
Under review as a conference paper at ICLR 2024

FEDMEF: TOWARDS MEMORY-EFFICIENT FEDERATED
DYNAMIC PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) promotes decentralized training while prioritizing data
confidentiality. However, its application on resource-constrained devices is chal-
lenging due to the high demand for computation and memory resources for train-
ing deep learning models. Neural network pruning techniques, such as dynamic
pruning, could enhance model efficiency, but directly adopting them in FL still
poses substantial challenges, including post-pruning performance degradation,
high activation memory, etc. To address these challenges, we propose FedMef,
a novel and memory-efficient federated dynamic pruning framework. FedMef
comprises two key components. First, we introduce the budget-aware extrusion
that maintains pruning efficiency while preserving post-pruning performance by
salvaging crucial information from parameters marked for pruning within a given
budget. Second, we propose scaled activation pruning to effectively reduce activa-
tion memory, which is particularly beneficial for deploying FL to memory-limited
devices. Extensive experiments demonstrate the effectiveness of our proposed
FedMef. In particular, it achieves a significant reduction of 28.5% in memory
footprint compared to state-of-the-art methods while obtaining superior accuracy.

1 INTRODUCTION

Federated learning (FL) has emerged as an important paradigm for the training of collaborative deep
learning models on decentralized devices while preserving the confidentiality of local data (McMa-
han et al., 2017; Li et al., 2019). In particular, cross-device FL, as outlined in (Kairouz et al., 2021),
places emphasis on scenarios where FL clients predominantly consist of edge devices with resource
constraints. Cross-device FL has gained significant attention in academic research and industry
applications, fueling a wide range of applications, including Google Keyboard (Hard et al., 2018;
Leroy et al., 2019), Apple Speech Recognition (Paulik et al., 2021), etc. Despite its success, the
resource-intensive nature of training models, which includes high computational and memory costs,
poses challenges for the deployment of cross-device FL on resource-constrained devices.

Neural network pruning (Janowsky, 1989; Han et al., 2015; Molchanov et al., 2019b; Singh & Al-
istarh, 2020) is a potential solution to improve model efficiency and reduces the high demand for
resources. However, a closer inspection of some preceding work on applying neural network prun-
ing to FL (Shao et al., 2019; Li et al., 2021a; Liu et al., 2021; Munir et al., 2021) reveals a potential
pitfall: They often rely on initial training of dense models, similar to centralized pruning methodolo-
gies (Han et al., 2015; Molchanov et al., 2019b; Singh & Alistarh, 2020). These federated pruning
methods are not suitable for cross-device FL because training of dense models still demands high
computation and memory on resource-constrained devices.

To address these challenges, recent research has shifted to federated dynamic pruning (Jiang et al.,
2022; Qiu et al., 2022; Bibikar et al., 2022; Huang et al., 2022). These frameworks derive specialized
pruned models by iterative adjustment of sparse on-device models. Devices start with a randomly
pruned model, followed by traditional FL training, and periodically adjust the sparse model structure
via pruning and growing operations (Evci et al., 2020). Through iterative training and adjustments,
devices develop specialized pruned models bypassing the need to train dense models, which reduces
computational and memory demands.

However, existing federated dynamic pruning frameworks (Jiang et al., 2022; Qiu et al., 2022;
Bibikar et al., 2022; Huang et al., 2022) face two issues: significant post-pruning accuracy degra-

1

Under review as a conference paper at ICLR 2024

Server

Device Aggregation

Training w/

Distribution

Replace global model

Scaled Activation Pruning
& Budget-aware Extrusion

AggregationDistribution

Pruning &
Growing

Training w/

Adjust global model once every Δ𝑅 training rounds

Scaled Activation
Pruning

FedTiny

FedMef

Ac
cu

ra
cy

-16.6%

-1.45%
low magnitude weight
mid magnitude weight
high magnitude weight

70.1MB

233.1MB

FedTiny FedMefAc
tiv

at
io

n
M

em
or

y

Before
Pruning

After
Pruning

Before Next
Round Pruning

Figure 1: Left: Compared to baseline methods such as FedTiny (Huang et al., 2022), FedMef
proposes budget-aware extrusion to preserve accuracy by transferring essential information from
low-magnitude parameters to the others, and introduces scaled activation pruning to reduce memory
usage. Top right: FedMef minimizes post-pruning accuracy loss and quickly recovers before the
next round of pruning. Bottom right: FedMef significantly saves activation memory by more than 3
times through scaled activation pruning on the CIFAR-10 dataset with MobileNetV2.

dation and substantial activation memory usage. First, these frameworks cause a significant decline
in accuracy after magnitude pruning because they hastily eliminate low-magnitude parameters, re-
gardless of the substantial information they may contain. Such incautious parameter pruning often
results in the model’s inability to regain its previous accuracy before the subsequent pruning itera-
tion, ultimately leading to suboptimal end-of-training performance. Second, these frameworks fail
to reduce the memory footprint of activation. For certain widely adopted models for edge deploy-
ment, like MobileNet (Sandler et al., 2018), a significant portion of the total memory is allocated
to activation memory. However, current federated dynamic pruning methods focus primarily on
reducing the model size, overlooking optimization for activation memory.

In this work, we introduce FedMef, an Federated Memory-effcient dynamic pruning framework that
adeptly addresses the aforementioned challenges. Figure 1 illustrates the workflow of FedMef and
highlights our proposed two new components. First, FedMef presents budget-aware extrusion to
address the challenge of post-pruning accuracy degradation. Rather than rashly hastily discarding
low-magnitude parameters, our method salvages essential information from these potential pruning
candidates by transferring it to other parameters through a surrogate loss function within a preset
budget. Second, FedMef proposes scaled activation pruning to tackle the problem of high activation
memory. This method performs activation pruning during the training process to dramatically reduce
the memory footprints of the activation caches, as illustrated in Figure 2.To enhance the efficacy
of scaled activation pruning, especially for devices with severe memory constraints, inspired by
recent methods that eliminate batch normalization (BN) layers (Brock et al., 2021; Zhuang & Lyu,
2023), we remove conventional BN layers and replace convolution layers with Normalized Sparse
Convolution (NSConv). NSConv can normalize most of the values of the activation to zero or close
to it. This reduces the disparity between original and pruned activation, subsequently mitigating the
degradation of accuracy during scaled activation pruning.

