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Abstract
The increasing complexity of deep neural networks (DNNs) necessi-
tates effectivemodel compression to reduce their computational and
memory footprints for deployment on resource-constrained hard-
ware. Layer-wise bit allocation is a prominent compression method
shown to significantly reduce DNN footprints while preserving
model accuracy. However, how best to incorporate hardware con-
straints within the allocation search remains a key question, as
many tacitly assume constraints can be adequately handled via soft
penalties or heuristics, often failing to guarantee feasibility or opti-
mality. In this paper, we explore a reformulation of the bit allocation
problem as an explicit constrained optimization problem, solved us-
ing interior-point methods within a NAS-based framework, notably
requiring only minimal calibration data (as few as 128 samples).
We corroborate this approach with experiments spanning trans-
former architectures (Llama, Gemma, Qwen; 500M-3B parameters),
evaluating performance with MXFP formats. We show that this
constrained formulation not only allows us to achieve significantly
finer resolution in compression ratios compared to the discrete steps
offered by uniform MXFP application (e.g., 4.25, 6.25, 8.25 bits), but
also demonstrates that explicitly satisfying hardware budgets while
optimizing for accuracy consistently outperforms uniform alloca-
tion methods, improving performance by up to several standard
deviations in some cases, especially under strict resource limits.
Our findings extend to the efficient deployment of large models in
resource-constrained compute platforms, offering insights into best
practices for applying bit allocation to maximize hardware resource
efficiency without unduly compromising accuracy.

Keywords
Neural networks, Compression, Numerical formats, Block floating
point, Microexponents, MXFP, Interior point methods, Constrained
optimization, Bit allocation, Mixed precision

1 Introduction
Recent breakthroughs in deep neural networks (DNNs) have achieved
unprecedented performance across tasks like computer vision and
natural language processing. However, this progress coincides with
exponential increases in model size and computational demands,
with state-of-the-art models requiring vast memory and compute re-
sources, challenging deployment on edge devices and constrained
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accelerators. Significant efforts were made to develop effective
model compression techniques, such as lower precision data for-
mats, that preserve accuracy while reducing resource requirements.

To support compressed inference and training, researchers and
hardware consortia have proposed various reduced-precision nu-
merical formats [7, 9, 23]. These formats range from traditional
integers (INT8/4) [13] and custom floating-point types (FP8/6) [18]
to block-level schemes like BFP [9], MXFP, and MXINT [7, 23].
These low-precision data formats significantly improve arithmetic
density and energy efficiency, often by amortizing exponent costs.
Their adoption in accelerators like NVIDIA’s Hopper and Google’s
TPUs [7, 16–18] highlights their critical role in efficient DNN de-
ployment. Despite advances in format design, DNN layers exhibit
varying sensitivity to reduced precision [14, 32], making uniform
format application often suboptimal for accuracy-efficiency trade-
offs. The disparity in compression sensitivity across layers moti-
vated differentiable neural architecture search (DNAS) methods
[3, 4, 29, 30] that automate layer-wise precision assignment by opti-
mizing soft architectural parameters jointly with weights. However,
these DNAS approaches typically operate in a training-aware set-
ting, requiring full access to training data and tuning of the model
weights.

Although powerful, existing DNAS frameworks often handle
hardware constraints via soft penalties or heuristics, lacking princi-
pled guarantees on the final complexity-performance tradeoff and
often necessitating extensive Pareto front exploration.While the use
of barrier functions has been previously proposed for quantization-
aware training methods [31], we propose to revisit this challenge
through the lens of constrained optimization for post training quan-
tization, reformulating the problem to treat hardware requirements
as explicit constraints. Our approach integrates model complexity
directly using a regularizer based on the interior-point method
[2, 19] to systematically drive solutions towards feasibility.

