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Abstract

This paper explores generalised probabilistic
modelling and uncertainty estimation in com-
parative LLM-as-a-judge frameworks. We
show that existing Product-of-Experts meth-
ods are specific cases of a broader framework,
allowing for diverse modelling options. Fur-
thermore, we propose improved uncertainty es-
timates for individual comparisons, enabling
more efficient selection and achieving strong
performance with fewer evaluations. We also
introduce a method for estimating overall rank-
ing uncertainty. Finally, we demonstrate that
combining absolute and comparative scoring
enhances performance. Experiments show that
the specific expert model has a limited impact
on final rankings but our proposed uncertainty
estimates, especially the probability of reorder-
ing, significantly improve the efficiency of sys-
tems. Furthermore, ranking-level uncertainty
metrics can be used to identify low-performing
predictions, where the nature of the probabilis-
tic model has a notable impact on the quality
of the overall uncertainty.

1 Introduction

Instruction-tuned Large Language Models (LLMs)
have shown impressive zero-shot performance on
a wide range of natural language processing and
generation tasks (Wei et al., 2021; Ouyang et al.,
2022; Bai et al., 2022; Zhou et al., 2023; Chung
et al., 2024). While the number of downstream ap-
plications of aligned LLMs increases (Brown et al.,
2020; Touvron et al., 2023; Achiam et al., 2023;
Dubey et al., 2024), so does the need to evaluate
their performance on bespoke tasks, which could
lack labelled data or are costly for humans to judge
at scale (Zheng et al., 2023b; Wang et al., 2022;
Taori et al., 2023). As an alternative, instruction-
tuned LLMs have increasingly been used as a re-
placement for humans to evaluate the quality of
natural language generations that demonstrate high
correlations with human judgements (Zheng et al.,

2023b; Liusie et al., 2024b; Bubeck et al., 2023;
OpenAl; Dubois et al., 2023; Wang et al., 2023b;
Chiang and Lee, 2023).

There are two standard approaches to using LLM
in judging responses. Absolute scoring: Prompt an
LLM to evaluate a certain attribute of a response on
a defined scale (e.g., a scale of 1 to 10). Compara-
tive scoring: Prompt an LLM to choose which of
the two responses to a given query displays higher
quality with respect to a given attribute. Absolute
scoring is a straightforward and effective method
for evaluating a variety of responses to a query
and ranking them. However, the scores obtained
are unreliable and may vary significantly between
different LLM judges. Alternatively, the more ex-
pensive comparative scoring approach has consis-
tently demonstrated higher correlations with hu-
man judgements (Zheng et al., 2023b; Liusie et al.,
2024b; Qin et al., 2023). However, a drawback of
this approach is that it scales quadratically with the
number of response candidates, which can become
prohibitively expensive due to the inference costs
of LLMs.

To address the computational restraints of com-
parative assessment, various approaches have been
proposed. Notably, it is possible to extract more in-
formation from the LLM-as-a-judge rather than just
a binary decision. Various works have, as opposed
to using simple win-ratio, resorted to using the av-
erage probability output from the LLM (Qin et al.,
2023; Zheng et al., 2023b; Liusie et al., 2024b; Park
et al., 2024; Molenda et al., 2024). Building on this
idea, Liusie et al. (2024c¢) introduced a Product-
of-Experts (PoE) (Hinton, 1999; Welling, 2007)
framework in modelling comparative scoring. In
principle, the joint distribution of candidate scores
can be broken down into arbitrarily chosen experts
that model the score differences of two instances
at a time, allowing for a partial set of comparisons
to model the full joint distribution. This directly
allows one to obtain a ranking of candidates with-



out having to perform all possible comparisons,
showing that only a fraction of the total number of
comparisons is needed to obtain highly competitive
performance.

Contributions: In this paper, we generalise the
expert in the comparative framework and derive
how there is a wide range of viable options. Start-
ing from the Beta distribution in modelling arbi-
trary probabilities, we show that prior works are
specific instances of this choice. We also propose
improved estimates for the uncertainty in individual
comparisons and show how these updated uncer-
tainties allow us to make even fewer comparisons
without loss of performance. In addition to the
uncertainty of a comparison, we also propose an
uncertainty in the overall ranking of a set of candi-
dates. Finally, we show that the Product-of-Experts
framework easily lends itself to combinations of
various scoring approaches. Specifically, we show
that absolute scoring can complement compara-
tive scoring efficiently and cheaply and lead to
improved overall performance.