We conducted extensive experiments on three datasets: CIFAR-10 (Krizhevsky et al., 2009), CINIC-
10 (Darlow et al., 2018), and TinyImageNet (Le & Yang, 2015), using the ResNet18 (He et al., 2016)
and MobileNetV2 (Sandler et al., 2018) models. Extensive experimental results suggest that FedMef
outperforms the state-of-the-art (SOTA) methods on all datasets and models. In addition, FedMef
requires fewer memory footprints than SOTA methods. For example, FedMef significantly reduces
the memory footprint of MobileNetV2 by 28.5% while improving the accuracy by more than 2%.

2 RELATED WORK

2.1 NEURAL NETWORK PRUNING

Neural networks pruning, which emerged in the late 1980s, aims to reduce redundant parameters
in deep neural networks (DNNs). Traditional techniques focus on trade-off accuracy and spar-
sity during inference. This involved ranking parameter importance in a pre-trained DNN and dis-

2

Under review as a conference paper at ICLR 2024

carding those with lower scores. Various methods determine these scores, such as weight magni-
tude (Janowsky, 1989; Han et al., 2015) and Taylor expansion of loss functions (Mozer & Smolen-
sky, 1988; LeCun et al., 1989; Molchanov et al., 2019a). A major drawback of these methods is the
need to train a dense model first, which increases both computational and memory costs.

Modern pruning research has shifted its focus towards enhancing the efficiency of DNN training pro-
cesses. For example, dynamic sparse training (Mocanu et al., 2018; Dettmers & Zettlemoyer, 2019;
Evci et al., 2020), actively adjusts the architecture of the pruned model throughout the training while
maintaining desired sparsity levels. Nevertheless, these methods simply prune low-magnitude pa-
rameters and do not address the memory consumption of the activation caches, resulting in decreased
accuracy and sub-optimal memory optimization.

2.2 NEURAL NETWORK PRUNING IN FEDERATED LEARNING

Federated learning has recently emerged as a promising technique to navigate data privacy chal-
lenges in collaborative machine learning (McMahan et al., 2017). However, numerous previous
federated pruning efforts (Shao et al., 2019; Li et al., 2021a; Liu et al., 2021; Munir et al., 2021)
have encountered setbacks because they rely on the training of dense models on devices, which re-
quires high computation and memory. Thus, they are not suitable for the cross-device FL paradigm,
where clients are edge devices with resource constraints.

Recent studies (Qiu et al., 2022; Jiang et al., 2022; Bibikar et al., 2022; Huang et al., 2022) introduce
on-device pruning via the dynamic sparse training technique (Mocanu et al., 2018; Dettmers &
Zettlemoyer, 2019; Evci et al., 2020). For example, ZeroFL (Qiu et al., 2022) divides the weights
into active and nonactive weights for inference and sparsified weights and activation for backward
propagation. FedDST (Bibikar et al., 2022) and FedTiny (Huang et al., 2022), inspired by RigL (Evci
et al., 2020), perform pruning and growing on devices, with the server generating a new global model
through sparse aggregation. However, these methods are unable to reduce the memory footprints
of the activation cache, and suffer from significant accuracy degradation after pruning, since they
directly prune parameters that may contain important information.

Therefore, all existing federated neural network pruning works fail in creating a specialized pruned
model that concurrently satisfies accuracy and memory constraints. Our proposed solution, FedMef,
can address all of these issues.

2.3 ACTIVATION CACHE COMPRESSION

High-resolution activation tensors are a primary memory burden for modern deep neural networks.
Gradient checkpoint (Chen et al., 2016; Gruslys et al., 2016; Feng & Huang, 2021), which stores
specific layer tensors and recalculates others during the backward pass, offers a memory saving solu-
tion, but at a high computational cost. Alternatively, adaptive precision quantization methods (Chen
et al., 2021; Liu et al., 2022; Wang et al., 2023) compress activation caches through quantization
but introduce time overhead from dynamic bit width adjustments and dequantization. The activation
pruning (sparsification) method (Chen et al., 2022b), which sparsifies activation caches, is lighter
than other methods, but relies heavily on batch normalization (BN) layers to guarantee that most
of the elements in activation are zero or near zero. Relying on BN layers would be problematic
to train with small batches and non-independent and identically distributed (non-i.i.d.) data (Li
et al., 2021b; Zhuang & Lyu, 2023). As a result, current activation pruning methods are unsuitable
for resource-constrained devices in FL. To address these challenges, our proposed FedMef utilizes
scaled activation pruning, effectively compressing activation caches without relying on BN layers.

3 METHODOLOGY

This section first introduces the problem setup and then outlines the design principles of our pro-
posed FedMef. We then introduce two key components in FedMef: budget-aware extrusion and
scaled activation pruning.

3

Under review as a conference paper at ICLR 2024

Conv

Batch Norm

Dense Cache

NSConv

Dense Cache
Scaled Activation PruningBaseline

Sparse Cache
Pruning

Forward
Backward

Figure 2: The illustration of training pipeline in baseline and the proposed scaled activation pruning
method. During the forward pass, the scaled activation pruning generates near-zero activation via
the Normalized Sparse Convolution (NSConv). Then, the dense activation caches are pruned based
on magnitude. During the backward pass, these pruned caches are used to compute the gradients.

3.1 PROBLEM SETUP

In the cross-device FL scenario, numerous resource-constrained devices collaboratively train better
models without direct data sharing Kairouz et al. (2021). In this setting, K devices, each with
memory and computational constraints, cooperate to train the model with parameters θ. Every
device possesses a distinct local dataset, denoted as Dk, k ∈ {1, 2, . . . ,K}. The structure of the
pruned model is represented using a mask, m ∈ {0, 1}|θ|, and θ ⊙ m denotes the pruned model
parameters. Our objective is to derive a specialized sparse model with mask m, using the local
datasetDk, to optimize prediction accuracy in FL. During training, the sparsity levels of the mask sm
and the activation caches sa must be higher than target sparsity (stm and sta), which is determined
by the memory constraints of the devices. Thus, our optimization challenge is to solve the following:

min
θ,m

L(θ,m) :=

K∑
k=1

pkLk(θ,m,Dk) s.t. sm ≥ stm, sa ≥ sta, (1)

where Lk is the loss function of the k-th device (e.g., cross-entropy loss), and pk represents the
weight of k-th device during model aggregation in the server. Before communicating with the server,
each device trains its local model for E local epochs.