Our framework targets the post-training setting, using frozen
weights and only a small calibration dataset. It operates on relaxed
softmax-distributed architectural parameters and employs an an-
nealed regularization schedule to efficiently solve the constrained
optimization problem. This yields format allocations satisfying re-
source budgets exactly while optimizing performance. Notably,
our approach offers finer resolution in compression ratios and pre-
dictable model behavior across resource settings without retraining
or finetuning. Our contributions are as follows:

• We revisit DNAS approaches for mixed-precision schemes
and introduce a novel interior-points based optimization
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framework for differentiable post-training architecture search
that enables hardware-constrained bit allocation without
requiring retraining or fine-tuning of the original model
weights.
• We formulate a regularized objective that supports smooth,
feasible layer-wise precision allocation using only a small cal-
ibration dataset, making the method suitable for deployment
in low-data settings.
• We demonstrate that smart allocation of precision across lay-
ers leads to significant improvements in few-shot evaluation
tasks and maintains competitive performance in zero-shot
settings, even under strict hardware budgets.
• Our method provides fine-grained control and higher reso-
lution over intermediate compression rates with predictable
and stable performance trends.

2 Related work
Low precision data formats. Recent advancements in low-

precision data representations have made it possible to train and
deploy deep neural networks (DNNs) using low precision formats,
drastically reducing compute cost and memory footprint. A promi-
nent direction in this area is block-based numerical formats, which
group multiple elements under a shared exponent, thus improv-
ing arithmetic density while maintaining sufficient dynamic range.
Drumond et al. proposed Hybrid Block Floating Point (HBFP) [9], a
representation that performs all dot-product operations using block
floating point arithmetic while retaining standard floating point
for element-wise functions and control logic. This hybrid strategy
ensures convergence comparable to full-precision (FP32) training
across a variety of workloads. They demonstrate that HBFP can
match the accuracy of FP32 while achieving up to 8.5× through-
put gains over FP16, offering a drop-in replacement suitable for
deployment with modest hardware modifications.

More recently, Darvish Rouhani et al. developed the MX (Mi-
croscaling) data format family [7, 23], designed to support both
inference and training by combining narrow data types (e.g., INT8,
FP6, FP4) with fine-grained block-level scaling. These formats are
tailored for high-performance computing environments and pro-
vide a tunable balance between computational efficiency, numerical
stability, and usability. MX formats are evaluated across a wide
range of discriminative and generative tasks and are shown to pre-
serve model fidelity even when applied to large-scale transformers
with sub-8-bit activations, weights, and gradients. They also demon-
strate compatibility with common training pipelines and require
minimal adjustment to hyperparameters or infrastructure. As a re-
sult, MX formats are gaining support in next-generation hardware
[6, 20]. These advances build upon earlier work that established
block-based representations as a viable path to high-efficiency train-
ing, with design techniques such as tiling and wide weight storage
shown to mitigate the precision loss risks typically associated with
narrow mantissas.

Differentiable Neural Architecture Search. The optimal bit al-
location problem for neural network is the following: Let a generic
neural network of 𝐿 layers labeled 𝑙 ∈ L = {1, ..., 𝐿} with associ-
ated weights𝑊 = {𝑊 𝑙 }𝐿

𝑙=1. Assuming we have access to a set of

compression schemes labelled 𝑄𝑑 (.) with 𝑑 ∈ D = {1, ..., 𝐷}, we
get:

�̂� 𝑙 𝑑𝑒 𝑓=

𝐷∑︁
𝑑

𝐴𝑙
𝑑
𝑄𝑑 (𝑊 𝑙 )

𝑠 .𝑡 .

𝐷∑︁
𝑑=1

𝐴𝑙
𝑑
= 1 ∀𝑙 ∈ L

𝐴𝑙
𝑑
∈ {0, 1} ∀(𝑙, 𝑑) ∈ L × D

(1)

Equation (1) represents the core formulation used in differen-
tiable mixed-precision search frameworks [3–5, 29, 30]. We want to
find the optimal decision variables 𝐴𝑙

𝑑
solving the multi-objective

minimization problem:

min
�̂� ,𝐴

L(𝐴,�̂� )

min
𝐴

C(𝐴,�̂� )
(2)

Here L(𝐴,�̂� ) is the model loss function, and C(𝐴,�̂� ) is defined
as a complexity cost on the architecture𝐴, often related to hardware
constraints such as size or latency. Throughout this paper, we set
C(𝐴,�̂� ) to be the average bit-width per element of the target model.
The exponential number of possibilities for a choice of 𝐴 and the
latency induced by evaluating L make it difficult to efficiently solve
the problem using combinatorial techniques. Taking inspiration
from approximation algorithms, a popular approach is to relax the
conditions on 𝐴 and interpet 𝐴𝑙 as a probability distribution.