2 Background and Related Work

NLG Evaluation with LLMs: The extensive natu-
ral language generation capabilities of instruction-
tuned large language models (Achiam et al., 2023;
Ouyang et al., 2022; Chung et al., 2024; Dubey
et al., 2024) have prompted recent work on open-
ended generation evaluation using LLMs. Meth-
ods such as GPTScore (Fu et al., 2023) rank re-
sponses based on the likelihood of generation and
G-Eval (Liu et al., 2023) which uses chain-of-
thought and form-filling to evaluate the quality of
a response. Furthermore, LLM-as-a-judge (Zheng
et al., 2023b) approaches score responses on an
absolute scale (Wang et al., 2023a; Kocmi and Fed-
ermann, 2023) or comparative manner by compar-
ing responses against each other (Qin et al., 2023;
Liusie et al., 2024b,c) and building an overall rank-
ing through the set of pairwise comparisons.

LLM-Based Comparative Assessment: The
work by Liusie et al. (2024b) showed that com-
parative assessment yields superior performance
compared to absolute scoring methods and various
custom baselines. By making all possible N (N—1)
pairwise comparisons of N candidate responses,
and computing the win-ratio, an overall ranking
can be obtained. This style of approach has found
its applications in many places. Qin et al. (2023)
utilised pairwise comparisons to retrieve relevant

sources, using both the full set of comparisons and
sorting-based algorithms. Park et al. (2024) em-
ployed comparative assessment for dialogue eval-
uation, calculating the average probability across
a randomly sampled set of comparisons to deter-
mine score quality. Finally, Liu et al. (2024b)
demonstrated the limitations of LLM scoring, and
resorted to using pairwise comparisons. They in-
troduced PAirwise-preference Search, a variation
of the merge sort algorithm which utilises LLM
probabilities.

Ranking from Pairwise Comparisons: The idea
of generating a full ranking from pairwise com-
parisons has been extensively studied. Arguably
the most well-known example of this is the rank-
ing of tennis players based on the outcomes of
games and this kind of problem has applications
in many different areas. Anything from sports and
gaming (Beaudoin and Swartz, 2018; Csat6, 2013;
Motegi and Masuda, 2012), web search (Cossock
and Zhang, 2006; Dwork et al., 2001), social stud-
ies (Manski, 1977; Louviere et al., 2000) to infor-
mation retrieval (Cao et al., 2007; Liu et al., 2009)
requires modelling through pairwise events. The
most common approach to model pairwise com-
parisons is the Bradley-Terry (BT) model (Bradley
and Terry, 1952). By assigning each candidate
a latent score, the probability of one candidate
winning over another is based on the underlying
skill difference. The latent scores can then be ob-
tained by maximising the log-likelihood of the data
(David, 1963; Davidson and Farquhar, 1976; Catte-
lan, 2012). Finally, the TrueSkill model (Herbrich
et al., 2006; Minka et al., 2018) generalises the
Bradley-Terry model by incorporating uncertainties
in candidate scores within a Bayesian framework
in a sports context.

Product-of-Experts: Each comparison Cj, made in
a comparative assessment framework provides in-
formation about the distribution of scores s = s1.y
of the candidates. The Product-of-Experts (PoE)
(Hinton, 1999; Welling, 2007) approach presents
a simple and effective way of combining the infor-
mation from comparisons according to:

p(slCirc) o [ [ p(sICk) = [ [ p(si — 551Ck)
k k

The distribution can be simplified into a product
of individual experts, and be further simplified as
it involves comparisons made exclusively between
pairs of candidates. In the work of Liusie et al.



(2024c) there were two choices made for the ex-
pert: The Gaussian motivated from its algebraic
tractability and the soft Bradley-Terry model as an
extension to the standard BT model:

p(si — 5;|Ck) <o (5 — 55)P9 (1 — o (s — 55)) P4

Where the probability p;; is obtained from the LLM
when comparing candidate 7 against j. The more
experts/comparisons are included the better the re-
sulting estimate of the scores should be. The scores
can then be retrieved by optimising p(s|C1.x) ei-
ther through iterative (Zermelo, 1929; Dykstra,
1956; Newman, 2023), algebraic (Liusie et al.,
2024c) or standard gradient-based approaches.

