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ABSTRACT

Data augmentation is an effective technique to improve the generalization of deep
neural networks. However, previous data augmentation methods usually treat
the augmented samples equally without considering their individual impacts on
the model. To address this, for the augmented samples from the same training
example, we propose to assign different weights to them. We construct the maximal
expected loss which is the supremum over any reweighted loss on augmented
samples. Inspired by adversarial training, we minimize this maximal expected
loss (MMEL) and obtain a simple and interpretable closed-form solution: more
attention should be paid to augmented samples with large loss values (i.e., harder
examples). Minimizing this maximal expected loss enables the model to perform
well under any reweighting strategy. The proposed method can generally be applied
on top of any data augmentation methods. Experiments are conducted on both
natural language understanding tasks with token-level data augmentation, and
image classification tasks with commonly-used image augmentation techniques
like random crop and horizontal flip. Empirical results show that the proposed
method improves the generalization performance of the model.

1 INTRODUCTION

Deep neural networks have achieved state-of-the-art results in various tasks in natural language
processing (NLP) tasks (Sutskever et al., 2014; Vaswani et al., 2017; Devlin et al., 2019) and
computer vision (CV) tasks (He et al., 2016; Goodfellow et al., 2016). One approach to improve the
generalization performance of deep neural networks is data augmentation (Xie et al., 2019; Jiao et al.,
2019; Cheng et al., 2019; 2020). However, there are some problems if we directly incorporate these
augmented samples into the training set. Minimizing the average loss on all these samples means
treating them equally, without considering their different implicit impacts on the loss.

To address this, we propose to minimize a reweighted loss on these augmented samples to make the
model utilize them in a cleverer way. Example reweighting has previously been explored extensively
in curriculum learning (Bengio et al., 2009; Jiang et al., 2014), boosting algorithms (Freund &
Schapire, 1999), focal loss (Lin et al., 2017) and importance sampling (Csiba & Richtárik, 2018).
However, none of them focus on the reweighting of augmented samples instead of the original training
samples. A recent work (Jiang et al., 2020a) also assigns different weights on augmented samples.
But weights in their model are predicted by a mentor network while we obtain the weights from the
closed-form solution by minimizing the maximal expected loss (MMEL). In addition, they focus on
image samples with noisy labels, while our method can generally be applied to also textual data as
well as image data. Tran et al. (2017) propose to minimize the loss on the augmented samples under
the framework of Expectation-Maximization algorithm. But they mainly focus on the generation of
augmented samples.

∗This work is done when Mingyang Yi is an intern at Huawei Noah’s Ark Lab.
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Unfortunately, in practise there is no way to directly access the optimal reweighting strategy. Thus,
inspired by adversarial training (Madry et al., 2018), we propose to minimize the maximal expected
loss (MMEL) on augmented samples from the same training example. Since the maximal expected
loss is the supremum over any possible reweighting strategy on augmented samples’ losses, minimiz-
ing this supremum makes the model perform well under any reweighting strategy. More importantly,
we derive a closed-form solution of the weights, where augmented samples with larger training losses
have larger weights. Intuitively, MMEL allows the model to keep focusing on augmented samples
that are harder to train.

The procedure of our method is summarized as follows. We first generate the augmented samples
with commonly-used data augmentation technique, e.g., lexical substitution for textual input (Jiao
et al., 2019), random crop and horizontal flip for image data (Krizhevsky et al., 2012). Then we
explicitly derive the closed-form solution of the weights on each of the augmented samples. After
that, we update the model parameters with respect to the reweighted loss. The proposed method can
generally be applied above any data augmentation methods in various domains like natural language
processing and computer vision. Empirical results on both natural language understanding tasks and
image classification tasks show that the proposed reweighting strategy consistently outperforms the
counterpart of without using it, as well as other reweighting strategies like uniform reweighting.

2 RELATED WORK

Data augmentation. Data augmentation is proven to be an effective technique to improve the
generalization ability of various tasks, e.g., natural language processing (Xie et al., 2019; Zhu et al.,
2020; Jiao et al., 2019), computer vision (Krizhevsky et al., 2014), and speech recognition (Park et al.,
2019). For image data, baseline augmentation methods like random crop, flip, scaling, and color
augmentation (Krizhevsky et al., 2012) have been widely used. Other heuristic data augmentation
techniques like Cutout (DeVries & Taylor, 2017) which masks image patches and Mixup (Zhang
et al., 2018) which combines pairs of examples and their labels, are later proposed. Automatically
searching for augmentation policies (Cubuk et al., 2018; Lim et al., 2019) have recently proposed
to improve the performance further. For textual data, Zhang et al. (2015); Wei & Zou (2019) and
Wang (2015) respectively use lexical substitution based on the embedding space. Jiao et al. (2019);
Cheng et al. (2019); Kumar et al. (2020) generate augmented samples with a pre-trained language
model. Some other techniques like back translation (Xie et al., 2019), random noise injection (Xie
et al., 2017) and data mixup (Guo et al., 2019; Cheng et al., 2020) are also proven to be useful.

Adversarial training. Adversarial learning is used to enhance the robustness of model (Madry
et al., 2018), which dynamically constructs the augmented adversarial samples by projected gradient
descent across training. Although adversarial training hurts the generalization of model on the task of
image classification (Raghunathan et al., 2019), it is shown that adversarial training can be used as
data augmentation to help generalization in neural machine translation (Cheng et al., 2019; 2020) and
natural language understanding (Zhu et al., 2020; Jiang et al., 2020b). Our proposed method differs
from adversarial training in that we adversarially decide the weight on each augmented sample, while
traditional adversarial training adversarially generates augmented input samples.