3.2 DESIGN PRINCIPLES

To ascertain that specialized sparse models can be developed on resource-constrained devices while
maintaining privacy, the prevailing trend is to leverage federated dynamic pruning. However, con-
temporary methods (Jiang et al., 2022; Qiu et al., 2022; Bibikar et al., 2022; Huang et al., 2022) face
two pressing issues: significant post-pruning accuracy degradation and high activation memory us-
age. As illustrated in Figure 1, our framework, FedMef, introduces two solutions to these challenges:
budget-aware extrusion and scaled activation pruning. In the FedMef framework, the server starts by
distributing a randomly pruned model to devices. Then these devices collaboratively train the sparse
models using scaled activation pruning. In this phase, the activation cache is pruned during the for-
ward pass, effectively optimizing memory utilization. After several iterative training rounds, devices
employ the budget-aware extrusion technique to transfer vital information from low-magnitude pa-
rameters to others. Subsequently, the server adjusts the model structure through magnitude pruning
and gradient-magnitude-based growing. Due to the information transfer facilitated by budget-aware
extrusion, the post-pruning accuracy degradation is slight. Finally, the framework continues with
the training and adjustment of the sparse model until convergence.

To mitigate post-pruning accuracy loss, budget-aware extrusion transfers information from param-
eters marked for pruning to others, reducing information loss during pruning. Devices achieve this
by employing a surrogate loss function with L1 regularization of the low-magnitude parameters.
This process not only suppresses their magnitude, but also transfers their information to alternate
parameters. Additionally, the devices set up a budget-aware schedule to speed up the extrusion.
Subsequently, the server grows and prunes the parameters to create a new model structure. Iterative
adjustments ensure the progressive convergence of the model structure to an ideal configuration.

To reduce the memory footprint of the activation caches, we propose scaled activation pruning.
Following each layer’s forward pass, the activation caches are pruned to reduce memory. During the
backward pass, the pruned activation caches are used directly. To ensure that the pruned elements
are zero or nearly zero, even when training with a small batch size, we adopt the Normalized Sparse
Convolution (NSConv) to reparameterize the convolution layers instead of using batch normalization

4

Under review as a conference paper at ICLR 2024

layers. Next, we delve into in-depth discussions of budget-aware extrusion and scaled activation
pruning techniques.

3.3 BUDGET-AWARE EXTRUSION

It is essential to address the information loss that occurs during pruning, as the parameters to be
pruned often retain valuable information. Direct pruning can cause a substantial accuracy drop,
demanding considerable resources for recovery, as illustrated in Figure 1 (Top right). This issue
may become even more pronounced in federated contexts due to the heterogeneous data distribution
across devices, potentially amplifying the negative impact on model performance during training.

To address this challenge, we take inspiration from the Dual Lottery Ticket Hypothesis (DLTH) (Bai
et al., 2022). The DLTH suggests that a randomly selected subnetwork can be transformed into one
that achieves better, or at least comparable, performance to benchmarks. Building on this premise,
we introduce budget-aware extrusion within our FedMef framework, which can extrude the informa-
tion from the parameters to be pruned to other surviving parameters. After sufficient extrusion, the
parameters designated for pruning retain only marginal influence on the network, ensuring minimal
information and accuracy degradation during the pruning process.

In alignment with the findings of the DLTH (Bai et al., 2022), we employ a regularization term to
execute this information extrusion. Given the parameters θ and its associated mask m, the extrusion
process on the k-th device can be realized through the surrogate loss function Ls

k:

Ls
k = Lk(θ,m,Dk) + λ||θlow||22, (2)

where λ is constant and θlow represents the parameters earmarked for pruning, which is the subset
of unpruned parameters θ ·m with the lowest weight magnitudes.

The inherent constraints associated with edge device training resources require that information
extrusion should be executed within a limited budget before the pruning process. However, adhering
to the original learning schedule represented by η is sub-optimal, as in the later epochs of training,
the learning rate following traditional decay mechanisms becomes significantly small, impeding the
information extrusion process.

To address this issue, we introduce a budget-aware schedule in the context of budget-aware extru-
sion. The schedule is constructed to accelerate the extrusion process, especially when the original
learning rate is insufficient for rapid extrusion. Given Tbudget as the training budget and t as the
present step, the budget-aware learning rate βt is mathematically defined as:

βt = p(t)(2σ(||θlow||)− 1)η0, (3)

where σ is the sigmoid function, η0 represents the initial learning rate as per the original learning
schedule, and p(t) is the REX schedule factor (Chen et al., 2022a), defined by p(t) = 2Tbudget−2t

2Tbudget−t .
The main objective behind introducing this factor is to effectively adjust the learning rate based
on the relative progression of the training and the preset training budget. During the information
extrusion process, the learning rate µt is formulated as follows:

µt = max(ηt, βt), (4)

where ηt is the learning rate in the original schedule. This ensures efficient and timely information
extrusion by adjusting an adequate learning rate even in the later stages of training. During the
normal training stage, the learning rate is µt = ηt.

In particular, upon receiving the pruned model from the server, the devices mark the parameters θlow
that have the lowest weight magnitude. Then, the devices perform several epochs of budget-aware
extrusion with the surrogate loss Ls

k in Equation 2. The learning rate for this phase is dynamic and
is governed by the function presented in Equation 4.

After the extrusion phase, each device calculates the Top-K gradients across all parameters and
uploads the gradients along with the parameters to the server. The server then aggregates the sparse
parameters and gradients to obtain the average parameters and average gradients. Finally, the server
prunes the marked θlow and grows the same number of parameters with the largest averaged gradient
magnitude.

5

Under review as a conference paper at ICLR 2024

1 0 1
output value

0

500

1000

1500

2000
Co

un
t

BatchNorm

1 0 1
output value

0

500

1000

1500

2000

NSConv

1 0 1
output value

0

500

1000

1500
w/o Norm

Figure 3: Distribution of output from a convolution layer in ResNet18 using batch normalization
layers (BatchNorm), without normalization layers (w/o Norm), and with our proposed Normalized
Sparse Convolution (NSConv). The output experiences an internal covariate shift when training
without normalization layers, whereas NSConv effectively mitigates this issue. Figure 7 in the
appendix shows the output distribution for all convolution layers in the ResNet18 model.

