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Abstract

This paper proposes a novel approach to en-001
hance traditional quantum-inspired models. We002
introduce a Quantum-Inspired Sentence Rep-003
resentation model (QISR), which transforms004
word density matrices into representations of005
entire sentences, improving computational re-006
source efficiency. Compared with traditional007
quantum-inspired models, the QISR method008
works at the density matrix layer and has better009
effects on the overall model as the embedding010
dimension increases. Even the QPDN model011
with a word embedding of 768 dimensions only012
requires 1736MB. This optimization has po-013
tential benefits for the overall model architec-014
ture, particularly when dealing with large word015
embedding dimensions. Furthermore, this ap-016
proach reduces computing resource consump-017
tion while maintaining high computational ac-018
curacy, highlighting its potential benefits in pro-019
cessing complex language tasks. This research020
provides a novel approach to sentence repre-021
sentation in quantum-inspired language models022
and highlights the potential value of improved023
computational methods in a quantum-inspired024
context. Our research results are expected to025
provide modeling support and practical appli-026
cation guidance for future text processing en-027
deavors.028

1 Introduction029

In recent years, traditional quantum-inspired mod-030

els have primarily focused on the post-hoc inter-031

pretability and transparency(Lipton, 2018). Post-032

hoc interpretability refers to the ability of a model033

to explain how it worked after it has been executed,034

while transparency involves self-explanation dur-035

ing the model design phase.036

Meanwhile, to meet these needs for clarity037

and transparency, early quantum language models038

(QLM)(Sordoni et al., 2013) used density matrices039

to represent words, capturing word connections in040

text. Further advancements in this domain, such as041

the extension of quantum language models to the042

field of neural networks and the introduction of end- 043

to-end quantum language model (NNQLM)(Zhang 044

et al., 2018a). The NNQLM employs word embed- 045

dings for representation and introduces a density 046

matrix computation method for both word and sen- 047

tence representations. The CNM(Li et al., 2019) 048

model, in the process of converting words to word 049

embeddings, simulates the construction of quantum 050

states through phase embeddings and obtains com- 051

plex value representations of quantum states using 052

Euler’s formula. Additionally, the QINM(Jiang 053

et al., 2020) model enhances interpretability by ex- 054

tensively interacting with queries and documents 055

and using reduced density matrices to model quan- 056

tum interference between them, making the re- 057

trieval process somewhat more in line with human 058

cognition. In addition, there are also tensor net- 059

works that serve as a bridge between neural net- 060

works and quantum mechanics and have demon- 061

strated good interpretability in processing natural 062

language tasks(Zhang et al., 2018b, 2020a). 063

Furthermore, apart from the aforementioned 064

models, other significant multimodal models have 065

emerged. The QPM(Tomar et al., 2023) framework 066

includes a complex-valued multimodal representa- 067

tion encoder, a quantum-like fusion network, and 068

a quantum measurement mechanism designed for 069

joint detection of multimodal sarcasm and senti- 070

ment. In contrast, the QUIET(Liu et al., 2023) 071

framework is a quantum probability-based multi- 072

modal analysis framework specialized in process- 073

ing text, images, and audio data while considering 074

intermodal correlations to comprehensively ana- 075

lyze sentiment, irony, and emotion across multiple 076

data types. Furthermore, in the field of multimodal 077

analysis, there have emerged methods(Gkoumas 078

et al., 2021b,a; Li et al., 2021; Zhang et al., 2020b; 079

Liu et al., 2021) based on the concepts of quan- 080

tum entanglement and quantum interference. The 081

development of these methods has further accen- 082

tuated the importance of quantum-inspired models 083
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in multimodal data analysis, especially in terms of084