In (Behpour et al., 2019), adversarial learning is used as data augmentation in object detection. The
adversarial samples (i.e., bounding boxes that are maximally different from the ground truth) are
reweighted to form the underlying annotation distribution. However, besides the difference in the
model and task, their training objective and the resultant solution are also different from ours.

Sample reweighting. Minimizing a reweighted loss on training samples has been widely explored
in literature. Curriculum learning (Bengio et al., 2009; Jiang et al., 2014) feeds first easier and
then harder data into the model to accelerate training. Zhao & Zhang (2014); Needell et al. (2014);
Csiba & Richtárik (2018); Katharopoulos & Fleuret (2018) use importance sampling to reduce the
variance of stochastic gradients to achieve faster convergence rate. Boosting algorithms (Freund
& Schapire, 1999) choose harder examples to train subsequent classifiers. Similarly, hard example
mining (Malisiewicz et al., 2011) downsamples the majority class and exploits the most difficult
examples. Focal loss (Lin et al., 2017; Goyal & He, 2018) focuses on harder examples by reshaping
the standard cross-entropy loss in object detection. Ren et al. (2018); Jiang et al. (2018); Shu et al.
(2019) use meta-learning method to reweight examples to handle the noisy label problem. Unlike all
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these existing methods, in this work, we reweight the augmented samples’ losses instead of training
samples.

3 MINIMIZE THE MAXIMAL EXPECTED LOSS

In this section, we derive our reweighting strategy on augmented samples from the perspective of
maximal expected loss. We first give a derivation of the closed-form solution of the weights on
augmented samples. Then we describe two kinds of loss under this formulation. Finally, we give the
implementation details using the natural language understanding task as an example.

3.1 WHY MAXIMAL EXPECTED LOSS

Consider a classification task with N training samples. For the i-th training sample xi, its label is
denoted as yxi . Let fθ(·) be the model with parameter θ which outputs the classification probabilities.
`(·, ·) denotes the loss function, e.g. the cross-entropy loss between outputs fθ(xi) and the ground-
truth label yxi . Given an original training sample xi, the set of augmented samples generated by
some method isB(xi). Without loss of generality, we assume xi ∈ B(xi). The conventional training
objective is to minimize the loss on every augmented sample z in B(xi) as

min
θ

1

N

N∑
i=1

 1

|B(xi)|
∑

(z,yz)∈B(xi)

`(fθ(z), yz)

 , (1)

where yz is the label of z ∈ B(xi), and can be different with yxi . |B(xi)| is the number of
augmented samples in B(xi), which is assumed to be finite.

In equation (1), for each given xi, the weights on its augmented samples are the same (i.e., 1/|B(xi)|).
However, different samples have different implicit impacts on the loss, and we can assign different
weights on them to facilitate training. Note that computing the weighted sum of losses of each
augmented sample in B(xi) can be viewed as taking expectation of loss on augmented samples
z ∈ B(xi) under a certain distribution. When the augmented samples generated from the same
training sample are drawn from a uniform distribution, the loss in equation (1) can be rewritten as

min
θ
Rθ(PU ) = min

θ

1

N

N∑
i=1

[
Ez∼PU (·|xi) [`(fθ(z), yz)]− λPKL(PU (· | xi) ‖ PU (· | xi))

]
, (2)

where the Kullback–Leibler (KL) divergence KL(PU (· | xi) ‖ PU (· | xi)) equals zero. Here
PU (· | xi) denotes the uniform distribution on B(xi). When the augmented samples are drawn from
a more general distribution PB(· | ·)1 instead of the uniform distribution, we can generalize PU (· | ·)
here to some other conditional distribution PB .

min
θ
Rθ(PB) = min

θ

1

N

N∑
i=1

[
Ez∼PB(·|xi) [`(fθ(z), yz)]− λPKL(PB(· | xi) ‖ PU (· | xi))

]
. (3)

Remark 1. When PB(· | xi) reduces to the uniform distribution PU (· | xi) for any xi, since
KL(PU (· | xi) ‖ PU (· | xi)) = 0, the objective in equation (3) reduces to the one in equation (1).

The KL divergence term in equation (3) is used as a regularizer to encourage PB close to PU (see
Remark 2). From equation (3), the conditional distribution PB determines the weights of each
augmented sample in B(xi). There may exist an optimal formulation of PB in some regime, e.g.
corresponding to the optimal generalization ability of model. Unfortunately, we can not explicitly
characterize such an unknown optimal PB . To address this, we borrow the idea from adversarial
training (Madry et al., 2018) and minimize the maximal reweighted loss on augmented samples. Then,
the model is guaranteed to perform well under any reweighting strategy, including the underlying
optimal one. Specifically, let the conditional distribution PB be P∗θ = arg supPB Rθ(PB). Our
objective is to minimize the following reweighted loss

min
θ
Rθ(P∗θ) = min

θ
sup
PB

Rθ(PB). (4)

The following Remark 2 discusses about the KL divergence term in equation (3).
1In the following, we simplify PB(· | ·) as PB if there is no obfuscation.
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Remark 2. Since we take a supremum over PB in equation (4), the regularizer KL(PB ‖ PU )
encourages PB to be close to PU because it reaches the minimal value zero when PB = PU . Thus
the regularizer controls the diversity among the augmented samples by constraining the discrepancy
between PB and uniform distribution PU , e.g., a larger λP promotes a larger diversity among the
augmented samples.

