liusie et al. 181
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(2024c) there were two choices made for the ex-182

pert: The Gaussian motivated from its algebraic183

tractability and the soft Bradley-Terry model as an184

extension to the standard BT model:185

p(si− sj |Ck)∝σ(si− sj)
pij (1−σ(si− sj))

1−pij186

Where the probability pij is obtained from the LLM187

when comparing candidate i against j. The more188

experts/comparisons are included the better the re-189

sulting estimate of the scores should be. The scores190

can then be retrieved by optimising p(s|C1:K) ei-191

ther through iterative (Zermelo, 1929; Dykstra,192

1956; Newman, 2023), algebraic (Liusie et al.,193

2024c) or standard gradient-based approaches.194

3 Generalised Expert Modelling195

This section will focus on the nature of the expert196

for modelling absolute and pairwise comparisons.197

In general, we have N candidates with associated198

scores s1:N . Given a set of comparisons C1:K , the199

aim is to predict a set of scores ŝ1:N which ranks200

the candidates as closely as possible to the true201

ranking. Each comparison Ck = (i, j, pij) contains202

the ids of the candidates and the corresponding203

probability produced by the LLM that i is better204

than j for a certain attribute.205

3.1 Comparative Expert Modelling206

The experts in prior work all modelled the score207

difference of candidates p (si − sj |Ck). Through208

a simple change of variables we propose a more209

generalised version of the expert in comparative210

modelling:211

p (si − sj |Ck) = f ′(si − sj)p̃
(
f(si − sj)

∣∣Ck)212

where the f(·) is a generic monotonically increas-213

ing function. Any choice of f is viable as long as214

the distribution p̃ supports it. Through this view,215

we can easily obtain the Gaussian expert in Liusie216

et al. (2024c), by using an identity f and a sim-217

ple Gaussian for p̃. Alternatively, by letting f be218

the sigmoid function and using an underlying Beta219

distribution:220

p̃
(
f
∣∣Ck) = B

(
f ; pij , 1− pij

)
221

we regain the soft Bradley-Terry model. However,222

from this point of it is clear that there are many223

more viable options for modelling a pairwise event.224

In this work, we will investigate several other com-225

binations starting with a sigmoid and a general:226

p̃
(
f
∣∣Ck) = B(f ; pij + α, 1− pij + β) (1)227

model. We will also try an unconventional choice 228

by replacing the identity function in the Gaussian 229

model with a sigmoid-like function: 230

p (si − sj |Ck) = 231

N (si − sj ; 0, 1)N
(
Φ(si − sj); pij , 1

)
(2) 232

where Φ(·) is the cumulative density of the Gaus- 233

sian. Ablations will study the impact of the choice 234

of f and the underlying distribution p̃. 235

3.2 Expert Combinations 236

As has been mentioned several times, absolute scor- 237

ing is cheaper but worse than comparative scoring. 238

However, it is possible that absolute scoring can 239

provide complementary information so we propose 240

combining the two approaches into a single model: 241

p(s|C1:K ,A1:N )∝
∏
k

p(si − sj |Ck)
∏
n

p(sn|An) 242

where An contains the information from an abso- 243

lute scoring prompt. When prompting an LLM on 244

a scale of 1 to 10 it contains the probabilities of 245

those values. Unfortunately, absolute scoring will 246

provide a discrete score and while it is possible 247

to obtain the associated logits for each value (of 1 248

to 10) from the LLM (and construct a categorical 249

distribution) it remains difficult to combine the con- 250

tinuous pairwise experts with the discrete absolute 251

experts. Therefore, we also propose using moment 252

matching to transform the categorical expert into a 253

Gaussian N (µ, σ2): 254

µ =
∑
c

cpc, σ2 =
∑
c

(c− µ)2pc 255

where c and pc represent the class and the associ- 256

ated probability that the LLM would output that 257

class. In our running example, we would have 258

c ∈ {1, . . . , 10}. Finally, the absolute expert can 259

be written as: 260

p(sn|An) ≈ N (sn;µn, σ
2
n), ∀n = 1, . . . , N 261

and would allow us to operate with continuous 262

values and optimise the skill scores using gradient- 263

based approaches. In this work, we rely solely on 264

simple absolute scoring but there exist many more 265

sophisticated pointwise scoring approaches like G- 266

Eval (Liu et al., 2023) which can provide further 267

improvements. 268
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3.3 Home Advantage269

