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Abstract

This paper proposes a novel approach to en-
hance traditional quantum-inspired models. We
introduce a Quantum-Inspired Sentence Rep-
resentation model (QISR), which transforms
word density matrices into representations of
entire sentences, improving computational re-
source efficiency. Compared with traditional
quantum-inspired models, the QISR method
works at the density matrix layer and has better
effects on the overall model as the embedding
dimension increases. Even the QPDN model
with a word embedding of 768 dimensions only
requires 1736MB. This optimization has po-
tential benefits for the overall model architec-
ture, particularly when dealing with large word
embedding dimensions. Furthermore, this ap-
proach reduces computing resource consump-
tion while maintaining high computational ac-
curacy, highlighting its potential benefits in pro-
cessing complex language tasks. This research
provides a novel approach to sentence repre-
sentation in quantum-inspired language models
and highlights the potential value of improved
computational methods in a quantum-inspired
context. Our research results are expected to
provide modeling support and practical appli-
cation guidance for future text processing en-
deavors.

1 Introduction

In recent years, traditional quantum-inspired mod-
els have primarily focused on the post-hoc inter-
pretability and transparency(Lipton, 2018). Post-
hoc interpretability refers to the ability of a model
to explain how it worked after it has been executed,
while transparency involves self-explanation dur-
ing the model design phase.

Meanwhile, to meet these needs for clarity
and transparency, early quantum language models
(QLM)(Sordoni et al., 2013) used density matrices
to represent words, capturing word connections in
text. Further advancements in this domain, such as
the extension of quantum language models to the

field of neural networks and the introduction of end-
to-end quantum language model (NNQLM)(Zhang
et al., 2018a). The NNQLM employs word embed-
dings for representation and introduces a density
matrix computation method for both word and sen-
tence representations. The CNM(Li et al., 2019)
model, in the process of converting words to word
embeddings, simulates the construction of quantum
states through phase embeddings and obtains com-
plex value representations of quantum states using
Euler’s formula. Additionally, the QINM(Jiang
et al., 2020) model enhances interpretability by ex-
tensively interacting with queries and documents
and using reduced density matrices to model quan-
tum interference between them, making the re-
trieval process somewhat more in line with human
cognition. In addition, there are also tensor net-
works that serve as a bridge between neural net-
works and quantum mechanics and have demon-
strated good interpretability in processing natural
language tasks(Zhang et al., 2018b, 2020a).

Furthermore, apart from the aforementioned
models, other significant multimodal models have
emerged. The QPM(Tomar et al., 2023) framework
includes a complex-valued multimodal representa-
tion encoder, a quantum-like fusion network, and
a quantum measurement mechanism designed for
joint detection of multimodal sarcasm and senti-
ment. In contrast, the QUIET(Liu et al., 2023)
framework is a quantum probability-based multi-
modal analysis framework specialized in process-
ing text, images, and audio data while considering
intermodal correlations to comprehensively ana-
lyze sentiment, irony, and emotion across multiple
data types. Furthermore, in the field of multimodal
analysis, there have emerged methods(Gkoumas
et al., 2021b,a; Li et al., 2021; Zhang et al., 2020b;
Liu et al., 2021) based on the concepts of quan-
tum entanglement and quantum interference. The
development of these methods has further accen-
tuated the importance of quantum-inspired models



in multimodal data analysis, especially in terms of
enhancing the interpretability and transparency of
the models, thereby providing new perspectives for
practical applications.

These quantum-inspired models draw inspiration
from quantum mechanics concepts like quantum
interference and superposition, aiming to provide
explanations for how they work after model exe-
cution. They have been applied to various tasks,
including information retrieval(Sordoni et al., 2013;
Jiang et al., 2020), sentiment analysis (Zhang et al.,
2019), and question-answer matching(Li et al.,
2019), etc. In previous methods, words in text
data are regarded as pure states, and sentences are
regarded as mixed states formed by these words.
At this time, we inevitably face a challenge: as
the word dimension increases, building a density
matrix will significantly increases time and com-
putational cost. Therefore, we must rethink how
to improve computational efficiency in quantum-
inspired frameworks while ensuring interpretability
and transparency of model outputs. This challenge
formed the motivation for our research.

In this paper, we first theoretically demonstrate
the feasibility of representing sentences as mixed
states directly in Hilbert space, and propose a new
quantum-inspired sentence representation model
(QISR) that aims to significantly improve the com-
putational efficiency of existing models. By con-
ducting experiments on different quantum-inspired
models, we verify the significant improvements in
time and memory efficiency of the QISR model on
both CPU and GPU.