The following Theorem 1 gives the explicit formulation of Rθ(P∗θ).
Theorem 1. Let Rθ(PB) and Rθ(P∗θ) be defined in equation (1) and (4), then we have

Rθ(P∗θ) =
1

N

N∑
i=1

 ∑
z∈B(xi)

P∗θ(z | xi)`(fθ(z), yz)− λPP∗θ(z | xi) log (|B(xi)|P∗θ(z | xi))

 , (5)

where

P∗θ(z | xi) =
exp

(
1
λP
`(fθ(z), yz)

)
∑

z∈B(xi)
exp

(
1
λP
`(fθ(z), yz)

) = Softmaxz

(
1

λP
`(fθ(B(xi)), yB(xi))

)
, (6)

where Softmaxz(
1
λP
`(fθ(B(xi)), yB(xi))) represents the output probability of z for vector

( 1
λP
`(fθ(z1), yz1

), · · · , 1
λP
`(fθ(z|B(xi)|), y|B(xi)|)).

Remark 3. If we ignore the KL divergence term in equation (3), due to the equivalence of minimizing
cross-entropy loss and MLE loss (Martens, 2019), the proposed MMEL also falls into the generalized
Expectation-Maximization (GEM) framework (Dempster et al., 1977). Specifically, given a training
example, the augmented samples of it can be viewed as latent variable, and any reweighting on these
augmented samples corresponds to a specific conditional distribution of these augmented samples
given the training sample. In the expectation step (E-step), we explicitly derive the closed-form
solution of the weights on each of these augmented samples according to (6). In the maximization
step, since there is no analytical solution for deep neural networks, following (Tran et al., 2017), we
update the model parameters with respect to the reweighted loss by one step of gradient descent.

The proof of this theorem can be found in Appendix A. From Theorem 1, the loss of it decides
the weight on each augmented sample z ∈ Bxi , and the weight is normalized by Softmax over
all augmented samples in Bxi . The reweighting strategy allows more attention paid to augmented
samples with higher loss values. The strategy is similar to those in (Lin et al., 2017; Zhao & Zhang,
2014) but they apply it on training samples.

3.2 TWO TYPES OF LOSS

For augmented sample z ∈ B(xi), instead of computing the discrepancy between the output
probability fθ(z) and the hard label yz as in equation (5), one can also compute the discrepancy
between fθ(z) and the “soft” probability fθ(xi) in the absence of ground-truth label on augmented
samples as in (Xie et al., 2019). In the following, We use superscript “hard" for the loss in equation
(5) as

Rhard
θ (P∗θ ,xi) =

∑
z∈B(xi)

P∗θ(z | xi)`(fθ(z), yz))− λPP∗θ(z | xi) log (|B(xi)|P∗θ(z | xi)), (7)

to distinguish with the following objective which uses the “soft probability”:

Rsoft
θ (P∗θ ,xi) = `(fθ(xi), yxi) + λT

∑
z∈B(xi);z 6=xi

(
P∗θ(z | xi)`(fθ(z), fθ(xi))

− λPP∗θ(z | xi) log (|B(xi)| − 1)P∗θ(z | xi)
)
.

(8)

The two terms in Rsoft
θ (P∗θ,xi) respectively correspond to the loss on original training samples xi

and the reweighted loss on the augmented samples. The reweighted loss promotes a small discrepancy
between the augmented samples and the original training sample. λT > 0 is the coefficient used to
balance the two loss terms, and P∗θ(z | xi) is defined similar to (6) as

P∗θ(z | xi) =
exp

(
1
λP
`(fθ(z), fθ(xi))

)
∑

z∈B(xi);z 6=xi
exp

(
1
λP
`(fθ(z), fθ(xi))

) . (9)
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Figure 1: MMEL with two types of losses. Figure (1a) is the hard loss (7) with probability computed
using (6) while Figure (1b) is the soft loss (8) with the probabilities computed using (9).

Algorithm 1 Minimize the Maximal Expected Loss (MMEL)
Input: Training set {(x1, yx1

), · · · , (xN , yxN )}, batch size S, learning rate η, number of training
iterations T , Rθ equals Rhard

θ or Rsoft
θ .

1: for i in {1, 2, · · · , N} do . generate augmented samples
2: Generating B(xi) using some data augmentation method.
3: end for
4: for t = 1, · · · , T do . minimize the maximal expected loss
5: Randomly sample a mini-batch S = {(xi1 , yxi1 ), · · · , (xiS , yxiS )} from training set.
6: Fetch the augmented samples B(xi1), B(xi2), · · · , B(xiS ).
7: Compute P∗θ according to (6) or (9).
8: Update model parameters θt+1 = θt − η

S

∑
x∈S ∇θRθ(P∗θ,x).

9: end for

The two losses are shown in Figure 1. Summing over all the training samples, we get the two kinds
of reweighted training objectives.

Remark 4. The proposed MMEL-S tries to reduce the discrepancy between fθ(z) and fθ(xi) for
z ∈ B(xi). However, if the prediction fθ(xi) is inaccurate, such misleading supervision for z may
lead to the degraded performance of MMEL-S. More details are in Appendix B.

3.3 EXAMPLE: MMEL IMPLEMENTATION ON NATURAL LANGUAGE UNDERSTANDING TASKS

In this section, we elaborate on implementing the proposed method using textual data in natural
language understanding tasks as an example. Our method is separated into two phases. In the first
phase, we generate augmented samples. Then in the second phase, with these augmented samples,
we update the model parameters under these augmented samples with respect to the hard reweighted
loss (7) or the soft counterpart (8). The generation and training procedure can be decoupled, and the
augmented samples are offline generated in the first phase by only once. On the other hand, in the
second phase, since we have the explicit solution of weights on augmented samples and the multiple
forward and backward passes on these augmented samples can be computed in parallel, the whole
training time is similar to the regular training counterpart for an appropriate number of augmented
samples. The whole training process is shown in Algorithm 1.