A big issue plaguing LLM-based approaches is bias270

in the system. In our case, the probability outputs271

of an LLM are inconsistent pij ̸= 1− pji, meaning272

that the LLM-based judge can assign conflicting273

probabilities when comparing i to j as opposed274

to j to i. This stems from positional biases in the275

system (Zheng et al., 2023b; Chen et al., 2024a;276

Liusie et al., 2024a; Zheng et al., 2023a; Wang277

et al., 2023c; Dominguez-Olmedo et al., 2024; Zhu278

et al., 2023; Chen et al., 2024b; Liu et al., 2024a).279

To resolve such an issue, we rely on one of the two280

approaches. Permutation Debiasing: For each281

comparison we make two LLM calls for both i282

vs j and j vs i to obtain a final debiased proba-283

bility p̃ij = 1
2(pij +(1− pji)) which would en-284

sure consistency: p̃ij = (1 − p̃ij). Home Ad-285

vantage: An alternative approach is to directly286

incorporate the positional bias into the compara-287

tive expert model. Since we already know that a288

certain position will be preferred over another we289

can introduce a ’home advantage’ (Agresti, 1990;290

Caron and Doucet, 2012) parameter to model the291

inconsistency through our function f :292

f(si − sj ; ∆) = f(si − sj −∆)293

While prior approaches have developed the the-294

ory for home advantage in specific use-cases such295

as Bradley-Terry (Caron and Doucet, 2012) and296

Gaussian experts (Liusie et al., 2024c), our parame-297

terisation through the generic function f allows us298

to straightforwardly incorporate home advantage299

into any type of expert. Furthermore, while the300

work of Liusie et al. (2024c) estimated the advan-301

tage parameter ∆ through bespoke rules for each302

expert, we estimate it by maximising the likelihood303

p(s|C1:K ,∆).304

4 Uncertainty Estimation305

This section will explore how to estimate uncer-306

tainty when ranking examples. Two levels of un-307

certainty will be explored. Pairwise uncertainty:308

The uncertainty in the score difference of a pair309

of candidates. Ranking uncertainty: The uncer-310

tainty in the overall ranking of a set of candidates.311

Being able to estimate these uncertainties robustly312

can help in reducing the number of comparisons313

needed to achieve good performance and in under-314

standing whether the overall ranking is trustworthy.315

4.1 Laplace’s approximation 316

Unfortunately, it is generally analytically in- 317

tractable to derive uncertainties from the distribu- 318

tion p(s|C1:K) and we will therefore, in all cases, 319

apply Laplace’s approximation: 320

p(s|C1:K) ≈ N
(
s;µ(K),Σ(K)