3 Generalised Expert Modelling

This section will focus on the nature of the expert
for modelling absolute and pairwise comparisons.
In general, we have N candidates with associated
scores s1.. Given a set of comparisons Cy. g, the
aim is to predict a set of scores §;.y which ranks
the candidates as closely as possible to the true
ranking. Each comparison C;, = (3, j, pi;) contains
the ids of the candidates and the corresponding
probability produced by the LLM that ¢ is better
than j for a certain attribute.

3.1 Comparative Expert Modelling

The experts in prior work all modelled the score
difference of candidates p (s; — s;|Cy). Through
a simple change of variables we propose a more
generalised version of the expert in comparative
modelling:

p (si — 81Ck) = f'(si — 55)B(f (si — 55)|C)

where the f(-) is a generic monotonically increas-
ing function. Any choice of f is viable as long as
the distribution p supports it. Through this view,
we can easily obtain the Gaussian expert in Liusie
et al. (2024c¢), by using an identity f and a sim-
ple Gaussian for p. Alternatively, by letting f be
the sigmoid function and using an underlying Beta
distribution:

p(f[Ck) = B(f;pij. 1 — pij)
we regain the soft Bradley-Terry model. However,
from this point of it is clear that there are many
more viable options for modelling a pairwise event.

In this work, we will investigate several other com-
binations starting with a sigmoid and a general:

p(f|Cr) = B(f;pij + o, 1 —pij +B) (1)

model. We will also try an unconventional choice
by replacing the identity function in the Gaussian
model with a sigmoid-like function:

P (si — 54|Ck) =
N(Si — Sj; 0, 1)/\/’(‘1)(&‘ — Sj);pij, 1) (2)

where ®(-) is the cumulative density of the Gaus-
sian. Ablations will study the impact of the choice
of f and the underlying distribution p.

3.2 Expert Combinations

As has been mentioned several times, absolute scor-
ing is cheaper but worse than comparative scoring.
However, it is possible that absolute scoring can
provide complementary information so we propose
combining the two approaches into a single model:

p(s|Cr.x, Arv) oc [ [ p(si — s5(Ch) [ [ P(snlAn)
k n

where A,, contains the information from an abso-
lute scoring prompt. When prompting an LLM on
a scale of 1 to 10 it contains the probabilities of
those values. Unfortunately, absolute scoring will
provide a discrete score and while it is possible
to obtain the associated logits for each value (of 1
to 10) from the LLM (and construct a categorical
distribution) it remains difficult to combine the con-
tinuous pairwise experts with the discrete absolute
experts. Therefore, we also propose using moment
matching to transform the categorical expert into a
Gaussian NV (p, 02):

p= e, 2= (c—p)pe
C C

where c and p. represent the class and the associ-
ated probability that the LLM would output that
class. In our running example, we would have
¢ € {1,...,10}. Finally, the absolute expert can
be written as:

p(sn|An) ~ N(Sn;,un70%), Yn=1,...,N

and would allow us to operate with continuous
values and optimise the skill scores using gradient-
based approaches. In this work, we rely solely on
simple absolute scoring but there exist many more
sophisticated pointwise scoring approaches like G-
Eval (Liu et al., 2023) which can provide further
improvements.



3.3 Home Advantage

A big issue plaguing LLM-based approaches is bias
in the system. In our case, the probability outputs
of an LLM are inconsistent p;; # 1 — p;;, meaning
that the LLM-based judge can assign conflicting
probabilities when comparing ¢ to j as opposed
to j to ¢. This stems from positional biases in the
system (Zheng et al., 2023b; Chen et al., 2024a;
Liusie et al., 2024a; Zheng et al., 2023a; Wang
et al., 2023c; Dominguez-Olmedo et al., 2024; Zhu
et al., 2023; Chen et al., 2024b; Liu et al., 2024a).
To resolve such an issue, we rely on one of the two
approaches. Permutation Debiasing: For each
comparison we make two LLM calls for both i
vs 7 and j vs ¢ to obtain a final debiased proba-
bility p;; = 3(pij + (1 —pj;i)) which would en-
sure consistency: p;; = (1 — p;;). Home Ad-
vantage: An alternative approach is to directly
incorporate the positional bias into the compara-
tive expert model. Since we already know that a
certain position will be preferred over another we
can introduce a "home advantage’ (Agresti, 1990;
Caron and Doucet, 2012) parameter to model the
inconsistency through our function f:
f(si—55;8) = f(si —s; = A)