Generation of Textual Augmented Data. Various methods have been proposed to generate aug-
mented samples for textual data. Recently, large-scale pre-trained language models like BERT (Devlin
et al., 2019) and GPT-2 (Radford et al., 2019) learn contextualized representations and have been used
widely in generating high-quality augmented sentences (Jiao et al., 2019; Kumar et al., 2020). In this
paper, we use a pre-trained BERT trained from masked language modeling to generate augmented
samples. For each original input sentence, we randomly mask k tokens. Then we do a forward
propagation of the BERT to predict the tokens in those masked positions by greedy search. Details
can be found in Algorithm 2 in Appendix C.
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Mismatching Label. For Rhard
θ in equation (7), the loss term `(fθ(z), yz) on augmented sample

z ∈ B(xi) for some xi relies on its label yz . Unlike image data, where conventional augmentation
methods like random crop and horizontal flip of an image do not change its label, substituting even
one word in a sentence can drastically change its meaning. For instance, suppose the original sentence
is “She is my daughter”, and the word “She” is masked. The top 5 words predicted by the pre-trained
BERT are “This, She, That, It, He”. Apparently, for the task of linguistic acceptability task, replacing
“She” with “He” can change the label from linguistically “acceptable” to “non-acceptable”. Thus for
textual input, for the term `(fθ(z), yz) in hard loss (7), instead of directly setting yz as yxi (Zhu et al.,
2020), we replace yz with the output probability of a trained teacher model. On the other hand, for the
soft loss in equation (8), if an augmented sample z ∈ B(xi) is predicted to a different class from xi
by the teacher model, it is unreasonable to still minimize the discrepancy between fθ(z) and fθ(xi).
In this case, we replace fθ(xi) in the loss term λT

∑
z∈B(xi);z 6=xi

P∗θ(z | xi)`(fθ(z), fθ(xi)) with
the output probability from the teacher model.

4 EXPERIMENTS

In this section, we evaluate the efficacy of the proposed MMEL algorithm with both hard loss
(MMEL-H) and soft loss (MMEL-S). Experiments are conducted on both the image classification
tasks CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2014) with the ResNet Model (He et al.,
2016), and the General Language Understanding Evaluation (GLUE) tasks (Wang et al., 2019) with
the BERT model (Devlin et al., 2019).

4.1 EXPERIMENTS ON IMAGE CLASSIFICATION TASKS.

Data. CIFAR (Krizhevsky et al., 2014) is a benchmark dataset for image classification. We use both
CIFAR-10 and CIFAR-100 in our experiments, which are colorful images with 50000 training
samples and 10000 validation samples, but from 10 and 100 object classes, respectively.

Setup. The model we used is ResNet (He et al., 2016) with different depths. We use random crop
and horizontal flip (Krizhevsky et al., 2012) to augment the original training images. Since these
operations do not change the augmented sample label, we directly adopt the original training sample
label for all its augmented samples. Following (He et al., 2016), we use the SGD with momentum
optimizer to train each model for 200 epochs. The learning rate starts from 0.1 and decays by a factor
of 0.2 at epochs 60, 120 and 160. The batch size is 128, and weight decay is 5e-4. For each xi,
|B(xi)| = 10. The λP of the KL regularization coefficient is 1.0 for both MMEL-H and MMEL-S.
The λT in equation (8) for MMEL-S is selected from {0.5, 1.0, 2.0}.

We compare our proposed MMEL with conventional training with data augmentation (abbreviated as
“Baseline(DA)”) under the same number of epochs. Though MMEL can be computed efficiently in
parallel, the proposed MMEL encounters |B(xi)| = 10 times more training data. For fair comparison,
we also compare with two other baselines that also use 10 times more data: (i) naive training with
data augmentation but with 10 times more training epochs compared with MMEL (abbreviated as
“Baseline(DA+Long)”). In this case, the learning rate accordingly decays at epochs 600, 1200 and
1600; (ii) training with data augmentation under the framework of MMEL but with uniform weights
on the augmented samples (abbreviated as “Baseline(DA+UNI)”).

Main Results. The results are shown in Table 1. As can be seen, for both CIFAR-10 and
CIFAR-100, MMEL-H and MMEL-S significantly outperform the Baseline(DA), with over 0.5
points higher accuracy on all four architectures. Compared to Baseline(DA+Long), the proposed
MMEL-H and MMEL-S also have comparable or better performance, while being much more efficient
in training. This is because our backward pass only computes the gradient of the weighted loss
instead of the separate loss of each example. Compared to Baseline(DA+UNI) which has the same
computational cost as MMEL-H and MMEL-S, the proposed methods also have better performance.
This indicates the efficacy of the proposed maximal expected loss based reweighting strategy.