)
321

where we set (and dropped the superscript for con- 322

ciseness): 323

µ = argmax
s

ln p(s|C1:K) 324

Σ−1 = −∇∇ ln p(s|C1:K)
∣∣
µ

325

There are more advanced approaches to approxi- 326

mating an intractable distribution but we will rely 327

on this simple and efficient scheme in this work. 328

4.2 Pairwise Uncertainty Estimation 329

Being able to estimate the uncertainty in a pair of 330

candidates, in their score difference, can allow us 331

to decide which comparisons are useful and which 332

or not. The better the quality of the uncertainty esti- 333

mate, the fewer comparisons are needed to achieve 334

good performance. Following Liusie et al. (2024c), 335

the aim is to iteratively add additional comparisons 336

to improve the product-of-experts model and the 337

overall ranking of scores. 338

Given the Gaussian approximation, Liusie et al. 339

(2024c) posed that the next comparison that should 340

be selected should induce minimum overall uncer- 341

tainty in the resulting distribution, giving the fol- 342

lowing selection criteria under the soft BT model: 343

î, ĵ = argmax
i,j

σ(µi−µj)σ(µj−µi) · 344(
Σii − 2Σij +Σjj

)
(3) 345

In this work, we propose two additional pairwise 346

uncertainty metrics which apply to any modelling 347

choice: A simple variance in score differences 348

and the probability of reordering. The variance 349

V[si − sj |C1:K ] = Σii − 2Σij +Σjj is straightfor- 350

ward and easy to compute. Since we want to select 351

the pairs with the highest variance (or uncertainty) 352

we get the following selection mechanism: 353

î, ĵ = argmax
i,j

Σii − 2Σij +Σjj (4) 354

However, since we are interested in the correct 355

ranking of candidates, a potentially more appropri- 356

ate uncertainty metric is the probability that two 357
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candidates are reordered. Assuming that si > sj358