According to the pruning and growing process, the server creates a global model with a new struc-
ture, and then FedMef begins to train the new global model. FedMef periodically performs adjust-
ments and training to deliver an optimal sparse neural network suitable for all devices. The detailed
algorithm can be viewed in Appendix A.

3.4 SCALED ACTIVATION PRUNING

In cross-device FL, where devices may have extremely limited memory, small batch sizes are often
employed during training. This diminishes the effectiveness of batch normalization (BN) layers in
such a scenario. However, current activation cache compression techniques, such as DropIT (Chen
et al., 2022b), are limited in their ability to conduct training without BN layers. To address this
issue, we propose a scaled activation pruning technique that achieves superior performance even
with small batch sizes.

Given a CNN model with ReLU-Conv ordering, in the l-th convolution layer, the sparse filters
are represented as θl ∈ Rks×ks×cin×cout , where ks denotes the kernel size; cin and cout denote
the number of input and output channels, respectively. For an input value al−1, the convolution
operation in the l-th layer that yields the output value al is:

al = Conv(θl, f(al−1)), (5)

where f(·) is any activation function such as ReLU Agarap (2018). Note that al−1 is not only an
input of l layer but also the output of the l − 1-th layer. During the forward pass, the activation
f(al−1) must be retained in memory to compute the gradients of the filters θl during the backward
pass. Similarly, for each layer, the activation f(al) must be stored for later usage, which causes
substantial memory footprints.

The activation pruning approach, DropIT (Chen et al., 2022b), prunes f(al) in the forward pass.
It then uses pruned activation P (f(al)) for gradient computation in the backward pass. This ap-
proach requires that the input al be centered around zero. This centering ensures a minimized
disparity between the pruned activation P (f(al)) and its original counterpart f(al). However, this
zero-centered requirement becomes unattainable when the efficacy of the batch normalization layer
decreases. This ineffectiveness arises from internal covariate shift issues (Ioffe & Szegedy, 2015;
Brock et al., 2021). Figure 3 shows the mean shift in activation within a ResNet18 model without
a normalization layer, resulting in a non-zero mean in the activation distribution. The mathematical
details of this effect can be found in Appendix B.1.

To reduce the disparity between the original and pruned activation, inspired by recent methods that
remove BN layers (Brock et al., 2021; Zhuang & Lyu, 2023), we introduce Normalized Sparse
Convolution (NSConv) into activation pruning. Our primary objective is to ensure that the output
of the convolution layer is consistently centered around zero, i.e., the mean value is zero. The
convolution operation of NSConv at the l-th layer is given by:

al = Conv(θ̂l, f(al−1)), (6)

6

Under review as a conference paper at ICLR 2024

where θ̂l represents the sparse normalized filters with filter-wise weight standardization. The filter-
wise standardization formula of the i-th sparse filter, denoted by θ̂li ∈ Rks×ks×cin , is given by:

θ̂li = γ
√
cin

θli ⊙ml
i − µθ

σθ
, (7)

where θli ∈ Rks×ks×cin specifies the i-th filter of the original filters, γ is a constant, and ml
i denotes

the corresponding mask for the sparse filter θli. The terms µθ and σθ represent the mean and stan-
dardization value of the sparse filter θli, excluding the pruned parameters whose corresponding mask
is 0.

Theorem 1 Given a CNN model structured in a ReLU-Conv sequence, and allowing the l-th con-
volution layer to perform operations as depicted by the forward pass in Equation 6 and NSConv
in Equation 7. For the i-th channel of the activation value, f(al−1

i), with its mean and variance
denoted as µf , σ

2
f . The mean and variance for the i-th of the output value, ali, will be:

E[ali] = 0, Var[ali] = γ2(σ2
f + µ2

f). (8)

Theorem 1 reveals insights into the capabilities of scaled activation pruning. Specifically, it high-
lights its efficacy in addressing the disparity between pruned and original activation in CNNs without
BN layers. A key factor in its effectiveness is NSConv’s ability to normalize the output of each con-
volution layer, centering it around zero, as shown in Figure 2. By adjusting the hyperparameter γ,
we can control the variance of the distribution, causing a large portion of the activation elements to
be either zero or close to it. The proof of Theorem 1 can be found in Appendix B.2.

Incorporating NSConv into scaled activation pruning brings several additional advantages: First,
NSConv ignores pruned parameters, focusing solely on the remaining ones. This translates to min-
imal computational overhead and maintains the sparsity of the normalized parameters. Second,
NSConv is suitable for training with small batch sizes because there are no interdependencies be-
tween batch elements. Lastly, NSConv ensures uniformity between the training and testing phases.

4 EVALUATION

In this section, we dive into an in-depth evaluation of our novel framework, FedMef. We compare it
against SOTA frameworks, demonstrating its effectiveness in various testing conditions. Addition-
ally, an ablation study reveals the essential components that make our proposed framework effective.

4.1 EXPERIMENTAL SETUP

We assess the effectiveness of FedMef in image recognition tasks by using three datasets: CIFAR-
10 (Krizhevsky et al., 2009), CINIC-10 (Darlow et al., 2018), and TinyImageNet (Le & Yang, 2015).
We employ the ResNet18 (He et al., 2016) and MobileNetV2 (Sandler et al., 2018) models for
evaluation. We conduct experiments on a landscape of 100 devices. The datasets are divided into
heterogeneous partitions via a Dirichlet distribution characterized by a factor of α = 0.5. We train
the models for R = 500 federated learning rounds, where each round is composed of E = 10 local
epochs. We set the training batch size as 64 by default. The target parameters sparsity and target
activation sparsity is set to stm = 0.9, sta = 0.9 by default. The initial learning rate is set as η0 = 1
with an exponential decay rate of 0.95. We conducted each experiment five times and reported the
average result and standard deviation.

We compare our proposed FedMef with FL-PQSU (Xu et al., 2021), FedDST (Bibikar et al., 2022),
and FedTiny (Huang et al., 2022). FL-PQSU is a static pruning method, which employs an initial-
ized pruning based on the L1 norm on the server prior to training. It can be considered as the lower
bound of our method. FedDST and FedTiny are state-of-the-art federated dynamic pruning meth-
ods. Both of them start with an initial pruned model, subsequently employing mask adjustments to
adjust the model architecture The key distinction between them lies in their locus of model structure
adjustments: FedTiny centralizes this on the server, whereas FedDST decentralizes it to the devices.
Certain federated pruning frameworks, such as ZeroFL (Qiu et al., 2022) and PruneFL (Jiang et al.,
2022), which are memory intensive to process dense models, are consciously excluded from our
comparison.

