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Abstract

In this paper, we consider a score-based Integer Programming (IP) approach for
solving the Bayesian Network Structure Learning (BNSL) problem. State-of-the-
art BNSL IP formulations suffer from the exponentially large number of variables
and constraints. A standard approach in IP to address such challenges is to em-
ploy row and column generation techniques, which dynamically generate rows
and columns, while the complex pricing problem remains a computational bottle-
neck for BNSL. For the general class of ℓ0-penalized likelihood scores, we show
how the pricing problem can be reformulated as a difference of submodular op-
timization problem, and how the Difference of Convex Algorithm (DCA) can be
applied as an inexact method to efficiently solve the pricing problems. Empir-
ically, we show that, for continuous Gaussian data, our row and column genera-
tion approach yields solutions with higher quality than state-of-the-art score-based
approaches, especially when the graph density increases, and achieves compara-
ble performance against benchmark constraint-based and hybrid approaches, even
when the graph size increases.

1 Introduction

Bayesian networks (BN) have wide applications in machine learning [27]. Its structure learning
problem, i.e., identifying a directed acyclic graph (DAG) that represents the causal relationships
between variables (Xi)i∈V from data, is a central yet challenging topic in causal inference [29]. Ex-
isting methods for learning optimal Bayesian network structure from observational data fall into
three main categories [45, 40, 21]: (1) constraint-based approaches (e.g., PC [45, 14] and FCI
[45, 50]) that learn the structure through a constraint satisfaction problem and involve conditional
independence tests to formulate the constraints; (2) score-based approaches (e.g., hill climbing [28],
dynamic programming [35, 44], integer programming [17] and machine learning approaches [49])
that evaluate candidate DAGs using scoring functions and select the DAG structure with the highest
score; (3) hybrid approaches that combine both score-based and constraint-based techniques (e.g.,
MMHC [47]).

Score-based BNSL is known to be NP-hard, even under the assumption that each node has a re-
stricted number of parents [13]. This inherent hardness of BNSL imposes a fundamental trade-off
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between solution quality and computational efficiency. Consequently, there are two lines of work
that focus on the either side: (1) exact methods that guarantee optimality but often suffer from higher
computational cost and (2) heuristic approaches that offer computational efficiency but with limited
optimality guarantees. Within the BNSL literature, one of state-of-the-art exact approaches to iden-
tify the highest-scoring DAG is to formulate the problem as an Integer Program (IP) [31, 15, 12], as
represented by the GOBNILP method [17]. While there are different ways to formulate the IP for
this problem, a standard formulation involves binary variables that indicate whether to choose the
specific set as the parent set for each node, and constraints that enforce the acyclicity requirement
for the DAG. Given the observational data, the objective of the IP is to maximize the score, which is
a function of the potential DAG structure measuring how well the data fits the model. Solving this IP
is challenging since both the number of variables and the number of constraints grow exponentially
with the node size of the DAG.

Column Generation (CG) [26, 19] is a standard approach for addressing huge IPs as it effectively bal-
ances computational efficiency and solution quality. By dynamically generating variables as needed
through pricing problems, CG can be used to derive efficient heuristic algorithms [32], or exact so-
lution methods (often known as branch and price [5]) when combined with branch and cut. CG has
been widely applied in operations research to solve real-world problems such as vehicle routing [20]
and crew scheduling [41]. In [16, 18], Cussens introduces CG to BNSL to construct an exact branch
and price algorithm. However, due to the complex pricing problems (which are formulated as mixed
integer nonlinear programs in [18]), the proposed approach has limited scalability and can only be
applied to solve small BNSL instances.

Indeed, to accelerate CG algorithms, it is advised that one should not try to solve all pricing prob-
lems exactly and an approximate solution often suffices until the last few iterations (for proving
optimality) [37]. In this paper, built on top of [18], we advance CG solution techniques for BNSL.
We develop an efficient pricing algorithm based on a reformulation of the pricing problem as a differ-
ence of submodular (DS) optimization problem, enabling efficient solution of the pricing problem
via the Difference of Convex Algorithm (DCA) [22, 30]. Even though DCA does not necessarily pro-
vide global optimal solutions, it guarantees convergence and often generates high-quality candidate
columns for our BNSL IP. Empirically, we demonstrate that it leads to effective primal heuristics,
offering potential for developing more efficient exact solution approaches.

2 Preliminaries

2.1 Scored-based BNSL as an IP

In BNSL, a scoring function measures how well the observed data fits the DAG structure, where
nodes represent individual random variables and directed edges represent direct causal dependencies.
Given observational data D, score-based approaches aim to find a DAG with the highest score, i.e.,
solve the following optimization problem:

max
G

score(G;D) s.t. G being acyclic, (1)

where score(G;D) denotes the score of the graph G = (V,E) under data D (see Appendix A.1).
Given a particular data type (continuous or discrete), there exist several different choices for the
scoring function. In this paper, we focus on ℓ0-penalized likelihood scores, i.e., scoring functions
of the form score(G;D) = log(L(G;D)) − Λ · k(G) for some Λ ≥ 0, which favor graphs with a
higher maximum likelihood L(G;D) and a lower number of free parameters to be estimated k(G)
in the graphical model. By setting Λ differently, one can recover some commonly used scoring
functions, such as the AIC score [1] and the BIC score [42].

A crucial property of ℓ0-penalized likelihood scores is their decomposability into node-specific
components. Specifically, assuming that we have n variables in our BNSL problem indexed by
i ∈ V = {1, . . . , n}, the score score(G;D) of a DAG G defined over nodes V satisfies

score(G;D) =

n∑

i=1

scorei (pai(G)) ,

where scorei(pai(G)) denotes the local score of node i (where we omit its dependence on D for
simplicity), whose value only depends on the parent set pai(G) of node i in graph G, i.e., the set
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of nodes pointing towards node i in the directed graph G. Specific definitions of the ℓ0-penalized
likelihood score and its local version, in both discrete and continuous data cases, can be found in
Appendix A.1.

The additive nature of the scoring function enables us to reformulate (1) as an integer (linear) pro-
gram. A classic IP formulation based on cluster constraints [15, 31] is as follows

max
x

n∑

i=1

∑

J∈Pi

scorei(J) · xi←J (2a)

s.t.
∑

J∈Pi

xi←J = 1, i = 1, . . . , n, (2b)

∑

i∈C

∑

J∈Pi:
J∩C 6=∅

xi←J ≤ |C| − 1, C ∈ C, (2c)

xi←J ∈ {0, 1}, i = 1, . . . , n, J ∈ Pi. (2d)

Here Pi := 2V \{i} denotes the set of candidate parent sets of node i, the binary decision variable
xi←J indicates whether parent set J is selected for node i, with an associated local score scorei(J).
The linear objective reflects the score of the graph composed of the selected parent sets. Constraint
(2b) enforces exactly one parent set to be chosen per node, while cluster constraints (2c) [31] guar-
antee acyclicity by preventing directed cycles among any nonempty node subset C ∈ C := 2V \{∅}.

Note that formulation (2) involves Θ(n2n−1) binary variables and Θ(2n) constraints. Due to its
exponential size, even directly writing down (2) as an IP in a computer is infeasible for reasonably
large n, not to say solving it. Although the exponential number of constraints can be addressed

through row generation (i.e., replacing C by a small subset Ĉ in (2) and iteratively adding violated

ones into Ĉ, see Appendix B) [15], the exponential number of variables remains a significant chal-
lenge. To deal with exponentially many variables, existing BNSL IP approaches often rely on a
(compromising) assumption that the size of the parent set for each node is no larger than some con-
stant k, in which case one may replace Pi by {J ∈ Pi : |J | ≤ k} in (2) for all i to reduce the
number of variables [6]. Instead of putting such a restriction on the parent sets, we consider CG for
BNSL as proposed in [16, 18].