the probability of reordering then becomes:359

P(si < sj |C1:K) = Φ

(
µj − µi√

Σii − 2Σij +Σjj

)
360

As shown in the Appendix C, this can be simplified361

to a similar selection form since we want to pick362

examples with the highest reordering probability:363

î, ĵ = argmax
i,j

Σii − 2Σij +Σjj

(µi − µj)2
(5)364

Furthermore, since all selection mechanisms take365

the following form:366

î, ĵ = argmax
i,j

w(µi − µj) (Σii − 2Σij +Σjj)367

we run ablation studies on changing the weight368

function w(·).369

4.3 Ranking Uncertainty Estimation370

In addition to pairwise uncertainties, there is a need371

to understand the level of uncertainty in the overall372

ranking P(s1 < · · · < sN |C1:K) but this is diffi-373

cult to estimate even under a Gaussian model. In-374

stead we use the following metrics to represent the375

overall uncertainty. The entropy in the Gaussian376

approximation:377

H[s|C1:K ] =
N

2
(1 + ln(2π)) +

1

2
det(Σ)378

The lower the entropy, the more certain we should379

be in our predicted ranking. While the entropy of380

the rank distribution should in reality replace the381

entropy of the score distribution, the issue is that382

there are N ! different possible rankings and obtain-383

ing accurate estimates means needing to sample an384

order of magnitude more than possible rankings.385

5 Experimental Setup386

5.1 Datasets387

We mainly perform experiments on the summary388

evaluation SummEval dataset (Fabbri et al., 2021)389

which contains 100 articles, each with 16 machine-390

generated summaries evaluated on four different391

attributes: coherency (COH), consistency (CON),392

fluency (FLU), and relevancy (REL). We will also393

use the much larger HANNA dataset (Chhun et al.,394

2022) which has 1056 machine-generated stories395

annotated by humans on six different attributes.396

These are averaged to a single overall quality score.397

5.2 Methodology 398

We will be relying on Flan-T5 (Chung et al., 2024) 399

(3B) system to evaluate performance on the Sum- 400

mEval dataset and Qwen2.5-{3B, 7B}-Instruct 401

(Qwen Team, 2024) systems on the larger HANNA 402

dataset. Appendix A will detail our choices, how 403

we structure the prompts and how the probabilities 404

are extracted from each model. 405

Probabilistic Models: In almost all experiments 406

we will rely on the soft Bradley-Terry extension as 407

our baseline expert model following. This will be 408

compared against our proposed extensions to this 409

approach: (1) The generalised Beta distribution in 410

Eq. (1), (2) the extended Gaussian distribution in 411

Eq. (2) and (3) the combination of comparative 412

and absolute outputs in a single PoE model. We 413

will not include simple baselines such as average 414

win-ratio and average probability since these have 415

been shown to be inferior on a wide range of tasks 416

(Liusie et al., 2024c; Raina et al., 2024). 417

Iterative Selection: We will also compare the 418

above probabilistic models in an active learning 419

framework where each model needs to select the 420

comparisons that will induce the best performance. 421

The baseline will be the minimum uncertainty 422

approach given in Eq. (3) using the soft BT model. 423

We will compare this against our proposed vari- 424

ance (Eq. (4)) and probability of reordering (Eq. 425

(5)) selection mechanisms. 426

Ranking Uncertainties: The ranking uncertainty 427

metrics will be investigated on how well they 428

correlate with the actual performance of the pre- 429

dicted rankings, whether they can identify high- 430

performing predictions. 431

Evaluation Metrics: Since we are interested in 432

predicting the ranking of candidate responses given 433

a context/query, the main performance metric is 434

Spearman rank correlation between the predicted 435

and the human labelled scores. In SummEval 436

(N = 16) we perform absolute and comparative 437

scoring and evaluate the average Spearman across 438

all contexts. For HANNA (N = 1056) we rank 439

all generated stories. Furthermore, we assess the 440

quality of the various iterative selection schemes by 441

the number of comparisons needed to achieve good 442

Spearman rank correlation. The ranking uncertain- 443

ties are also evaluated using the area under the 444

receiver operating characteristic curve (AUROC) 445

to detect well-performing rankings. 446
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6 Results447

6.1 Form of Distribution448

This section investigates a wide range of PoE mod-449

els conditioned on the full set of comparisons. For450

SummEval with N = 16 summaries per context,451

there is a total of K = 240 number of compar-452

isons. Unless reported otherwise, all results are453

based on the direct biased outputs of judges. Sur-

Table 1: Spearman correlations (%) for SummEval us-
ing Flan-T5 (3B) as a judge.

Function Distribution
COH CON FLU REL

f p̃

x Gaussian 49.1 45.2 32.5 42.2
σ Gaussian 49.2 45.3 32.5 42.2
Φ Gaussian 49.2 45.3 32.5 42.3

σ Beta 49.2 45.2 32.5 42.2
Φ Beta 49.2 45.3 32.6 42.3

Comparative (σ-Beta) 50.7 45.9 32.9 43.4+ Absolute Experts
454

prisingly, all experts perform similarly when eval-455

uated on the full set of comparisons. The only456

model that performs noticeably better is the com-457

bined comparative-absolute model. Absolute scor-458

ing seems to extract complementary information459

and give the overall system a performance boost.460

While the ranks predicted by models are similar,461

the ranking uncertainties of these systems differ.462

To benchmark, an uncertainty is predicted for463

each context, meaning to represent how well the464

predicted ranks performs. The Spearman rank per-465

formance of each context is thresholded by the466

median score and mapped to a binary value so that467

contexts are classed as ’0’ or ’1’. This allows us468

to use the standard AUROC score to evaluate de-469

tection performance. Table 2, shows the AUROC

Table 2: AUROC (%) detection performance of H, the
entropy of Laplace’s approximation.

Function Distribution
COH CON FLU REL

f p̃

x Gaussian 53.4 51.8 54.9 58.4
σ Gaussian 65.5 67.3 60.8 65.8
Φ Gaussian 65.0 67.3 61.0 65.9