The key innovations of this research include:

1. Computational Efficiency: This study intro-
duces a sentence-based density matrix ap-
proach that changes the order of computation
within a layer. This approach reduces floating-
point operations (FLOPs) within the density
matrix layer by approximately one-half and
one-third in real-valued and complex-valued
models, respectively. Furthermore, it effec-
tively exploits the parallel computing prop-
erties of matrices and hence significantly re-
duces the computational time of the entire
model. Please see table 3 for specific indica-
tors.

2. Memory reduction: In the construction of the
density matrix layer, memory consumption is
reduced by n times (n representing sentence

length) by changing the calculation operations.
Overall, as the dimensionality of word embed-
dings increases, the memory savings become
more substantial. This reduction plays a cru-
cial role in alleviating the bottleneck of rising
computational costs in traditional quantum-
inspired models with large word embedding
sizes.

3. Model Adaptability: The QISR model
is readily integrable with existing density
matrix quantum-inspired models, including
monomodal, multimodal, and complex-valued
models. This demonstrates its high scalability
and practical applicability.

The rest of this paper is organized as follows.
Section 2 provides a brief overview of the founda-
tional knowledge related to QISR. Section 3 demon-
strates on the advantages of QISR in sentence rep-
resentation compared to word representation, along
with its theoretical explanation. In Section 4, we
conducted detailed experimental analysis. Finally,
Section 5 concludes this paper and discusses future
research directions.

2 Background

The quantum-inspired approach is an emerging re-
search direction in the field of natural language pro-
cessing, drawing on key concepts from quantum
mechanics. It enhances the post-hoc interpretabil-
ity and transparency of models while also offer-
ing the potential for improved performance in text
processing or multimodal tasks. This section will
briefly introduce fundamental theoretical concepts
relevant to our research.

2.1 Quantum Probability

Quantum probability theory is a generalized prob-
ability theory developed by John von Neumann
based on linear algebra, with the aim of providing
a mathematical foundation for quantum theory. In
quantum probability, quantum probability space is
defined within the complex Hilbert space H. In this
paper, Hilbert space refers to a finite-dimensional
inner product space, which is widely used in math-
ematical analysis and quantum mechanics.

2.2  Quantum Superposition

Quantum superposition is a fundamental concept in
quantum mechanics that describes the phenomenon



where a quantum system can exist in a superposi-
tion of multiple base states under certain conditions.
In classical physics, we usually think of objects
(such as particles) as having well-defined proper-
ties (such as their positions and velocities). How-
ever, in quantum physics, the states of particles are
inherently uncertain. In quantum mechanics, it is
possible to form a superposition state by linearly
combining multiple base states. In a two dimen-
sional system, its base states can be represented by
|0) and |1). Therefore, the superposition state of a
quantum system can be expressed as follows:

[¥) = |0) + B[1) (1)

where 1)) represents the quantum state, and o and
B are complex amplitudes (complex numbers). |0)
and |1) are orthogonal base vectors in a two dimen-
sional Hilbert space, representing the two possible
states of a quantum bit.

2.3 Quantum Mixed State

Quantum mixed states describe that a quantum sys-
tem under certain conditions can be composed of
a mixture of different pure states, where each pure
state is determined by its associated probability
weight. The mixed state of a quantum system can
be represented as follows:

p= ZPiWﬁWH )

where p represents the quantum mixed state, p; rep-
resents the probability of each pure state |1);), ex-
pressed as weights. This method allows us to prob-
abilistically describe multiple possible pure states
and their statistical mixtures, contrasting with the
deterministic nature of individual pure states |1);).

2.4 Measurement

Quantum systems can be in mixed or pure states.
A mixed state represents a statistical mixture of
multiple quantum states and is described by the
density matrix, which is a positive semidefinite ma-
trix and Hermitian matrix. In contrast, a pure state
can be described by a state vector even if it is super-
posed. In order to observe the properties or state
information of this system within the state space, it
involves a set of operators called measurement op-
erators { M;}. When a measurement is performed,
the system will collapse to a specific state corre-
sponding to the measurement result with a certain
probability:

M;|4)

Y) = ———
(| M My )

3)

where |1)) represents the initial state of the system,
M; is one of the measurement operators in the set,
MZ-T is its adjoint operator, and p; = <1/)|MJM¢|@Z}>
is the probability of obtaining the measurement
result 7.