We further evaluate the proposed method on larege-scale dataset ImageNet(Deng et al., 2009). The
detailed results are in Appendix B.
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Table 1: Performance of ResNet on CIFAR-10 and CIFAR-100. The time is the training time
measured on a single NVIDIA V100 GPU. The results of five independent runs with “mean (±std)”
are reported, expected for “Baseline(DA + Long)” which is slow in training.

dataset Model Baseline(DA) Baseline(DA+Long) Baseline(DA+UNI) MMEL-H MMEL-S
acc time acc time acc time acc time acc time

CIFAR-10

ResNet20 92.53(±0.10) 0.7h 93.27 6.7h 93.00(±0.16) 2.9h 93.16(±0.03) 2.9h 93.10(±0.18) 2.9h
ResNet32 93.46(±0.21) 0.7h 94.43 7.2h 94.11(±0.33) 4.3h 94.31(±0.07) 4.3h 93.93(±0.05) 4.3h
ResNet44 93.92(±0.10) 0.8h 94.11 8.3h 94.30(±0.18) 5.7h 94.70(±0.14) 5.7h 94.48(±0.08) 5.7h
ResNet56 93.96(±0.20) 1.1h 94.12 10.6h 94.62(±0.18) 7.0h 94.85(±0.15) 7.0h 94.64(±0.03) 7.0h

CIFAR-100

ResNet20 68.95(±0.56) 0.7h 69.45 6.7h 68.89(±0.06) 2.9h 70.01(±0.07) 2.9h 70.00(±0.07) 2.9h
ResNet32 70.66(±0.16) 0.7h 71.98 7.2h 71.59(±0.10) 4.3h 72.51(±0.07) 4.3h 72.57(±0.20) 4.3h
ResNet44 71.43(±0.30) 0.8h 72.83 8.3h 72.30(±0.38) 5.7h 73.18(±0.31) 5.7h 72.89(±0.16) 5.7h
ResNet56 72.22(±0.26) 1.1h 73.09 10.6h 73.44(±0.13) 7.0h 74.20(±0.24) 7.0h 73.89(±0.15) 7.0h

Varying the Number of Augmented Samples. One hyperparameter of the proposed method is the
number of augmented samples |B(xi)|. In Table 2, we evaluate the effect of |B(xi)| on the CIFAR
dataset. We vary |B(xi)| in {2, 5, 10, 20} for both MMEL-H and MMEL-S with other settings
unchanged. As can be seen, the performance of MMEL improves with more augmented samples for
small |B(xi)|. However, the performance gain begins to saturate when |B(xi)| reaches 5 or 10 for
some cases. Since a larger |B(xi)| also brings more training cost, we should choose a proper number
of augmented samples rather than continually increasing it.

Table 2: Performance of MMEL on CIFAR-10 and CIFAR-100 with ResNet with varying |Bxi |.
Here “MMEL-*-k” means training with MMEL-* loss with |B(xi)| = k. The results are averaged
over five independent runs with “mean(±std)” reported.

dataset Model Baseline(DA) MMEL-*-2 MMEL-*-5 MMEL-*-10 MMEL-*-20
H S H S H S H S

CIFAR-10

ResNet20 92.53(±0.10) 92.77(±0.01) 92.91(±0.21) 93.11(±0.13) 92.89(±0.05) 93.16(±0.03) 93.10(±0.18) 93.57(±0.04) 93.18(±0.08)
ResNet32 93.46(±0.21) 93.85(±0.16) 93.88(±0.18) 94.20(±0.18) 93.88(±0.14) 94.31(±0.07) 93.93(±0.05) 94.39(±0.09) 93.89(±0.17)
ResNet44 93.92(±0.10) 94.18(±0.12) 93.87(±0.13) 94.51(±0.13) 94.35(±0.07) 94.70(±0.14) 94.48(±0.08) 94.70(±0.20) 94.39(±0.11)
ResNet56 93.96(±0.20) 94.29(±0.08) 94.43(±0.05) 94.78(±0.09) 94.56(±0.15) 94.85(±0.15) 94.64(±0.03) 95.01(±0.12) 94.62(±0.12)

CIFAR-100

ResNet20 68.95(±0.56) 69.46(±0.24) 70.00(±0.36) 69.73(±0.21) 69.88(±0.18) 70.01(±0.07) 70.00(±0.07) 69.89(±0.09) 70.05(±0.23)
ResNet32 70.66(±0.16) 71.50(±0.09) 71.37(±0.30) 72.41(±0.18) 71.73(±0.16) 72.51(±0.07) 72.57(±0.20) 72.25(±0.12) 72.00(±0.12)
ResNet44 71.43(±0.30) 72.58(±0.08) 72.42(±0.24) 73.38(±0.07) 72.92(±0.15) 73.18(±0.31) 72.89(±0.16) 73.23(±0.18) 72.77(±0.15)
ResNet56 72.22(±0.26) 73.11(±0.36) 73.33(±0.30) 73.95(±0.04) 73.47(±0.14) 74.20(±0.24) 73.89(±0.15) 74.10(±0.05) 73.53(±0.12)

4.2 RESULTS ON NATURAL LANGUAGE UNDERSTANDING TASKS

Data. GLUE is a benchmark containing various natural language understanding tasks, including tex-
tual entailment (RTE and MNLI), question answering (QNLI), similarity and paraphrase (MRPC, QQP,
STS-B), sentiment analysis (SST-2) and linguistic acceptability (CoLA). Among them, STS-B
is a regression task, CoLA and SST-2 are single sentence classification tasks, while the rest are
sentence-pair classification tasks. Following (Devlin et al., 2019), for the development set, we report
Spearman correlation for STS-B, Matthews correlation for CoLA and accuracy for the other tasks.
For the test set for QQP and MRPC, we report “F1”.

Setup. The backbone model is BERTBASE (Devlin et al., 2019). We use the method in Section 3.3
to generate augmented samples. For the problem of mismatching label as described in Section 3.3,
we use a BERTBASE model fine-tuned on the downstream task as teacher model to predict the label
of each generated sample z in B(xi). For each xi, |B(xi)| = 5. The fraction of masked tokens
for each sentence is 0.4. The λP of the KL regularization coefficient is 1.0 for both MMEL-H and
MMEL-S. The λT in equation (8) for MMEL-S is 1.0. The other detailed hyperparameters in training
can be found in Appendix D.