σ Beta 63.8 68.3 60.6 63.8
Φ Beta 64.8 67.4 60.9 65.7

Comparative (σ-Beta) 64.5 69.9 62.0 67.0+ Absolute Experts
470

performance of a range of probabilistic models.471

Unlike previous results, the nature of the proba-472

bilistic model seems to have a significant impact473

on performance. While the performance of various 474

PoE models are similar, the predicted entropy, and 475

by equivalence, the hessian (curvature) of the log- 476

likelihood seems to differ between certain models. 477

This seems to stem mainly from the choice of f 478

but further investigations are needed to understand 479

how to predict robust uncertainties. 480

The linear-Gaussian model performs signifi- 481

cantly worse, only marginally outperforming a ran- 482

dom classifier. Furthermore, all models that map 483

skill differences through a sigmoid-like function f 484

perform notably better, with the combined model 485

being the best system similar to previous results. 486

While this is only a preliminary investigation into 487

detecting well-performing examples, it is a good 488

start into understanding the problem and what mod- 489

els produce better uncertainties. 490

6.2 Iterative Selection 491

In this section, we explore the quality of various 492

models and uncertainty metrics when iteratively 493

selecting comparisons. Furthermore, this investi- 494

gation is performed on both biased and debiased 495

probabilities. Four main points can be observed 496

from the results in Figure 1: 497

(1) Model Convergence: As reported in the table 498

above, all models converge towards the same final 499

performance since the rankings are predicted from 500

the same full set of comparisons. 501

(2) Quality of Uncertainties: There is a significant 502

gap in performance between various uncertainty 503

metrics. Probability of reordering is shown to out- 504

perform the minimum uncertainty metric in all at- 505

tributes of SummEval for both biased and debiased 506

cases. We expect this performance difference to 507

originate from how each metric was derived. While 508

minimum uncertainty is simply focused on choos- 509

ing the next comparison that would induce the least 510

uncertainty, the probability of reordering is directly 511

linked to achieving the correct ranking. 512

(3) Expert Model Invariance: Probability of re- 513

ordering under two different models, σ-Beta (soft 514

BT) and Φ-Gaussian (ngaussian), perform almost 515

identically in all cases. This again reinforces the 516

idea that the nature of the expert model does not 517

matter as much as the uncertainty modelling used 518

in selecting the comparisons. 519

(4) Performing better with less: Performance is 520

expected to increase as one adds more and more 521

comparisons to the PoE model. However, in many 522

of the cases above, performance drops until the full 523
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Figure 1: The Spearman Rank Correlation when iteratively selecting the next examples of lowest confidence/highest
uncertainty. The baseline is the soft Bradley-Terry model with the minimum uncertainty metric. We also report the
proposed variance and probability of reordering under the soft BT model. Furthermore, the Φ-Gaussian model is
referred to as "ngaussian". Debiased refers to permutation debiased probabilities.

set of comparisons is reached. This is related to524

an overconfidence issue plaguing the uncertainty525

estimates. We show in Appendix B how the LLM-526

as-a-judge is miscalibrated, and how temperature527

annealing is not enough to calibrate and solve the528

overconfidence issue.529
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Figure 2: Comparing the soft BT model to the combined
model which relies on additional absolute experts. Both
use the probability of reordering as the selection criteria.

In Figure 2, we compare the soft BT model with530

the combined comparative-absolute model. Due to531

the cost of obtaining N = 16 absolute experts, the532

combined model initially performs worse. How-533

ever, both biased and debiased combined models534

outperform the final soft BT model performance535

using a fraction of comparisons.536

6.2.1 Ablation Studies537

This section will explore various nuances in the538

modelling choices. In Figure 3, we vary the param-539

eters of the underlying Beta distribution in a gen-540

eralised soft BT model. Evaluated on SummEval541
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Figure 3: Selection performance. Varying the parame-
ters α and β of the Beta distribution in Eq. (1).