2.2 Column Generation and the Pricing Problem for BNSL

Rather than including all the variables, CG handles IPs with huge number of variables by dynami-
cally generating only the necessary ones through the so-called pricing problems. In the context of
the BNSL IP (2), as demonstrated in [18], the CG procedure begins with a restricted set of parent

sets P̂i ⊆ Pi for each node i = 1, . . . , n, and considers a restricted version of (2) only over vari-

ables xi←J , for i = 1, . . . , n, J ∈ P̂i, i.e., (2) with a small subset of columns. We refer to the linear
programming (LP) relaxation of this restricted problem as the Restricted Master LP (RMLP). Based
on the current RMLP solution, CG iteratively searches for additional parent set choices that may
improve the objective value through the solution of a pricing problem for each node i, and add them

to P̂i. This pricing problem aims to optimize the so-called reduced costs, to identify high-quality
parent set choices to gradually enlarge the variable space and solve the LP relaxation of (2).

As pointed out in [18], the pricing problem for generating candidate parent sets for node i can be
formulated as the following optimization problem:

min
J∈Pi

zi(J ;λ
∗) := −scorei(J) + λ∗i +

∑

C∈Ĉ:
i∈C, J∩C 6=∅

λ∗C , (3)

where λ∗i and λ∗C ≥ 0 are the optimal dual values associated with constraints (2b) and (2c) in
the RMLP, respectively. The value of zi(J ;λ

∗) is known as the reduced cost [8] of the variable
xi←J . Its negative measures how much the RMLP objective value might increase by adding the
column associated with xi←J to RMLP. The column generation process terminates when the optimal
reduced cost (3) becomes nonnegative for all the nodes. In this paper, instead of using CG to
construct an exact solution approach like branch and price, we consider a straightforward CG-based
heuristic named the restricted master heuristic [32], where we solve the IP (2) with the candidate set

P̂i generated by CG, namely the Restricted Master IP (RMIP), after CG (approximately) terminates.
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Algorithm 1 The Difference of Convex Algorithm

1: Input: Convex functions gL, fL (and zL = gL − fL), initial point x0, threshold ǫ
2: Initialize t← 0
3: repeat
4: yt ∈ ∂fL(xt)
5: xt+1 ← argminx{g

L(x)− 〈yt, x〉}
6: t← t+ 1
7: until |zL(xt)− zL(xt−1)| < ǫ
8: Return Solution xt, objective value zL(xt)

2.3 Difference of Submodular Optimization via DCA

The pricing problem (3) is a set function optimization problem. Although problem (3), in the con-
tinuous Gaussian case, can be formulated as a mixed-integer nonlinear program (MINLP), solving
it with an MINLP solver is highly computationally demanding as shown in [18]. Taking a direct set
function optimization perspective, it is known that any set function can be written as a difference
of submodular (DS) functions although finding such a DS decomposition has exponential complex-
ity [30]. However, when such a decomposition is known, one can develop efficient algorithms to
find local solutions [30, 22]. Here we briefly review a DS optimization algorithm [22] based on the
well-known DCA [2].

A DS function z : 2V → R is a set function that can be expressed as:

z(J) = g(J)− f(J),

where both g : 2V → R and f are submodular set functions (see Appendix A.2) [25]. For a set
function h : 2V → R, its minimization can be equivalently formulated through its Lovász extension
hL : [0, 1]n → R (see Appendix A.2) [36]. The Lovász extensions for submodular functions are
convex [36], enabling the reformulation of minJ z(J) = g(J) − f(J) as a difference of convex
(DC) program

min
x

zL(x) = gL(x)− fL(x).

To solve this DC optimization problem, DCA (Algorithm 1) iterates between two key steps. First, it

computes a linear approximation f̃L(x) of fL(x) at the current iteration point xt defined by

f̃L(x) = fL(xt) + 〈yt, x− xt〉,

where yt is a subgradient of fL(x) at xt. Subsequently, it minimizes a convex approximation of

the objective zL(x), with fL(x) replaced by f̃L(x). This subproblem is solved to obtain the next
iteration point xt+1.

As the subgradient of the Lovász extension of a submodular function can be efficiently evaluated
through its function evaluation, the convex program (Line 5) in Algorithm 1 can be efficiently solved
via bundle methods [4]. In our case, we adopt the classic Kelley’s Algorithm [33] for numerical
experiments.

One important advantage of DCA is that it guarantees a non-increasing sequence of objective values,
i.e., for t ≥ 0, we have

zL(xt+1) ≤ zL(xt). (4)

It is also easy to recover a solution of the original set function optimization problem from DCA, as
the function value of z agrees with zL at integer solutions. Since the convex function gL(x)−〈yt, x〉
is the Lovász extension (which characterizes the convex envelope) of a submodular function (i.e., g
plus a modular function), all extreme point solutions of the convex program (Line 5) in Algorithm 1
are integer solutions.

3 Solution of the Pricing Problem

3.1 The Pricing Problem as DS Optimization

A key step in CG is the solution of the pricing problem (3) that iteratively selects “promising”
columns to add into the restricted problem formulation. Existing MINLP approaches are known

4



to have very limited scalability to solve the pricing problem for BNSL [18]. We show in this section
how the pricing problem can be explicitly rewritten as a DS optimization problem, enabling us to
take advantage of the DCA algorithm we describe in Section 2.3.

Recall that the pricing problem for node i is formulated as minimizing the reduced cost

min
J∈Pi

zi(J ;λ
∗) = −scorei(J) + λ∗i +

∑

C∈Ĉ:
i∈C, J∩C 6=∅

λ∗C .

For both continuous and discrete cases, we show how the ℓ0-penalized likelihood score zi(J ;λ
∗)

can be expressed as a DS function.

Proposition 1 (Continuous Case). For continuous data with the ℓ0-penalized Gaussian likelihood
score, zi(J ;λ

∗) satisfies

zi(J ;λ
∗) = g(J)− f(J) +

N

2
log(2π + 1),

where

g(J) =
N

2
log det(Σ̂J∪i,J∪i) + Λ|J |+

∑

C∈Ĉ:
i∈C, J∩C 6=∅

λ∗C + λ∗i

and

f(J) =
N

2
log det(Σ̂J,J)

are both submodular functions, with Σ̂J,J and Σ̂J∪i,J∪i denoting the empirical covariance matrices
associated with variables {Xj : j ∈ J} and {Xj : j ∈ J ∪ {i}}, respectively.

Proposition 2 (Discrete Case). For discrete data with the ℓ0-penalized multinomial likelihood score,
zi(J ;λ

∗) satisfies

zi(J ;λ
∗) = g(J)− f(J),

where

g(J) = N ·H(J ∪ {i}) +
∑

C∈Ĉ:
i∈C, J∩C 6=∅

λ∗C + λ∗i

and

f(J) = N ·H(J)− Λ(ai − 1)
∏

j∈J

aj

are both submodular functions, with H(J) and H(J ∪ i) denoting the joint entropy associated with
variables {Xj : j ∈ J} and {Xj : j ∈ J ∪ {i}}, respectively, and aj denoting the arity (i.e., the
number of possible values it can take) of the variable Xj for j = 1, . . . n.

Proofs of Propositions 1 and 2 can be found in Appendix C.

3.2 Implementation of DCA for Pricing

We have reformulated the pricing objective as a DS function in Propositions 1 and 2. As established
in Section 2.3, minimizing the pricing objective is then equivalent to minimizing the difference of
convex functions zL(x) = gL(x)− fL(x), where gL(x) and fL(x) represent the Lovász extension
of submodular functions g and f , respectively.