The derivation of MMEL in Section 3 is based on the classification task, while STS-B is a regression
task. Hence, we generalize our loss function accordingly for regression tasks as follows. For the hard
loss in equation (7), we directly replace yz ∈ R with the prediction of teacher model on z. For the soft
loss (8), for each entry of fθ(xi) in loss term λT

∑
z∈B(xi);z 6=xi

P∗θ(z | xi)MSE(fθ(z), fθ(xi)),
we replace it with the prediction of teacher model if the difference between them is larger than 0.5.

Similar to Section 4.1, We compare with three baselines. However, we change the first baseline to
naive training without data augmentation (abbreviated as “Baseline”) since data augmentation is
not used by default in NLP tasks. The other two baselines are similar to those in Section 4.1: (i)
“Baseline(DA+Long)” which fine-tunes BERT with data augmentation with the same batch size; and
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(a) CoLA. (b) SST-2. (c) MRPC. (d) STS-B.

(e) QQP. (f) MNLI. (g) QNLI. (h) RTE.
Figure 2: Development set results on BERTBASE model with different loss functions.

(ii)“Baseline(DA+UNI)” which fine-tunes BERT with augmented samples by using average loss. We
also compare with another recent data augmentation technique SMART (Jiang et al., 2020b).

Table 3: Development and test sets results on the BERTBASE model. The training time is measured on
a single NVIDIA V100 GPU. The results of Baseline, Baseline(DA+UNI), MMEL-H and MMEL-S
are obtained by five independent runs with “mean(±std)” reported.

Method CoLA
8.5k

SST-2
67k

MRPC
3.7k

STS-B
7k

QQP
364k

MNLI-m/mm
393k

QNLI
108k

RTE
2.5k Avg Time

Dev

Baseline 59.7(±0.61) 93.1(±0.38) 87.0(±0.56) 89.7(±0.34) 91.1(±0.12) 84.6(±0.28)/85.0(±0.37) 91.7(±0.17) 69.7(±2.3) 83.5(±0.27) 21.5h
Baseline(DA+Long) 61.5 93.3 88.0 89.8 91.1 84.8/85.3 92.0 73.3 84.3 107.5h
Baseline(DA+UNI) 61.1(±0.75) 93.1(±0.17) 87.9(±0.63) 90.0(±0.14) 91.1(±0.03) 84.8(±0.36)/85.1(±0.26) 91.9(±0.16) 71.8(±1.02) 84.1(±0.14) 31.6h
SMART 59.1 93.0 87.7 90.0 91.5 85.6/86.0 91.7 71.2 84.0 -
MMEL-H 62.1(±0.55) 93.1(±0.14) 87.7(±0.20) 90.4(±0.14) 91.5(±0.07) 85.3(±0.06)/85.5(±0.06) 92.2(±0.10) 72.3(±0.85) 84.5(±0.11) 31.8h
MMEL-S 62.1(±0.55) 93.5(±0.23) 88.4(±0.73) 90.4(±0.14) 91.5(±0.04) 85.2(±0.05)/85.6(±0.02) 92.4(±0.12) 71.9(±0.24) 84.6(±0.11) 32.4h

Test

Baseline 51.6(±0.73) 93.3(±0.21) 88.0(±0.59) 85.8(±0.88) 71.3(±0.32) 84.6(±0.19)/83.8(±0.30) 91.1(±0.35) 67.4(±1.30) 79.6(±0.09) 21.5h
Baseline(DA+Long) 52.0 93.3 88.8 86.7 71.3 84.4/83.9 90.9 69.6 80.1 107.5h
Baseline(DA+UNI) 52.4(±1.50) 92.3(±0.52) 87.7(±0.72) 85.8(±0.70) 71.5(±0.44) 84.6(±0.31)/83.6(±0.46) 90.6(±0.43) 68.8(±1.76) 79.7(±0.50) 31.6h
MMEL-H 53.6(±0.90) 93.4(±0.05) 88.3(±0.21) 86.6(±0.45) 72.4(±0.05) 84.9(±0.19)/84.5(±0.15) 91.5(±0.11) 69.8(±0.52) 80.5(±0.17) 31.8h
MMEL-S 52.5(±0.43) 93.5(±0.16) 88.3(±0.15) 86.1(±0.07) 72.1(±0.10) 85.0(±0.23)/84.2(±0.15) 91.4(±0.31) 69.9(±0.54) 80.3(±0.10) 32.4h

Main Results. The development and test set results on the GLUE benchmark are shown in Table
3. The development set results for the BERT baseline are from our re-implementation, which is
comparable or better than the reported results in the original paper (Devlin et al., 2019). The results
for SMART are taken from (Jiang et al., 2020b), and there are no test set results in (Jiang et al.,
2020b). As can be seen, data augmentation significantly improves the generalization of GLUE
tasks. Compared to the baseline without data augmentation (Baseline), MMEL-H or MMEL-S
consistently achieves better performance, especially on small datasets like CoLA and RTE. Similar to
the observation in the image classification task in Section 4.1, the proposed MMEL-H and MMEL-S
are more efficient and have better performance than Baseline(DA+Long). MMEL-H and MMEL-S
also outperform Baseline(DA+UNI), indicating the superiority of using the proposed reweighting
strategy. In addition, our proposed method also beats SMART in both accuracy and efficiency because
they use PGD-k (Madry et al., 2018) to construct adversarial augmented samples which requires
nearly k times more training cost. Figure 2 shows the development set accuracy across over the
training procedure. As can be seen, training with MMEL-H or MMEL-S converges faster and has
better accuracy except SST-2 and RTE where the performance is similar.