enhancing the interpretability and transparency of085

the models, thereby providing new perspectives for086

practical applications.087

These quantum-inspired models draw inspiration088

from quantum mechanics concepts like quantum089

interference and superposition, aiming to provide090

explanations for how they work after model exe-091

cution. They have been applied to various tasks,092

including information retrieval(Sordoni et al., 2013;093

Jiang et al., 2020), sentiment analysis (Zhang et al.,094

2019), and question-answer matching(Li et al.,095

2019), etc. In previous methods, words in text096

data are regarded as pure states, and sentences are097

regarded as mixed states formed by these words.098

At this time, we inevitably face a challenge: as099

the word dimension increases, building a density100

matrix will significantly increases time and com-101

putational cost. Therefore, we must rethink how102

to improve computational efficiency in quantum-103

inspired frameworks while ensuring interpretability104

and transparency of model outputs. This challenge105

formed the motivation for our research.106

In this paper, we first theoretically demonstrate107

the feasibility of representing sentences as mixed108

states directly in Hilbert space, and propose a new109

quantum-inspired sentence representation model110

(QISR) that aims to significantly improve the com-111

putational efficiency of existing models. By con-112

ducting experiments on different quantum-inspired113

models, we verify the significant improvements in114

time and memory efficiency of the QISR model on115

both CPU and GPU.116

The key innovations of this research include:117

1. Computational Efficiency: This study intro-118

duces a sentence-based density matrix ap-119

proach that changes the order of computation120

within a layer. This approach reduces floating-121

point operations (FLOPs) within the density122

matrix layer by approximately one-half and123

one-third in real-valued and complex-valued124

models, respectively. Furthermore, it effec-125

tively exploits the parallel computing prop-126

erties of matrices and hence significantly re-127

duces the computational time of the entire128

model. Please see table 3 for specific indica-129

tors.130

2. Memory reduction: In the construction of the131

density matrix layer, memory consumption is132

reduced by n times (n representing sentence133

length) by changing the calculation operations. 134

Overall, as the dimensionality of word embed- 135

dings increases, the memory savings become 136

more substantial. This reduction plays a cru- 137

cial role in alleviating the bottleneck of rising 138

computational costs in traditional quantum- 139

inspired models with large word embedding 140

sizes. 141

3. Model Adaptability: The QISR model 142

is readily integrable with existing density 143

matrix quantum-inspired models, including 144

monomodal, multimodal, and complex-valued 145

models. This demonstrates its high scalability 146

and practical applicability. 147

The rest of this paper is organized as follows. 148

Section 2 provides a brief overview of the founda- 149

tional knowledge related to QISR. Section 3 demon- 150

strates on the advantages of QISR in sentence rep- 151

resentation compared to word representation, along 152

with its theoretical explanation. In Section 4, we 153

conducted detailed experimental analysis. Finally, 154

Section 5 concludes this paper and discusses future 155

research directions. 156

2 Background 157

The quantum-inspired approach is an emerging re- 158

search direction in the field of natural language pro- 159

cessing, drawing on key concepts from quantum 160

mechanics. It enhances the post-hoc interpretabil- 161

ity and transparency of models while also offer- 162

ing the potential for improved performance in text 163

processing or multimodal tasks. This section will 164

briefly introduce fundamental theoretical concepts 165

relevant to our research. 166

2.1 Quantum Probability 167

Quantum probability theory is a generalized prob- 168

ability theory developed by John von Neumann 169

based on linear algebra, with the aim of providing 170

a mathematical foundation for quantum theory. In 171

quantum probability, quantum probability space is 172

defined within the complex Hilbert space H. In this 173

paper, Hilbert space refers to a finite-dimensional 174

inner product space, which is widely used in math- 175

ematical analysis and quantum mechanics. 176

2.2 Quantum Superposition 177

Quantum superposition is a fundamental concept in 178

quantum mechanics that describes the phenomenon 179
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where a quantum system can exist in a superposi-180