While prior approaches have developed the the-
ory for home advantage in specific use-cases such
as Bradley-Terry (Caron and Doucet, 2012) and
Gaussian experts (Liusie et al., 2024c), our parame-
terisation through the generic function f allows us
to straightforwardly incorporate home advantage
into any type of expert. Furthermore, while the
work of Liusie et al. (2024c¢) estimated the advan-
tage parameter A through bespoke rules for each
expert, we estimate it by maximising the likelihood

p(s|C1.k, A).
4 Uncertainty Estimation

This section will explore how to estimate uncer-
tainty when ranking examples. Two levels of un-
certainty will be explored. Pairwise uncertainty:
The uncertainty in the score difference of a pair
of candidates. Ranking uncertainty: The uncer-
tainty in the overall ranking of a set of candidates.
Being able to estimate these uncertainties robustly
can help in reducing the number of comparisons
needed to achieve good performance and in under-
standing whether the overall ranking is trustworthy.

4.1 Laplace’s approximation

Unfortunately, it is generally analytically in-
tractable to derive uncertainties from the distribu-
tion p(s|C1.x) and we will therefore, in all cases,
apply Laplace’s approximation:

p(s1Cric) ~ N (35 1), 2 ())

where we set (and dropped the superscript for con-
ciseness):

p = argmax Inp(s|Cy.x)
DI vi v lnp(s|C1;K)‘u

There are more advanced approaches to approxi-
mating an intractable distribution but we will rely
on this simple and efficient scheme in this work.

4.2 Pairwise Uncertainty Estimation

Being able to estimate the uncertainty in a pair of
candidates, in their score difference, can allow us
to decide which comparisons are useful and which
or not. The better the quality of the uncertainty esti-
mate, the fewer comparisons are needed to achieve
good performance. Following Liusie et al. (2024c),
the aim is to iteratively add additional comparisons
to improve the product-of-experts model and the
overall ranking of scores.

Given the Gaussian approximation, Liusie et al.
(2024c¢) posed that the next comparison that should
be selected should induce minimum overall uncer-
tainty in the resulting distribution, giving the fol-
lowing selection criteria under the soft BT model:

%;; = arg max U(Ni_ﬂj)g(ﬂj—ui) .
z’]

(i — 285+ %) )

In this work, we propose two additional pairwise
uncertainty metrics which apply to any modelling
choice: A simple variance in score differences
and the probability of reordering. The variance
V[Si - Sj‘CI:K] =Y — 221'3‘ -+ ij is straightfor-
ward and easy to compute. Since we want to select
the pairs with the highest variance (or uncertainty)
we get the following selection mechanism:

’AL',jA' = argmax X — 22@' + Ejj 4
i,J

However, since we are interested in the correct
ranking of candidates, a potentially more appropri-
ate uncertainty metric is the probability that two



candidates are reordered. Assuming that s; > s;
the probability of reordering then becomes:

Hj — Hi
P(s; < sj|C1.x) =@
B VZi — 255 + X
As shown in the Appendix C, this can be simplified
to a similar selection form since we want to pick
examples with the highest reordering probability:

s Eii_22ij+zjj
1,7 = arg max 5
i.j (i — pg)

(&)

Furthermore, since all selection mechanisms take
the following form:

i,j = argmax w(p; — i) (Sii — 255 + 5j5)
/L’J
we run ablation studies on changing the weight
function w(-).

4.3 Ranking Uncertainty Estimation

In addition to pairwise uncertainties, there is a need
to understand the level of uncertainty in the overall
ranking P(s; < -+ < sy|Cy.x) but this is diffi-
cult to estimate even under a Gaussian model. In-
stead we use the following metrics to represent the
overall uncertainty. The entropy in the Gaussian
approximation:

H[s|Crr] = gu +In(2m) + 5 det(S)

The lower the entropy, the more certain we should
be in our predicted ranking. While the entropy of
the rank distribution should in reality replace the
entropy of the score distribution, the issue is that
there are V! different possible rankings and obtain-
ing accurate estimates means needing to sample an
order of magnitude more than possible rankings.

S Experimental Setup
5.1 Datasets

We mainly perform experiments on the summary
evaluation SummEval dataset (Fabbri et al., 2021)
which contains 100 articles, each with 16 machine-
generated summaries evaluated on four different
attributes: coherency (COH), consistency (CON),
fluency (FLU), and relevancy (REL). We will also
use the much larger HANNA dataset (Chhun et al.,
2022) which has 1056 machine-generated stories
annotated by humans on six different attributes.
These are averaged to a single overall quality score.