3 Sentence Representation

3.1 Word-Based Density Matrices
Representation

Inspired by quantum theory, existing quantum-
inspired models that construct density matrices
word-based embeddings all utilize the concept of
quantum mixed states as shown in Figure 1-a,
which is the most direct process for constructing
density matrices based on the quantum mixed state,
specifically as depicted in Formula 2. Even mod-
els like CNM and QPDN(Wang et al., 2019), as
shown in Figure 1-b, begin by obtaining quantum
states through amplitude-phase relationships and
Euler’s formula before constructing the density ma-
trix. These models can be broadly viewed as trans-
forming word embeddings into the form of density
matrices.

3.2 Sentence-Based Density Matrices
Representation

Compared to traditional Convolutional Neural Net-
works (CNN) (LeCun et al., 1989) and Long Short-
Term Memory networks (LSTM) (Shi et al., 2015)
and their derivative models, our approach offers
greater directness and clarity in terms of inter-
pretability and transparency. However, this process
from words to sentences using density matrices
requires a large amount of computing resources,
resulting in high computational costs. Therefore,
we explored whether efficiency could be improved
by directly constructing sentence-based density ma-
trices. Our QISR model demonstrates the potential
of this method, as illustrated in Figures 1-c and
1-d, utilizing matrix properties in quantum-inspired
models to accelerate processing speed and reduce
computational resource usage. In subsequent sec-
tions, we will mathematically demonstrate the theo-
retical equivalence of the sentence-based and word-
based density matrix approaches.
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Figure 1: In the figure, ® represents the tensor product operation, and & represents the summation operation. Figure
1-a shows the construction of a classical quantum-inspired model based on the density matrix, primarily using
word-based embeddings to encode inputs, as shown in Formula 2. Figure. 1-b shows the construction of the density
matrix in complex-valued quantum-inspired models, inspired by Euler’s formula. Figure 1-c shows the process
of the QISR model using sentence embeddings to build a density matrix in the classical quantum-inspired model.
Figure 1-d shows the use of QISR in the complex-valued quantum-inspired model to construct the density matrix.

sentence.

Next, we proceed with the remaining operations
in Formula 2, multiplying the current |w;)(w;| by
a coefficient p;, and finally summing them up.

3.3 Justification and Comparative Analysis

3.3.1 Algorithm Equivalence Proof

In this section, we will conduct a theoretical anal-
ysis to compare classical quantum-inspired archi-
tectures, such as those shown in Figure 1-a. We

will theoretically evaluate the computational costs 1 Y U
of transforming word-based density matrices into n o1 Uno Una
sentence-based density matrices. Z pilwi) (wi| = . . . )
Consider a sentence consisting of n words, =1 ' ’ '
Yin Yue Yd

denoted as {wi,wy,...,w,}. For each word
w;, its corresponding embedding is a vector in
a d-dimensional space, represented as e;
{ei1,€i2, ..., eiq}, where each e;; represents the
4 component of the embedding vector for the
it" word and corresponding weight coefficients p,
where Y " | p; = 1.

First, we start with the word-based density ma-
trix, we need to perform a density matrix operation
on this sentence, i.e., Equation 2. This initially
involves the outer product operation of word em-
beddings.

€i1 * €41 €il * €id
€i2 * €41 €i2 ' €id

|w;) (w;| = “4)
€id * €i1 €id * €id

where w; refers to the ¢-th (1 < ¢ < n) word in the

where 1);; (1 < 4,7 < d) represents a value in the
density matrix of a sentence composed of n words,
given by prej;erj + paegieaj + ... + Ppenien;.

As we commence the construction of the sen-
tence density matrix, it is important to note that
our approach differs slightly from the word-based
construction method. We begin by performing the
multiplication of word embeddings with their re-
spective weight coefficients, denoted as

(6)

where g; represents the weight coefficients of indi-
vidual words prior to constructing sentence embed-
dings, and ¢; = ,/p; with the constraint ) ;" q? =
1.

word_emb = ¢;|w;)

Next, we convert the embedding representation
of each word into matrix form, where the embed-
ding vector of each word becomes a row in the



matrix. This process creates a sentence embedding
of dimension (n * d), denoted as

qie11  qiéi12 q1€1d
g2€21  @2€22 ... (2624

s_e= ) ) . ) (N
Gn€nl dn€n2 dn€nd

Next, we will perform a matmul product opera-
tion on sentence embedding, denoted as

T Uy Woy ... Wy
s.e -s.e=| . . . . ®
Vs Wa2 ... Yyg
where Wy is defined as

qierierj + giesieaj + ... + qenien;.