tion of multiple base states under certain conditions.181

In classical physics, we usually think of objects182

(such as particles) as having well-defined proper-183

ties (such as their positions and velocities). How-184

ever, in quantum physics, the states of particles are185

inherently uncertain. In quantum mechanics, it is186

possible to form a superposition state by linearly187

combining multiple base states. In a two dimen-188

sional system, its base states can be represented by189

|0⟩ and |1⟩. Therefore, the superposition state of a190

quantum system can be expressed as follows:191

|ψ⟩ = α|0⟩+ β|1⟩ (1)192

where |ψ⟩ represents the quantum state, and α and193

β are complex amplitudes (complex numbers). |0⟩194

and |1⟩ are orthogonal base vectors in a two dimen-195

sional Hilbert space, representing the two possible196

states of a quantum bit.197

2.3 Quantum Mixed State198

Quantum mixed states describe that a quantum sys-199

tem under certain conditions can be composed of200

a mixture of different pure states, where each pure201

state is determined by its associated probability202

weight. The mixed state of a quantum system can203

be represented as follows:204

ρ =
∑
i

pi|ψi⟩⟨ψi| (2)205

where ρ represents the quantum mixed state, pi rep-206

resents the probability of each pure state |ψi⟩, ex-207

pressed as weights. This method allows us to prob-208

abilistically describe multiple possible pure states209

and their statistical mixtures, contrasting with the210

deterministic nature of individual pure states |ψi⟩.211

2.4 Measurement212

Quantum systems can be in mixed or pure states.213

A mixed state represents a statistical mixture of214

multiple quantum states and is described by the215

density matrix, which is a positive semidefinite ma-216

trix and Hermitian matrix. In contrast, a pure state217

can be described by a state vector even if it is super-218

posed. In order to observe the properties or state219

information of this system within the state space, it220

involves a set of operators called measurement op-221

erators {Mi}. When a measurement is performed,222

the system will collapse to a specific state corre-223

sponding to the measurement result with a certain224

probability:225

|ψ⟩ → Mi|ψ⟩√
⟨ψ|M †

iMi|ψ⟩
(3) 226

where |ψ⟩ represents the initial state of the system, 227

Mi is one of the measurement operators in the set, 228

M †
i is its adjoint operator, and pi = ⟨ψ|M †

iMi|ψ⟩ 229

is the probability of obtaining the measurement 230

result i. 231

3 Sentence Representation 232

3.1 Word-Based Density Matrices 233

Representation 234

Inspired by quantum theory, existing quantum- 235

inspired models that construct density matrices 236

word-based embeddings all utilize the concept of 237

quantum mixed states as shown in Figure 1-a, 238

which is the most direct process for constructing 239

density matrices based on the quantum mixed state, 240

specifically as depicted in Formula 2. Even mod- 241

els like CNM and QPDN(Wang et al., 2019), as 242

shown in Figure 1-b, begin by obtaining quantum 243

states through amplitude-phase relationships and 244

Euler’s formula before constructing the density ma- 245

trix. These models can be broadly viewed as trans- 246

forming word embeddings into the form of density 247

matrices. 248

3.2 Sentence-Based Density Matrices 249

Representation 250

Compared to traditional Convolutional Neural Net- 251

works (CNN) (LeCun et al., 1989) and Long Short- 252

Term Memory networks (LSTM) (Shi et al., 2015) 253

and their derivative models, our approach offers 254

greater directness and clarity in terms of inter- 255

pretability and transparency. However, this process 256

from words to sentences using density matrices 257

requires a large amount of computing resources, 258

resulting in high computational costs. Therefore, 259

we explored whether efficiency could be improved 260

by directly constructing sentence-based density ma- 261

trices. Our QISR model demonstrates the potential 262

of this method, as illustrated in Figures 1-c and 263

1-d, utilizing matrix properties in quantum-inspired 264

models to accelerate processing speed and reduce 265

computational resource usage. In subsequent sec- 266

tions, we will mathematically demonstrate the theo- 267

retical equivalence of the sentence-based and word- 268

based density matrix approaches. 269
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Figure 1: In the figure, ⊗ represents the tensor product operation, and ⊕ represents the summation operation. Figure
1-a shows the construction of a classical quantum-inspired model based on the density matrix, primarily using
word-based embeddings to encode inputs, as shown in Formula 2. Figure. 1-b shows the construction of the density
matrix in complex-valued quantum-inspired models, inspired by Euler’s formula. Figure 1-c shows the process
of the QISR model using sentence embeddings to build a density matrix in the classical quantum-inspired model.
Figure 1-d shows the use of QISR in the complex-valued quantum-inspired model to construct the density matrix.

3.3 Justification and Comparative Analysis270

3.3.1 Algorithm Equivalence Proof271

In this section, we will conduct a theoretical anal-272

ysis to compare classical quantum-inspired archi-273

tectures, such as those shown in Figure 1-a. We274

will theoretically evaluate the computational costs275

of transforming word-based density matrices into276

sentence-based density matrices.277

Consider a sentence consisting of n words,278

denoted as {w1, w2, . . . , wn}. For each word279

wi, its corresponding embedding is a vector in280

a d-dimensional space, represented as ei =281

{ei1, ei2, . . . , eid}, where each eij represents the282

jth component of the embedding vector for the283

ith word and corresponding weight coefficients p,284

where
∑n

i=1 pi = 1.285

First, we start with the word-based density ma-286

trix, we need to perform a density matrix operation287

on this sentence, i.e., Equation 2. This initially288

involves the outer product operation of word em-289

beddings.290

|wi⟩⟨wi| =


ei1 · ei1 . . . ei1 · eid
ei2 · ei1 . . . ei2 · eid

...
. . .