To optimize this objective, we apply DCA, i.e., Algorithm 1, to iteratively minimize zL(x) through
its successive convex approximations. The DCA procedure for solving the pricing problem for
node i proceeds as follows. The algorithm begins by initializing an (n − 1)-dimensional solution
vector (xj)j∈V \{i}. The required inputs include the dataset D ∈ R

N×n, node index i, optimal dual
solutions λ∗ of RMLP, regularization parameter Λ, and convergence thresholds ǫ.

During iteration t, the algorithm first computes the subgradient yt of fL at the current solution xt.
Without loss of generality, assume for simplicity that i = n. Let σ be a permutation of {1, . . . , n−1}

5



such that xt
σ(1) ≥ xt

σ(2) ≥ . . . ≥ xt
σ(n−1). For the continuous case, a subgradient yt of fL at xt is

given by

ytσ(k) =

{
log det(Σ̂{σ(1)}) k = 1

log det(Σ̂{σ(1),...,σ(k)})− log det(Σ̂{σ(1),...,σ(k−1)}) k ≥ 2,

where Σ̂{σ(1),...,σ(k)} denotes the empirical covariance matrix for the corresponding columns

{σ(1), . . . , σ(k)} of the data matrix D ∈ R
N×n.

To improve computational efficiency, we compute subgradients using Cholesky decomposition. By

the lemma below, for any fixed permutation σ, we can efficiently calculate log det(Σ̂σ(1),...,σ(m))

(m < n − 1) directly from the Cholesky factor L of the permuted matrix Σ̂σ(1),...,σ(n−1) = LL⊤.
This approach requires only a single Cholesky decomposition of the permuted covariance matrix
to obtain all necessary subgradients for the Lovász extension, rather than explicitly computing

log det(Σ̂(·)) for O(n) times.

Lemma 1. Let M be a p × p positive definite symmetric matrix with lower-triangular Cholesky
factor L. In block form, these matrices can be written as

M =

[
M11 M12

M21 M22

]
, L =

[
L1 O
Y L2

]
,

where M11 and L1 are m×m blocks (m < p) and O is a zero matrix of appropriate size. Then L1

is the Cholesky factor of M11, and consequently,

log det(M11) = log(det(L1)
2) = 2

m∑

k=1

logLk,k.

For the discrete case, a subgradient yt of fL at xt is given by

y
t
σ(k) =

{

H({σ(1)})− Λ(an − 1)(aσ(1) − 1) k = 1

H({σ(1), . . . σ(k)})−H({σ(1), . . . , σ(k − 1)})− Λ(an − 1)(aσ(k) − 1)
∏k−1

j=1 aσ(j) k ≥ 2.

After evaluating log det(Σ̂(·)) or H(·) during the computation of yt, it is crucial to save the evaluated
values to avoid repeating calculations in the future. This small trick greatly improves the efficiency
of DCA in pricing problem solutions in practice.

4 Row and Column Generation Scheme

Algorithm 2 demonstrates how we incorporate our DCA pricing method into a simultaneous row
and column generation framework. The algorithm begins by initializing the candidate parent sets

P̂1:n and the cluster set Ĉ with basic candidates (Line 2). It then iterates among three main phases:
(1) a CG phase (Lines 4-14) where the RMLP is solved to obtain optimal dual solutions λ∗, followed
by the solution of the pricing problem for each node via DCA — The pricing solutions that have

negative reduced costs are added to P̂i. The CG phase repeats until all reduced costs become non-
negative. In Line 8, the pricing problem on node i is solved only when the current reduced cost
rci is negative, to avoid spending too much time on pricing; (2) a row generation phase (Lines
15-21) where the RMLP optimal solution is used to identify the most violated cluster constraint

(see Appendix B for details) which is added to cluster set Ĉ; (3) the integer solution phase (Line

22), where the algorithm finds the optimal DAG G with current candidate P̂1:n — This is achieved
by solving RMIP using branch and cut with callbacks (a feature that allows users to interrupt the
solution process in modern IP solvers such as Gurobi), where we check if any cluster constraint is
violated when we meet an integer incumbent and add violated cluster constraints as lazy constraints.
The three phases iterate until convergence to a valid DAG solution, progressively refining both the

columns in P̂1:n and cluster constraints in Ĉ.

When we implement the CG phase in Algorithm 2, in addition to the final solution generated by

DCA, we add to P̂i all candidate parent sets associated with intermediate xt solutions that have
negative reduced costs. Empirically, we find that it helps accelerate convergence and improves
solution quality. In addition, we initialize the RMIP with the optimal IP solution obtained from the
last round, as it remains feasible and empirically reduces the solution time.
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Algorithm 2 Row and Column Generation for BNSL

1: Input: Data matrix D ∈ R
N×n, regularization parameter Λ

2: Initialize the cluster set Ĉ ← ∅, and candidate parent sets P̂i ← {∅} for i = 1, . . . , n
3: repeat
4: Initialize rci ← −∞ for i = 1, . . . , n ⊲ initialize reduced costs
5: repeat
6: Solve RMLP to obtain the optimal dual values λ∗

7: for i = 1, . . . , n do
8: if rci < 0 then ⊲ selectively solve pricing problems
9: Choose an initial point x0 for DCA

10: (pa, rci)← DCA-Pricing(D, i, x0, λ∗,Λ, ǫ) ⊲ DCA pricing

11: P̂i ← P̂i ∪ {pa} ⊲ column generation
12: end if
13: end for
14: until rci ≥ 0 for i = 1 . . . n
15: repeat

16: Solve RMLP with updated P̂ and Ĉ
17: Identify the most violated cluster constraint C∗ ⊲ row generation for RMLP
18: if the cluster constraint associated with C∗ is violated then
19: Ĉ ← Ĉ ∪ {C∗}
20: end if
21: until no new violated constraint can be found
22: G← optimal DAG chosen from P̂1:n; simultaneously update Ĉ ⊲ row generation for RMIP
23: until G converges
24: return G

4.1 Choice of the Initial Point

A step that remains ambiguous in Algorithm 2 is the choice of the initial point x0 for DCA (Line 9),
which we find having a significant impact on the overall solution time and solution quality. Below
we first describe two initialization strategies.

The first strategy is a warm-start initialization strategy. Note that by the complementarity property

of optimal solutions in LP [8], the parent sets selected (i.e., parent sets J ∈ P̂i associated with
the primal variables xi←J taking positive values) in the RMLP solution have reduced costs equal
to zero. Therefore, we consider using the parent sets selected in the RMLP solution to construct
the initial solution x0 for DCA. Due to the monotonicity property (4) of DCA, it often quickly
finds columns with negative reduced costs, leading to a rapid convergence of DCA. However, a
drawback of the warm-start initialization strategy is that it may restrict exploration of parent sets
as the evaluation remains localized around columns already contained in the candidate parent set
choice set. Preliminary experiments show that a pure warm-start initialization strategy can quickly
find a DAG with a good score while the solution often deviates a lot from the ground truth due to its
greedy nature.

The second strategy employs a random initialization that samples a point x0 uniformly from

[0, 1]V \{i}. This random initialization strategy facilitates global exploration on the parent set space

and may discover patterns distant from the current ones in P̂i. However, we find that exclusive
reliance on random initialization can significantly slow down DCA convergence, as computational
resources may be expended on evaluating solutions far from the optimum.