(COH), it is clear that the underlying Beta distribu- 542

tion has negligible impact on both the selection 543

process and the final performance. Furthermore, 544

we explore generalising the selection metrics with 545

the following: 546

î, ĵ = argmax
i,j

Σii − 2Σij +Σjj

|si − sj |ϵ
(6) 547

where we vary the exponent ϵ. Setting ϵ = 0 re- 548

turns variance while ϵ = 2 gives probability of 549

reordering. The exponent is swept on the same 550

benchmark in Figure 5. It is evident that while 551

ϵ = 0 suffers in performance, most of the other val- 552

ues perform similarly. The best-performing option 553

is ϵ = 0.5 which slightly outperforms other options 554

including the probability of reordering. 555

6.3 Large-Scale Selection 556

All results have been focused on ranking a small 557

set of candidates N = 16 which has K = 240 558
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Figure 4: The Spearman Rank Correlation when iteratively selecting the next batch b of examples of lowest confi-
dence/highest uncertainty. The baselines are Qwen2.5-{3B-7B} models with all comparisons selected. Furthermore,
the efficient baseline is set to the soft BT model with the minimum uncertainty metric.
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Figure 5: Selection performance. Varying the parameter
ϵ in Eq. (6).

possible comparisons. In this section we scale up559

to the HANNA dataset with N = 1056 stories560

and K = 1114080 possible comparisons. Fur-561

thermore, due to the cost of iteratively selecting562

a single comparison, re-estimating Laplace’s ap-563

proximation, and repeating this process, we opt to564

perform batch acquisitions with b = {100, 400}.565

This will showcase in the extreme case how well566

our best-proposed uncertainty metric, probability567

of reordering, performs compared to random and568

minimum uncertainty selection. We will only eval-569

uate the iterative process up until 1% of all possible570

comparisons to test the efficiency of approaches.571

In Figure 4, various iterative schemes are re-572

ported. Furthermore, the performance of the soft573

BT model with all possible comparisons is reported 574

under both backbone judges. In these results, one 575

can observe minimum uncertainty to suffer signifi- 576

cantly compared to the simplest baseline of random 577

selection when using both Qwen2.5-3B and 7B as 578

backbone judges. This is caused due to the lack of 579

diversity when selecting a batch of comparisons. 580

While reducing the batch size of acquisitions helps 581

performance, it still lacks significantly compared 582

to the probability of reordering which is far more 583

robust to larger batch acquisitions. 584

7 Conclusions 585

This paper generalised probabilistic modelling for 586

comparative LLM-as-a-judge, demonstrating that 587

existing approaches are specific instances of a 588

broader framework. We introduced improved un- 589

certainty estimates for individual comparisons and 590

overall rankings, leading to more efficient iterative 591

selection strategies. Notably, the probability of 592

reordering proved to be a superior metric for select- 593

ing informative comparisons. We also showed the 594

benefits of combining absolute and comparative 595

scoring within a Product-of-Experts framework, 596

achieving enhanced performance. While the spe- 597

cific expert model had limited impact on final rank- 598

ings given sufficient comparisons, the choice of 599

uncertainty estimation and the incorporation of ab- 600

solute scoring significantly improved efficiency and 601

accuracy. Our findings highlight the importance of 602

robust uncertainty estimation in LLM-based eval- 603

uation and provide a more flexible and efficient 604

framework for comparative assessment. 605
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8 Limitations606

The main concern lies in the quality of the esti-607

mated uncertainties, which are crucial for the ef-608

ficiency of the proposed iterative selection meth-609

ods. The reliance on Laplace’s approximation to610

derive these uncertainties introduces potential in-611

accuracies. This approximation assumes that the612

posterior distribution over model parameters is ap-613

proximately Gaussian, which may not hold true614

in all scenarios, particularly when the true pos-615

terior is multimodal or exhibits significant skew-616

ness. Consequently, the derived uncertainty met-617

rics, such as the variance and probability of reorder-618

ing, might not perfectly reflect the true uncertainty619

in the model’s predictions.620

Furthermore, the calibration of the LLM-as-a-621

judge is a non-trivial challenge. Although we622

demonstrate that temperature annealing is insuf-623

ficient to fully address the overconfidence issue,624

the development of more sophisticated calibration625

techniques could enhance the reliability of the prob-626

ability outputs and, consequently, the accuracy of627

the uncertainty estimates. Additionally, the compu-628

tational cost of obtaining comprehensive pairwise629

comparisons for large-scale datasets remains a prac-630

tical constraint. While the proposed methods im-631

prove efficiency, exploring alternative approaches632

could further reduce the cost of evaluations. Fi-633

nally, the generalisation of these findings to other634

domains and tasks beyond summary and story eval-635

uation should be approached with caution, as the636

performance of LLM-as-a-judge can vary depend-637

ing on the specific evaluation criteria and the nature638

of the generated text.639
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A Prompting898