...
eid · ei1 . . . eid · eid

 (4)291

where wi refers to the i-th (1 ≤ i ≤ n) word in the292

sentence. 293

Next, we proceed with the remaining operations 294

in Formula 2, multiplying the current |wi⟩⟨wi| by 295

a coefficient pi, and finally summing them up. 296

n∑
i=1

pi|wi⟩⟨wi| =


ψ11 ψ12 . . . ψ1d
ψ21 ψ22 . . . ψ2d

...
...

. . .
...

ψd1 ψd2 . . . ψdd

 (5) 297

where ψij (1 ≤ i, j ≤ d) represents a value in the 298

density matrix of a sentence composed of n words, 299

given by p1e1ie1j + p2e2ie2j + . . .+ pnenienj . 300

As we commence the construction of the sen- 301

tence density matrix, it is important to note that 302

our approach differs slightly from the word-based 303

construction method. We begin by performing the 304

multiplication of word embeddings with their re- 305

spective weight coefficients, denoted as 306

word_emb = qi|wi⟩ (6) 307

where qi represents the weight coefficients of indi- 308

vidual words prior to constructing sentence embed- 309

dings, and qi =
√
pi with the constraint

∑n
i=1 q

2
i = 310

1. 311

Next, we convert the embedding representation 312

of each word into matrix form, where the embed- 313

ding vector of each word becomes a row in the 314
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matrix. This process creates a sentence embedding315

of dimension (n * d), denoted as316

s_e =


q1e11 q1e12 . . . q1e1d
q2e21 q2e22 . . . q2e2d

...
...

. . .
...

qnen1 qnen2 . . . qnend

 (7)317

Next, we will perform a matmul product opera-318

tion on sentence embedding, denoted as319

s_e⊤ · s_e =


Ψ11 Ψ12 . . . Ψ1d

Ψ21 Ψ22 . . . Ψ2d
...

...
. . .