A hybrid initialization strategy that combines efficiency and diversity of the previous two strategies
is often more effective in practice. In our implementation, we initially employ random initialization

to broadly explore the solution space. Once the candidate set P̂i contains a reasonably large num-
ber (set to be 50 in our implementation) of parent sets, we switch to warm-start initialization for
pricing at node i. This hybrid approach focuses on local refinement around the current best pattern
while building upon the foundation of global exploration. A comparison of the three initialization
strategies can be found in Appendix D.1.
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Table 1: Score and Time Comparison between CG-DCA and GOBNILP on Gaussian Datasets

(n,N, d)
BIC Score Gap (%) Time (seconds)

CG-DCA GOBNILP CG-DCA GOBNILP

(15, 5000, 0.5) (0.00, 0.00) [0.00] (0.00, 1.46) [0.15] ( 1.12, 14.71) [ 4.06] ( 5.47, 24.28) [ 8.33]

(15, 5000, 1.0) (0.00, 0.24) [0.03] (0.00, 1.06) [0.22] ( 2.54, 93.58) [ 25.76] ( 5.72, 56.11) [ 19.74]

(15, 5000, 1.5) (0.00, 0.62) [0.16] (0.00, 2.18) [0.62] ( 17.95, 196.01) [ 76.72] ( 11.51, 137.52) [ 60.09]

(15, 5000, 2.0) (0.00, 0.84) [0.39] (0.48, 4.88) [2.06] ( 41.13, 340.22) [ 170.39] ( 22.99, 641.90) [ 167.41]

(15, 20000, 0.5) (0.00, 0.00) [0.00] (0.00, 0.64) [0.06] ( 3.53, 35.11) [ 10.17] ( 5.53, 12.62) [ 7.35]

(15, 20000, 1.0) (0.00, 0.27) [0.03] (0.00, 1.19) [0.23] ( 7.52, 100.20) [ 36.71] ( 1.31, 93.02) [ 19.67]

(15, 20000, 1.5) (0.00, 0.11) [0.02] (0.00, 3.10) [0.86] ( 25.17, 265.33) [ 104.25] ( 12.34, 285.39) [ 76.29]

(15, 20000, 2.0) (0.00, 0.94) [0.23] (0.98, 3.97) [2.01] ( 55.11, 335.96) [ 229.80] ( 11.66, 190.19) [ 89.92]

(20, 5000, 0.5) (0.00, 0.01) [0.00] (0.00, 0.18) [0.02] ( 2.49, 20.20) [ 9.53] ( 1.36, 6.99) [ 3.38]

(20, 5000, 1.0) (0.00, 0.08) [0.01] (0.00, 1.38) [0.35] ( 5.97, 150.18) [ 84.34] ( 1.59, 1714.57) [ 287.87]

(20, 5000, 1.5) (0.01, 0.51) [0.22] (0.00, 4.30) [1.63] (144.94, 539.72) [ 312.67] ( 121.01, 3483.96) [ 962.50]

(20, 5000, 2.0) (0.22, 1.15) [0.70] (0.07, 10.42) [4.77] (403.98, 1904.24) [1039.53] (1063.89, 8703.57) [4603.81]

(20, 20000, 0.5) (0.00, 0.00) [0.00] (0.00, 0.35) [0.04] ( 6.57, 36.37) [ 18.42] ( 1.50, 11.25) [ 4.92]

(20, 20000, 1.0) (0.00, 0.22) [0.03] (0.00, 1.49) [0.22] ( 13.72, 330.05) [ 133.69] ( 1.54, 1371.66) [ 261.89]

(20, 20000, 1.5) (0.00, 0.43) [0.15] (0.00, 3.17) [1.45] (216.26, 821.01) [ 425.17] ( 135.59, 7269.60)[2457.26]

(20, 20000, 2.0) (0.09, 1.08) [0.54] (0.21, 7.05) [3.63] (457.33, 1739.24) [ 997.99] ( 517.67, 10801.59) [4394.45]

(25, 5000, 0.5) (0.00, 0.00) [0.00] (0.00, 0.82) [0.12] ( 2.73, 67.05) [ 21.97] ( 1.61, 151.24) [ 21.95]

(25, 5000, 1.0) (0.00, 0.25) [0.03] (0.00, 1.83) [0.56] ( 28.04, 953.40) [ 261.84] ( 11.14, 7451.37) [1964.11]

(25, 5000, 1.5) (0.00, 1.11) [0.24] (0.09, 5.27) [1.92] (144.19, 2880.93) [ 949.90] ( 84.46, 10801.61) [5805.01]

(25, 5000, 2.0) (0.00, 2.18) [0.86] (1.84, 10.18) [5.15] (448.93, 12665.38) [3054.63] ( 723.38, 10801.63) [8500.77]

(25, 20000, 0.5) (0.00, 0.01) [0.00] (0.00, 0.78) [0.09] ( 9.50, 164.57) [ 50.22] ( 1.62, 169.94) [ 23.96]

(25, 20000, 1.0) (0.00, 0.22) [0.06] (0.00, 2.72) [0.40] ( 70.34, 1287.17) [ 404.43] ( 11.86, 10801.48) [1948.05]

(25, 20000, 1.5) (0.00, 1.19) [0.23] (0.66, 5.47) [2.21] (237.86, 4955.58) [1372.59] ( 115.63, 10801.73) [5853.91]

(25, 20000, 2.0) (0.00, 2.71) [0.67] (1.50, 8.30) [4.51] (733.04, 7371.52) [3189.98] (2302.81, 10801.71) [7967.28]

*The values are the (min, max)[average] over ten independent instances.

5 Numerical Experiments

To evaluate the efficiency of our method, we conducted numerical experiments comparing the per-
formance of our Column Generation with DCA-pricing (CG-DCA) method against five baseline
methods: GOBNILP [17], CG-MINLP [18] (in Section 5.1), HC [28] (in Appendix D.2), stable-PC
[14] and MMHC [47]. For score-based approaches, we use the BIC score as our scoring function.
While CG-MINLP is evaluated on Gaussian.test dataset in the R package bnlearn [43], other
methods are tested on both simulated and real-world datasets. We implement CG-DCA in python,
and utilize the python implementation of GOBNILP. The last three baseline methods are tested using
bnlearn in R. All IP-related experiments are conducted on a Linux machine with two Intel XEON
Platinum 8575C processors, with the number of threads used limited to 1. All IPs are solved using
Gurobi 11.0.3.

5.1 Comparing DCA with MINLP for Pricing

We first compare the performance of CG with different pricing algorithms: our proposed CG-
DCA versus the exact MINLP solver for pricing (CG-MINLP). The evaluation is conducted on
the Gaussian.test dataset containing a ground truth graph with 7 nodes and 7 edges. For this
small instance, CG-DCA successfully learns the exact ground truth structure in 1.2 seconds, while
CG-MINLP requires 19.2 seconds to achieve the same result.

For larger instances, CG-MINLP usually fails to produce a valid solution DAG within a reasonable
time limit as solving the pricing problem exactly as an MINLP is quite cumbersome in practice. For a
graph with node size n = 20 and average in-degree d = 1 (N = 5,000, simulated as in Section 5.2),
solving the first pricing problem using MINLP takes an average of 35.1 seconds per node, while the
DCA method takes 0.3 second per node for the same instance. The difference is even larger for later
pricing problems. In addition, MINLP approaches suffer from numerical issues as they require an
approximation for the nonlinear log function (at least in Gurobi), producing inaccurrate estimates
for the pricing objective.