When prompting an LLM for the score of a can-899

didate, or which of two candidates is better, the900

important information lies in the logits of the to-901

kens we are interested in. In this section we detail902

the design the of our prompts for both Flan-T5 and903

Qwen2.5. Since the former is an encoder-decoder904

foundation model and the latter is a decoder-only905

foundation model the prompts need to be designed906

slightly differently. Note, we use Flan-T5 on Sum-907

mEval since it has been shown to be very com-908

petitive on the dataset (Liusie et al., 2024b,c) and909

Qwen2.5 models on HANNA due to an increased910

context size needed and complexity of the dataset.911

Absolute prompting: For the Flan-T5 system,912

we give the encoder the following prompt:913

Article: <context>\n\nSummary: <A>914

\n\nScore the response between 1915

and 10 based on how coherent the916

summary is.917

where we are scoring the coherency of a summary.918

The <context> and <A> are replaced by the article919

and summary. Following this we extract the logits920

corresponding to 1 to 10 from the decoder. The921

probability of each class is then:922

pc =
exp(zc)∑10
i=1 exp(zi)

i = 1, . . . , 10923

The choice of 1-10 is arbitrary and any other range924

could have been chosen.925

Comparative prompting: For the Flan-T5 sys-926

tem, we give the encoder the following prompt:927

Article: <context>\n\nSummary A: <A>928

\n\nSummary B: <B>\n\nWhich Summary929

is more coherent, Summary A or930

Summary B?931

The <context>, <A> and <B> are replaced by the932

article and two different summaries. Following this933

we give the following prefix to the decoder:934

Summary935

and extract the logits corresponding to A and B936

from the decoder. The prefix ensures that the prob-937

ability mass of the next token is concentrated into938

the options "A" and "B". From these logits we939

extract the probability that A will win:940

p =
exp(zA)

exp(zA) + exp(zB)
941

Similarly, we prompt the Qwen2.5 system in the 942

following matter when we want to rank various 943

stories from HANNA: 944

{"role": "system", "content": "You 945

are an expert story assessor."}, 946

947

{"role": "user", "content": "Story A: 948

<A>\n\nStory B: <B>\n\nWhich story 949

is better overall, Story A or B? 950

Answer only with Story A or Story B."} 951

952

{"role": "assistant", "content": "Story "} 953

These are then prepared by the Qwen2.5 tokenizer 954

in the instruction following format and fed into the 955

model. Following on, the logits corresponding to 956

A and B are then extracted for the next token and 957

converted into a probability. 958

12



B Calibration959

This section reports the calibration error and reli-960

ability diagrams for the different metrics under a961

biased and debiased setup. The main point is to ad-962

dress the overconfidence issue related to our results963

in Section 6.2 and why temperature annealing is964

not enough to solve the problem.965

The calibration is based on the confidence scores966

of individual comparisons max(p, 1 − p). There-967

fore, when calibrating using temperature annealing,968

the resulting (binary) predictions remain the same:969

p̃ =
p1/T

p1/T + (1− p)1/T
970

To understand the impact of calibration, we find the971

optimal temperature on the SummEval dataset by972

minimising the expected calibration error, see Table973

3. Each attribute has its optimal temperature. We

Table 3: Expected calibration error (%).