Effect of Predicted Labels. For the augmented samples from same origin, we use a fine-tuned
task-specific BERTBASE teacher model to predict their labels as mentioned in Section 3.3 to handle
the problem of mismatching label. In Table 4, we show the comparison between using the label of
the original sample and using predicted labels. As can be seen, using the predicted label significantly
improves the performance. By comparing with the results in Table 3, using the label of the original
sample even hurts the performance.
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Table 4: Effect of using the predicted label. Development set results are reported.

Method Label CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Avg
MMEL-H Original 48.8 91.5 79.2 80.3 88.6 80.4/79.8 88.8 65.3 78.1
MMEL-H Predicted 62.8 93.3 87.5 90.4 91.6 85.4/85.6 92.1 72.2 84.5
MMEL-S Original 56.6 91.7 85.8 81.6 90.0 81.9/81.3 89.9 61.0 80.0
MMEL-S Predicted 61.7 93.8 89.2 90.2 91.6 85.0/85.5 92.5 73.3 84.7

5 CONCLUSION

In this work, we propose to minimize a reweighted loss over the augmented samples which directly
considers their implicit impacts on the loss. Since we can not access the optimal reweighting strategy,
we propose to minimize the supremum of the loss under all reweighting strategies, and give a closed-
form solution of the optimal weights. Our method can be applied on top of any data augmentation
methods. Experiments on both image classification tasks and natural language understanding tasks
show that the proposed method improves the generalization performance of the model, while being
efficient in training.
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A PROOF OF THEOREM 1

Proof. For any given xi and B(xi), we aim to find Pθ(· | xi) on B(xi) such that

max
Pθ(·|xi)

∑
z∈B(xi)

Pθ(z | xi)`(fθ(z), yz))− λPPθ(z | xi) log (|B(xi)|Pθ(z | xi))

s.t.
∑

z∈B(xi)

Pθ(z | xi) = 1.
(10)

Since the objective is convex, by Lagrange multiplier method, let

L(Pθ, λ) =
∑

z∈B(xi)

Pθ(z | xi)`(fθ(z), yz))− λPPθ(z | xi) log (|B(xi)|Pθ(z | xi))

+ λ

 ∑
z∈B(xi)

Pθ(z | xi)− 1

 .

(11)

From ∇PθL(Pθ, λ) = ∇λL(Pθ, λ) = 0, for any pairs of zu, zv ∈ B(xi), we have

`(fθ(zu), yzu)− λP (log |B(xi)|+ 1 + log Pθ(zu | xi))
= `(fθ(zv), yzv )− λP (log |B(xi)|+ 1 + log Pθ(zv | xi)).

(12)

Hence we have

Pθ(zv | xi) = Pθ(zu | xi) exp
(
`(fθ(zv), yzv )− `(fθ(zu), yzu)

λP

)
. (13)

Summing over zv ∈ B(xi), we have

Pθ(zu | xi)
∑

zv∈B(xi)

exp

(
`(fθ(zv), yzu)− `(fθ(zu), yzu)

λP

)
= 1. (14)

The proof completes.

B MMEL ON LARGE-SCALE DATASET

In this section, we evaluate the proposed method MMEL on large-scale image classification task
ImageNet(Deng et al., 2009).

Data. ImageNet is a benchmark dataset which contains colorful images with over 1 million
training samples and 50000 validation samples from 1000 categories.

Setup. The model we used is ResNet for ImageNet with three different depths (He et al., 2016).
All these experiments are conducted for 100 epochs, and the learning rate decays at epochs 30, 60,
and 90. We set batch size as 256, and |B(xi)| = 10 for each xi. The other experimental settings
follow Section 4.1, expect for the following hyperparameters. We compare the proposed method with
“Baseline(DA)”.

Main Results. The results are shown in Table 5. From the results, the proposed MMEL-H improves
the performance of the model for all three depths. However, the proposed MMEL-S is beaten by
the baseline method. We speculate this is due to the relatively larger proportion of inaccurate
prediction of original training samples on the large-scale dataset. More specifically, as in equation
(8), for each augmented sample z ∈ B(xi), the proposed MMEL-S encourages the model to fit the
output of original training sample fθ(xi). However, the accuracy of the original training samples
in the ImageNet dataset can not reach 100% e.g., about 80% for ResNet50 on ImageNet. The
inaccurate prediction fθ(xi) can be a misleading supervision for augmented sample z ∈ B(xi),
leading to degraded performance of the proposed MMEL-S. Thus, we suggest using the MMEL-H if
the accuracy of the original training samples is relative low.
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Table 5: Performance of ResNet on ImageNet.

dataset Model Baseline(DA) MMEL-H MMEL-S

ImageNet
ResNet18 69.76 70.48(+0.72) 68.52(-1.24)
ResNet34 73.30 74.38(+1.08) 72.33(-0.97)
ResNet50 76.15 76.53(+0.38) 74.82(-1.33)

C GENERATING AUGMENTED SAMPLES FOR TEXTUAL SAMPLES

In this section, we elaborate the procedure of generating augmented sentences using greedy-based
and beam-based method for a sequence. For each original input sentence, we randomly mask k
tokens (which is obtained by rounding the product of masking ratio and length of the sequence to the
nearest number) and then we do a forward propagation of the BERT to predict the tokens in those
masked positions using greedy search. The detailed procedure is shown in Algorithm 2. We also
use beam search (Yang et al., 2018) to generate augmented data. The details of beam search can be
referred to (Yang et al., 2018). For sentence-pair tasks, we treat the two sentences separately and
generate augmented samples for each of them.