5.2 Results on Simulated Gaussian Data

Now we test on larger instances with Gaussian data. Following the experimental setup in [18, 9],
we randomly generate Bayesian networks with node size n ∈ {15, 20, 25}, and simulate Gaussian
data from those networks. To generate the DAGs, we first fix a topological order of the nodes
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Table 2: Performance Comparison of CG-DCA, GOBNILP (GI), (Stable-)PC and MMHC on Gaus-
sian Datasets

(n,N, d)
Precision Recall SHD

CG-DCA GI PC MMHC CG-DCA GI PC MMHC CG-DCA GI PC MMHC

(15, 5000, 0.5) 0.78 0.66 0.59 0.50 0.80 0.73 0.62 0.51 1.70 2.90 3.00 3.50

(15, 5000, 1.0) 0.70 0.67 0.72 0.59 0.78 0.72 0.67 0.54 6.20 5.00 4.80 6.70

(15, 5000, 1.5) 0.65 0.73 0.61 0.56 0.77 0.80 0.54 0.48 11.80 7.40 11.50 12.20

(15, 5000, 2.0) 0.55 0.58 0.54 0.52 0.72 0.65 0.39 0.36 21.90 16.90 20.90 20.40

(15, 20000, 0.5) 0.71 0.69 0.68 0.53 0.74 0.73 0.68 0.53 2.20 2.20 1.90 3.00

(15, 20000, 1.0) 0.76 0.78 0.71 0.61 0.78 0.81 0.69 0.59 4.10 4.00 4.70 6.20

(15, 20000, 1.5) 0.76 0.73 0.72 0.66 0.85 0.79 0.66 0.57 6.90 9.40 8.60 10.00

(15, 20000, 2.0) 0.61 0.53 0.53 0.55 0.75 0.60 0.43 0.39 20.60 19.90 20.01 19.80

(20, 5000, 0.5) 0.74 0.71 0.76 0.59 0.80 0.75 0.79 0.60 3.40 3.50 2.60 4.40

(20, 5000, 1.0) 0.71 0.69 0.75 0.65 0.76 0.77 0.71 0.59 3.70 7.50 5.90 7.90

(20, 5000, 1.5) 0.50 0.61 0.62 0.65 0.71 0.71 0.50 0.49 28.20 16.80 17.90 16.80

(20, 5000, 2.0) 0.44 0.46 0.54 0.55 0.66 0.53 0.34 0.31 36.40 33.60 31.50 31.10

(20, 20000, 0.5) 0.82 0.80 0.73 0.58 0.83 0.82 0.76 0.59 2.20 2.60 3.00 4.60

(20, 20000, 1.0) 0.61 0.73 0.79 0.68 0.70 0.79 0.77 0.65 8.30 6.90 4.90 7.10

(20, 20000, 1.5) 0.65 0.58 0.64 0.63 0.81 0.68 0.56 0.50 16.70 18.20 16.00 16.50

(20, 20000, 2.0) 0.52 0.48 0.51 0.56 0.73 0.55 0.37 0.33 33.00 32.40 31.30 29.30

(25, 5000, 0.5) 0.82 0.61 0.84 0.69 0.84 0.67 0.84 0.69 2.70 5.90 2.70 4.40

(25, 5000, 1.0) 0.81 0.69 0.80 0.74 0.86 0.76 0.75 0.69 6.70 11.10 7.40 8.70

(25, 5000, 1.5) 0.66 0.57 0.70 0.71 0.75 0.68 0.58 0.56 13.60 22.10 18.50 18.00

(25, 5000, 2.0) 0.54 0.47 0.53 0.59 0.73 0.54 0.35 0.35 45.70 40.30 38.70 36.50

(25, 20000, 0.5) 0.76 0.80 0.81 0.70 0.80 0.84 0.83 0.70 3.70 2.80 2.80 4.30

(25, 20000, 1.0) 0.76 0.71 0.81 0.68 0.86 0.76 0.78 0.64 9.10 9.90 6.70 9.90

(25, 20000, 1.5) 0.57 0.53 0.73 0.63 0.67 0.66 0.63 0.51 14.10 25.00 16.50 19.50

(25, 20000, 2.0) 0.54 0.48 0.61 0.59 0.66 0.56 0.46 0.40 23.90 39.10 33.80 34.10

*Each value is the average over ten independent instances.

and then simulate edges according to the specified probabilities where edges must be directed from
lower-order nodes to higher-order nodes (there are n(n − 1)/2 such possible edges). While we do
not enforce a maximum in-degree of each node, we randomly simulate edges using their existence
probability p determining the overall density of the graph, i.e., for each possible edge we include
it in the network with probability p. The average in-degree d of nodes in the ground truth DAG is
controlled by the edge existence probability since p = 2d/(n− 1). We vary p such that d is varied
among {0.5, 1, 1.5, 2}.

After generating the random graph structure, we simulate Gaussian data based on the network topol-
ogy. The linear coefficients for the features were randomly drawn from the interval ±[0.5, 2], with
additive noise following the Normal distribution N(0, σ2). The true value of variance parameter σ2

is uniformly drawn from the interval [0.7, 1.2].

Tables 1 and 2 present a comparison between CG-DCA and baseline methods across various node
sizes (n), and average in-degrees (d) with N = 5,000 and N = 20,000. For each graph structure,
we generate 10 independent data instances using different random seeds and record the average
performance metrics.

Table 1 reports the BIC score gap (difference between the achieved BIC score and BIC score of
the true graph) and the runtime (with a 3-hour time limit per instance) of CG-DCA and GOBNILP.
As demonstrated in Table 1, the CG-DCA method consistently outperforms GOBNILP in terms of
average scores across simulated Gaussian datasets. Notably, CG-DCA achieves optimal BIC scores
for instances with sparse graph structures (d = 0.5). As the number of nodes increases, CG-DCA
exhibits a slower growth in runtime compared to GOBNILP while maintaining superior scoring
performance. The robustness in both computational efficiency and solution quality with respect to
node count (n) and graph density (d) makes CG-DCA more suitable for larger problems.

In Table 2, we compare four methods with the following metrics on the quality of the solution graphs:
(1) precision and recall [46], which measure the proportion of true edges among predicted edges and
predicted edges among true edges, respectively; (2) the structural Hamming distance (SHD) [47],
which quantifies the dissimilarity between two graphs by counting the required edge additions, dele-
tions, or reversals to make one graph identical to another [3]. Prior to computing these metrics, we
convert both predicted and true graphs into their corresponding essential graphs [3], which represent
their Markov equivalence classes. The conversion of essential graphs is performed following the
methodology described in [38]. We also have results for HC but only present them in Appendix
D.2 due to its inferior performance. Notably, CG-DCA achieves better average recall across most
instances while maintaining competitive precision and SHD compared to other constraint-based and
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Table 3: Performance Comparison of CG-DCA, GOBNILP (GI), (Stable-)PC, and MMHC on Dis-
crete Datasets

Dataset
Precision Recall SHD

CG-DCA GI PC MMHC CG-DCA GI PC MMHC CG-DCA GI PC MMHC

LUCAS 0.77 1.00 0.83 0.33 0.83 1.00 0.83 0.33 3 0 2 8
INSURANCE 0.53 0.90 0.91 0.64 0.44 0.83 0.58 0.35 37 11 22 34
ALARM 0.46 0.87 0.83 0.47 0.50 0.89 0.76 0.33 35 7 11 32

hybrid approaches. Better performance on recall than on precision and SHD indicates that CG-DCA
tends to select denser graphs than others.

5.3 Results on Discrete Data

Table 3 compares four methods on discrete datasets LUCAS [23] with (n,N, d) = (12, 2000, 1),
INSURANCE [10] with (n,N, d) = (27, 20000, 3.85) and ALARM [7] with (n,N, d) =
(37, 20000, 2.49). GOBNILP demonstrates superior performance in all three discrete datasets.

Although CG-DCA is an option for small discrete dataset, its performance degrades with larger net-
works. This is because the discrete BIC score contains a highly supermodular penalization term
(ai − 1)

∏
j∈J aj , making DCA less effective for DS optimization. Thus, development of an im-

proved decomposition strategy for discrete scores (potentially other scores like BDeu [11]) is essen-
tial to broaden the applicability of DCA to larger discrete Bayesian networks.

6 Conclusion

In this paper, we propose CG-DCA, a method that leverages difference-of-submodular minimization
to solve the pricing problem within CG framework for BNSL. Empirical results demonstrate that CG-
DCA outperforms state-of-the-art score-based methods on simulated Gaussian datasets with varying
node sizes, sample sizes, and graph densities, yielding solutions of high quality.