...
Ψd1 Ψd2 . . . Ψdd

 (8)320

where Ψij is defined as321

q21e1ie1j + q22e2ie2j + . . .+ q2nenienj .322

From Equation 6, it can be derived that Ψij323

is also defined as p1aiaj + p2bibj + . . .+ pnninj .324

Therefore, we arrive at a conclusion that the results325

obtained from the density matrices constructed326

from words and from sentences are consistent.327

3.3.2 Memory Cost Comparison328

In this section, we focus on comparative analysis329

of the differences in memory costs between the two330

methods. For the word-based density matrix con-331

struction process, Equation 5 shows that under the332

assumption that the density operator representation333

of each word requires computation, the minimum334

storage space for effectively expressing word-based335

density matrix information is n · d · d. Conversely,336

in the case of QISR construction, as shown in Equa-337

tions 7 and 8, the minimum storage requirement338

is between d2 and n · d. In actual scenarios where339

n is usually less than d, the actual storage space340

required converges to d2.341

This represents that during the model training342

process, when constructing the density matrix us-343

ing the QISR approach, the reduction in memory344

overhead can be up to a factor of "sentence length".345

The reduction in memory overhead is especially346

important when word embedding dimensions are347

large, as it reduces the need for memory resources.348

This not only enhances computational efficiency349

but also enables the model to better handle vari-350

ous text processing tasks. This optimization holds351

significant importance for improving performance352

and reducing costs.353

3.3.3 Computational Cost Comparison 354

In this section, we conduct a detailed analysis of the 355

computational costs involved in constructing real- 356

valued and complex-valued density matrices. The 357

key metrics for this analysis are FLOPs and par- 358

allelization efficiency. It is important to note that 359

the computational processes for both real-valued 360

and complex-valued density matrix construction 361

are similar. 362

First, we compare different models in terms of 363

FLOPs. In traditional quantum-inspired models, 364

the real-valued model requires 2n · d · d FLOPs 365

(Figure 1-a), while the complex-valued model con- 366

sumes 6n · d · d FLOPs for complex embedding 367

operations (Figure 1-b). 368

Then, we assess the QISR-based models. Dif- 369

fering from traditional approaches, each word is 370

multiplied by weight coefficients before construct- 371

ing the density matrix for the whole sentence. In 372

the QISR framework, the real-valued version needs 373

n ·d+n ·d ·d FLOPs (Figure 1-c), and the complex- 374

valued version requires 4n · d · d+ 2n · d FLOPs 375

(Figure 1-d). 376

Overall, in the real-valued model, the FLOPs for 377

constructing the density matrix layer in the QISR 378

method are approximately 1/2− 1/(2d) of the tra- 379

ditional method, especially when d is large, approx- 380

imating to half of the traditional method. In the 381

complex-valued model, the FLOPs for the QISR 382

method are roughly 2/3+1/(3d) of the traditional 383

method, approximating to two-thirds for large val- 384

ues of d. 385

Finally, we conducted a thorough analysis of the 386

parallelization performance of both real-valued and 387

complex-valued models on GPUs. To ensure com- 388

parability of FLOPs between the two approaches, 389

the impact of weight coefficients was removed. The 390

experiment utilized a range of parameters from Ta- 391

ble 1, focusing on evaluating how the dimensions of 392

word embeddings affect parallelization efficiency. 393

During the 1000 iterations test for both models, we 394

meticulously recorded the computational time re- 395

quired for each iteration. As shown in Table 2, our 396

study compares the time consumption of traditional 397

(non-parallel) methods with that of QISR (parallel) 398

methods in processing word embeddings across 399

various dimensions. The research results indicate 400

that the parallel processing method using QISR sig- 401

nificantly reduces the calculation time compared to 402

traditional methods, particularly when processing 403

high-dimensional data. This observation suggests 404

5



Setting Value
lr 0.005
epoch 50
batch size 64
measurements 20
length 64
slide 16
seed 0
run times Take the maximum of 6
cpu i5-10505
gpu V100 16G

Table 1: Model hyperparameters and device model.

that quantum-inspired models utilizing QISR can405

process high-dimensional word embedding tasks406

more quickly, thus improving overall efficiency.407

4 Experiments408

4.1 Experimental Design and Evaluation409

Metrics410

This study aims to optimize density matrix-based411

quantum-inspired models to reduce computational412

and memory overhead. The experiment was con-413

ducted in two stages. In the first stage, by applying414

the QISR method with various word embedding415

dimensionalities, we use the running time of CPU416

and GPU and the memory consumption of GPU417

as indicators to evaluate the processing time and418

memory overhead. Subsequent, in the second stage,419

we first analyze the differences brought about by420

the QISR method, and then compare the accuracy421

performance of the model before and after applying422

QISR on the real task data set to test whether the423

QISR optimization may have a negative impact on424

the model performance. In conclusion, our experi-425

ments not only test whether QISR optimization can426

significantly reduce the time and space complexity427

of the model, but also whether QISR optimiza-428

tion can at least not reduce the performance of the429

model.430

4.2 Datasets431

The experiments of this study mainly focus on text432

classification tasks. Text classification was cho-433

sen because it is relatively simple and can clearly434

demonstrate how to improve computational effi-435

ciency without sacrificing performance metrics.436

The classification dataset used in the experiment is437

as follows.438

The Stanford Sentiment Treebank(Socher439

Dim Real Complex
100 1.998 8.542
100-QISR 0.035 0.141
200 6.636 36.054
200-QISR 0.035 0.261
500 24.778 198.201
500-QISR 0.036 2.698

Table 2: Computational time efficiency (in milliseconds
(ms)) of complex versus real quantum-inspired models
with and without QISR optimization is compared. It is
evident that the parallelization performance benchmarks
for models utilizing the QISR method significantly out-
perform those of the conventional approach.