From Equation 6, it can be derived that ¥;;
is also defined as pya;a; + p2bibj + ... + ppnin;.
Therefore, we arrive at a conclusion that the results
obtained from the density matrices constructed
from words and from sentences are consistent.

3.3.2 Memory Cost Comparison

In this section, we focus on comparative analysis
of the differences in memory costs between the two
methods. For the word-based density matrix con-
struction process, Equation 5 shows that under the
assumption that the density operator representation
of each word requires computation, the minimum
storage space for effectively expressing word-based
density matrix information is n - d - d. Conversely,
in the case of QISR construction, as shown in Equa-
tions 7 and 8, the minimum storage requirement
is between d? and n - d. In actual scenarios where
n is usually less than d, the actual storage space
required converges to d2.

This represents that during the model training
process, when constructing the density matrix us-
ing the QISR approach, the reduction in memory
overhead can be up to a factor of "sentence length".
The reduction in memory overhead is especially
important when word embedding dimensions are
large, as it reduces the need for memory resources.
This not only enhances computational efficiency
but also enables the model to better handle vari-
ous text processing tasks. This optimization holds
significant importance for improving performance
and reducing costs.

3.3.3 Computational Cost Comparison

In this section, we conduct a detailed analysis of the
computational costs involved in constructing real-
valued and complex-valued density matrices. The
key metrics for this analysis are FLOPs and par-
allelization efficiency. It is important to note that
the computational processes for both real-valued
and complex-valued density matrix construction
are similar.

First, we compare different models in terms of
FLOPs. In traditional quantum-inspired models,
the real-valued model requires 2n - d - d FLOPs
(Figure 1-a), while the complex-valued model con-
sumes 6n - d - d FLOPs for complex embedding
operations (Figure 1-b).

Then, we assess the QISR-based models. Dif-
fering from traditional approaches, each word is
multiplied by weight coefficients before construct-
ing the density matrix for the whole sentence. In
the QISR framework, the real-valued version needs
n-d+n-d-d FLOPs (Figure 1-c), and the complex-
valued version requires 4n - d - d + 2n - d FLOPs
(Figure 1-d).

Overall, in the real-valued model, the FLOPs for
constructing the density matrix layer in the QISR
method are approximately 1/2 — 1/(2d) of the tra-
ditional method, especially when d is large, approx-
imating to half of the traditional method. In the
complex-valued model, the FLOPs for the QISR
method are roughly 2/3 4 1/(3d) of the traditional
method, approximating to two-thirds for large val-
ues of d.

Finally, we conducted a thorough analysis of the
parallelization performance of both real-valued and
complex-valued models on GPUs. To ensure com-
parability of FLOPs between the two approaches,
the impact of weight coefficients was removed. The
experiment utilized a range of parameters from Ta-
ble 1, focusing on evaluating how the dimensions of
word embeddings affect parallelization efficiency.
During the 1000 iterations test for both models, we
meticulously recorded the computational time re-
quired for each iteration. As shown in Table 2, our
study compares the time consumption of traditional
(non-parallel) methods with that of QISR (parallel)
methods in processing word embeddings across
various dimensions. The research results indicate
that the parallel processing method using QISR sig-
nificantly reduces the calculation time compared to
traditional methods, particularly when processing
high-dimensional data. This observation suggests



Setting Value
Ir 0.005
epoch 50
batch size 64
measurements 20
length 64
slide 16
seed 0

run times Take the maximum of 6
cpu 15-10505
gpu V100 16G

Table 1: Model hyperparameters and device model.

that quantum-inspired models utilizing QISR can
process high-dimensional word embedding tasks
more quickly, thus improving overall efficiency.

4 Experiments

4.1 Experimental Design and Evaluation
Metrics

This study aims to optimize density matrix-based
quantum-inspired models to reduce computational
and memory overhead. The experiment was con-
ducted in two stages. In the first stage, by applying
the QISR method with various word embedding
dimensionalities, we use the running time of CPU
and GPU and the memory consumption of GPU
as indicators to evaluate the processing time and
memory overhead. Subsequent, in the second stage,
we first analyze the differences brought about by
the QISR method, and then compare the accuracy
performance of the model before and after applying
QISR on the real task data set to test whether the
QISR optimization may have a negative impact on
the model performance. In conclusion, our experi-
ments not only test whether QISR optimization can
significantly reduce the time and space complexity
of the model, but also whether QISR optimiza-
tion can at least not reduce the performance of the
model.