While CG-DCA is a viable approach for small graphs with discrete data, its scalability to larger
graphs remains limited due to the high supermodularity induced by the penalty term in the discrete
BIC function. To mitigate this limitation, one could explore alternative decomposition strategies for
(potentially different) discrete scoring functions or develop new DS optimization techniques tailored
to this specific computational challenge. Furthermore, building upon our efficient pricing heuristic,
future research could be focused on developing exact pricing algorithms to enhance both the con-
vergence guarantees and solution optimality of CG, by leveraging exact approaches for submodular
[36] and supermodular [39] optimization.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction (Section 1), we clearly state the contributions
and scope of this paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of our work is mainly discussed in Section 5.3 and in the
conclusion (Section 6)

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Our theoretical results are in Proposition 1 and 2. The proofs are in Appendix
C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation details of our algorithm and the experiment settings are
fully discussed, which can be found in Section 3.2, 4 and 5.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the access to the code of our method and the code for generating
data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more de-
tails.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The factors of variability that the error bars are capturing should be clearly stated (for
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A Definitions

A.1 The Data Matrix and Scoring Functions

We denote D as the dataset, which is an N×n matrix where N is the sample size and n is the number
of random variables (nodes in Bayesian Network). The entry Dij is the value of j-th variable Xj in
the i-th observation. For discrete labeled data, each label is mapped to a distinct numerical value.

We use the ℓ0-penalized log-likelihood function as the scoring function of a DAG, which is

score(G;D) := log(L(G;D))− Λ · k(G)

for some Λ ≥ 0. Here, L(G;D) is the likelihood of the graph structure G under data D, and k(G)
is the number of free parameters to be estimated in the graphical model. A crucial property of this
scoring function is that it can be decomposed into node-specific local scores

score(G;D) =

n∑

i=1

scorei(pai(G)),

where each local score scorei(pai(G)) only depends on a node i and its parent set pai(G).

For continuous data, we assume that variables {Xi}i∈V are mean-normalized such that E[Xi] = 0.

We also assume that if J is the parent set of node i, then Xi ∼ N(α⊤iJXJ , σ
2
i←J ) [48], where

XJ = {Xj}j∈J . The parameters αiJ and σ2
i←J are unknown. The likelihood function defining

scorei(J) has included these parameters by their maximum likelihood estimator, thus its value
only depends on J = pai(G). The resulting local score scorei(J) in this context is

scorei(J) = −
N

2
(1 + log(2π))−

N

2
log(σ̂2

i←J)− Λ|J |,

where
σ̂2
i←J = min

α∈R|J|
E
P̂

[
(α⊤XJ −Xi)

2
]

denotes the empirical residual variance (under the empirical distribution P̂) of the linear regression
predicting Xi (with E[Xi] = 0) from the features XJ . For simplicity, we will ignore the constant

−N
2 (1 + log(2π)) in our pricing problem optimization framework established based on Proposi-

tion 1.

For discrete data, we assume that if J is the parent set of node i, then Xi follows a multinomial dis-
tribution with parameters depending on the configuration of the parent set values XJ := {Xj}j∈J .
The local score for discrete data using multinomial likelihood is

scorei(J) =
∑

xi∈Si

∑

xJ∈SJ

#(xi,xJ ) log

(
#(xi,xJ )

#(xJ )

)
− Λ(ai − 1)

∏

j∈J

aj ,

where Si and SJ represent the sets of possible values that Xi and XJ can take, respectively. The
arity (i.e., the number of possible values it can take) of variable Xj is denoted by aj for j = 1, . . . , n.
The count function #(xi,xJ ) = Count(Xi = xi,XJ = xJ) counts joint occurrences in the dataset
D, and #(xJ ) = Count(XJ = xJ ) provides the corresponding marginal counts.

A.2 Submodular Function and Lovász Extension Function

We adopt standard definitions of the submodular set function and the Lovász extension [36].

Definition 1 (Submodular Set Function). Let V be a finite ground set. A set function f : 2V → R is
submodular if it satisfies the diminishing return property, i.e., for all A ⊆ B ⊆ V and v ∈ V \B,

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B)

A function is supermodular if −f is submodular, and is modular if it is both submodular and super-
modular.

Definition 2 (Lovász Extension). Let f : 2V → R be a set function defined on a ground set
V = {1, . . . , d}. Given a point x ∈ [0, 1]d, let σ be a permutation of V such that

xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(d).
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Define the nested subsets Sσ
k = {σ(1), . . . , σ(k)} for k ∈ {1, . . . , d}, and Sσ

0 = ∅. The Lovász

extension fL : [0, 1]d → R of the set function f at point x is defined as

fL(x) =

d∑

k=0

(
xσ(k) − xσ(k+1)

)
f(Sσ

k ),

where xσ(0) := 1 and xσ(d+1) := 0.

B Row Generation and the Separation Problem

The exponential number of cluster constraints can be handled through row generation [15]. This

cutting plane approach starts with a restricted set Ĉ and sequentially adds constraints violated by the
current solution x∗. For an integer solution x∗, the separation problem identifies violated cluster
constraints via cycle detection in the decoded graph from x∗ (using, e.g., depth-first search). For a
fractional solution of RMLP, the separation problem identifies maximally violated cluster constraints
through

max
C




∑

i∈C

∑

J∩C 6=∅

x∗i←J − |C|



 ,

which can be formulated as an Separation IP as follows:

max
y,z

n∑

i=1

∑

J∈P̂i

x∗i←J · yiJ −
n∑

i=1

zi (5a)

s.t. yiJ ≤ zi, i = 1, . . . , n, J ∈ P̂i, (5b)

yiJ ≤
∑

i′∈J

zi′ , i = 1, . . . , n, J ∈ P̂i, (5c)

n∑

i=1

zi ≥ 1, (5d)

yiJ ∈ {0, 1}, zi ∈ {0, 1}, i = 1, . . . , n, J ∈ P̂i. (5e)

The optimal solution (y∗, z∗) of Problem (5) defines the new cluster C∗ = {i : z∗i = 1} to be added

to Ĉ.

The complete row and column generation algorithm iteratively alternates between column genera-
tion for variable selection and row generation for constraint enforcement, dynamically refining both
the solution space and constraint set.

C Proofs

C.1 Proof of Proposition 1

Proof. Recall that for Gaussian data,

scorei(J) = −
N

2
log(2π + 1)−

N

2
log(σ̂2

i←J )− Λ|J |.

The conditional variance σ̂2
i←J satisfies:

σ̂2
i←J = min

α∈R|J|
E
P̂
[(α⊤XJ −Xi)

2]

= min
α∈R|J|

α⊤Σ̂J,Jα− 2α⊤Σ̂J,i + Σ̂i,i

= Σ̂i,i − Σ̂i,J Σ̂
−1
J,J Σ̂J,i

= det(Σ̂J∪i,J∪i)/det(Σ̂J,J),
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where the last equality is due to the Schur complement, P̂ denotes the empirical distribution, with

Σ̂J,J , Σ̂i,J , Σ̂J∪i,J∪i and Σ̂i,i representing the empirical covariance matrices of variable set XJ ,
cross-covariance between Xi and XJ , joint covariance of XJ ∪Xi and variance of Xi, respectively.

The logarithmic transformation yields

log(σ̂2
i←J) = log det(Σ̂J∪i,J∪i)− log det(Σ̂J,J),

where both log det(Σ̂J,J) and log det(Σ̂J∪i,J∪i) are submodular functions of set J [34]. Function
Λ|J |+ λ∗i is modular in J .

The remaining term involving J ,
∑

C∈Ĉ:
i∈C, J∩C 6=∅

λ∗C , in the pricing objective is also submodular in J .