Algorithm 2 Augmented Sample Generation by Greedy Search
Input: Pre-trained language model BertModel, original sentence x, number of augmented samples
|B(x)| − 1, number of masked tokens k.
Output: Augmented samples B(x) = {z1, z2, · · · , z|B(x)|−1}.

1: Randomly sample k positions {p1, · · · , pk} and get xmask.
2: for i = 1, 2, · · · |B(x)| − 1 do . Generate the i-th augmented sample
3: zi ← xmask.
4: zi[p1]← the ith most likely word predicted by BertModel(zi[p1]|zi).
5: for j in {2, 3. · · · , k} do
6: zi[pj ]← the most likely word predicted by BertModel(zi[pj ]|zi).
7: end for
8: end for

In the following, we vary the factors that may affect the quality of the generated augmented samples.
These factors include

1. The number of masked tokens, which equals the replacement proportion multiplied with the
sentence length. This affects the diversity of augmented samples, i.e., replacing a large proportion
of tokens makes the augmented sample less similar to the original one.

2. Treating the two sentences separately in sentence-pair tasks when generating augmented examples,
or concatenate them as a single sentence;

3. Different generation methods like greedy search (Algorithm 2) and beam search.

The results are shown in Table 6. As can be seen, compared with Baseline without data augmentation,
MMEL-H and MMEL-S under all hyperparameter configurations have higher accuracy, showing
the efficacy of data augmentation and the proposed reweighting strategy. There is no significant
difference in using greedy search or beam search to generate the augmented samples. In this natural
understanding task, training with augmented samples generated with proper larger replacement
proportion (i.e., larger diversity) has slightly better performance. For sentence-pair tasks, treating
the two sentences separately and generate augmented samples for each of them has slightly better
performance. In the experiments in Section 4.2, we use Greedy search, masking proportion 0.4, and
generate augmented sentence for each sentence in sentence-pair tasks.

D HYPERPARAMETERS FOR THE EXPERIMENT ON THE GLUE BENCHMARK.

The optimizer we used is AdamW (Loshchilov & Hutter, 2018). The hyperparameters of BERTBASE
model are listed in Table 7.
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Table 6: Ablation study on generating augmented samples on the GLUE benchmark. Development
set results are reported.

Method Separate
sentence-pair

Replacement
proportion CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Avg

Baseline 59.0 93.3 87.5 89.8 91.3 84.6/85.0 91.4 71.1 83.7

MMEL-H

Greedy True 0.2 60.2 93.1 87.7 90.0 91.5 85.4/85.6 92.4 71.5 84.1
Greedy True 0.4 62.8 93.3 87.5 90.4 91.6 85.4/85.6 92.1 72.2 84.5
Greedy False 0.2 60.2 93.6 87.0 89.8 91.5 85.4/85.7 92.5 69.3 84.0
Greedy False 0.4 61.8 92.7 88.0 90.0 91.5 85.3/85.5 92.2 72.2 84.4
Beam True 0.2 60.0 93.2 87.0 90.0 91.4 85.5/85.5 92.4 71.1 84.0
Beam True 0.4 60.8 93.1 88.0 90.3 91.3 85.3/85.5 92.3 70.3 84.5
Beam False 0.2 60.0 93.5 86.7 89.8 91.5 85.6/85.7 92.3 70.4 83.9
Beam False 0.4 60.8 93.1 88.0 90.0 91.4 85.3/85.5 92.3 70.4 84.1

MMEL-S

Greedy True 0.2 61.0 93.1 87.0 89.5 91.6 85.5/85.8 92.1 71.8 84.2
Greedy True 0.4 61.7 93.8 89.2 90.2 91.6 85.0/85.5 92.5 73.3 84.7
Greedy False 0.2 61.0 93.6 86.5 89.9 91.6 85.6/86.2 92.5 69.3 84.0
Greedy False 0.4 61.8 93.0 87.7 90.0 91.6 85.1/85.6 92.5 72.2 84.4
Beam True 0.2 62.0 92.9 86.7 89.9 91.5 85.4/85.9 92.5 71.8 84.2
Beam True 0.4 61.0 93.0 87.7 90.2 91.4 85.2/85.5 92.2 73.6 84.0
Beam False 0.2 62.0 93.3 86.7 89.7 91.6 85.3/85.9 92.4 70.0 84.1
Beam False 0.4 61.0 93.1 88.2 89.7 91.4 85.2/85.7 92.2 72.2 84.3

Table 7: Hyperparameters of the BERTBASE model.

Hyperparam MMEL-H MMEL-S
Learning Rate 3e-5 3e-5

Batch Size 32 32
Weight Decay 0 0

Hidden Layer Dropout Rate {0, 0.1} {0, 0.1}
Attention Probability Dropout Rate {0, 0.1} {0, 0.1}

Max Epochs (MNLI, QQP) 3 3
Max Epochs (Others) 10 10
Learning Rate Decay Linearly Linearly

Warmup Ratio 0 0
λT 1.0 1.0
λP 1.0 1.0

Number of Candidates (|B(xi)|) 5 5

14


	Introduction
	Related Work
	minimize the maximal Expected Loss
	Why Maximal Expected Loss
	Two Types of Loss
	Example: MMEL Implementation on Natural Language Understanding Tasks

	Experiments
	Experiments on Image Classification Tasks.
	Results on Natural Language Understanding Tasks

	Conclusion
	Proof of Theorem 1
	MMEL on Large-Scale Dataset
	Generating Augmented Samples for Textual Samples
	Hyperparameters for the Experiment on the GLUE Benchmark.