7

Under review as a conference paper at ICLR 2024

0.30 0.35 0.40

0.70

0.75

0.80
M

ea
n

Ac
cu

ra
cy

CIFAR-10

0.30 0.35 0.40

0.60

0.65

CINIC-10

0.50 0.55 0.60 0.65
0.12

0.14

0.16

0.18

TinyImageNet

0.6 0.7 0.8
Memory Footprint Ratio

0.50

0.55

0.60

0.65

M
ea

n
Ac

cu
ra

cy

0.6 0.7 0.8
Memory Footprint Ratio

0.425

0.450

0.475

0.500

0.525

0.6 0.7 0.8 0.9
Memory Footprint Ratio

0.04

0.06

0.08

ResNet18
M

obileNetV2

FL-PQSU FedDST FedTiny FedMef

Figure 4: Comparison of accuracy and memory footprint of our proposed FedMef with the existing
federated pruning methods on three datasets. The black dashed line marks the accuracy of training
a full-size model (without pruning) in FedAvg. The memory footprint ratio is the memory footprint
relative to training a full-size model in FedAvg.

In the FedDST, FedTiny and FedMef frameworks, the adjustment of the model structure is applied
after ∆R = 10 training rounds. Upon reaching Rstop = 300 rounds, the framework suspends fur-
ther adjustment, continuing its training until reaching R = 500 rounds. The pruning number for
each layer is set to 0.2(1+cos tπ

RstopE
)n in the t -th iteration, where n is the number of unpruned pa-

rameters in the l-th layer. Owing to FedDST (Bibikar et al., 2022) necessitating a series of on-device
training epochs for fine tuning after adjustment, after 5 epochs of local training, we let FedDST ad-
just the model structure and then proceed with 5 training epochs. FedTiny’s (Huang et al., 2022)
adaptive batch normalization module is amputated from our experiments, as its memory overhead
renders it infeasible for our device constraints.

4.2 PERFORMANCE EVALUATION

To demonstrate the effectiveness of FedMef, we compared it with other frameworks on the CIFAR-
10, CINIC-10, and TinyImageNet datasets using ResNet18 and MobileNetV2. A holistic compari-
son is illustrated in Figure 4. The target sparsity of the parameters is set to stm ∈ {0.05, 0.1, 0.2}.
Remarkably, FedMef outperforms all baseline frameworks, both in terms of accuracy and mem-
ory efficiency. As a case in point, FedMef achieves an accuracy improvement of 2.13% on the
CIFAR-10 dataset with the MobileNetV2 model, while saving 28.5% memory usage compared to
the best baseline framework, FedTiny. Such advances in accuracy can be attributed to our proposed
budget-aware extrusion, while scaled activation pruning primarily augments memory conservation.

An obvious trend is the superior accuracy benchmarks set by ResNet18 over MobileNetV2 in all
datasets. The design of MobileNetV2 is tailored to large-scale image classification, which may
make it less suitable for datasets that are relatively small. A noteworthy observation is that FedTiny
generally outperforms other baseline methods within comparable memory footprints. Given this em-
pirical trend, ResNet18 is chosen as the default model and FedTiny serves as the primary reference
for subsequent experiments.

Training with Small Batch Size. Under strict memory constraints, training requires a smaller batch
size. However, this compromises statistical robustness and often hinders the effectiveness of batch
normalization. To address this issue, we propose scaled activation pruning. The evaluations con-
ducted on the CIFAR-10 dataset with ResNet18, where the batch size is set to 1, as shown in Figure 5
(left), demonstrate that FedMef outperforms all baseline methodologies. The significant improve-
ment in accuracy is mainly due to the use of Normalized Sparse convolution in scaled activation
pruning, which is further demonstrated in the appendix B.3.

8

Under review as a conference paper at ICLR 2024

0.2 0.3 0.4 0.5 0.6
Memory Footprint Ratio

0.60

0.65

0.70

0.75

0.80

M
ea

n
Ac

cu
ra

cy

FL-PQSU
FedDST

FedTiny
FedMef

IID 5 2 1 0.5 0.3
degrees of Heterogeneity:

0.75

0.80

0.85

M
ea

n
Ac

cu
ra

cy

FedAvg
FedTiny
FedMef

0.80 0.85 0.90 0.95
Target Parameter Sparsity

0.65

0.70

0.75

0.80

M
ea

n
Ac

cu
ra

cy

FedMef w/o BaE
FedMef w/o SAP
FedMef

Figure 5: FedMef’s average accuracy and standard deviation are compared against: (left) various
federated pruning frameworks when the training batch size is 1, where the black dashed line repre-
sent the accuracy of FedAvg framework; (middle) FedAvg and FedTiny across varying degrees of
data heterogeneity; (right) modified versions of FedMef - one excluding BaE (similar to FedTiny’s
approach) and the other without SAP (omitting NSConv).

∆R FedTiny FedMef
3 55.09%(1.82%) 61.94%(0.49%)
5 58.73%(1.62%) 62.12%(0.58%)
10 61.18%(1.08%) 62.77%(0.78%)

Table 1: Mean accuracy (standard deviation)
for FedMef and FedTiny on the CIFAR-10
dataset with various adjustment periods, ∆R.

The impact of adjustment period. After model
structure adjustment, it is necessary to restore ac-
curacy loss through several training rounds. There-
fore, the adjustment period should be longer. Un-
fortunately, given the computational constraints of
certain devices, there is an urgent need to limit the
number of interval training rounds and local epochs.
Empirical results from experiments on the CIFAR-
10 dataset with various adjustment periods, ∆R, and
a single local epoch are shown in Table 1. When FedTiny performance decreases under resource
constraints, FedMef remarkably maintains the performance.

Analysis on Different Degrees of Heterogeneity. We tested the effectiveness of FedMef on het-
erogeneous data distributions by modulating the Dirichlet distribution’s α factor, where lower α
indicates a higher degree of heterogeneity. For reference, we compare our results against the full-
size model and FedTiny in the CIFAR-10 dataset and the results are shown in Figure 5 (middle).
FedMef retains its superior performance compared to the best baseline framework.