{∑𝐷
𝑑=1 𝐴

𝑙
𝑑
= 1

𝐴𝑙
𝑑
∈ {0, 1}

=⇒
{∑𝐷

𝑑=1 𝐴
𝑙
𝑑
= 1 ∀𝑙 ∈ L

𝐴𝑙
𝑑
≥ 0 ∀(𝑙, 𝑑) ∈ L × D

(3)

To that end, Neural Architecture Search frameworks introduced
the following paramterization of𝐴𝑙 in terms of logits {𝑥𝑙 }𝐿

𝑙=1 ⊂ R
𝐷 :

𝐴𝑙
𝑑
≡ 𝐴𝑙

𝑑
(𝑥𝑙 ) =

𝑒𝑥𝑝 (𝑥𝑙
𝑑
)∑𝐷

𝑘=1 𝑒𝑥𝑝 (𝑥
𝑙
𝑘
)

(4)

NAS-inspired frameworks formixed precision quantization lever-
age the above relaxation by building a super-network, for which
they train the weights and architectural parameters alternatively,
handling the search for two sets of parameters at once. Once done, a
feasible solution𝐴 to the original decision problem is rounded from
the learned solution 𝐴 to the relaxation. By sampling each layer’s
bit-width from the learned distribution 𝐴𝑙 , randomized rounding
captures uncertainty in the super-network’s preferences. Another
simple deterministic strategy is to select, for each layer, the quanti-
zation option with maximum probability [4], where the data format
with the largest associated parameter is sampled, finally others also
propose the use of the Gumbel-Softmax [28, 29] to simulate random
categorical sampling steps during the search phase and enforce the
convergence of the distribution by scheduling the "temperature"
hyperparameter of the Gumbel-Softmax function.
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3 Constrained Bit Allocation
Post-training compression. While neural architecture search

for mixed-precision models has mostly been developed as part of a
quantization-aware training framework, recent investigations [15]
have shown that the optimal approach to model compression is to
first train large networks in full precision, and then aggressively
compress the model for deployment. By following this framework,
we rework on the assumptions of the neural network bit-allocation
problem. We propose to restrict the problem to the search of ar-
chitectural parameters for pre-trained models, maintaining the
previously learned weights𝑊 ∗ frozen. This significantly reduces
the number of parameter updates, as the number of architecture
parameters only grows linearly with the depth of the associated
network and is invariant with respect to the dimensions of its layers.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐴

L(𝐴,�̂� ∗)

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜

𝐷∑︁
𝑑=1

𝐴𝑙
𝑑
= 1 ∀𝑙 ∈ L

𝐴𝑙
𝑑
≥ 0 ∀(𝑙, 𝑑) ∈ L × D

(5)

User-defined architectural constraints. In practical deploy-
ment scenarios, models must conform to diverse hardware con-
straints, including limits on total model size, supported numerical
formats, and compute budgets such as FLOPs or BOPs. These con-
straints are platform-dependent and are often non-negotiable. To
accommodate such deployment requirements, we reformulate the
bit allocation task not as a multi-objective trade-off between accu-
racy and complexity, but as a constrained optimization problem. Let
C(𝐴,𝑊 ) be a differentiable architectural cost function (e.g., total
model size in bits), and let 𝐵 denote an upper bound imposed by the
hardware. Our goal is to minimize the loss subject to this constraint:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐴

L(𝐴,�̂� ∗)

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 R𝐵 [𝐴] = 𝐵 − C(𝐴,𝑊 ) ≥ 0
𝐷∑︁
𝑑=1

𝐴𝑙
𝑑
= 1 ∀𝑙 ∈ L

𝐴𝑙
𝑑
≥ 0 ∀(𝑙, 𝑑) ∈ L × D

(6)

This constrained formulation enables the principled integration
of hardware-awareness into the precision allocation process, ensur-
ing that the resulting architecture is both accurate and deployable.