4.2 Datasets

The experiments of this study mainly focus on text
classification tasks. Text classification was cho-
sen because it is relatively simple and can clearly
demonstrate how to improve computational effi-
ciency without sacrificing performance metrics.
The classification dataset used in the experiment is
as follows.

The Stanford Sentiment Treebank(Socher

Dim Real Complex
100 1.998 8.542
100-QISR  0.035 0.141
200 6.636  36.054
200-QISR  0.035 0.261
500 24.778 198.201
500-QISR  0.036  2.698

Table 2: Computational time efficiency (in milliseconds
(ms)) of complex versus real quantum-inspired models
with and without QISR optimization is compared. It is
evident that the parallelization performance benchmarks
for models utilizing the QISR method significantly out-
perform those of the conventional approach.

et al., 2013). SST is released by Stanford Uni-
versity and is mainly used for sentiment classifica-
tion of movie reviews. The dataset is divided into
two parts: SST-2 (Binary Classification) and SST-5
(Five-Level Classification). SST-2 contains 11,855
movie reviews, divided into 8,544 training samples,
1,101 development samples, and 2,210 test sam-
ples; SST-5 contains 6,920 training samples, 872
development samples, and 1,821 test samples.

Movie Reviews(Pang and Lee, 2005). MR is
a dataset designed for sentiment analysis experi-
ments, comprising annotated movie review docu-
ments with overall sentiment orientation and sub-
jective states, along with the sentiment orientation
and subjective states of individual sentences.

The Corpus of Linguistic Acceptabil-
ity(Warstadt et al., 2018). CoLA is a dataset
comprises 10,657 sentences from 23 linguistics
publications, annotated for acceptability by origi-
nal authors. The public release has 9,594 sentences
in training and development sets, excluding 1,063
for a held-out test set.

It’s worth noting that while quantum-inspired
models are suitable for various tasks, the focus
of this experiment is on demonstrating their ap-
plication in text classification, which may not be
advantageous for some models like CNM.

4.3 Baselines and Parameter Scale

We used well-known quantum-inspired models
based on density matrices, including NNQLM-I,
NNQLM-II, QPDN, and CNM. Our experimental
parameters, as shown in Table 1, were initialized
with 50-dimensional, 200-dimensional, and 300-
dimensional GloVe vectors. Subsequently, in the
QISR model, we employed 768-dimensional word
embeddings to simulate the computational cost of



Model Ori Ori+QISR
c-t(ms) gMB) g-t(ms) c-t(ms) g(MB) g-t(ms)

50 11.12 194 0.10 0.35 154 0.10

NNQLM-I 200 205 798 5.30 4.00 172 0.10

300 381 1602 11.86 7.34 194 0.11

768 - - - 34.88 338 0.23

50  23.13 402 0.30 14.03 390 0.24

NNQLM-II 200 335 1006 17.19 199 772 9.03
300 816 1808 69.40 510 1280 29.53

768 - - - 3506 12456 387

50  76.82 428 4.65 5.28 192 1.04

QPDN 200 1306 4612 52.22 38.93 330 1.05

300 3158 10236 130 76.82 468 1.25
768 - - - 419 1736 12.92

50 731 2606 30.91 58.87 406 2.35
CNM 200 1152 OOM - 714 3652 21.78
300 2861 ooOM - 1804 8104 51.32

768 - - - 9121 ooOM -

Table 3: "ori" represents the classification form of the original model. "ori-QISR" represents the classification
model of ori using QISR. “c-t” and “g-t” represent the time required to conduct the experiment on CPU and GPU

[TP1)

respectively, while “g” represents the memory consumption of GPU. The

are performed because the memory is OOM.

using BERT(Devlin et al., 2018) as word embed-
dings.