4.3 ABLATION STUDY

We further analyze the individual contributions of budget-aware extrusion (BaE) and scaled acti-
vation pruning (SAP) using trials on the CIFAR-10 dataset with ResNet18. The variants include
a FedMef without budget-aware extrusion (akin to FedTiny’s mechanism) and a FedMef without
scaled activation pruning (mirroring DropIT’s approach Chen et al. (2022b) without NSConv). The
findings presented in Figure 5 (right) indicate that both budget-aware extrusion and scaled activation
pruning boost FedMef’s performance. In particular, removing scaling in activation pruning results
in substantial information loss during backpropagation and results in performance degradation.

5 CONCLUSION

This paper introduces FedMef, a memory-efficient federated dynamic pruning framework designed
to generate specialized models on resource-constrained devices in cross-device FL. FedMef ad-
dresses the issues of post-pruning accuracy degradation and high activation memory usage that
current federated pruning methods suffer from. It proposes two new components: budget-aware ex-
trusion and scaled activation pruning. Budget-aware extrusion reduces information loss in pruning
by extruding information from parameters marked for pruning to other parameters within a limited
budget. Scaled activation pruning allows activation caches to be pruned to save more memory foot-
prints without compromising accuracy. Experimental results demonstrate that FedMef outperforms
existing approaches in terms of accuracy and memory footprint. FedMef reduces the memory foot-
print by 28.5% compared to the most state-of-the-art method while improving the accuracy by more
than 2%

9

Under review as a conference paper at ICLR 2024

REFERENCES

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

Yue Bai, Huan Wang, Zhiqiang Tao, Kunpeng Li, and Yun Fu. Dual lottery ticket hypothesis. arXiv
preprint arXiv:2203.04248, 2022.

Sameer Bibikar, Haris Vikalo, Zhangyang Wang, and Xiaohan Chen. Federated dynamic sparse
training: Computing less, communicating less, yet learning better. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 6080–6088, 2022.

Andrew Brock, Soham De, and Samuel L Smith. Characterizing signal propagation to close the
performance gap in unnormalized resnets. arXiv preprint arXiv:2101.08692, 2021.

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael Mahoney, and Joseph
Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation compressed training.
In International Conference on Machine Learning, pp. 1803–1813. PMLR, 2021.

John Chen, Cameron Wolfe, and Tasos Kyrillidis. Rex: Revisiting budgeted training with an im-
proved schedule. Proceedings of Machine Learning and Systems, 4:64–76, 2022a.

Joya Chen, Kai Xu, Yuhui Wang, Yifei Cheng, and Angela Yao. Dropit: Dropping intermediate
tensors for memory-efficient dnn training. arXiv preprint arXiv:2202.13808, 2022b.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet
or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

Jianwei Feng and Dong Huang. Optimal gradient checkpoint search for arbitrary computation
graphs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 11433–11442, 2021.

Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-efficient
backpropagation through time. Advances in neural information processing systems, 29, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean
Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile
keyboard prediction. arXiv preprint arXiv:1811.03604, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Hong Huang, Lan Zhang, Chaoyue Sun, Ruogu Fang, Xiaoyong Yuan, and Dapeng Wu. Fedtiny:
Pruned federated learning towards specialized tiny models. arXiv preprint arXiv:2212.01977,
2022.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

10

Under review as a conference paper at ICLR 2024

Steven A Janowsky. Pruning versus clipping in neural networks. Physical Review A, 39(12):6600,
1989.

Yuang Jiang, Shiqiang Wang, Victor Valls, Bong Jun Ko, Wei-Han Lee, Kin K Leung, and Leandros
Tassiulas. Model pruning enables efficient federated learning on edge devices. IEEE Transactions
on Neural Networks and Learning Systems, 2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

David Leroy, Alice Coucke, Thibaut Lavril, Thibault Gisselbrecht, and Joseph Dureau. Federated
learning for keyword spotting. In ICASSP 2019-2019 IEEE international conference on acoustics,
speech and signal processing (ICASSP), pp. 6341–6345. IEEE, 2019.

Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen, and Hai Li. Lotteryfl:
Empower edge intelligence with personalized and communication-efficient federated learning. In
2021 IEEE/ACM Symposium on Edge Computing (SEC), pp. 68–79. IEEE, 2021a.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning
on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623, 2021b.

Shengli Liu, Guanding Yu, Rui Yin, and Jiantao Yuan. Adaptive network pruning for wireless
federated learning. IEEE Wireless Communications Letters, 10(7):1572–1576, 2021.

Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen,
Zhiyuan Liu, Jie Tang, Joey Gonzalez, et al. Gact: Activation compressed training for generic
network architectures. In International Conference on Machine Learning, pp. 14139–14152.
PMLR, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):1–12, 2018.

P Molchanov, S Tyree, T Karras, T Aila, and J Kautz. Pruning convolutional neural networks for
resource efficient inference. In 5th International Conference on Learning Representations, ICLR
2017-Conference Track Proceedings, 2019a.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11264–11272, 2019b.

Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from a
network via relevance assessment. Advances in neural information processing systems, 1, 1988.

Muhammad Tahir Munir, Muhammad Mustansar Saeed, Mahad Ali, Zafar Ayyub Qazi, and
Ihsan Ayyub Qazi. Fedprune: Towards inclusive federated learning. arXiv preprint
arXiv:2110.14205, 2021.

11

Under review as a conference paper at ICLR 2024

Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar, Joris Kluivers, Rogier van Dalen,
Chi Wai Lau, Luke Carlson, Filip Granqvist, Chris Vandevelde, et al. Federated evalua-
tion and tuning for on-device personalization: System design & applications. arXiv preprint
arXiv:2102.08503, 2021.

Xinchi Qiu, Javier Fernandez-Marques, Pedro PB Gusmao, Yan Gao, Titouan Parcollet, and
Nicholas Donald Lane. Zerofl: Efficient on-device training for federated learning with local
sparsity. arXiv preprint arXiv:2208.02507, 2022.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Rulin Shao, Hui Liu, and Dianbo Liu. Privacy preserving stochastic channel-based federated learn-
ing with neural network pruning. arXiv preprint arXiv:1910.02115, 2019.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 33:18098–18109,
2020.

Guanchu Wang, Zirui Liu, Zhimeng Jiang, Ninghao Liu, Na Zou, and Xia Hu. Division: Memory
efficient training via dual activation precision. 2023.