This follows from the property that for any J1 ⊆ J2 and j /∈ J2,
∑

C∈Ĉ: i∈C, J1∩C=∅

λ∗C ≥
∑

C∈Ĉ: i∈C, J2∩C=∅

λ∗C .

Given that λ∗C ≥ 0, the above inequality holds since J1 ⊆ J2 implies that C ∩ J2 = ∅ necessitates
C ∩ J1 = ∅.

Consequently, the pricing objective to be minimized can be expressed as the following DS function:

z(J ;λ∗) =
N

2
log det(Σ̂J∪i,J∪i) + Λ|J |+

∑

C∈Ĉ:
i∈C, J∩C 6=∅

λ∗C + λ∗i

︸ ︷︷ ︸
submodular

−
N

2
log det(Σ̂J,J )

︸ ︷︷ ︸
submodular

+
N

2
log(2π+1).

C.2 Proof of Proposition 2

Proof. Recall that for multinomial data,

scorei(J) =
∑

xi∈Si

∑

xJ∈SJ

#(xi,xJ ) log

(
#(xi,xJ )

#(xJ )

)
− Λ(ai − 1)

∏

j∈J

aj .

We reformulate the first term as follows:

∑

xi∈Si

∑

xJ∈SJ

#(xi,xJ ) log

(
#(xi,xJ )

#(xJ )

)

=
∑

xi∈Si

∑

xJ∈SJ

#(xi,xJ ) log(#(xi,xJ ))−
∑

xJ∈SJ

#(xJ ) log(#(xJ ))

=N

[
∑

xi∈Si

∑

xJ∈SJ

P̂(Xi = xi,XJ = xJ) log P̂(Xi = xi,XJ = xJ)−
∑

xJ∈SJ

P̂(XJ = xJ) log P̂(XJ = xJ )

]

=N(−H(J ∪ {i}) +H(J)),

where N is the sample size. The functions

H(J) := −
∑

xJ∈SJ

P̂(XJ = xJ) log P̂(XJ = xJ)

and
H(J ∪ {i}) := −

∑

xi∈Si

∑

xJ∈SJ

P̂(Xi = xi,XJ = xJ) log P̂(Xi = xi,XJ = xJ )

denote the entropy functions, which are known to be submodular [24].

By the proof of Proposition 1,
∑

C∈Ĉ:
i∈C, J∩C 6=∅

λ∗C is submodular in J . It is also easy to verify that

(ai − 1)
∏

j∈J aj is supermodular in J as aj ≥ 1 for j ∈ J ∪ {i}.
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Therefore, the pricing objective can be expressed as the following DS function:

z(J ;λ∗) = N ·H(J ∪ {i}) +
∑

C:C∈C
i∈C

C∩J 6=∅

λ∗C + λ∗i

︸ ︷︷ ︸
submodular

−


N ·H(J)− Λ(ai − 1)

∏

j∈J

aj




︸ ︷︷ ︸
submodular

.

D Supplementary Numerical Results

D.1 Comparison of DCA initialization methods

To evaluate the sensitivity of DCA initialization, we compare the BIC scores and time costs across
three initialization methods (warm-start, random, and hybrid). The results are summarized in Table 4
and 5:

Table 4: BIC Score Comparison of the Three Initialization Approaches for DCA

(n,N, d) hybrid random warmstart

(15, 5000,0.5) -101818.64 -101818.64 -101819.58

(15, 5000,1.0) -101954.63 -101939.75 -101975.70

(15, 5000,1.5) -101411.14 -101376.34 -101509.59

(15, 5000,2.0) -101646.26 -101556.54 -101608.25

(15, 20000,0.5) -406345.25 -406345.25 -406346.23

(15, 20000,1.0) -410415.68 -410415.68 -410382.11

(15, 20000,1.5) -405344.24 -405487.19 -405599.33

(15, 20000,2.0) -400909.42 -400861.51 -401710.97

(20, 5000,0.5) -136605.28 -136605.28 -136734.74

(20, 5000,1.0) -137222.13 -137212.97 -137363.27

(20, 5000,1.5) -136624.81 -136577.03 -136957.87

(20, 5000,2.0) -136849.69 -136610.04 -136750.44

(20, 20000,0.5) -535047.92 -535047.92 -535183.20

(20, 20000,1.0) -541850.16 -541887.02 -542168.27

(20, 20000,1.5) -538682.19 -538693.99 -539863.90

(20, 20000,2.0) -535301.38 -534115.87 -534939.03

(25, 5000,0.5) -170751.53 -170751.53 -170751.74

(25, 5000,1.0) -170279.79 -170296.43 -170302.01

(25, 5000,1.5) -171308.77 -171157.64 -171289.38

(25, 5000,2.0) -171333.89 -171105.48 -170760.08

(25, 20000,0.5) -677813.87 -677813.87 -677812.65

(25, 20000,1.0) -683475.44 -683189.30 -683826.26

(25, 20000,1.5) -676190.15 -676267.45 -676649.76

(25, 20000,2.0) -689041.33 -688690.44 -687147.17

*Each value is the average over ten independent instances.

Table 5: Runtime Comparison of the Three Initialization Approaches for DCA

(n,N, d) hybrid (s) random (s) warmstart (s)

(15, 5000, 0.5) 4.06 4.04 1.17

(15, 5000, 1.0) 25.76 29.40 4.49

(15, 5000, 1.5) 76.72 87.43 10.00

(15, 5000, 2.0) 170.39 295.25 23.74

(15, 20000, 0.5) 10.17 10.94 3.51

(15, 20000, 1.0) 36.71 36.57 10.63

(15, 20000, 1.5) 104.25 109.73 23.95

(15, 20000, 2.0) 229.80 245.11 41.94

(20, 5000, 0.5) 9.53 9.60 2.42

(20, 5000, 1.0) 84.34 90.87 12.51

(20, 5000, 1.5) 312.67 430.37 48.78

(20, 5000, 2.0) 1039.53 1770.71 95.36

(20, 20000, 0.5) 18.42 18.54 8.71

(20, 20000, 1.0) 133.69 134.79 34.84

(20, 20000, 1.5) 425.17 504.29 444.37

(20, 20000, 2.0) 997.99 1710.91 211.44

(25, 5000, 0.5) 21.97 22.35 3.87

(25, 5000, 1.0) 261.84 304.12 33.59

(25, 5000, 1.5) 949.90 2434.03 131.69

(25, 5000, 2.0) 3054.63 6037.58 224.73

(25, 20000, 0.5) 50.22 53.13 12.48

(25, 20000, 1.0) 404.43 642.87 78.21

(25, 20000, 1.5) 1372.59 3688.33 227.15

(25, 20000, 2.0) 3189.98 6674.62 366.46

*Each value is the average over ten independent instances.

From the tables, we observe that
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• Random initialization yields highest (best among three) BIC scores in 15 out of 24 instances
among three methods but requires the most time in 22 out of 24 instances.

• Warm-start initialization achieves the lowest (worst among three) BIC scores in 16 out of
24 instances and is the most time-efficient in 23 out of 24 instances.

• The hybrid approach strikes a balance between optimality and computational efficiency,
since it focuses on local refinement around the current best pattern (through warm-start
initialization) while building upon the foundation of global exploration (through random
initialization) at the early stage.
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D.2 Comparison of CG-DCA with Baselines

Table 6 presents the comprehensive experimental results including the HC method, with N ∈
{5000, 20000} for Gaussian datasets. For the three discrete datasets, Table 7 provides the score
and time comparison for CG-DCA and GOBNILP, while Table 8 provides the graph comparisons of
all baselines. The runtime performance of all baseline methods (implemented in R) on all datasets
is summarized in Table 9 and 10.