et al., 2013). SST is released by Stanford Uni- 440

versity and is mainly used for sentiment classifica- 441

tion of movie reviews. The dataset is divided into 442

two parts: SST-2 (Binary Classification) and SST-5 443

(Five-Level Classification). SST-2 contains 11,855 444

movie reviews, divided into 8,544 training samples, 445

1,101 development samples, and 2,210 test sam- 446

ples; SST-5 contains 6,920 training samples, 872 447

development samples, and 1,821 test samples. 448

Movie Reviews(Pang and Lee, 2005). MR is 449

a dataset designed for sentiment analysis experi- 450

ments, comprising annotated movie review docu- 451

ments with overall sentiment orientation and sub- 452

jective states, along with the sentiment orientation 453

and subjective states of individual sentences. 454

The Corpus of Linguistic Acceptabil- 455

ity(Warstadt et al., 2018). CoLA is a dataset 456

comprises 10,657 sentences from 23 linguistics 457

publications, annotated for acceptability by origi- 458

nal authors. The public release has 9,594 sentences 459

in training and development sets, excluding 1,063 460

for a held-out test set. 461

It’s worth noting that while quantum-inspired 462

models are suitable for various tasks, the focus 463

of this experiment is on demonstrating their ap- 464

plication in text classification, which may not be 465

advantageous for some models like CNM. 466

4.3 Baselines and Parameter Scale 467

We used well-known quantum-inspired models 468

based on density matrices, including NNQLM-I, 469

NNQLM-II, QPDN, and CNM. Our experimental 470

parameters, as shown in Table 1, were initialized 471

with 50-dimensional, 200-dimensional, and 300- 472

dimensional GloVe vectors. Subsequently, in the 473

QISR model, we employed 768-dimensional word 474

embeddings to simulate the computational cost of 475
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Model Ori Ori+QISR
c-t(ms) g(MB) g-t(ms) c-t(ms) g(MB) g-t(ms)

NNQLM-I
50 11.12 194 0.10 0.35 154 0.10
200 205 798 5.30 4.00 172 0.10
300 381 1602 11.86 7.34 194 0.11
768 - - - 34.88 338 0.23

NNQLM-II
50 23.13 402 0.30 14.03 390 0.24
200 335 1006 17.19 199 772 9.03
300 816 1808 69.40 510 1280 29.53
768 - - - 3506 12456 387

QPDN
50 76.82 428 4.65 5.28 192 1.04
200 1306 4612 52.22 38.93 330 1.05
300 3158 10236 130 76.82 468 1.25
768 - - - 419 1736 12.92

CNM
50 731 2606 30.91 58.87 406 2.35
200 1152 OOM - 714 3652 21.78
300 2861 OOM - 1804 8104 51.32
768 - - - 9121 OOM -

Table 3: "ori" represents the classification form of the original model. "ori-QISR" represents the classification
model of ori using QISR. “c-t” and “g-t” represent the time required to conduct the experiment on CPU and GPU
respectively, while “g” represents the memory consumption of GPU. The "-" indicates that no experimental statistics
are performed because the memory is OOM.

using BERT(Devlin et al., 2018) as word embed-476

dings.477

4.4 Experiment Results478

4.4.1 Performance Evaluation479

Table 3 shows the experimental results under four480

different word embedding dimensions. In partic-481

ular, to simulate BERT, we conduct experiments482

using 768-dimensional word embeddings alone in483

the QISR method. According to the analysis in484

Section 3, the QISR method can reduce memory485

overhead (n times) in the density matrix construc-486

tion stage. However, in addition to the density487

matrix layer, several other modules are included488

in the quantum inspired model. Therefore, the ef-489

fect of this memory overhead reduction will vary490

in different models. For example, in the NNQLM-I491

model, when the word vector dimension is 200, the492

QISR method can be used to reduce parameters493

by 4 times. When the dimension is increased to494

300, the reduction can be up to 8 times. However,495

since the NNQLM-II model uses convolution in496

its module, its QISR acceleration effect is not as497

obvious as the NNQLM-I model.498

Overall, the QISR method shows excellent per-499

formance in quantum-inspired models. Not only500

does it effectively reduce the computational cost,501

but it also enables the QISR model to increase the502

Data Seed MAE MSE
10 1.3956e-06 3.6820e-12
100 1.4382e-06 3.9215e-12
200 1.6851e-06 5.4577e-12

Table 4: In this table, our input parameters (n, d) are
(64, 50). "Data Seed" represents the random numbers
generated using different seed values.