Method Debiased COH CON FLU REL

- ✗ 9.80 3.77 9.87 11.86
✓ 2.83 1.82 4.84 6.20

Calibrated ✗ 1.02 0.68 1.28 0.98
✓ 2.58 1.72 1.08 1.07

974
also report the corresponding reliability diagrams975

in Figure 6. From these results, it is evident that976

simple temperature annealing can almost entirely977

resolve the miscalibration in the systems.978

This next part will check how temperature an-979

nealing affects the solution of a soft Bradley-Terry980

model. Starting from the gradient of the log-981

likelihood:982

∇ ln p(s|C1:K) =
∑

i,j∈C1:K

pij − σ(si − sj) = 0983

Looking at a single element of the sum, and under984

calibrated probabilities the new solution becomes:985

p̃ij = σ(s̃i − s̃j) ⇐⇒986

p1/T

p1/T + (1− p)1/T
= σ(s̃i − s̃j) ⇐⇒987

1

1 +
(
1−p
p

)1/T = σ(s̃i − s̃j) ⇐⇒988

1

1 + exp
(

1
T ln

(
1−p
p

)) = σ(s̃i − s̃j) ⇐⇒989

990

σ

(
1

T
ln

(
p

1− p

))
= σ(s̃i − s̃j) ⇐⇒ 991

1

T
ln

(
p

1− p

)
= s̃i − s̃j ⇐⇒ 992

p

1− p
= exp(T (s̃i − s̃j)) ⇐⇒ 993

p =
exp(T (s̃i − s̃j))

1 + exp(T (s̃i − s̃j))
⇐⇒ 994

p =
1

1 + exp(−T (s̃i − s̃j))
⇐⇒ 995

p = σ(T (s̃i − s̃j)) 996

This shows that temperature annealing leads to a 997

new solution of scores that are linearly scaled by 998

the temperature T . Therefore, even if temperature 999

annealing is enough to calibrate a system, it has no 1000

impact at all on the predicted rankings. 1001

Instead, we report a different result, the diagrams 1002

in Figure 7. We obtain either the confidence of each 1003

comparison or the probability of reordering. Then 1004

the aim is to compute the accuracy of comparisons 1005

on a filtered dataset when removing the examples 1006

of lowest confidence/highest uncertainty. What one 1007

expects from high quality uncertainties is for the 1008

accuracy of the filtered dataset to improve as much 1009

as possible. While we observe that the accuracy im- 1010

proves as we reject samples, both metrics display a 1011

significant overconfidence issue; accuracy reduces 1012

when rejecting samples with the highest confidence 1013

and lowest uncertainty. This could partially explain 1014

why our results in Section 6.2 showcase a ’bump’, 1015

where adding more comparisons decreases the sys- 1016

tem’s performance. This also justifies using more 1017

advanced methods for calibrating the outputs of 1018

LLM-judges when using them to rank candidates. 1019
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Figure 6: The reliability diagram of biased and debiased, standard and calibrated systems on the coherency metric.
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Figure 7: The accuracy at a comparison-level when the examples of lowest confidence/highest uncertainty are
rejected.
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C Probability of Reordering1020

In this section we showcase how the probability1021

of reordering can be rephrased to a familiar form:1022

Assuming that si > sj (µi > µj) the probability of1023

reordering becomes:1024

P(si < sj |C1:K) = Φ

(
µj − µi√

Σii − 2Σij +Σjj

)
1025

The selection is based on picking the examples with1026

highest probability of reordering:1027

î, ĵ = argmax
i,j

Φ

(
µj − µi√

Σii − 2Σij +Σjj

)
1028

= argmax
i,j

µj − µi√
Σii − 2Σij +Σjj

1029

= argmin
i,j

−
√
Σii − 2Σij +Σjj

µi − µj
1030

= argmax
i,j

Σii − 2Σij +Σjj

(µi − µj)2
1031

Similarly, assuming sj > si returns the exact same1032

expression.1033
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