5.2 Methodology

We will be relying on Flan-T5 (Chung et al., 2024)
(3B) system to evaluate performance on the Sum-
mEval dataset and Qwen2.5-{3B, 7B }-Instruct
(Qwen Team, 2024) systems on the larger HANNA
dataset. Appendix A will detail our choices, how
we structure the prompts and how the probabilities
are extracted from each model.

Probabilistic Models: In almost all experiments
we will rely on the soft Bradley-Terry extension as
our baseline expert model following. This will be
compared against our proposed extensions to this
approach: (1) The generalised Beta distribution in
Eq. (1), (2) the extended Gaussian distribution in
Eq. (2) and (3) the combination of comparative
and absolute outputs in a single POE model. We
will not include simple baselines such as average
win-ratio and average probability since these have
been shown to be inferior on a wide range of tasks
(Liusie et al., 2024c; Raina et al., 2024).

Iterative Selection: We will also compare the
above probabilistic models in an active learning
framework where each model needs to select the
comparisons that will induce the best performance.
The baseline will be the minimum uncertainty
approach given in Eq. (3) using the soft BT model.
We will compare this against our proposed vari-
ance (Eq. (4)) and probability of reordering (Eq.
(5)) selection mechanisms.

Ranking Uncertainties: The ranking uncertainty
metrics will be investigated on how well they
correlate with the actual performance of the pre-
dicted rankings, whether they can identify high-
performing predictions.

Evaluation Metrics: Since we are interested in
predicting the ranking of candidate responses given
a context/query, the main performance metric is
Spearman rank correlation between the predicted
and the human labelled scores. In SummEval
(N = 16) we perform absolute and comparative
scoring and evaluate the average Spearman across
all contexts. For HANNA (N = 1056) we rank
all generated stories. Furthermore, we assess the
quality of the various iterative selection schemes by
the number of comparisons needed to achieve good
Spearman rank correlation. The ranking uncertain-
ties are also evaluated using the area under the
receiver operating characteristic curve (AUROC)
to detect well-performing rankings.



6 Results

6.1 Form of Distribution

This section investigates a wide range of PoE mod-
els conditioned on the full set of comparisons. For
SummEval with N = 16 summaries per context,
there is a total of K = 240 number of compar-
isons. Unless reported otherwise, all results are
based on the direct biased outputs of judges. Sur-

Table 1: Spearman correlations (%) for SummEval us-
ing Flan-T5 (3B) as a judge.

Function Distri‘?ution COH CON FLU REL
f P

T Gaussian 49.1 452 325 422

o Gaussian 492 453 325 422

0] Gaussian 492 453 325 423

o Beta 492 452 325 422

P Beta 492 453 326 423

Comparative (o-Beta)
+ Absolute Experts 50.7 459 329 434

prisingly, all experts perform similarly when eval-
uated on the full set of comparisons. The only
model that performs noticeably better is the com-
bined comparative-absolute model. Absolute scor-
ing seems to extract complementary information
and give the overall system a performance boost.
While the ranks predicted by models are similar,
the ranking uncertainties of these systems differ.
To benchmark, an uncertainty is predicted for
each context, meaning to represent how well the
predicted ranks performs. The Spearman rank per-
formance of each context is thresholded by the
median score and mapped to a binary value so that
contexts are classed as ’0’ or ’1°. This allows us
to use the standard AUROC score to evaluate de-
tection performance. Table 2, shows the AUROC

Table 2: AUROC (%) detection performance of H, the
entropy of Laplace’s approximation.

Function DistriPution COH CON FLU REL
! p

T Gaussian 534 518 549 584

o Gaussian 65,5 673 60.8 658

P Gaussian 65.0 673 61.0 659

o Beta 63.8 683 60.6 638

0] Beta 64.8 674 609 657

Comparative (o-Beta)
+ Absolute Experts 645 699 620 670

performance of a range of probabilistic models.
Unlike previous results, the nature of the proba-
bilistic model seems to have a significant impact

on performance. While the performance of various
PoE models are similar, the predicted entropy, and
by equivalence, the hessian (curvature) of the log-
likelihood seems to differ between certain models.
This seems to stem mainly from the choice of f
but further investigations are needed to understand
how to predict robust uncertainties.