dimension of word embedding, thereby surpass- 503

ing the limitations of the traditional bag-of-word 504

model and laying the foundation for future integra- 505

tion with pre-trained models. As shown in Table 3, 506

even using 768-dimensional word embedding, our 507

QISR still only requires about 1736MB of memory 508

on QPDN, which can maximize the potential of 509

quantum-inspired models on limited resources. 510

Since some models cannot run properly when 511

the word embedding is 300 dimensions, we only 512

conduct experiments on 50-dimensional and 200- 513

dimensional word embeddings in the following ex- 514

periments. 515

4.4.2 Accuracy Loss Analysis 516

To compare the accuracy loss, this study initially 517

explores the differences caused by two methods. 518

Specifically, we selected the density matrix layers 519

shown in Figures 1-b and 1-d and conducted com- 520

parative experiments using different random seeds. 521
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Model Dim Task Acc. Task Mcc
SST2 SST5 MR CoLA

NNQLM-I
50 71.29 35.65 66.53 4.53
200 73.97 37.19 67.53 0

NNQLM-I+QISR
50 72.93 36.29 65.73 4.8
200 73.86 37.71 68.63 0

NNQLM-II
50 72.69 35.97 74.13 9.51
200 71.31 36.28 72.59 8.17

NNQLM-II+QISR
50 72.16 37.54 74.74 10.59
200 71.49 36.25 73.09 9.80

QPDN
50 83.96 43.36 81.99 14.08
200 83.80 43.97 81.49 15.72

QPDN+QISR
50 84.24 43.57 82.09 14.72
200 83.96 44.66 81.79 16.37

CNM
50 78.14 38.77 76.13 5.97
200 77.75 37.78 74.74 0.89

CNM+QISR
50 78.13 39.23 76.19 8.16
200 77.38 37.96 75.03 0.92

TextCNN
50 78.86 40.90 79.39 16.37
200 82.53 43.57 82.59 21.16

Table 5: Accuracy comparison of QISR and non-QISR
models using four different models and different dimen-
sions. And added TextCNN(Kim, 2014) under the same
hyperparameters.

In Section 3.3, we theoretically demonstrated the522

equivalence of these two methods. However, dur-523

ing practical computation, we observed that the524

summation operation in Formula 5 leads to more525

significant precision loss compared to Formula 7.526

Specifically, in the experiments, it was noted that527

the mantissa part of the model was set to zero, re-528

sulting in a decrease in precision, with the mean529

absolute error (MAE) reaching the level of 10−6,530

as detailed in Table 4. Our proposed QISR method531

exhibited higher precision in constructing mixed532

states, thoroughly demonstrating the overall effec-533

tiveness of our model.534

Subsequently, we investigated whether applying535

the QISR method would adversely affect the over-536

all model, as detailed in Table 5. When process-537

ing different tasks, the model performance showed538

minor variations. Specifically, for the relatively539

simple task SST-2, the model accuracy seemed un-540

affected by the use of different methods. However,541

for the more complex SST-5 and CoLA tasks, the542

QISR method performed slightly better than the543

non-QISR method, indicating a certain degree of544

performance enhancement. This result confirms545

the performance improvement of the QISR method546

in handling challenging tasks and its advantages in547

evaluation metrics.548

5 Discussions 549

In this study, we propose a quantum-inspired sen- 550

tence representation model (QISR) that shows sig- 551

nificant effectiveness in terms of processing time 552

and memory overhead. Provides an efficient so- 553

lution to the limitations of traditional quantum- 554

inspired models in dealing with high dimensions. 555

Furthermore, this study not only demonstrates the 556

application potential of quantum-inspired in the 557

field of natural language processing, but also pro- 558

vides new possibilities for efficient language pro- 559

cessing in resource-constrained environments. De- 560

spite these achievements, results as shown in Ta- 561

ble 5 show that current quantum-inspired models, 562

including our proposed QISR, exhibit certain limi- 563

tations in specific tasks. 564

Therefore, the first goal of future work is to ad- 565

dress these identified weaknesses and improve the 566

overall performance of the model in various dimen- 567

sions. We expect this study to inspire more future 568

research and applications of quantum-inspired mod- 569

els in the field of natural language processing. The 570

next work will focus on further improving the ac- 571

curacy and optimization performance of the QISR 572

model to enhance its adaptability and interpretabil- 573

ity in various natural language processing tasks. 574

575
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