Wenyuan Xu, Weiwei Fang, Yi Ding, Meixia Zou, and Naixue Xiong. Accelerating federated learn-
ing for iot in big data analytics with pruning, quantization and selective updating. IEEE Access,
9:38457–38466, 2021.

Weiming Zhuang and Lingjuan Lyu. Is normalization indispensable for multi-domain federated
learning? arXiv preprint arXiv:2306.05879, 2023.

12

Under review as a conference paper at ICLR 2024

A ALGORITHM

Algorithm 1 FedMef
Input: dense initialized parameters θ, K devices with local dataset D1, . . .DK , iteration number
t, learning rate schedule αt, pruning number ξlt for each layer l, the number of local iterations
per round E, the number of rounds between two adjustment ∆R, and the rounds at which to stop
adjustment Rstop.
Output: a well-trained model with sparse θt and specified mask mt

1: t← 0
2: θ0,m0 ← random prune dense initialized parameters θ
3: while until converge do
4: for each device k = 1 to K do
5: Fetch sparse parameters θt and mask mt from the server
6: for i = 0 to E − 1 do
7: θ̂kt+i ← Filter-wise Sparse Standardization as in Equation 7.
8: if t mod ∆RE = 0 and t ≤ ERstop then
9: Calculate budget-aware learning rate βt+i as in Equation 4

10: µt+i ← max(ηt+i, βt+i)

11: θkt+i+1 ← θkt+i − µt+i∇Ls
k(θ̂

k
t+i,mt,Dk

t+i)⊙mt, using scaled activation pruning
12: else
13: θkt+i+1 ← θkt+i − ηt+i∇Lk(θ̂

k
t+i,mt,Dk

t+i)⊙mt, using scaled activation pruning
14: end if
15: end for
16: Upload θkt+E to the server
17: if t mod ∆RE = 0 and t ≤ ERstop then
18: for each layer l in model do
19: Compute top-ξlt gradients g̃k,l

t for pruned parameters with a memory space of O(alt)

20: Upload g̃k,l
t to the server

21: end for
22: end if
23: end for
24:
25: The server does
26: θt+E ←

∑K
k=1

|Dk|∑K
k=1 |Dk|

θkt+E

27: if t mod ∆RE = 0 and t ≤ ERstop then
28: for each layer l in model do
29: g̃l

t ←
∑K

k=1
|Dk|∑K

k=1 |Dk|
g̃k,lt

30: I l
grow ← the ξlt pruned indices with the largest absolute value in g̃l

t

31: I l
drop ← the ξlt unpruned indices with smallest weight magnitude in θt+E

32: Compute the new mask ml
t+E by adjusting ml

t based on I l
grow and I l

drop

33: end for
34: θt+E ← θt+E ⊙mt+E // Prune the model using the updated mask
35: else
36: mt+E ← mt

37: end if
38: t← t+ E
39: end while

B PROOF OF THEOREM 1

In this section, we first introduce the internal covariate shift in CNN without batch normalization
layers and then provide the proof of Theorem 1.

13

Under review as a conference paper at ICLR 2024

0 1
2 3

4 5
6 7

8 9
0 1

0 1 2 3
4 5 6 7
8 9 0 1

𝑎!"# ∈ 𝑅$!"×	'!"	×(!" 𝜃! ∈ 𝑅)*×)*×(!"×($%& 𝑎! ∈ 𝑅$$%&×	'$%&	×($%&

Patch 1

Pa
tc

h
1

Pa
tc

h
2

Pa
tc

h
3

Pa
tc

h
ℎ !

"#
⋅𝑤

!"
#

𝑊! ∈ 𝑅($%&×	()*⋅)*⋅(!") 𝑥! ∈ 𝑅)*⋅)*⋅(!" ×($$%&⋅'$%&) 𝜓! ∈ 𝑅	($%&×($$%&⋅'$%&)⋅ =

∗	 =	

/𝑐./

/𝑐./	=

Figure 6: Illustration of transforming the convolution operation into linear multiplication: Begin by
flattening each filter from the convolutional filters, θl, and stack them to produce the linear weight
W l. Next, stack each convolution patch from the input value al−1 to form the linear input xl. The
resultant multiplication, ψl, corresponds to a reshaped version of the original output al.

B.1 INTERNAL COVARIATE SHIFT

Given a CNN model with ReLU-Conv ordering, In the l-th convolution layer, the sparse filters are
represented as θl ∈ Rks×ks×cin×cout , where ks denotes the kernel size;cin and cout denote the
number of input and output channels, respectively. For an input value al−1 ∈ Rhin×win×cin , the
convolution operation in the l-th layer that yields the output value al ∈ Rhout×wout×cout is:

al = Conv(θl, f(al−1)), (9)

where f(·) is any activation function such as ReLU, leaky ReLU, etc. It is worth noting that al−1 is
not just an input; it is also the output of the l − 1-th layer.

As illustrated in Figure 6, above convolution operation can be converted into a linear multiplicity
version as :

ψl =W lxl/cin, (10)

where weight matrix W l ∈ Rcout×(ks·ks·cin) is the flattening version of the convolution filters θl.
The i-th row of the linear weight W l is the flattening result of i-th filter of original filters, θli. Linear
input xl ∈ R(ks·ks·cin)×(hout·wout) is the stacked convolution patch from the activation f(al−1).
The resultant multiplication, ψl, corresponds to a reshaped version of the original output al. The
i-th row of the linear result ψl is the flattening result of i-th channel of the original output, ali.

Denote the mean and variance values of the i-th filter of original filters as E(θli) = µθ and Var(θli) =
σ2
θ . Assuming the mean and variance value of the linear input xl are E(xl) = µx and Var(xl) = σ2

x,
the mean and variance of i-th channel of output ali will be :

E(ali) = E(ψl
i) = E(W l

i)E(xl)/cin = µθ
iµx/cin, (11)

Var(ali) = Var(ψl
i) = Var(W l

ix
l)/c2in = (σ2

θσ
2
x + σ2

θµ
2
x + µ2

θσ
2
x)/c

2
in, (12)

14

Under review as a conference paper at ICLR 2024

Figure 7: Distribution of output from all convolution layers in ResNet model using Batch Normal-
ization layers (BatchNorm), without normalization layers (w/o Norm), and with Normalized Sparse
Convolution (NSConv).