The linear-Gaussian model performs signifi-
cantly worse, only marginally outperforming a ran-
dom classifier. Furthermore, all models that map
skill differences through a sigmoid-like function f
perform notably better, with the combined model
being the best system similar to previous results.
While this is only a preliminary investigation into
detecting well-performing examples, it is a good
start into understanding the problem and what mod-
els produce better uncertainties.

6.2 Iterative Selection

In this section, we explore the quality of various
models and uncertainty metrics when iteratively
selecting comparisons. Furthermore, this investi-
gation is performed on both biased and debiased
probabilities. Four main points can be observed
from the results in Figure 1:

(1) Model Convergence: As reported in the table
above, all models converge towards the same final
performance since the rankings are predicted from
the same full set of comparisons.

(2) Quality of Uncertainties: There is a significant
gap in performance between various uncertainty
metrics. Probability of reordering is shown to out-
perform the minimum uncertainty metric in all at-
tributes of SummEval for both biased and debiased
cases. We expect this performance difference to
originate from how each metric was derived. While
minimum uncertainty is simply focused on choos-
ing the next comparison that would induce the least
uncertainty, the probability of reordering is directly
linked to achieving the correct ranking.

(3) Expert Model Invariance: Probability of re-
ordering under two different models, o-Beta (soft
BT) and ®-Gaussian (ngaussian), perform almost
identically in all cases. This again reinforces the
idea that the nature of the expert model does not
matter as much as the uncertainty modelling used
in selecting the comparisons.

(4) Performing better with less: Performance is
expected to increase as one adds more and more
comparisons to the PoE model. However, in many
of the cases above, performance drops until the full
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Figure 1: The Spearman Rank Correlation when iteratively selecting the next examples of lowest confidence/highest
uncertainty. The baseline is the soft Bradley-Terry model with the minimum uncertainty metric. We also report the
proposed variance and probability of reordering under the soft BT model. Furthermore, the ®-Gaussian model is

referred to as "ngaussian”. Debiased refers to permutation debiased probabilities.

set of comparisons is reached. This is related to
an overconfidence issue plaguing the uncertainty
estimates. We show in Appendix B how the LLM-
as-a-judge is miscalibrated, and how temperature
annealing is not enough to calibrate and solve the
overconfidence issue.
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Figure 2: Comparing the soft BT model to the combined
model which relies on additional absolute experts. Both
use the probability of reordering as the selection criteria.

In Figure 2, we compare the soft BT model with
the combined comparative-absolute model. Due to
the cost of obtaining N = 16 absolute experts, the
combined model initially performs worse. How-
ever, both biased and debiased combined models
outperform the final soft BT model performance
using a fraction of comparisons.

6.2.1 Ablation Studies

This section will explore various nuances in the
modelling choices. In Figure 3, we vary the param-
eters of the underlying Beta distribution in a gen-
eralised soft BT model. Evaluated on SummEval
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Figure 3: Selection performance. Varying the parame-
ters o and f3 of the Beta distribution in Eq. (1).

(COH), it is clear that the underlying Beta distribu-

tion has negligible impact on both the selection

process and the final performance. Furthermore,

we explore generalising the selection metrics with

the following:

i — 2% + X5
|si — 55l

(6)

i,] = arg max
i,

where we vary the exponent e. Setting ¢ = 0 re-
turns variance while e = 2 gives probability of
reordering. The exponent is swept on the same
benchmark in Figure 5. It is evident that while
€ = 0 suffers in performance, most of the other val-
ues perform similarly. The best-performing option
is € = 0.5 which slightly outperforms other options
including the probability of reordering.

6.3 Large-Scale Selection

All results have been focused on ranking a small
set of candidates N = 16 which has K = 240
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Figure 4: The Spearman Rank Correlation when iteratively selecting the next batch b of examples of lowest confi-
dence/highest uncertainty. The baselines are Qwen2.5-{3B-7B} models with all comparisons selected. Furthermore,
the efficient baseline is set to the soft BT model with the minimum uncertainty metric.
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Figure 5: Selection performance. Varying the parameter
e in Eq. (6).

possible comparisons. In this section we scale up
to the HANNA dataset with N = 1056 stories
and K = 1114080 possible comparisons. Fur-
thermore, due to the cost of iteratively selecting
a single comparison, re-estimating Laplace’s ap-
proximation, and repeating this process, we opt to
perform batch acquisitions with b = {100,400}.
This will showcase in the extreme case how well
our best-proposed uncertainty metric, probability
of reordering, performs compared to random and
minimum uncertainty selection. We will only eval-
uate the iterative process up until 1% of all possible
comparisons to test the efficiency of approaches.