Interior-Point Formulation. To solve the non-linear constrained
optimization problem defined in Equation equation 6, we employ
techniques common in constrained optimization, specifically adopt-
ing a regularizer-based interior-point method. The first step in-
volves formulating the Lagrangian function, which incorporates
the objective function and the constraint scaled by a Lagrange
multiplier 𝜆:

L𝜆 (𝐴) = L(𝐴,𝑊 ∗) + 𝜆R𝐵 [𝐴] (7)

Here, L(𝐴,𝑊 ∗) represents the original loss function (our ob-
jective to minimize) with fixed model weights 𝑊 ∗, and R𝐵 [𝐴]

represents the hardware constraint function (which must be non-
negative, R𝐵 [𝐴] ≥ 0). The variable 𝜆 is the Lagrange multiplier
associated with this inequality constraint.

For a given candidate solution 𝐴∗ to be a local optimum of the
constrained problem equation 6 (under certain regularity condi-
tions), it must satisfy the Karush-Kuhn-Tucker (KKT) conditions.
These conditions are fundamental necessary conditions for opti-
mality in nonlinear programming [19]. They generalize the method
of Lagrange multipliers to handle inequality constraints. For our
problem, the KKT conditions are:

KKT


∇𝐴L(𝐴∗,𝑊 ∗) + 𝜆∇𝐴R𝐵 [𝐴∗] = 0 (Stationarity)
R𝐵 [𝐴∗] ≥ 0 (Primal Feasibility)
𝜆 ≥ 0 (Dual Feasibility)
𝜆R𝐵 [𝐴∗] = 0 (Complementary Slackness)

(8)

However, in practice, satisfying the strict complementarity con-
dition 𝜆R𝐵 [𝐴∗] = 0 leads to optimization challenges due to discon-
tinuity at the boundary of the feasible region. To circumvent this,
we adopt the perturbed KKT formulation, commonly used in inte-
rior point methods, which replaces the complementarity condition
with a small nonzero slack.

KKT(𝜇)


∇L(𝐴∗,�̂� ∗) + 𝜆∇R𝐵 [𝐴∗] = 0
R𝐵 [𝐴∗] ≥ 0
𝜆 ≥ 0
𝜆R𝐵 [𝐴∗] = −𝜇

𝑠.𝑡 . 𝜇 → 0 (9)

This relaxation smooths the boundary behavior of the opti-
mizer and permits convergence to the constrained optimum from
within the feasible set. It corresponds to minimizing the following
regularizer-augmented objective:

minimize
𝐴

L(𝐴,�̂� ∗) − 𝜇 log(R𝐵 [𝐴]) (10)

Here, the logarithmic regularizer log(R𝐵 [𝐴]) diverges to −∞ as
the constraint approaches 0, effectively discouraging the optimizer
from leaving the feasible region.

Algorithm. Following our previous derivation, we propose the
following iterative algorithm.

Algorithm 1 Constrained Bit Allocation

Require: Pretrained weights𝑊 ∗, initial allocation𝐴, loss function
L(·, ·), constraint R𝐵 [·], initial regularizer weight 𝜇 > 0, decay
factor 0 < 𝛿 < 1, number of iterations 𝑇

Ensure: Final discrete allocation 𝐴 satisfying R𝐵 [𝐴] ≤ 𝐵

1: 𝑡 ← 1
2: 𝜇 (1) ← 𝜇

3: while 𝑡 ≤ 𝑇 do
4: 𝐴(𝑡 ) ← arg min𝐴 L(𝐴,𝑊 ∗) − 𝜇 (𝑡 ) ln

(
R̂𝐵 [𝐴]

)
5: 𝜇 (𝑡+1) ← 𝛿 𝜇 (𝑡 )

6: 𝑡 ← 𝑡 + 1
7: end while
8: 𝐴← round

(
𝐴(𝑇 )

)
9: return 𝐴
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The optimizer we use in this paper is ten epochs of the clas-
sic back-propagation algorithm already provided by all the most
popular Machine Learning libraries, however other optimization al-
gorithms could also be considered. In particular, Newton’s method
is often the optimizer of choice for interior-point methods such
as the one discussed here. The rounding step depends on the sam-
pling approach. In this work, we follow the multi-nomial sampling
approach as described earlier.