Consider f(·) to be the activation function of ReLU, which implies that the input value µx has a
positive mean. During training, the mean value of each filter θli is difficult to keep in zero. Therefore,
without batch normalization layer, the mean of output from the convolution layer will be unable to
reach around zero.

B.2 PROOF

Theorem Given a CNN model structured in a ReLU-Conv sequence, and allowing the l-th con-
volution layer to perform operations as depicted by the forward pass in Equation 6 and NSConv
in Equation 7. For the i-th channel of the activation value, f(al−1

i), with its mean and variance
denoted as µf , σ

2
f . The mean and variance for the i-th of the output value, ali, will be:

E[ali] = 0, Var[ali] = γ2(σ2
f + µ2

f). (13)

Proof. As illustrated in Figure 6, convolution operation can be converted to a linear multiplicity
version as:

ψl = Ŵ lxl/cin, (14)

where weight matrix Ŵ l ∈ Rcout×(ks·ks·cin) is the flattening version of sparse normalized convolu-
tion filters θ̂l. The i-th row of the linear sparse weight Ŵ l

i is the flattening result of the i -th filter of
normalized filters, θ̂li.

Therefore, the mean and variance of the i-th row of normalized linear weight, Ŵ l
i are E(Ŵ l

i) = 0

and Var(Ŵ l
i) = γ2cin. the mean and variance for the i-th of the output value will be :

15

Under review as a conference paper at ICLR 2024

E(ali) = E(ψl
i) = E(Ŵ l

i)E(xl)/cin = 0, (15)

Var(ali) = Var(ψl
i) = Var(Ŵ l

ix
l)/c2in = γ2(σ2

x + µ2
x), (16)

Because the linear input xl is the sampled version of the input activation f(al−1), considering the
randomness, the mean and variance of the linear input xl will be µx = µf , σ2

x = σ2
f . Therefore, we

can get:
E(ali) = 0, Var(ali) = γ2(σ2

f + µ2
f). (17)

B.3 EXPERIMENT RESULT

To assess the effectiveness of our proposed Normalized Sparse Convolution (NSConv), we con-
ducted experiments on the CIFAR-10 dataset with the ResNet18 model in our proposed FedMef
framework, with the sparsity of target parameters set to 0.9. The results of the experiment, shown
in Figure 7, demonstrate that NSConv can achieve an effect similar to that of a Batch Normaliza-
tion layer. Additionally, the activation values of ResNet18 without normalization decrease and the
distribution becomes more centralized as the layer deepens, further supporting Equations 12 and 12,
which indicate that the mean and variance values will be scaled with 1/cin and 1/c2in, respectively.

C CALCULATING TRAINING MEMORY FOR MODELS

C.1 COMPRESSION SCHEMES

The storage for a matrix consists of two components, values and positions. The aim of compression
is to reduce the storage of the positions of non-zero values in the matrix. Suppose we want to store
the positions of m non-zeros value with b bit-width in a sparse matrix M . The matrix M has n
elements and a nr × nc shape. Depending on the density d = m/n, we apply different schemes to
represent the matrix M . We use o bits to represent the positions of m non-zero values and denote
the overall storage as s.

• For density d ∈ [0.9, 1], dense scheme is applied, i.e. s = n · b.
• For density d ∈ [0.3, 0.9), bitmap (BM) is applied, which stores a map with n bits, i.e.
o = n, s = o+mb.

• For density d ∈ [0.1, 0.3), we apply coordinate offset (COO), which stores elements with
its absolute offset and it requires o = m⌈log2 n⌉ extra bits to store position. Therefore, the
overall storage is s = o+mb

• For density d ∈ [0., 0.1), we apply compressed sparse row (CSR) and compressed sparse
column (CSC) depending on size. It uses column and row index to store the position of
elements and o = m⌈log2 nc⌉+ nr⌈log2m⌉ bits are needed for CSR. The overall storage
is s = o+mb

For tenor, we carry out reshaping prior to compression. This approach allows us to determine the
memory needed to train the network’s parameters.

C.2 THE MEMORY FOOTPRINT OF TRAINING MODELS

We estimate the memory footprint for training to be a combination of parameters, activations, gradi-
ents of activations, and gradients of parameters. The memory for parameters is equal to the storage
of parameters. We estimate the memory for activations by taking the maximum value of multiple
measurements. For simplicity, we set the memory for gradients of activations to be equal to the
memory for activations. We do not consider the memory for hyper-parameters and momentum. As-
suming the memory for dense and sparse parameters are Mp

d and Mp
s respectively, and the memory

for dense and sparse activations is Ma
d and Mp

s , the overall training memory for each algorithm
would be:

16

Under review as a conference paper at ICLR 2024

• FedAvg These techniques necessitate the training of a dense model, thus the memory for the
gradients of parameters is close toMp

d . The memory footprint for training is approximately
2Mp

d + 2Ma
d .

• FL-PQSU These techniques teach a lean static model, so the memory for gradients of
parameters is close toMp

s . The memory needed for training is approximately 2Mp
s +2Ma

d .
• FedTiny and FedDST. Since these methods only update the top-K gradients in memory to

adjust the model structure, the extra memory is used to store the top-ξtl gradients and their
indices in one block. Therefore, the memory for the parameter gradients is approximately
Mp

s + 3b
∑

l ξ
t
l , where b is the bit width. Consequently, the overall memory footprint is

2Mp
s + 2Ma

d + 3b
∑

l ξ
t
l .

• FedMef. In comparison to FedTiny and FedDST, FedMef applies scaled activation pruning
to activation, resulting in a cache memory of activation of Ma

d . However, the activation
gradients are not pruned, leading to a total memory footprint of 2Mp

s+M
a
s +M

a
d+3b

∑
l ξ

t
l .

17

	Introduction
	Related Work
	Neural Network Pruning
	Neural Network Pruning in Federated Learning
	Activation Cache Compression

	Methodology
	Problem Setup
	Design Principles
	Budget-aware Extrusion
	Scaled Activation Pruning

	Evaluation
	Experimental Setup
	Performance Evaluation
	Ablation Study

	Conclusion
	Algorithm
	Proof of Theorem 1
	Internal Covariate Shift
	Proof
	Experiment Result

	Calculating Training Memory for Models
	Compression Schemes
	The Memory Footprint of Training Models