In Figure 4, various iterative schemes are re-
ported. Furthermore, the performance of the soft

BT model with all possible comparisons is reported
under both backbone judges. In these results, one
can observe minimum uncertainty to suffer signifi-
cantly compared to the simplest baseline of random
selection when using both Qwen2.5-3B and 7B as
backbone judges. This is caused due to the lack of
diversity when selecting a batch of comparisons.
While reducing the batch size of acquisitions helps
performance, it still lacks significantly compared
to the probability of reordering which is far more
robust to larger batch acquisitions.

7 Conclusions

This paper generalised probabilistic modelling for
comparative LLM-as-a-judge, demonstrating that
existing approaches are specific instances of a
broader framework. We introduced improved un-
certainty estimates for individual comparisons and
overall rankings, leading to more efficient iterative
selection strategies. Notably, the probability of
reordering proved to be a superior metric for select-
ing informative comparisons. We also showed the
benefits of combining absolute and comparative
scoring within a Product-of-Experts framework,
achieving enhanced performance. While the spe-
cific expert model had limited impact on final rank-
ings given sufficient comparisons, the choice of
uncertainty estimation and the incorporation of ab-
solute scoring significantly improved efficiency and
accuracy. Our findings highlight the importance of
robust uncertainty estimation in LLM-based eval-
uation and provide a more flexible and efficient
framework for comparative assessment.



8 Limitations

The main concern lies in the quality of the esti-
mated uncertainties, which are crucial for the ef-
ficiency of the proposed iterative selection meth-
ods. The reliance on Laplace’s approximation to
derive these uncertainties introduces potential in-
accuracies. This approximation assumes that the
posterior distribution over model parameters is ap-
proximately Gaussian, which may not hold true
in all scenarios, particularly when the true pos-
terior is multimodal or exhibits significant skew-
ness. Consequently, the derived uncertainty met-
rics, such as the variance and probability of reorder-
ing, might not perfectly reflect the true uncertainty
in the model’s predictions.

Furthermore, the calibration of the LLM-as-a-
judge is a non-trivial challenge. Although we
demonstrate that temperature annealing is insuf-
ficient to fully address the overconfidence issue,
the development of more sophisticated calibration
techniques could enhance the reliability of the prob-
ability outputs and, consequently, the accuracy of
the uncertainty estimates. Additionally, the compu-
tational cost of obtaining comprehensive pairwise
comparisons for large-scale datasets remains a prac-
tical constraint. While the proposed methods im-
prove efficiency, exploring alternative approaches
could further reduce the cost of evaluations. Fi-
nally, the generalisation of these findings to other
domains and tasks beyond summary and story eval-
uation should be approached with caution, as the
performance of LLM-as-a-judge can vary depend-
ing on the specific evaluation criteria and the nature
of the generated text.
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A Prompting

When prompting an LLM for the score of a can-
didate, or which of two candidates is better, the
important information lies in the logits of the to-
kens we are interested in. In this section we detail
the design the of our prompts for both Flan-T5 and
Qwen?2.5. Since the former is an encoder-decoder
foundation model and the latter is a decoder-only
foundation model the prompts need to be designed
slightly differently. Note, we use Flan-T5 on Sum-
mEval since it has been shown to be very com-
petitive on the dataset (Liusie et al., 2024b,c) and
Qwen2.5 models on HANNA due to an increased
context size needed and complexity of the dataset.

Absolute prompting: For the Flan-T5 system,
we give the encoder the following prompt:

Article: <context>\n\nSummary: <A>

\n\nScore the response between 1

and 10 based on how coherent the

summary is.
where we are scoring the coherency of a summary.
The <context> and <A> are replaced by the article
and summary. Following this we extract the logits
corresponding to 1 to 10 from the decoder. The
probability of each class is then:

exp(ze)

S22 exp(zi)

c =

=1,...,10

The choice of 1-10 is arbitrary and any other range
could have been chosen.