To minimize the model loss while staying within region defined
by the memory constraint, the interior-point method adds a loga-
rithmic regularizer penalty. This penalty acts like a repulsive force
that becomes very large at the constraint boundary, ensuring the
solution always remains strictly feasible. Optimization starts with a
strong repulsion (large 𝜇), keeping the solution within the feasible
region. As 𝜇 is gradually decreased across iterations, the regular-
izer’s influence weakens, allowing the solution to follow a "central
path" closer to the true minimum of L while still being repelled from
the boundary. The figure below illustrates how each step balances
minimizing the objective (descent step) with staying feasible (step
towards central path), ultimately converging to the constrained
optimum as 𝜇 → 0.

Layer 1 Bits (𝑏1)

Layer 2 Bits (𝑏2)

2 4 6 8

2

4

6

8

0

Feasible
Region

Loss Min

𝑏1 + 𝑏2 = Budget

(4,4)

−∇L

Correction

Rounding

Figure 1: Search space for bit allocation in a 2-layer network.
Axes are bits per layer (𝑏1, 𝑏2). Blue dots are feasible discrete
choices under a budget constraint (shaded region, 𝑏1 + 𝑏2 ≤
Budget). Gray dots are infeasible. Gray ellipses represent
level curves of the loss function, with the true (continuous)
minimummarked in red, located between discrete points.

4 Experimental Methodology and Results
To evaluate the effectiveness of our method, we conducted a se-
ries of post-training experiments on autoregressive transformer
models of varying scales, including LLaMA [11], Gemma [24, 25],
and Qwen [22, 26, 27] architectures (specifically Llama-3.2, Gemma,
and Qwen2.5 models) ranging up to 3 billion parameters. All exper-
iments follow the setup for causal language modeling provided by

the open-source examples of HuggingFace. Importantly, we operate
strictly in the post-training regime: the model weights are frozen,
and only the architectural parameters governing format assignment
are optimized using a small calibration set. All models are adapted
using a mixture of MX-compliant formats, specifically MXFP4 and
MXFP8.

Empirical study 1: few-shot scenario. In the few-shot setting,
we use a small calibration set of 128 samples drawn from the training
split of the C4 corpus [8]. We then evaluate perplexity (PPL) on the
C4 validation split, gauging performance on in-distribution data
under low-data conditions. Figure 2 compares the perplexity of our
mixed-precision allocations constrained to an average of 4.5 bits
(’Mixed’, red ’x’) against uniform MXFP baselines.

We observe significant improvements for several models with
only a minor increase in average bits compared to uniform MXFP4.
Specifically, the mixed allocation yields perplexity drops of over 3
points for Gemma-3-1B-it (↓3.67), 9 points for Qwen2.5-1.5B (↓9.06),
and 7 points for Qwen2.5-3B (↓7.46), as indicated by the black
arrows in Figure 2. These improvements are achieved with only
approximately +0.25 effective bits compared to the MXFP4 baseline
(effective bits ≈ 4.25). Notably, for these models, the mixed 4.5-
bit allocation outperforms even the uniform MXFP6 and MXFP8
baselines, despite using substantially fewer bits. For the remaining
models (Qwen2.5-0.5B, Llama-3.2-1B, Gemma-2B), the mixed 4.5-bit
version achieves performance closely matching or slightly better
than the uniform MXFP6 baseline, again offering considerable bit
savings.