Table 6: Performance of CG-DCA, GOBNILP (GI), HC, (Stable-)PC, and MMHC on Gaussian
Datasets

n,N, d
Precision Recall SHD

CG-DCA GI HC PC MMHC CG-DCA GI HC PC MMHC CG-DCA GI HC PC MMHC

(15, 5000, 0.5) 0.78 0.66 0.36 0.59 0.50 0.80 0.73 0.47 0.62 0.51 1.70 2.90 6.20 3.00 3.50
(15, 5000, 1.0) 0.70 0.67 0.41 0.72 0.59 0.78 0.72 0.52 0.67 0.54 6.20 5.00 11.90 4.80 6.70
(15, 5000, 1.5) 0.65 0.73 0.42 0.61 0.56 0.77 0.80 0.57 0.54 0.48 11.80 7.40 19.50 11.50 12.20
(15, 5000, 2.0) 0.55 0.58 0.34 0.54 0.52 0.72 0.65 0.57 0.39 0.36 21.90 16.90 35.30 20.90 20.40
(15, 20000, 0.5) 0.71 0.69 0.50 0.68 0.53 0.74 0.73 0.52 0.68 0.53 2.20 2.20 3.70 1.90 3.00
(15, 20000, 1.0) 0.76 0.78 0.49 0.71 0.61 0.78 0.81 0.61 0.69 0.59 4.10 4.00 9.60 4.70 6.20
(15, 20000, 1.5) 0.76 0.73 0.47 0.72 0.66 0.85 0.79 0.61 0.66 0.57 6.90 9.40 18.30 8.60 10.00
(15, 20000, 2.0) 0.61 0.53 0.38 0.53 0.55 0.75 0.60 0.62 0.43 0.39 20.60 19.90 33.20 20.01 19.80
(20, 5000, 0.5) 0.74 0.71 0.48 0.76 0.59 0.80 0.75 0.56 0.79 0.60 3.40 3.50 6.80 2.60 4.40
(20, 5000, 1.0) 0.71 0.69 0.49 0.75 0.65 0.76 0.77 0.63 0.71 0.59 3.70 7.50 13.20 5.90 7.90
(20, 5000, 1.5) 0.50 0.61 0.41 0.62 0.65 0.71 0.71 0.64 0.50 0.49 28.20 16.80 30.60 17.90 16.80
(20, 5000, 2.0) 0.44 0.46 0.41 0.54 0.55 0.66 0.53 0.67 0.34 0.31 36.40 33.60 49.80 31.50 31.10
(20, 20000, 0.5) 0.82 0.80 0.54 0.73 0.58 0.83 0.82 0.62 0.76 0.59 2.20 2.60 5.70 3.00 4.60
(20, 20000, 1.0) 0.61 0.73 0.56 0.79 0.68 0.70 0.79 0.67 0.77 0.65 8.30 6.90 10.80 4.90 7.10
(20, 20000, 1.5) 0.65 0.58 0.40 0.64 0.63 0.81 0.68 0.64 0.56 0.50 16.70 18.20 32.80 16.00 16.50
(20, 20000, 2.0) 0.52 0.48 0.41 0.51 0.56 0.73 0.55 0.67 0.37 0.33 33.00 32.40 46.00 31.30 29.30
(25, 5000, 0.5) 0.82 0.61 0.60 0.84 0.69 0.84 0.67 0.67 0.84 0.69 2.70 5.90 6.70 2.70 4.40
(25, 5000, 1.0) 0.81 0.69 0.57 0.80 0.74 0.86 0.76 0.71 0.75 0.69 6.70 11.10 16.30 7.40 8.70
(25, 5000, 1.5) 0.66 0.57 0.44 0.70 0.71 0.75 0.68 0.65 0.58 0.56 13.60 22.10 39.50 18.50 18.00
(25, 5000, 2.0) 0.54 0.47 0.38 0.53 0.59 0.73 0.54 0.67 0.35 0.35 45.70 40.30 63.70 38.70 36.50
(25, 20000, 0.5) 0.76 0.80 0.59 0.81 0.70 0.80 0.84 0.66 0.83 0.70 3.70 2.80 7.30 2.80 4.30
(25, 20000, 1.0) 0.76 0.71 0.51 0.81 0.68 0.86 0.76 0.67 0.78 0.64 9.10 9.90 17.10 6.70 9.90
(25, 20000, 1.5) 0.57 0.53 0.40 0.73 0.63 0.67 0.66 0.62 0.63 0.51 14.10 25.00 41.90 16.50 19.50
(25, 20000, 2.0) 0.54 0.48 0.35 0.61 0.59 0.66 0.56 0.64 0.46 0.40 23.90 39.10 77.00 33.80 34.10

*Each value is the average over ten independent instances.

Table 7: Score and Time Comparison of CG-DCA and GOBNILP on Discrete Datasets

Dataset
BIC Score Gap (%) Time (seconds)

CG-DCA GOBNILP CG-DCA GOBNILP

LUCAS 0.03 0.00 11.59 7.99

INSURANCE 0.75 0.00 1892.36 74.39

ALARM 2.85 0.00 4696.19 153.49

Table 8: Performance Comparison of CG-DCA, GOBNILP (GI), HC, PC, and MMHC on Discrete
Datasets

Dataset
Precision Recall SHD

CG-DCA GI HC PC MMHC CG-DCA GI HC PC MMHC CG-DCA GI HC PC MMHC

LUCAS 0.77 1.00 0.29 0.83 0.33 0.83 1.00 0.33 0.83 0.33 3 0 10 2 8

INSURANCE 0.53 0.90 0.52 0.91 0.64 0.44 0.83 0.50 0.58 0.35 37 11 38 22 34

ALARM 0.46 0.87 0.42 0.83 0.47 0.50 0.89 0.48 0.76 0.33 35 7 34 11 32
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Table 9: Time Comparison of Stable PC, HC, and MMHC Algorithms on Gaussian Datasets

(n,N, d) Stable PC (s) HC (s) MMHC (s)

(15, 5000, 0.5) 0.038 0.048 0.048

(15, 5000, 1.0) 0.035 0.054 0.047

(15, 5000, 1.5) 0.054 0.101 0.062

(15, 5000, 2.0) 0.095 0.098 0.092

(15, 20000, 0.5) 0.097 0.154 0.126

(15, 20000, 1.0) 0.121 0.196 0.152

(15, 20000, 1.5) 0.188 0.263 0.326

(15, 20000, 2.0) 0.306 0.420 0.889

(20, 5000, 0.5) 0.050 0.066 0.090

(20, 5000, 1.0) 0.105 0.159 0.112

(20, 5000, 1.5) 0.180 0.309 0.291

(20, 5000, 2.0) 0.266 0.342 0.425

(20, 20000, 0.5) 0.146 0.255 0.185

(20, 20000, 1.0) 0.279 0.481 0.438

(20, 20000, 1.5) 0.660 0.950 1.366

(20, 20000, 2.0) 1.327 2.331 3.634

(25, 5000, 0.5) 0.083 0.099 0.071

(25, 5000, 1.0) 0.095 0.133 0.098

(25, 5000, 1.5) 0.227 0.348 0.218

(25, 5000, 2.0) 0.273 0.403 0.351

(25, 20000, 0.5) 0.200 0.407 0.235

(25, 20000, 1.0) 0.288 0.637 0.583

(25, 20000, 1.5) 0.725 1.568 2.612

(25, 20000, 2.0) 1.158 2.087 2.940

*Each value is the average over ten independent instances.

Table 10: Time Comparison of Stable PC, HC, and MMHC Algorithms on Discrete Datasets

Dataset Stable PC (s) HC (s) MMHC (s)

LUCAS 0.08 0.08 0.08

INSURANCE 0.65 0.56 0.45

ALARM 0.61 0.75 0.53
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