4.4 Experiment Results
4.4.1 Performance Evaluation

Table 3 shows the experimental results under four
different word embedding dimensions. In partic-
ular, to simulate BERT, we conduct experiments
using 768-dimensional word embeddings alone in
the QISR method. According to the analysis in
Section 3, the QISR method can reduce memory
overhead (n times) in the density matrix construc-
tion stage. However, in addition to the density
matrix layer, several other modules are included
in the quantum inspired model. Therefore, the ef-
fect of this memory overhead reduction will vary
in different models. For example, in the NNQLM-I
model, when the word vector dimension is 200, the
QISR method can be used to reduce parameters
by 4 times. When the dimension is increased to
300, the reduction can be up to 8 times. However,
since the NNQLM-II model uses convolution in
its module, its QISR acceleration effect is not as
obvious as the NNQLM-I model.

Overall, the QISR method shows excellent per-
formance in quantum-inspired models. Not only
does it effectively reduce the computational cost,
but it also enables the QISR model to increase the

non

indicates that no experimental statistics

Data Seed MAE MSE

10 1.3956e-06  3.6820e-12
100 1.4382e-06 3.9215e-12
200 1.6851e-06 5.4577e-12

Table 4: In this table, our input parameters (n, d) are
(64, 50). "Data Seed" represents the random numbers
generated using different seed values.

dimension of word embedding, thereby surpass-
ing the limitations of the traditional bag-of-word
model and laying the foundation for future integra-
tion with pre-trained models. As shown in Table 3,
even using 768-dimensional word embedding, our
QISR still only requires about 1736MB of memory
on QPDN, which can maximize the potential of
quantum-inspired models on limited resources.

Since some models cannot run properly when
the word embedding is 300 dimensions, we only
conduct experiments on 50-dimensional and 200-
dimensional word embeddings in the following ex-
periments.

4.4.2 Accuracy Loss Analysis

To compare the accuracy loss, this study initially
explores the differences caused by two methods.
Specifically, we selected the density matrix layers
shown in Figures 1-b and 1-d and conducted com-
parative experiments using different random seeds.



Model Dim — Ta;l; ’11‘&5cc. - Tegl;ﬁ\icc
NNQLML s 7357 1o s 0
NNQLM-1+QISR 25(?0 Ziéé i?i‘f Zgg 468
NNOLWIT i 131 e 230 817
NNQLRQISR 200 7149 3605 7300 950
DNy b7 sl 1572
QPDNQISR 30y 306 ares 199 1637
M a0 s ms M o
MR 200 s roe 703 092
TN g g% e @ ol

Table 5: Accuracy comparison of QISR and non-QISR
models using four different models and different dimen-
sions. And added TextCNN(Kim, 2014) under the same
hyperparameters.

In Section 3.3, we theoretically demonstrated the
equivalence of these two methods. However, dur-
ing practical computation, we observed that the
summation operation in Formula 5 leads to more
significant precision loss compared to Formula 7.
Specifically, in the experiments, it was noted that
the mantissa part of the model was set to zero, re-
sulting in a decrease in precision, with the mean
absolute error (MAE) reaching the level of 1075,
as detailed in Table 4. Our proposed QISR method
exhibited higher precision in constructing mixed
states, thoroughly demonstrating the overall effec-
tiveness of our model.

Subsequently, we investigated whether applying
the QISR method would adversely affect the over-
all model, as detailed in Table 5. When process-
ing different tasks, the model performance showed
minor variations. Specifically, for the relatively
simple task SST-2, the model accuracy seemed un-
affected by the use of different methods. However,
for the more complex SST-5 and CoLA tasks, the
QISR method performed slightly better than the
non-QISR method, indicating a certain degree of
performance enhancement. This result confirms
the performance improvement of the QISR method
in handling challenging tasks and its advantages in
evaluation metrics.

5 Discussions

In this study, we propose a quantum-inspired sen-
tence representation model (QISR) that shows sig-
nificant effectiveness in terms of processing time
and memory overhead. Provides an efficient so-
lution to the limitations of traditional quantum-
inspired models in dealing with high dimensions.
Furthermore, this study not only demonstrates the
application potential of quantum-inspired in the
field of natural language processing, but also pro-
vides new possibilities for efficient language pro-
cessing in resource-constrained environments. De-
spite these achievements, results as shown in Ta-
ble 5 show that current quantum-inspired models,
including our proposed QISR, exhibit certain limi-
tations in specific tasks.

Therefore, the first goal of future work is to ad-
dress these identified weaknesses and improve the
overall performance of the model in various dimen-
sions. We expect this study to inspire more future
research and applications of quantum-inspired mod-
els in the field of natural language processing. The
next work will focus on further improving the ac-
curacy and optimization performance of the QISR
model to enhance its adaptability and interpretabil-
ity in various natural language processing tasks.
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