Figure 2: Few-shot perplexity (lower is better) on C4 valida-
tion set for models constrained to max_bits=4.5. Our mixed
allocation (red ’x’) is compared against uniform MXFP4,
MXFP6, and MXFP8 baselines. Black arrows indicate per-
plexity improvements >3 points over the MXFP4 baseline.

Figure 3 shows the achieved effective bit-widths for the models
under the 4.5-bit constraint in this few-shot setting. The results
demonstrate that the target average bit-width constraint is closely
adhered to across all models. Most resulting effective bit-widths
match the constraint or show very minor deviations, typically less
than 0.1 bits higher than the enforced upper bound, confirming the
framework’s ability to precisely manage the hardware budget.
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Figure 3: Effective bits achieved for models constrained to
max_bits=4.5 in the few-shot setting. The dashed line indi-
cates the target constraint.

Empirical study 2: zero-shot scenario. For zero-shot evalua-
tion, we calibrate using 256 samples from the C4 training split. We
then employ the ‘lm-eval-harness‘ benchmark suite [1, 10] to as-
sess model performance on downstream tasks without task-specific
fine-tuning. We report accuracy on LAMBADA [21] (predicting the
last word of a passage, testing context understanding) and MMLU
[12] (multitask accuracy across diverse subjects).

Figure 4 presents LAMBADA accuracy results for the 4.5-bit
constraint. Compared to the uniform MXFP4 baseline, our mixed
allocation provides significant accuracy boosts with only ≈ +0.25
more effective bits: +9.8% for Qwen2.5-0.5B, +2.4% for Llama-3.2-1B,
+3.8% for Gemma-3-1B-it, and +6.0% for Gemma-2B. For the Gemma
models in particular, the mixed 4.5-bit versions achieve LAMBADA
accuracy very close to that of the uniformMXFP6 baseline (effective
bits ≈ 6.25), demonstrating substantial efficiency gains.

Figure 4: Zero-shot LAMBADA accuracy (higher is better) for
models constrained to max_bits=4.5. Our mixed allocation
(red ’x’) compared against uniform baselines. Black arrows
indicate accuracy improvement over MXFP4 baseline exceed-
ing 2 standard deviations.

We further evaluate on MMLU (results shown in Figure 5). Here
too, the mixed 4.5-bit allocation consistently improves accuracy
over theMXFP4 baseline, with gains ranging from +1.2% up to +4.0%
across the different models. It is crucial to note that these accuracy
improvements on both LAMBADA and MMLU are achieved even

though the model weights remain frozen and the architectural
parameters were calibrated solely on C4 data, highlighting the
generalization capability of the learned allocations.

Figure 5: Zero-shot MMLU accuracy (higher is better) for
models constrained to max_bits=4.5. Our mixed allocation
(red ’x’) compared against uniform baselines.

Figure 6 again confirms that the effective bit-widths achieved in
the zero-shot scenario under the 4.5-bit constraint adhere closely
to the target, reinforcing the method’s precise budget control.

Figure 6: Effective bits achieved for models constrained to
max_bits=4.5 in the zero-shot setting. The dashed line indi-
cates the target constraint.

These zero-shot findings underscore that targeted precision al-
location, guided by our constrained optimization, effectively pre-
serves crucial model capabilities for downstream tasks, often sig-
nificantly better than uniform low-bit formats, particularly under
tighter memory constraints. Themethod provides practitioners fine-
grained control over the accuracy-compression trade-off simply by
selecting the appropriate average bit-width constraint.

5 Discussion
The experimental results presented herein demonstrate the ef-
fectiveness of our constrained optimization framework for post-
training mixed-precision allocation. By leveraging an interior-point
method with a logarithmic barrier, our approach successfully navi-
gates the complex trade-off between model performance (perplexity
and accuracy) and computational constraints (represented by aver-
age bit-width, directly correlating with memory footprint). Across

5
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various model architectures and scales, the learned mixed-precision
configurations consistently outperform uniform low-bit baselines,
often achieving performance comparable to high-precision formats
while operating at significantly lower effective bit-widths.