Comparative prompting: For the Flan-T5 sys-
tem, we give the encoder the following prompt:

Article: <context>\n\nSummary A: <A>
\n\nSummary B: <B>\n\nWhich Summary
is more coherent, Summary A or
Summary B?
The <context>, <A> and <B> are replaced by the

article and two different summaries. Following this
we give the following prefix to the decoder:

Summary

and extract the logits corresponding to A and B
from the decoder. The prefix ensures that the prob-
ability mass of the next token is concentrated into
the options "A" and "B". From these logits we
extract the probability that A will win:

exp(z4)
exp(z4) + exp(zp)
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Similarly, we prompt the Qwen2.5 system in the
following matter when we want to rank various
stories from HANNA:

{"role": "system”, "content”: "You

are an expert story assessor."},

{"role": "user"”, "content"”: "Story A:
<A>\n\nStory B: <B>\n\nWhich story
is better overall, Story A or B?

Answer only with Story A or Story B."}

{"role": "assistant”, "content”: "Story "}

These are then prepared by the Qwen2.5 tokenizer
in the instruction following format and fed into the
model. Following on, the logits corresponding to
A and B are then extracted for the next token and
converted into a probability.



B Calibration

This section reports the calibration error and reli-
ability diagrams for the different metrics under a
biased and debiased setup. The main point is to ad-
dress the overconfidence issue related to our results
in Section 6.2 and why temperature annealing is

not enough to solve the problem.

The calibration is based on the confidence scores
of individual comparisons max(p, 1 — p). There-
fore, when calibrating using temperature annealing,
the resulting (binary) predictions remain the same:

p

1T

P T (= p) T

To understand the impact of calibration, we find the
optimal temperature on the SummEval dataset by
minimising the expected calibration error, see Table
3. Each attribute has its optimal temperature. We

Table 3: Expected calibration error (%).

Method | Debiased | COH CON  FLU  REL
) X 9.80 377 9.87 11.86

v 283 1.82 484 620

. X 102 0.68 128 0.98
Calibrated ‘ v ‘ 258 172 1.08  1.07

also report the corresponding reliability diagrams
in Figure 6. From these results, it is evident that
simple temperature annealing can almost entirely
resolve the miscalibration in the systems.

This next part will check how temperature an-
nealing affects the solution of a soft Bradley-Terry
Starting from the gradient of the log-

model.
likelihood:

Vinp(s|Ci.x) = Z pij —o(si—s;) =0

i,j€C1K

Looking at a single element of the sum, and under
calibrated probabilities the new solution becomes:

Pij = o(8i — §j)

—

!

!
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o (;m <1pp>> = o(5 — §;) <

%m 1{})) 5§

1%} = exp(T(5; — §;)) <

1 ﬁﬁ@ i32)) N

P=1 exp(—lT(gi =)
p=0(T(5 - 5;))

This shows that temperature annealing leads to a
new solution of scores that are linearly scaled by
the temperature 7'. Therefore, even if temperature
annealing is enough to calibrate a system, it has no
impact at all on the predicted rankings.

Instead, we report a different result, the diagrams
in Figure 7. We obtain either the confidence of each
comparison or the probability of reordering. Then
the aim is to compute the accuracy of comparisons
on a filtered dataset when removing the examples
of lowest confidence/highest uncertainty. What one
expects from high quality uncertainties is for the
accuracy of the filtered dataset to improve as much
as possible. While we observe that the accuracy im-
proves as we reject samples, both metrics display a
significant overconfidence issue; accuracy reduces
when rejecting samples with the highest confidence
and lowest uncertainty. This could partially explain
why our results in Section 6.2 showcase a "bump’,
where adding more comparisons decreases the sys-
tem’s performance. This also justifies using more
advanced methods for calibrating the outputs of
LLM-judges when using them to rank candidates.
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Figure 6: The reliability diagram of biased and debiased, standard and calibrated systems on the coherency metric.
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C Probability of Reordering

In this section we showcase how the probability
of reordering can be rephrased to a familiar form:
Assuming that s; > s; (u; > p;) the probability of
reordering becomes:

K — [
P(s; < sj|C1.x) = @
B Vi — 2% + X

The selection is based on picking the examples with
highest probability of reordering:

5 Hj = i
1, = argmax ®
i.j (\/Ezz — 2% + ij)

= arg max My — Hi
2,] \/Eu‘ — 22”‘ + E]’j

Vi — 255 + %5

= arg min —
i.j M — [y
= arg max “ Y +2 I
ij (i — p1g)

Similarly, assuming s; > s; returns the exact same
expression.
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