A key strength of this methodology lies in its practicality and
efficiency. The entire allocation process operates post-training, re-
quiring nomodification or fine-tuning of the original model weights.
This significantly reduces the computational cost and technical com-
plexity typically associated with model adaptation. Furthermore,
the optimization relies on a remarkably small number of calibration
samples (e.g., 128-256), making it feasible even when access to large
datasets is limited. Despite this minimal overhead (e.g., approxi-
mately 5 minutes for a 500M parameter model on one NVIDIA A100
GPU), the derived allocations exhibit robust generalization, improv-
ing performance not only on in-distribution validation data but also
on diverse, unseen zero-shot tasks such as OpenAI’s LAMBADA.
This suggests that the allocation, guided by gradients on the calibra-
tion set, effectively identifies and preserves critical computational
pathways within the network.

From a theoretical standpoint, formulating the problem as a
constrained optimization provides a more rigorous foundation com-
pared to heuristic methods or multi-objective optimization tech-
niques that may lack strong guarantees on the output mixed pre-
cision scheme or may require complex Pareto front analysis. The
interior-point method is well-established, and its application here,
using the average bit-width constraint, offers a natural and inter-
pretable way to incorporate hardware limitations, particularly mem-
ory capacity, directly into the optimization objective. This explicit
constraint mechanism grants practitioners fine-grained control over
the desired operating point on the accuracy-efficiency curve. The
hyperparameters associated with the interior-point method are rela-
tively few and possess clear interpretations within the optimization
context, facilitating tuning.

We acknowledge certain limitations. The current approach im-
plicitly utilizes a "supernet" concept during the search phase, where
gradients for different format assignments are needed. This can tem-
porarily increase memory usage during the allocation optimization
compared to standard inference. However, several factors mitigate
this concern. Firstly, the search often involves low-bit formats (e.g.,
MXFP4, MXFP8); the memory required to hold activations or gradi-
ents for multiple low-bit options might still be comparable to, or less
than, holding a single higher-precision (e.g., FP16 or BF16) baseline
tensor. For instance, exploring two sub-8-bit formats could theoret-
ically fit within the space of one FP16 tensor. Secondly, the number
of parameters being optimized during allocation scales only with
the number of assignable layers or modules (model depth), which is
orders of magnitude lower than the total number of weights in the
LLM. This makes the gradient updates for the allocation parameters
substantially less demanding than full model training.

Nonetheless, optimizing the memory of the supernet and the
computational efficiency of the allocation search itself presents a
viable avenue for future research. Exploring techniques like shared
projection heads during the search, path Gumbel-Softmax, or more
advanced gradient estimation methods could potentially reduce
the overhead further. Investigating the interplay between different
types of constraints (e.g., latency-aware constraints) within this
framework is another promising direction.

6 Conclusion
Efficient deployment of complex DNNs on resource-constrained
hardware is crucial. While mixed-precision formats offer poten-
tial, determining the optimal layer-wise allocation under hard-
ware constraints remains challenging, often addressed by heuris-
tics or complex training-aware searches. This paper introduces
a principled post-training framework for mixed-precision allo-
cation grounded in constrained optimization. Using an interior-
point method, our approach explicitly incorporates hardware lim-
itations, like average bit-width constraints, directly into the al-
location process. This operates efficiently post-training, requir-
ing only small calibration datasets and no costly retraining. Em-
pirical evaluations across diverse transformer architectures (in-
cluding Llama-3.2, Gemma, Qwen2.5) demonstrate effectiveness.
Learned allocations consistently outperform uniform low-bit base-
lines in few-shot and zero-shot scenarios, showing robust general-
ization. The method offers practitioners fine-grained control over
the performance-efficiency trade-off. We demonstrated that strate-
gic allocation, even using only the lowest and highest available
precisions (e.g., MXFP4/8), yields compelling compression solutions.
In summary, our constrained optimization framework provides a
theoretically sound, data-efficient, and computationally inexpen-
sive method for hardware-aware mixed-precision allocation. It is a
valuable tool for deploying large models effectively under tangible
resource constraints, bridging the gap between model capability
and practical feasibility.
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